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Impacts of Ramping Inflexibility of Conventional
Generators on Strategic Operation of Energy

Storage Facilities
Ehsan Nasrolahpour, Student Member, IEEE, Jalal Kazempour, Member, IEEE,

Hamidreza Zareipour, Senior Member, IEEE, and William D. Rosehart, Senior Member, IEEE

Abstract—This paper proposes an approach to assist a price-
maker merchant energy storage facility in making its optimal
operation decisions. The facility operates in a pool-based elec-
tricity market, where the ramping capability of other resources
is limited. Also, wind power resources exist in the system. The
merchant facility seeks to maximize its profit through strategic
inter-temporal arbitrage decisions, when taking advantage of
those ramp limitations. The market operator, on the other
hand, aims at maximizing the social welfare under wind power
generation uncertainty. Thus, a stochastic bi-level optimization
model is proposed, taking into account the interactions between
the storage facility and the market operator, and the existing
market opportunities for the storage facility. The proposed bi-
level model is then transformed into a Mathematical Program
with Equilibrium Constraints (MPEC) that can be recast as a
Mixed-integer Linear Programming (MILP) problem. Different
case studies are presented and discussed using a six-bus illus-
trative example and the IEEE one-area reliability test system to
evaluate the performance of the proposed approach.

Index Terms—Price-maker energy storage system, Pool strat-
egy, Mathematical Program with Equilibrium Constraints
(MPEC) NOMENCLATURE

A. Indices and Sets
t Index of hours running from 1 to Nt

w Index of scenarios running from 1 to Nw

g Index of conventional generators running from 1
to Ng

k Index of wind power units running from 1 to
Nk

s Index of energy storage systems running from 1
to Ns

d Index of load demands running from 1 to Nd

i, j Indices of buses running from 1 to Ni and Nj ,
respectively

Ψi Sets of buses adjacent to bus i
Qg Mapping the conventional generators into the

buses
Qk Mapping the wind power units into the buses
Qs Mapping the energy storage systems into the

buses
Qd Mapping the load demands into the buses
B. Parameters
MCdis

s Marginal cost of energy storage system s in the
discharging mode, ($/MWh)
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MCch
s Marginal cost of energy storage system s in the

charging mode, ($/MWh)
MCg Marginal cost of conventional generator g,

($/MWh)
P dis,max
s Maximum limit on injected power of energy stor-

age system s in the discharging mode, (MW)
P ch,max
s Maximum limit on stored power of energy storage

system s in the charging mode, (MW)
Emax

s Maximum limit on stored energy of energy storage
system s, (MWh)

Eini
s Initial value of stored energy of energy storage

system s, (MWh)
αs A non-negative factor to control stored energy of

energy storage system s for the the next time
horizon.

ηs Efficiency of energy storage system s
Pmax
g Capacity of conventional generator g, (MW)
P ini
g Initial value of generated power of conventional

generator g, (MW)
RUmax

g Maximum limit on ramp up of conventional gen-
erator g (MW/h)

RDmax
g Maximum limit on ramp down of conventional

generator g (MW/h)
P for
k,t,w Forecasted generation of wind power unit k at time

t under scenario w, (MW)
Pmax
d,t Maximum load demand of consumer d at time t,

(MW)
Ud,t Bid price of load demand d at time t, ($/MWh)
Bi,j Susceptance of line connected bus i to bus j, (Ω−1)
PLmax

i,j Transmission capacity of line connected bus i to
bus j, (MW)

Φw probability of scenario w
C. Variables
udiss,t Binary decision variable to indicate if energy stor-

age system s is in the discharging mode at time
t

uchs,t Binary decision variable to indicate if energy stor-
age system s is in the charging mode at time t

uidls,t Binary decision variable to indicate if energy stor-
age system s is in the idle mode at time t

pdiss,t Quantity offer by energy storage system s in the
discharging mode at time t, (MW)

pchs,t Quantity bid by energy storage system s in the
charging mode at time t, (MW)

pg,t,w Power generated by conventional generator g at
time t under scenario w, (MW)

pk,t,w Power generated by wind power unit k at time t
under scenario w, (MW)
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pdiss,t,w Power injected by energy storage system s in
the discharging mode at time t under scenario
w, (MW)

pchs,t,w Power stored by energy storage system s in
the charging mode at time t under scenario w,
(MW)

odiss,t Price offer by energy storage system s in the
discharging mode at time t, ($/MWh)

ochs,t Price bid by energy storage system s in the
charging mode at time t, ($/MWh)

es,t,w Energy stored in energy storage system s at time
t under scenario w, (MWh)

pd,t,w Power consumed by load demand d at time t
under scenario w, (MW)

δi,t,w Voltage angle of bus i at time t under scenario
w, (rad)

µ, λ Dual variables corresponding to the lower-level
constraints. See Section (II-B) for details.

I. INTRODUCTION

Large-scale wind power integration and the associated
production uncertainty and variability introduce operational
challenges in power systems operation [1]. To manage the
issues associated with wind power generation, the concepts of
operational flexibility and ramping products are being explored
by system operators in electricity markets (e.g., California [2]
and Midwest Independent System Operators [3]). Large-scale
energy storage is considered as one of the potential enablers
for a more flexible grid, and thus is expected to grow signifi-
cantly over the coming years [4]. Also, the Federal Energy
Regulatory Commission (FERC) allows energy storage, as
one of so-called “non-generation” resources, to participate in
electricity markets [5]. Therefore, a number of works have
been reported that focus on the operation of energy storage
[6]-[12].

From a broader perspective, the existing literature on the
optimal operation of energy storage systems can be divided
into two categories. In the first category, energy storage
facilities are operated as a part of network assets in a vertically
integrated power system [6]-[8]. In [6], the ramping capability
of a storage system is used to manage the intra-hour net load.
The work in [6] investigates the reduction in different con-
ventional generators’ ramping activity by increasing ramping
capability of storage systems. In [7], it is concluded that larger
storage facilities lead to less ramping constraints and thus,
reduction of the total system cost. In [8], dispatching storage
systems to mitigate forecast errors of wind power production
is discussed considering the ramping capabilities of storage
facilities. In this category of studies, energy storage is not
considered as an independent for-profit entity, and thus, its
profitability is not addressed.

In the second category, energy storage is operated as a
merchant for-profit entity. These studies can further be divided
into two groups, depending on how the storage systems impact
market prices. In the first group, the storage facilities are
treated as price-takers, i.e., they are assumed to be small
enough such that their actions do not affect market prices.
In such a context, the operation of the storage facilities is

optimized under the assumption that future market prices
are exogenous parameters. Hence, the storage operator would
forecast the future market prices using historical data, and
optimizes its operation decisions accordingly. In [9], a for-
profit storage system is sized considering the impact of its
ramp constraints on its economic gain.

The second group of studies focuses on large-scale storage
facilities. The interest in large-scale energy storage is growing
due particularly to new supporting policies [13]. For example,
Alberta Innovates-Energy and Environment Solutions (AI-
EES) announced a two million dollar budget in 2014 to
support storage facility investment in Alberta [14]. As a result
of growing interest in energy storage, various large-scale
storage facilities are announced worldwide [13]. For example,
one large pump-hydro storage and one large compressed air
energy storage systems were filed with the Alberta Electric
System Operator (AESO) in 2014 [15]. Such large storage
facilities could become price-makers, i.e., they are large and
their operation decisions may actually impact market-clearing
outcomes. Considering variability and uncertainty in Alberta’s
net load due to high wind power penetration, these large-
scale storage facilities may exert market power due to their
ramping capabilities. Through their strategic decisions, the
storage facilities could influence market-clearing outcomes to
their benefit.

