Downloaded from orbit.dtu.dk on: Jul 09, 2018

Technical University of Denmark

=
—
—

i

Formal modelling and verification of interlocking systems featuring sequential release

Vu, Linh Hong; Haxthausen, Anne Elisabeth; Peleska, Jan

Published in:
Science of Computer Programming

Link to article, DOI:
10.1016/j.scic0.2016.05.010

Publication date:
2017

Document Version _
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Vu, L. H., Haxthausen, A. E., & Peleska, J. (2017). Formal modelling and verification of interlocking systems
featuring sequential release. Science of Computer Programming, 133, 91-115. DOI: 10.1016/j.scic0.2016.05.010

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

http://dx.doi.org/10.1016/j.scico.2016.05.010
http://orbit.dtu.dk/en/publications/formal-modelling-and-verification-of-interlocking-systems-featuring-sequential-release(c9dd8de2-2ecf-4166-99ef-f076b6fa61a5).html

Formal Modelling and Verification of Interlocking Systems Featuring
Sequential Release

Linh H. Vu®!, Anne E. Haxthausen®!, Jan Peleska®?

*DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
b Department of Mathematics and Computer Science, University of Bremen, Bremen, Germany.
D p Y Y

Abstract

In this article, we present a method and an associated toolchain for the formal verification of the new
Danish railway interlocking systems that are compatible with the European Train Control System (ETCS)
Level 2. We have made a generic and reconfigurable model of the system behaviour and generic safety
properties. This model accommodates sequential release — a feature in the new Danish interlocking systems.
To verify the safety of an interlocking system, first a domain-specific description of interlocking configuration
data is constructed and validated. Then the generic model and safety properties are automatically
instantiated with the well-formed description of interlocking configuration data. This instantiation produces
a model instance in the form of a Kripke structure, and concrete safety properties expressed as invariants.
Finally, using a combination of SMT based bounded model checking (BMC) and inductive reasoning, it is
verified that the generated model instance satisfies the generated safety properties. Using this method, we
are able to verify the safety properties for model instances corresponding to railway networks of industrial
size. Experiments show that BMC is also efficient for finding bugs in the railway interlocking designs.
Additionally, benchmarking results comparing the performance of our approach with alternative verification
techniques on the interlocking models are presented.

Keywords: railway interlocking systems, sequential release, formal verification, bounded model checking,
inductive reasoning, RobustRailS, openETCS, safety-critical systems

1. Introduction

An interlocking system is responsible for guiding trains safely through a given railway network. It is a
vital part of any railway signalling system and has the highest safety integrity level (SIL4) according to the
CENELEC 50128 standard [31]. Conventionally, the development and verification process of interlocking
systems is informal and mostly manual, and hence time-consuming, costly, and error-prone. Automated
verification of interlocking systems is therefore an active research topic, investigated by several research
groups, see e.g., [20, 17, 38, 25, 19, 24]. As part of the RobustRailS research project,® our work aims at
establishing a holistic method supporting the verification of such systems. The method should be formal and
facilitate automation in order to provide a better verification process compared to the conventional one. In
Denmark, in the period of 2009-2021, new interlocking systems that are compatible with the standardised
European Train Control System (ETCS) Level 2 [13] will be deployed in the entire country within the
context of the Danish Signalling Programme.* In the context of the RobustRailS project accompanying the
signalling programme on a scientific level, the proposed method will be applied to these new systems.

Email addresses: lvho@dtu.dk (Linh H. Vu), aecha@dtu.dk (Anne E. Haxthausen), jp@cs.uni-bremen.de (Jan Peleska)
1The authors’ research has been funded by the RobustRailS project granted by Innovation Fund Denmark.
2The author’s research has been partially funded by ITEA2 project openETCS under grant agreement 11025.
3http://robustrails.man.dtu.dk
4nttp://www.bane.dk/signalprogrammet

Preprint submitted to Science of Computer Programming May 4, 2016

http://robustrails.man.dtu.dk
http://www.bane.dk/signalprogrammet

The main contributions presented in this article are the following. (1) We present a formal model of
the behaviour of ETCS Level 2 compatible interlocking systems. (2) The model accommodates sequential
release: this is a method for incrementally releasing route portions that have been traversed by the associated
train, with the objective to increase the level of concurrency in route allocation and, consequently, the train
throughput in the railway network. On the other hand, this feature poses extra challenges to the verification
tasks as it makes the models more complex. (3) The state space encodings allow for high-level safety
properties and state transition relations to be processed in a highly efficient manner by Satisfiability Modulo
Theories (SMT) solvers supporting bit vector and integer arithmetic. (4) A verification technique combining
induction with bounded model checking (BMC) using novel SMT solvers enables the verification of safety
properties for railway network instances of industrial size.

Compared to the previously published work by the same authors [37], the following main extensions
have been added: (E-1) the state space encodings and state transition relation are elaborated in more detail,
(E-2) new experimental results are presented for the early deployment line (EDL) of the Danish Signalling
Programme, and (E-3) benchmarking experiments comparing our BMC approach to other techniques such
as BDD-based techniques or CEGAR techniques — by translating our models to NUXMV [9] — are reported.

The remainder of the article is organised as follows: First, in Section 2, some mathematical preliminaries
are explained and Section 3 gives a brief introduction to the new Danish route-based interlocking systems.
Then the proposed method is presented in Section 4. Next, the five steps constituting the method are
described in more detail: (1) — (2) the specification and validation of configuration data are presented in
Section 5 and Section 6, respectively; (3) — (4) the generation of Kripke structure models of the behaviours
of interlocking systems as well as their desired formal properties, in Section 7 and Section 8, respectively;
and (5) the verification strategy in Section 9. Afterwards experimental results with the toolchain as well
benchmarking results are shown in Section 10. Finally, related work and concluding remarks are presented
in Section 11 and Section 12, respectively.

2. Mathematical Preliminaries

This section explains some mathematical preliminaries that are used in our method, in particular Kripke
structures and the k-induction scheme for proving invariants in a Kripke structure.

2.1. Kripke Structures

Kripke structures are used to specify behavioural models of interlocking systems in our method. A Kripke
structure K is a five-tuple (5, so, R, L, AP) with state space S, initial state sg € S, a total transition relation
R C S x S, and labelling function L : S — 24F, where AP is a set of atomic propositions and 247 is the
power set of AP. The labelling function L maps a state s to the set L(s) of atomic propositions that hold
in s.

Two states s and s” are said to be consecutive in K, if there is a transition from s to ¢/, i.e., (s,s’) € R.
A path in K is a finite or infinite sequence of consecutive states. A state s’ is said to be reachable from
another state s in K, if there