Note that ignoring the bi-directional interactions between
large-scale storage facilities’ decisions and the market clearing
process may lead to less economical operational decisions
[10]. Therefore, in line with [10]-[12], we analyze the impacts
of storage operation decisions on market-clearing outcomes. In
such a case where the strategic operation of storage facilities is
addressed, the market prices cannot be treated as parameters,
and should be endogenously obtained. In [10], the impact of
energy storage operation on social welfare in an imperfect
competition is studied using a Cournot model. In [11], [12],
a complementarity approach is proposed to determine optimal
operation of a storage system.

In line with [10]-[12], we study the pool strategy of a price-
maker storage system whose aim is to maximize its profit
through inter-temporal arbitrage. However, unlike [10]-[12],
we consider the ramping capability of conventional generators
and introduce it as an opportunity for the storage facility to
strategically adjust its pool strategies and increase its profit.
The price-maker storage, whose actions could influence market
outcomes and clearing prices, takes advantage of technical lim-
itations of the rest of the supply fleet. Note that the ability of
a storage facility to influence market-clearing outcomes to its
own advantage depends on the tightness level of other players’
technical limits; in particular, it depends on the ramp limits of
conventional generators. In markets with insufficient ramping
resources and a significant share of wind power production,
storage facilities can potentially behave strategically.

Compared to an individual price-responsive load or a con-
ventional generator, energy storage systems could participate
in the market as a load or as a generator and switch between
charging, discharging, and idle modes regularly depending on
market situation. Also, the buying and selling decisions are not
entirely independent; this is because the overall profit depends
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on the difference between the price of purchased electricity
and the energy sold back to the market. These dependen-
cies make a storage system’s decision-making problem more
complex than individual loads or generators. However, they
also introduce more operation flexibility by switching between
charging, discharging and idle modes.

The main contribution of this paper is to model the pool
strategies of a large-scale price-maker merchant storage system
considering the ramping capability of other generators in the
presence of high wind power penetration into the power sys-
tem. To do so, a bi-level optimization model is proposed. The
objective of this model is to maximize the storage system’s
expected profit through its strategic discharging and charging
(i.e., strategic inter-temporal arbitrage) decisions considering
wind power uncertainty. The storage system needs to decide
how much energy to buy or to sell at what price at any given
hour over an extended operation period, say over 24 hours. The
primal-dual and Karush-Kuhn-Tucker (KKT) conditions are
derived from transforming the proposed bi-level problem into a
Mathematical Program with Equilibrium Constraints (MPEC)
that can be recast as a Mixed-integer Linear Programming
(MILP) problem. The significance of the proposed model is
that it makes it possible to analyze the impacts of available
ramping capability in the market on the storage facility’s
profitability. Using the proposed model, we also investigate the
impacts of supply curve shape and transmission limitations on
the profitability of the storage facility. Furthermore, impacts of
wind power uncertainty on the operation of the storage facility
are studied.

The rest of this paper is organized as follows. The math-
ematical formulation of the proposed model is provided in
Section II. The results are presented and discussed in Section
III. The paper is concluded in Section IV.

II. METHODOLOGY AND FORMULATION

The proposed bi-level model has two components, i.e., an
upper-level problem to model the operation of the storage
system and a number of lower-level problems to model the
market clearing process under different wind power scenarios.
Note that the upper-level objective function is constrained by
the upper-level constraints as well as the lower-level problems.
The upper and lower-level problems are first discussed, and
then the proposed bi-level model is transformed into a single-
level MPEC and solved accordingly.

A. The Upper-Level Problem: Profit Maximization of the
Price-Maker Storage System

The upper-level problem seeks to maximize the storage
system’s expected profit, as formulated in (a.1)-(a.10). The
optimization variables of the upper-level problem are those in
set ΞUL = {udiss,t , u

ch
s,t, u

idl
s,t , p

dis
s,t , p

ch
s,t, o

dis
s,t , o

ch
s,t

, es,t,w} as well as primal and dual variable sets of the lower-
level problems, i.e., ΞPrimal

LL and ΞDual
LL , respectively. These

two sets are defined in later parts.

Max.
ΞUL

Nw∑
w=1

Φw.

Nt∑
t=1

Ns∑
s:(s,i)∈Qs,s=1

−
[
(λi,t,w +MCch

s ).pchs,t,w

+ (λi,t,w −MCdis
s ).pdiss,t,w

]
(a.1)

S.t.
udiss,t + uchs,t + uidls,t = 1 ∀s,∀t (a.2)

0 ≤ pdiss,t ≤ udiss,t .P
dis,max
s ∀s,∀t (a.3)

0 ≤ pchs,t ≤ uchs,t.P ch,max
s ∀s,∀t (a.4)

odiss,t ≥ 0 ∀s,∀t (a.5)

ochs,t ≥ 0 ∀s,∀t (a.6)

0 ≤ es,t,w ≤ Emax
s ∀s,∀t,∀w (a.7)

es,t,w = Eini
s − pdiss,t,w + ηs.p

ch
s,t,w ∀s, t = 1,∀w (a.8)

es,t,w = es,(t−1),w − pdiss,t,w + ηs.p
ch
s,t,w ∀s,∀t > 1,∀w

(a.9)

es,t,w = αs.E
ini
s ∀s, t = Nt,∀w (a.10)

The objective function (a.1) is composed of two terms. The
first term is associated with the cost incurred for purchasing
and storing energy in the charging mode. It is composed of
the expected cost of buying energy from market and the costs
that might be associated with storing this energy by the energy
storage charging device (e.g., the costs of compression in
the case of compressed air energy storage). The second term
is associated with the expected profit of the energy storage
in discharging mode; this is calculated through the revenue
achieved by selling energy to the market minus the costs that
might be associated with releasing the stored energy (e.g., the
expanding costs in the case of compressed air energy storage).
In this paper, we formulate the offering strategy problem
for a general energy storage system. However, depending on
the specific technology, further modifications may need to be
included to reflect technology-specific issues related to energy
storage systems. For example, for compressed air energy
storage facilities, the energy conversion inefficiency and losses
need to be considered, or for batteries, the depth of discharge
limitations may become relevant. Note that locational marginal
prices (LMPs), denoted by λi,t,w, are endogenously obtained
from the lower-level problems.

Three operation modes for the energy storage system are
considered in (a.2), which are discharging, charging, and
idling, i.e., when the storage system is operating in neither
discharging nor charging modes. Constraints (a.3) and (a.4)
bind the energy storage quantity offers and bids, respectively.
Constraints (a.5) and (a.6) enforce the non-negativity of the
energy storage price offers and bids, respectively. Constraint
(a.7) refers to upper and lower bounds for the storage system
energy reservoir. Constraints (a.8) and (a.9) represent the
energy storage state of charge for the first and rest of hours,
respectively. Note that losses in all three operation modes are
lumped into the energy storage system inefficiency. Constraint
(a.10) is designed to specify the state of charge at the end
of the planning horizon. Generally, storage facilities are fast-
ramping utilities. In this work, no limitations are imposed on
the ramping capability of the storage facility, i.e., the facility
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can ramp up to its maximum capacity or fully shut down in
a one-hour interval. Note that in the upper-level problem, the
storage facility makes its strategic operation (i.e., offering and
bidding) decisions in terms of quantity and price, i.e., pdiss,t ,
pchs,t, o

dis
s,t and ochs,t.

B. The Lower-Level Problems: Market Clearing Process Un-
der Different Wind Power Scenarios

The lower-level problems allow the storage facility to ad-
just its strategic decisions made in the upper-level problem
regarding different physical and financial market conditions.
The wind power uncertainty is modeled in this paper using
a stochastic setup [16] in which, the wind power uncertainty
is represented through a number of scenarios. Thus, in the
lower-level, the market operator clears the market based on
submitted bids and offers for each scenario. We assume that
non-storage participants submit their offer and bid prices based
on their marginal cost/utility. In particular, each wind producer
offers at its marginal cost, which is assumed to be zero. These
assumptions enable us to model the problem of this paper as
an MPEC, in line with [17]. Considering strategic behavior
for all market participants is not the focus of this paper, and
will be addressed in our future research.

The lower-level problem for each scenario is formulated in
(b.1)-(b.14), which is a constraint for the upper-level problem:{

Min.
Ξprimal

LL

Nt∑
t=1

[ Ng∑
g=1

MCg.pg,t,w +

Ns∑
s=1

odiss,t .p
dis
s,t,w

−
Ns∑
s=1

ochs,t.p
ch
s,t,w −

Nd∑
d=1

Ud,t.pd,t,w
]

(b.1)

S.t.
Nd∑

d:(d,i)∈Qd,d=1

pd,t,w −
Ns∑

s:(s,i)∈Qs,s=1

[pdiss,t,w − pchs,t,w]

−
Ng∑

g:(g,i)∈Qg,g=1

pg,t,w −
Nk∑

k:(k,i)∈Qk,k=1

pk,t,w

=

Nj∑
j∈Ψi,j=1

Bi,j .(δj,t,w − δi,t,w) : λi,t,w;∀i,∀t (b.2)

0 ≤ pg,t,w ≤ Pmax
g : µmin

g,t,w, µ
max
g,t,w; ∀g,∀t (b.3)

pg,t,w − P ini
g ≤ RUmax

g : µru
g,t,w; ∀g, t = 1 (b.4)

pg,t,w − pg,(t−1),w ≤ RUmax
g : µru

g,t,w; ∀g,∀t > 1 (b.5)

P ini
g − pg,t,w ≤ RDmax

g : µrd
g,t,w; ∀g, t = 1 (b.6)

pg,(t−1),w − pg,t,w ≤ RDmax
g : µrd

g,t,w; ∀g,∀t > 1 (b.7)

Bi,j .(δi,t,w − δj,t,w) ≤ PLmax
i,j : µpl

i,j,t,w ∀i,∀j ∈ Ψi,∀t
(b.8)

δmin ≤ δi,t,w ≤ δmax : µmin
i,t,w, µ

max
i,t,w; ∀i,∀t (b.9)

δi,t,w = 0 : µ1,t,w; i = 1,∀t (b.10)

0 ≤ pk,t,w ≤ P for
k,t,w : µmin

k,t,w, µ
max
k,t,w; ∀k,∀t (b.11)

0 ≤ pd,t,w ≤ Pmax
d,t : µmin

d,t,w, µ
max
d,t,w; ∀d,∀t (b.12)

0 ≤ pdiss,t,w ≤ pdiss,t : µdis,min
s,t,w , µdis,max

s,t,w ; ∀s,∀t (b.13)

0 ≤ pchs,t,w ≤ pchs,t : µch,min
s,t,w , µch,max

s,t,w ; ∀s,∀t (b.14)}
∀w

The objective function of each lower-level problem
(b.1) seeks to minimize the negative of social welfare.
Social welfare is generally defined as the difference
between the benefit that the produced energy brings to
a society, which is evaluated by the willingness of the
society to pay for it, and the total cost of producing
that energy [18]. The primal and dual variables of each
lower-level problem are those in the set of ΞPrimal

LL =
{pg,t,w, pk,t,w, pdiss,t,w, p

ch
s,t,w, pd,t,w, δi,t,w} and ΞDual

LL =

{λi,t,w, µmin
g,t,w, µ

max
g,t,w, µ

ru
g,t,w, µ

rd
g,t,w, µ

pl
i,j,t,w, µ

min
i,t,w, µ

max
i,t,w,

µ1,t,w, µ
min
k,t,w, µ

max
k,t,w, µ

min
d,t,w, µ

max
d,t,w, µ

dis,max
s,t,w , µdis,min

s,t,w ,

µch,max
s,t,w , µch,min

s,t,w }, respectively. Note that the offering and
bidding decisions of the price-maker storage system, i.e., pdiss,t ,
pchs,t, o

dis
s,t and ochs,t are upper-level decision variables; those are

treated as fixed values in the lower-level problems, i.e., in the
market clearing process. This makes the lower-level problems
continuous, linear, and thus convex [19]. Note that bidding,
offering, and operation mode decisions of the storage facility
should be adopted for all foreseen scenarios. Thus, they are
scenario-independent variables, whereas other variables are
scenario-dependent (indexed by w). Dual variables pertaining
to the lower-level constraints are specified at each equation
following a colon. Constraint (b.2) represents the energy
balance at each bus, whose dual variable provides the LMP at
that bus. Constraint (b.3) binds generators’ production level.
Constraints (b.4)-(b.5) and (b.6)-(b.7) are applied to enforce
the ramp up and down limits of conventional generators,
respectively. Constraint (b.8) enforces the capacity limit
of transmission lines. Constraint (b.9) binds nodal voltage
angles, and constraint (b.10) forces i = 1 to be the reference
bus. Constraint (b.11) binds the wind power production to lie
within zero and the forecasted value. Note that this constraint
implicitly allows the excessive wind power to be spilled. Note
also that the upper bound of this constraint, i.e., P for

k,t,w, is an
uncertain parameter indexed by w, which represents the wind
power uncertainty. Constraint (b.12) binds the consumption
level of load demand entities. Constraints (b.13) and (b.14)
enforce the accepted discharge/charge quantities to lie within
zero and the submitted quantity offer/bid, respectively.

C. Single-Level MPEC and its Linearization

In order to transform the bi-level model (a.1)-(b.14) into a
single-level MPEC, the primal-dual transformation is applied
to each lower-level problem (b.1)-(b.14) to derive their opti-
mality conditions. Accordingly, (c.1)-(c.13) provide the dual
constraints associated with each lower-level problem (b.1)-
(b.14). In addition, (c.14) refers to the strong duality condition
corresponding to each lower-level problem; this enforces the
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equality of its primal and dual objective function values at the
optimal solution.

{
odiss,t − λi:(i,s)∈Qs,i,t,w + µdis,max

s,t,w − µdis,min
s,t,w = 0 ∀s,∀t

(c.1)

− ochs,t + λi:(i,s)∈Qs,i,t,w + µch,max
s,t,w − µch,min

s,t,w = 0 ∀s,∀t
(c.2)

MCg − λi:(i,g)∈Qg,i,t,w + µmax
g,t,w − µmin

g,t,w + µru
g,t,w

− µru
g,(t+1),w − µ

rd
g,t,w + µrd

g,(t+1),w = 0 ∀g,∀t < Nt (c.3)

MCg − λi:(i,g)∈Qg,i,t,w + µmax
g,t,w − µmin

g,t,w + µru
g,t,w

− µrd
g,t,w = 0 ∀g, t = Nt (c.4)

− Ud,t + λi:(i,d)∈Qd,i,t,w + µmax
d,t,w − µmin

d,t,w = 0 ∀d,∀t
(c.5)

− λi:(i,k)∈Qk,i,t,w + µmax
k,t,w − µmin

k,t,w = 0 ∀k, ∀t (c.6)
Nj∑

j∈Ψi,j=1

Bi,j .(λi,t,w − λj,t,w) +

Nj∑
j∈Ψi,j=1

Bi,j .(µ
pl
i,j,t,w

− µpl
j,i,t,w) + µmax

i,t,w − µmin
i,t,w + (µ1,t,w)i=1 = 0 ∀i,∀t (c.7)

µmax
g,t,w, µ

min
g,t,w, µ

ru
g,t,w, µ

rd
g,t,w ≥ 0 ∀g,∀t (c.8)

µpl
i,j,t,w ≥ 0 ∀i,∀j ∈ Ψi,∀t (c.9)

µmax
i,t,w, µ

min
i,t,w ≥ 0 ∀i,∀t (c.10)

µmax
d,t,w, µ

min
d,t,w ≥ 0 ∀d,∀t (c.11)

µmax
k,t,w, µ

min
k,t,w ≥ 0 ∀k, ∀t (c.12)

µdis,max
s,t,w , µdis,min

s,t,w , µch,max
s,t,w , µch,min

s,t,w ≥ 0 ∀s,∀t (c.13)

Nt∑
t=1

[ Ng∑
g=1

MCg.pg,t,w +

Ns∑
s=1

odiss,t .p
dis
s,t,w

−
Ns∑
s=1

ochs,t.p
ch
s,t,w −

Nd∑
d=1

Ud,t.pd,t,w
]

=

−
Nt∑
t=1

Ns∑
s=1

[
µdis,max
s,t,w .pdiss,t + µch,max

s,t,w .pchs,t
]

+Xw (c.14)

where,
Xw =

−
Nt∑
t=1

Ng∑
g=1

[
µmax
g,t,w.P

max
g + µru

g,t,w.RU
max
g + µrd

g,t,w.RD
max
g

]
+

Ng∑
g=1

[
µru
g,(t=1),w.P

ini
g − µrd

g,(t=1),w.P
ini
g

]
−

Nt∑
t=1

Nk∑
k=1

[
µmax
k,t,w.P

for
k,t,w

]
−

Nt∑
t=1

Nd∑
d=1

[
µmax
d,t,w.P

max
d,t

]
−

Nt∑
t=1

Ni∑
i=1

Nj∑
j∈Ψi,j=1

[
µpl
i,j,t,w.PL

max
i,j

]

−
Nt∑
t=1

Ni∑
i=1

[
µmax
i,t,w.δ

max − µmin
i,t,w.δ

min
]

(c.15)}
∀w

Since the storage facility works at both discharging and
charging modes, it submits bids as well as offers, which are
addressed in (c.1) and (c.2), respectively. Thus, bid and offer
prices are interconnected, while conventional generators only
submit offers into the market. Besides, the dual variables as-
sociated with the ramp constraints of conventional generators
are included in (c.3) and (c.4); those reflect the impacts of the
generators’ ramp up and down limits on LMPs and in turn,
the storage facility’s pool strategies.

The single-level MPEC includes the upper-level problem
(a.1)-(a.10), the lower-level problems’ primal constraints (b.2)-
(b.14), the lower-level problems’ dual constraints (c.1)-(c.13)
and the strong duality condition (c.14). However, this MPEC
is non-linear due to the product of prices and quantities in
(c.14) and (a.1). Pursuing linearity, the strong duality condition
can be replaced by the set of complementarity conditions
obtained from the KKT conditions associated with the lower-
level problems [20]. Each complementarity condition can be
linearized by its mixed-integer linear equivalent through the
Big-M approach proposed in [21]. The selection of Big-M
values can be challenging since relatively small values may
result in increased computational burden whereas relatively big
values may lead to numerical ill-conditioning. To handle this
concern, we first arbitrarily select big values, and then solve
the model. Next, we check the numerical results to validate if
each complementarity condition holds. If not, the correspond-
ing Big-M value is reduced, and then the model is resolved.
This tuning-up process continues until all complementarity
conditions hold.

Finally, the linear equivalent expression of the objective
function (a.1) can be driven from the dual conditions (c.1)-
(c.2), the strong duality condition (c.14), and the comple-
mentarity conditions related to the storage facility’s bids and
offers quantities [22]. The linear objective function that is to
be substituted by (a.1) is stated as follows:

Max.
ΞUL

Nw∑
w=1

Φw.

{
−

Nt∑
t=1

Ns∑
s=1

[
MCdis

s .pdiss,t,w +MCch
s .pchs,t,w]

−
Nt∑
t=1

Ng∑
g=1

MCg.pg,t,w +

Nt∑
t=1

Nd∑
d=1

Ud,t.pd,t,w +Xw

}
(c.16)

Note that in the linearized objective function (c.16), the Xw

element connects the storage facility’s decision to the ramping
limits of conventional units.

Similar complementarity models have been recently ap-
plied to different strategic decision-making problems within
electricity markets [17], [19], [23], [24]. This approach for
electricity market modeling was initially used in the pioneering
work [17]. Other studies used similar models for different
purposes such as strategic bidding of a large consumer in
[19], strategic offering of a conventional generator in [23],
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TABLE I
CONVENTIONAL GENERATORS CHARACTERISTICS

Generator No. Bus No. Pmax
g MCg RUmax

g RDmax
g P ini

g
(MW) ($/MWh) (MW/h) (MW/h) (MW)

G1 1 100 12 5 5 100
G2 2 75 20 8 8 75
G3 6 50 50 10 10 0
G4 6 50 100 20 20 0

TABLE II
STORAGE SYSTEM CHARACTERISTICS

Storage Bus No. P dis,max
s P ch,max

s MCdis
s MCch

s
system (MW) (MW) ($/MWh) ($/MWh)

1 5 40 30 18 1

and strategic generation investment in [24]. Recently, com-
plementarity modeling was applied to the strategic bidding
of an energy storage facility considering energy arbitrage in
[11], [12]. Compared to the work in [11], [12], we build
our model considering the ramping capability of conventional
generators. Adding ramps introduced additional inter-temporal
dependencies in the formulation, i.e., (b.4)-(b.7) compared
to when ramping limits are not enforced. Because of these
constraints, LMPs would become dependent upon ramping
capabilities in the market as reflected in (c.3)-(c.4). Thus,
storage facilities bidding strategies, the market prices and
economic performance of conventional generators, as well
as that of the storage facility, would be affected. We also
model wind power uncertainty and analyze its impacts on the
profitability of the storage facility.

III. NUMERICAL RESULTS

Two case studies are considered in this paper, i.e., a six-
bus illustrative example and the IEEE one-area reliability
test system. For simplicity, and to make the findings more
intuitive, we exclude wind production within the first case
study, i.e., the six-bus illustrative example, and therefore, we
use a deterministic setup. This way, we investigate how the
technical limits of the system (e.g., ramping limits of the
conventional generators and transmission capacity limits), as
well as variations in the hourly loads, impact the strategic
storage decisions. In the second case study, we consider wind
power production, which needs a stochastic analysis. Then, we
investigate how wind power uncertainty affects the strategic
storage decisions.

We solved the MILP form of the proposed model using
CPLEX solver under General Algebraic Modeling System
(GAMS) [25]. The model was solved in all cases taking less
than five minutes on a standard desktop computer.

A. A Six-Bus Illustrative Example

In this section, a six-bus system [26] is used to demonstrate
the performance of the proposed methodology. In particular,
the impacts of the total ramp up/down capability of the
conventional generators, the smoothness level of the supply
curve, i.e., the shape of the supply curve, and the transmission
capacity limits on market prices and the storage facility’s profit
are analyzed.

Technical characteristics of the conventional generators are
given in Table I. The capacity of each transmission line is
considered to be 150 MW, except for line 4, which connects

1

654

32

Figure 2: The IEEE 6-bus test system

Storage

Fig. 1. A six-bus illustrative example one-line diagram

bus 2 to bus 4, and is limited to 33 MW. The energy storage
system is located at bus 5, as presented in Fig. 1 and its
technical characteristics are provided in Table II. The energy
storage facility’s charging and discharging components are
modeled separately. This is mainly inspired by the operation of
a compressed air energy storage system [27]. This separation
provides further flexibility in modeling and analysis of dif-
ferent storage technologies. The capacity of storage system’s
energy reservoir is 100 MWh.

In this illustrative example, a time horizon of 24 hours is
considered. This operation horizon is selected to reasonably
match the storage reservoir size [28]; larger reservoirs may
require a longer operation period. It is assumed that the storage
system starts empty and comes back to the same state at the
end of time horizon- the initial state of the charge could be
any value. Also, without losing generality, the efficiency of
the storage facility is assumed to be 100%. The hourly load
distribution over the 24 hours horizon is given in the second
column of Table III. The load is distributed equally among
buses 3 and 4. The load bids at $450/MWh for all hours.

The following test cases are studied:
• Base Case: The energy storage system does not play

strategically.
• Case 1: The energy storage system is a price-maker entity,

i.e., it bids and offers strategically.
• Case 2: Ramp rate limits of conventional generators are

added to Case 1.
• Case 3: Transmission line capacity limits are added to

Case 2.
Base Case: In this case, we assume the storage system

participates in the market as a non-strategic player, and thus,
the market is perfectly competitive. In this case, the generators’
ramp rate limits are not considered, neither are the network
constraints. The detailed numerical results for this case are pre-
sented in Table III. The purpose of this case is to demonstrate
a simple case where the numerical results could be tracked.
Also, we will compare the results of other cases to those of
this base case. Note that only the lower-level problem, i.e.,
the market clearing, is solved in this case since it refers to a
perfectly competitive market.

In the first hour, the load is 176 MW and is supplied by
generators G1, G2, and G3. Since generators G1 and G2 are
dispatched at their full capacity in this hour, the marginal cost
of generator G3 sets the system marginal cost (SMC), which
is $50/MWh. In the second hour, the load is 165 MW and
the storage system is charged at a 10 MW rate. The SMC
is cleared at $31/MWh, which is less than the marginal cost
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TABLE III
MARKET CLEARING RESULTS IN BASE CASE: THE ENERGY STORAGE IS A

NON-STRATEGIC PLAYER

Hour pd,t pdiss,t /p
ch
s,t

pg,t λi,tG1 G2 G3 G4

(MW) (MW)∗ (MW) ($/MWh)
1 176 100 75 1 0 50
2 165 -10 100 75 0 0 31
3 158 -17 100 75 0 0 31
4 154 -21 100 75 0 0 31
5 155 -20 100 70 0 0 31
6 159 -16 100 75 0 0 31
7 173 -2 100 75 0 0 31
8 177 100 75 2 0 50
9 177 100 75 2 0 50

10 181 100 75 6 0 50
11 188 100 75 13 0 50
12 190 100 75 15 0 50
13 195 100 75 20 0 50
14 196 100 75 21 0 50
15 197 100 75 22 0 50
16 218 100 75 43 0 50
17 249 28 100 75 46 0 50
18 252 27 100 75 50 0 50
19 244 19 100 75 50 0 50
20 237 12 100 75 50 0 50
21 220 100 75 45 0 50
22 199 100 75 24 0 50
23 196 100 75 21 0 50
24 195 100 75 20 0 50

∗A negative/positive value corresponds to the storage system’s charging/discharging mode.

of the generator who can supply the next MW demand, i.e.,
generator G3. To justify this value, observe that in this hour,
the next MW could be supplied by generator G2 if the storage
system was being charged one less MW. The value of this MW
is equal to the selling price when discharging, i.e., $50/MWh
at either of hours, minus the storage system’s operation costs
in charging and discharging modes, i.e., 18+1=19 $/MWh.
Thus, the SMC of the second hour is calculated 50-19=31
$/MWh. Similar to hour 2, the SMC at hours 3 to 7 is
$31/MWh. For the rest of hours, the SMC is $50/MWh, which
is equal to the marginal cost of generator G3. Note that if
the storage system were not operating during hours 17 to
20, the demand would have been met by generator G4, and
the SMC would have been $100/MWh at these four hours.
However, since the storage system injects energy to the system
during these hours, the SMC remains at the marginal cost
of generator G3, i.e., $50/MWh. Thus, the operation of the
storage system has reduced the market price for these hours.
For the remaining hours, i.e., hours 21 to 24, generator G3
sets the price at $50/MWh. The profit of the storage facility
in this non-strategic case is zero while it is $125,250 for the
rest of the fleet.

Case 1: The market outcomes for this case are presented
in Table IV. Note that the ramp rate of generators and the
transmission line capacity limits are not yet enforced.

The results obtained for hour 1 are identical to those of Base
Case. For hour 2, the storage system strategically bids to buy
10 MW at $20/MWh, which is identical to the marginal cost
of generator G2. The storage system bids such that there is no
need to dispatch generator G3. Thus, the demand is supplied
by generators G1 and G2. The SMC for this hour is identical
to the marginal cost of the last generator dispatched and the
bid price of the last demand supplied, i.e., the storage facility,
which is $20/MWh. For hours 3 to 7, the storage system’s
price bid is the same as hour 2. The storage system stays in

TABLE IV
MARKET CLEARING RESULTS IN CASE 1: THE STORAGE SYSTEM PLAYS

STRATEGICALLY

Hour pd,t
Storage system pg,t λi,tpdiss,t /p

ch
s,t odiss,t /o

ch
s,t G1 G2 G3 G4

(MW) (MW) ($/MWh) (MW) ($/MWh)
1 176 100 75 1 0 50
2 165 -10 20 100 75 0 0 20
3 158 -17 20 100 75 0 0 20
4 154 -21 20 100 75 0 0 20
5 155 -20 20 100 75 0 0 20
6 159 -16 20 100 75 0 0 20
7 173 -2 20 100 75 0 0 20
8 177 100 75 2 0 50
9 177 100 75 2 0 50

10 181 4 50 100 75 2 0 50
11 188 100 75 13 0 50
12 190 100 75 15 0 50
13 195 100 75 20 0 50
14 196 100 75 21 0 50
15 197 100 75 22 0 50
16 218 100 75 43 0 50
17 249 24 100 100 75 50 0 100
18 252 27 100 100 75 50 0 100
19 244 19 100 100 75 50 0 100
20 237 12 100 100 75 50 0 100
21 220 100 75 45 0 50
22 199 100 75 24 0 50
23 196 100 75 21 0 50
24 195 100 75 20 0 50
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Fig. 2. Hourly SMCs in Base Case (considering a non-strategic storage),
Case 1 (considering a strategic storage), and Case 2 (considering ramp rate
of conventional generators)

the idle mode during hours 8, 9 and 11 to 16, but discharges 4
MW at hour 10. For hour 17 to 20, it strategically offers at a
price identical to the marginal cost of generator G4. Through
this strategy, generator G3 is dispatched to its maximum level,
and the next MW should be supplied by generator G4. This
way, the marginal cost of generator G4, i.e., $100/MWh, sets
the SMC.

The hourly SMCs for the Base Case, Case 1 and Case 2
are compared in Fig. 2. This figure shows how the strategic
behavior of the storage system impacts the hourly SMCs,
i.e., lower SMCs when it charges and higher SMCs when it
discharges. Overall, and among all the generators, the peaking
ones experience the highest increase in their profits as they
only generate during the higher price hours. The storage
system’s profit for this case is $5,046, which is significantly
higher than that when it behaves in a non-strategic manner
(Base Case).

Case 2: Ramp rate limits of the conventional generators
are considered in this case, and the strategic offers/bids of
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the storage system and the market clearing outcomes are
shown in Table V. In this case, the storage facility behaves
strategically and benefits from the limited ramping capability
of conventional generators.

During hours 1 to 7, the storage system plays the same
as in Case 1. For hours 15 and 16, the storage system
behaves such that it can take advantage of the ramp rate limits
of conventional generators. The storage system strategically
bids to buy 8 MW and to sell 3 MW at hours 15 and 16,
respectively. Through this strategy, generator G3 increases its
production at hour 16, compared to hour 15, by its maximum
ramp-up rate. At the same time, generator G2 produces at its
maximum level during both hours 15 and 16. At hour 16, the
most economical source to supply the next MW is generator
G3. However, generator G3 is reached its maximum ramp-
up limit. Hence, generator G3 should produce one more MW
during hour 15 to be able to supply the next MW during
hour 16. Thus, the SMC for hour 16 is the summation of
the marginal cost of generator G3 and the cost of producing
one more MW by generator G3 during hour 15. Note that for
hour 15, the cost of producing one more MW by generator G3
and reducing one MW generation of generator G2 is equal
to the difference between the marginal cost of generators
G2 and G3; this is, in fact, the value obtained for the dual
variable associated with the ramp-up constraint of generator
G3, and is equal to $30/MWh. Thus, the SMC is $80/MWh
for hour 16. For hour 15, the SMC is $20/MWh, which
implies that if generator G3 produces one more MW, the SMC
would decrease by $30/MWh in the next hour. Hence, the
value of supplying each MW is 50-30=20 $/MWh for hour
15. Similarly, at other hours, the storage system adjusts its
operation strategies according to the ramp rate limitations of
other generators, which leads to increasing its profit to $5,440;
this is comparatively higher than that in Case 1.

As illustrated in Fig. 2, the strategic storage further in-
fluences the hourly SMCs in Case 2 to its own advantage
compared to that in Base Case and Case 1. Strategic storage
operation considering ramp rate limits of generators also ben-
efits peak generators at the expense of load consumers. Since
the storage systems strategies force the peak generators to
reach their maximum ramp rates, they gain the most increased
profit among generators in this case. For example, the strategic
decisions of the storage facility lead to the increased profit of
generator G3 at hours 15 and 16, compared to Case 1, whereas
generators G1 and G2 earn the same profits as Case 1 during
these two hours.

Case 3: Transmission capacity limits are enforced in this
case to highlight their impacts on pool strategy of the storage
system. Depending on which line is congested, the storage sys-
tem may gain or lose profit. The capacity of the transmission
line connected bus 2 to bus 4 is chosen to be low to underline
the importance of transmission line capacity limits on the
storage system’s bidding strategies. The LMPs and market-
clearing outcomes for Case 3 are presented in Fig. 3 and Table
VI, respectively. The LMPs for all buses in Case 3 shown in
Fig. 3 follows the same pattern as Case 2, Fig. 2. When the
network is not congested, the market prices for all buses are
equal at the exact same values as Case 2. On the other hand, in

TABLE V
MARKET CLEARING RESULTS IN CASE 2: CONSIDERING RAMP RATE

LIMITS OF GENERATORS

Hour pd,t
Storage system pg,t λi,tpdiss,t /p

ch
s,t odiss,t /o

ch
s,t G1 G2 G3 G4

(MW) (MW) ($/MWh) (MW) ($/MWh)
1 176 100 75 1 0 50
2 165 -10 20 100 75 0 0 20
3 158 -17 20 100 75 0 0 20
4 154 -21 20 100 75 0 0 20
5 155 -20 20 100 75 0 0 20
6 159 -16 20 100 75 0 0 20
7 173 -2 20 100 75 0 0 20
8 177 2 50 100 75 0 0 50
9 177 100 75 2 0 50

10 181 100 75 6 0 50
11 188 100 75 13 0 50
12 190 100 75 15 0 50
13 195 100 75 20 0 50
14 196 100 75 21 0 50
15 197 -8 20 100 75 30 0 20
16 218 3 80 100 75 40 0 80
17 249 24 100 100 75 50 0 100
18 252 27 100 100 75 50 0 100
19 244 19 100 100 75 50 0 100
20 237 12 100 100 75 50 0 100
21 220 5 80 100 75 40 0 80
22 199 -6 20 100 75 30 0 20
23 196 100 75 21 0 50
24 195 8 50 100 74 12 0 50

the congested hours, the market prices are different with Case
2. Pursuing higher market-clearing prices in the peak hours,
the storage facility strategically offers its energy injection at
comparatively low prices to be discharged at pre-peak hours.
This way, generator G3 reaches its maximum ramp limits at
hour 17 and thereby market prices experience the highest value
at this hour, which is even more than that of the peak hour,
i.e., hour 18. In this case, the transmission system is congested
during the peak hours. For example, Fig. 4 shows line flows
and LMP values for hour 17. Observe that the flow across the
congested line hits the maximum capacity during this hour.
The storage system adjusts its strategy to take advantage of
the congested system. The storage system is paid based on
LMP of bus 5, which is the cost of supplying the next MW
at this bus. One MW demand at bus 5 can be supplied if one
MW is reduced from the load demand at bus 4, which costs
$450. On the other hand, since one MW is reduced from load
demand at bus 4, generator G2 can use this extra capacity to
supply the load at bus 3. Thus, the value of supplying the
next MW at bus 5 is 381.423 (450-88.577+20) $/MWh. In
the congested network, the storage system cannot discharge
as much as the previous case. However, it increases its offer
prices, leading to higher prices and thus a higher profit, i.e.,
$18,157.

To further highlight the impacts of physical market con-
ditions on storage system’s profitability, we investigate how
the total ramp up/down capability of conventional generators
affects the storage system’s profitability, which is depicted in
Fig. 5. The storage system gains more profit in the case of
inflexible generation-side with very limited ramping capability.
However, its profit decreases as generation-side becomes more
flexible. This concludes that the storage system makes more
business in case of inflexible systems, as expected.

In addition, the impact of a generator’s submitted offers on
the storage systems profit is shown in Fig. 6. To this end, the
price offer of the most expensive conventional generator (i.e.,
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TABLE VI
MARKET CLEARING RESULTS IN CASE 3: CONSIDERING RAMP RATE

LIMITS OF GENERATORS AND TRANSMISSION CAPACITY LIMITS

Hour
∑Nd

d=1 pd,t
Storage system pg,t

pdiss,t /p
ch
s,t odiss,t /o

ch
s,t G1 G2 G3 G4

(MW) (MW) ($/MWh) (MW)
1 176 100 75 1 0
2 165 -10 20 100 75 0 0
3 158 -17 20 100 75 0 0
4 154 -21 20 100 75 0 0
5 155 -20 20 100 75 0 0
6 159 -16 20 100 75 0 0
7 173 -2 20 100 75 0 0
8 177 100 75 2 0
9 177 100 75 2 0
10 181 100 75 6 0
11 188 100 75 13 0
12 190 100 75 15 0
13 195 100 75 20 0
14 196 9.595 20 100 75 11.405 0
15 197 0.595 20 100 75 21.405 0
16 218 11.595 38.061 100 75 31.405 0
17 249 16.499 381.423 100 71.096 41.405 20
18 252 19.737 303.638 100 75 50 7.263
19 244 15.194 303.638 100 75 50 3.806
20 237 11.219 303.638 100 75 50 0.781
21 220 1.566 303.638 100 75 41.667 1.768
22 199 -7.667 20 100 75 31.667 0
23 196 -0.667 30 100 75 21.667 0
24 195 8.333 50 100 75 11.667 0
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Fig. 3. Hourly SMCs in Case 3

generator G4) is changed from $50/MWh, which is equal to
the price offer of generator G3, to $130/MWh. A lower price
offer corresponds to a smooth supply curve while a higher
price offer makes the supply curve non-smooth. According to
Fig. 6, the storage system makes more money in case of a
non-smooth supply stack.

B. The IEEE one-area Reliability Test System

In this section, we apply the proposed storage system’s
pool strategy model to the IEEE one-area (24-bus) Reliability
Test System [29] considering two compressed air energy
storage facilities. The characteristics of storage facilities and
generators’ marginal costs are given in Table VII and Table
VIII, respectively.

Note that there are other sources of uncertainty in strategic
operation of the storage facilities, such as unexpected loss of
generation units. In this paper, for the sake of simplicity, the
storage facilities are only studied under uncertainty of wind
power generation. However, other sources of uncertainty at
the cost of increasing the computation burden can also be
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Fig. 4. The line flows and LMPs in Case 3 at hour 17
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Fig. 5. The storage system’s profit versus different levels of total ramp
up/down capability of conventional generators

modeled through scenarios [16]. The wind power producer
is considered at bus 10. The wind power forecast follows
an identical distribution as in [26] scaled by a factor of
four. Similar to [30], we model wind power forecast errors
based on the normal distribution. We consider two normal
distributions with identical error mean, i.e., zero, but with
different standard deviations. In the first one, the standard
deviation is 10%, while it is 20% in the second one, which
refers to a more volatile wind power forecast. Then, 1000
samples are generated from each distribution using a Monte-
Carlo simulation. In the next step, each set of 1000 samples is
reduced to 10 scenarios using a backward method described in
[31]. The relative distance for the two reduced sets is less than
60% [32]. The daily expected profit of the storage facilities for
the three cases considering both sets of scenarios are provided
in Table IX.

A comparison of the Base Case and Case 1 reveals that the
strategic storage gains more expected profit in the strategic
case with respect to the non-strategic one. This profit even
increases in Case 2 in which the physical limits of the rest of
the fleet, i.e, the ramp limits of conventional generators and
the transmission capacity constraints, are considered. Another
important observation from the results of this case study is
that a comparatively higher wind power volatility results in
increasing the expected profit of the strategic storage facility
since more ramp resources are needed.

Figure 8 shows that the strategic behavior of storage facility
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decreases the price during charging and increases the price
during discharging. The storage facility’s impact on market
price is higher in discharging compared to charging hours.
The reason lies in a fact that the supply curve is relatively
steep in discharging compared to charging hours. As shown
in Fig. 8, the consideration of transmission lines capacities and
conventional generators ramping limits make more opportunity
for the storage facility to impact on market prices in Case 2
compared to the first two cases.

IV. CONCLUSION

This paper proposes a complementarity bi-level approach
to derive the most beneficial pool strategy of a price-maker
energy storage system through making strategic inter-temporal

TABLE VII
STORAGE SYSTEMS CHARACTERISTICS [28]; THE IEEE ONE-AREA

RELIABILITY TEST SYSTEM

Storage Bus No. P dis,max
s P ch,max

s Emax
s MCdis

s MCch
s

system (MW) (MW) (MWh) ($/MWh) ($/MWh)
1 6 100 75 500 17.69 0.87
2 20 100 75 500 17.69 0.87

TABLE VIII
GENERATORS’ MARGINAL COST; THE IEEE ONE-AREA RELIABILITY

TEST SYSTEM

Generator Bus No. MCg

($/MWh)
G1 1 48.32
G2 2 48.32
G3 7 57.70
G4 13 78.93
G5 15 60.11
G6 15 10.52
G7 16 10.52
G8 18 5.47
G9 21 5.47

G10 22 1.00
G11 23 10.52
G12 23 29.89

arbitrage decisions in a market under limited ramp sources
and wind power generation uncertainty. The primal-dual and
KKT conditions of the lower-level problems are derived from
transforming the proposed bi-level problem into an MPEC that
can then be recast as an MILP. In an imperfect competition,
impacts of storage system pool strategy on hourly SMCs and
generation schedule are presented and discussed. Moreover,
effects of physical and financial market conditions such as
transmission capacity limits, ramp rate limits of conventional
generators, and the smoothness level of supply curve on
strategic storage system’s decisions are discussed. The storage
system was found to adjust its operation strategies to take
advantage of existing circumstances in the market.

REFERENCES

[1] L. Bird, M. Milligan, , and D. Lew, “Integrating variable renewable
energy: Challenges and solutions,” National Renewable Energy Labora-
tory, Sep. 2013.

[2] D. Tretheway and L. Xu, “Flexible ramping products,”
Apr. 2012. [Online]. Available: https://www.caiso.com/Documents/
DraftFinalProposal-FlexibleRampingProduct.pdf

[3] N. Navid and G. Rosenwald, “Ramp capability product
design for MISO markets,” Jul. 2013. [Online]. Available:
https://www.misoenergy.org/Library/Repository/Communication%
20Material/Key%20Presentations%20and%20Whitepapers/Ramp%
20Product%20Conceptual%20Design%20Whitepaper.pdf

[4] P. Hockenos, “Energy storage market outlook 2015,” Feb. 2015.
[Online]. Available: http://www.renewableenergyworld.com/rea/news/
article/2015/02/energy-storage-market-outlook-2015

[5] S. Dahlke, “Grid-scale energy storage for integrating renewable energy:
Updates on FERC order 755 and DOE-funded demonstration projects,”
2012.

[6] C. O’Dwyer and D. Flynn, “Using energy storage to manage high net
load variability at sub-hourly time-scales,” IEEE Trans. on Power Syst.,
vol. 30, no. 4, pp. 2139–2148, Jul. 2015.

[7] S. Sun, M. Dong, and B. Liang, “Distributed real-time power balancing
in renewable-integrated power grids with storage and flexible loads,”
IEEE Trans. on Smart Grid, to be published, 2015.

[8] N. Gast, D. C. Tomozei, and J. Y. Le Boudec, “Optimal generation and
storage scheduling in the presence of renewable forecast uncertainties,”
IEEE Trans. on Smart Grid, vol. 5, no. 3, pp. 1328–1339, May 2014.

[9] P. Harsha and M. Dahleh, “Optimal management and sizing of energy
storage under dynamic pricing for the efficient integration of renewable
energy,” IEEE Trans. on Power Syst., vol. 30, no. 3, pp. 1164–1181,
May 2015.

https://www.caiso.com/Documents/DraftFinalProposal-FlexibleRampingProduct.pdf
https://www.caiso.com/Documents/DraftFinalProposal-FlexibleRampingProduct.pdf
https://www.misoenergy.org/Library/Repository/Communication%20Material/Key%20Presentations%20and%20Whitepapers/Ramp%20Product%20Conceptual%20Design%20Whitepaper.pdf
https://www.misoenergy.org/Library/Repository/Communication%20Material/Key%20Presentations%20and%20Whitepapers/Ramp%20Product%20Conceptual%20Design%20Whitepaper.pdf
https://www.misoenergy.org/Library/Repository/Communication%20Material/Key%20Presentations%20and%20Whitepapers/Ramp%20Product%20Conceptual%20Design%20Whitepaper.pdf
http://www.renewableenergyworld.com/rea/news/article/2015/02/energy-storage-market-outlook-2015
http://www.renewableenergyworld.com/rea/news/article/2015/02/energy-storage-market-outlook-2015


11

TABLE IX
RESULTS FOR THREE CASES (THE IEEE RELIABILITY TEST SYSTEM)

Case No. Description
Storage

expected profit ($1000)

σ=10% σ=20%
Base Case Storage facilities are non-strategic players 4.72 4.93

Case 1 Storage facilities behave strategically 14.28 15.23
Case 2 Storage facilities behave strategically enforcing transmission lines’ 19.32 22.81

capacities and conventional generators ramping limits

Hour
5 10 15 20

Lo
ca

tio
na

l M
ar

gi
na

l P
ric

e 
($

/M
W

h)

0

10

20

30

40

50

60

70

Base Case
Case 1
Case 2

Fig. 8. Average Hourly LMP at bus 6 over wind generation scenarios in
three cases

[10] R. Sioshansi, “When energy storage reduces social welfare,” Energy
Economics, vol. 41, pp. 106–116, Jan. 2014.

[11] E. Nasrolahpour, H. Zareipour, W. D. Rosehart, and S. J. Kazempour,
“Bidding strategy for an energy storage facility,” Proc. 19th Power
Systems Computation Conference (PSCC), Jun. 2016.

[12] H. Mohsenian-Rad, “Coordinated price-maker operation of large energy
storage units in nodal energy markets,” IEEE Trans. on Power Syst.,
vol. 31, no. 1, pp. 786–797, Jan. 2016.

[13] Sandia National Laboratories, “DOE global energy storage database.”
[Online]. Available: http://www.energystorageexchange.org/

[14] Alberta Innovates- Energy and Environment Solutions (AI-EES),
“$2 million call for proposals- next generation renewable energy
storage technologies,” 2014. [Online]. Available: http://albertainnovates.
ca/media/22192/ai-ees energy storage 2millionfunding.pdf

[15] Alberta Electric System Operator (AESO), “Energy storage integration,”
2014. [Online]. Available: http://www.aeso.ca/downloads/Energy
Storage Integration Discussion Paper.pdf

[16] A. J. Conejo, M. Carrion, and J. M. Morales, Decision Making Under
Uncertainty in Electricity Markets. International Series in Operations
Research & Management Science. New York, NY, USA: Springer, 2010.

[17] B. F. Hobbs, C. B. Metzler, and J. S. Pang, “Strategic gaming analysis
for electric power systems: An MPEC approach,” IEEE Trans. on Power
Syst., vol. 15, no. 2, pp. 638–645, May 2000.

[18] A. Gomez-Exposito, A. J. Conejo, and C. Canizares, Electric Energy
Systems: Analysis and Operation. CRC Press, 2008.

[19] S. J. Kazempour, A. J. Conejo, and C. Ruiz, “Strategic bidding for a
large consumer,” IEEE Trans. on Power Syst., vol. 30, no. 2, pp. 848–
856, Mar. 2015.

[20] E. Nasrolahpour, S. J. Kazempour, H. Zareipour, and W. D. Rosehart,
“Strategic sizing of energy storage facilities in electricity markets,” IEEE
Trans. on Sust. Ener., to be published, 2016.

[21] J. Fortuny-Amat and B. McCarl, “A representation and economic in-
terpretation of a two-level programming problem,” The Journal of the
Operational Research Society, vol. 32, no. 9, pp. 783–792, Sep. 1981.

[22] C. Ruiz and A. J. Conejo, “Pool strategy of a producer with endogenous
formation of locational marginal prices,” IEEE Trans. on Power Syst.,
vol. 24, no. 4, pp. 1855–1866, Nov. 2009.

[23] M. Kazemi, B. Mohammadi-Ivatloo, and M. Ehsan, “Risk-constrained
strategic bidding of gencos considering demand response,” IEEE Trans.
on Power Syst., vol. 30, no. 1, pp. 376–384, Jan. 2015.

[24] S. Wogrin, E. Centeno, and J. Barquin, “Generation capacity expansion
in liberalized electricity markets: A stochastic MPEC approach,” IEEE
Trans. on Power Syst., vol. 26, no. 4, pp. 2526–2532, Nov. 2011.

[25] General Algebraic Modeling System (GAMS), “GAMS platform.”
[Online]. Available: http://www.gams.com/

[26] E. Nasrolahpour and H. Ghasemi, “A stochastic security constrained unit
commitment model for reconfigurable networks with high wind power
penetration,” Elect. Power Syst. Res., vol. 121, pp. 341–350, Apr. 2015.

[27] S. Shafiee, H. Zareipour, A. N. Knight, A., and B. Mohammadi-
Ivatloo, “Risk-constrained bidding and offering strategy for a merchant
compressed air energy storage plant,” IEEE Trans.s on Power Syst., to
be published, 2016.

[28] H. Safaei and D. W. Keith, “Compressed air energy storage with
waste heat export: An Alberta case study,” Energy Conversion and
Management, vol. 78, pp. 114–124, Feb. 2014.

[29] Reliability System Task Force, “The IEEE reliability test system-1996: A
report prepared by the reliability test system task force of the application
of probability methods subcommittee,” IEEE Trans. on Power Syst.,
vol. 14, no. 3, pp. 1010–1020, Aug. 1999.

[30] G. Liu and K. Tomsovic, “Quantifying spinning reserve in systems with
significant wind power penetration,” IEEE Trans. on Power Syst., vol. 27,
no. 4, pp. 2385–2393, Nov. 2012.

[31] W. L. Oliveira, C. Sagastizabal, D. J. Penna, M. E. Maceira, and J. M.
Damazio, “Optimal scenario tree reduction for stochastic stream flows
in power generation planning problems,” Optimization Methods and
Software, vol. 25, pp. 917–936, 2010.

[32] H. Heitsch and W. Romisch, “Scenario reduction algorithms in stochastic
programming,” Computat. Optimizat. Applicat., vol. 24, no. 2-3, pp.
187–206, Feb. 2003.

Ehsan Nasrolahpour received the B.Sc. degree from the Shahid Chamran
University of Ahvaz, Ahvaz, Iran, in 2010, the M.Sc. degree from University
of Tehran, Tehran, Iran, in 2013.

He is currently pursuing his Ph.D. at University of Calgary, Calgary, AB,
Canada. His research interests include power systems, electricity markets, and
operations research.

Jalal Kazempour (S’08-M’14) received the B.Sc. degree from the University
of Tabriz, Tabriz, Iran, in 2006, the M.Sc. degree from Tarbiat Modares
University, Tehran, Iran, in 2009, and the Ph.D. degree from the University of
Castilla-La Mancha, Ciudad Real, Spain, in 2013, all in electrical engineering.

In 2014, he was a postdoctoral fellow at the Whiting School of Engi-
neering, Johns Hopkins University, Baltimore, MD, USA. He is currently
a postdoctoral fellow at the Department of Electrical Engineering, Technical
University of Denmark, Kgs. Lyngby, Denmark. His research interests include
power systems, electricity markets, optimization, and its applications to energy
systems.

Hamidreza Zareipour (S’03-M’07-SM’09) received the Ph.D. degree in
electrical engineering from the University of Waterloo, Waterloo, ON, Canada,
in 2006.

He is currently a full Professor with the Department of Electrical and
Computer Engineering, University of Calgary, Calgary, AB, Canada. His
research focuses on economics, planning, and management of power and
energy systems in a deregulated electricity market environment.

http://www.energystorageexchange.org/
http://albertainnovates.ca/media/22192/ai-ees_energy_storage__2millionfunding.pdf
http://albertainnovates.ca/media/22192/ai-ees_energy_storage__2millionfunding.pdf
http://www.aeso.ca/downloads/Energy_Storage_Integration_Discussion_Paper.pdf
http://www.aeso.ca/downloads/Energy_Storage_Integration_Discussion_Paper.pdf
http://www.gams.com/


12

William D. Rosehart (SM’05) received the B.Sc, M.Sc., and Ph.D. degrees in
electrical engineering from the University of Waterloo, Waterloo, ON, Canada.

Currently, he is the Dean of Schulich School of Engineering at the
University of Calgary, Calgary, AB, Canada. His main research interests are
in the areas of numerical optimization techniques, power system stability, and
modeling power systems in a deregulated environment.


	Introduction
	Methodology and Formulation
	The Upper-Level Problem: Profit Maximization of the Price-Maker Storage System
	The Lower-Level Problems: Market Clearing Process Under Different Wind Power Scenarios
	Single-Level MPEC and its Linearization

	Numerical Results
	 A Six-Bus Illustrative Example
	The IEEE one-area Reliability Test System

	Conclusion
	References
	Biographies
	Ehsan Nasrolahpour
	Jalal Kazempour
	Hamidreza Zareipour
	William D. Rosehart


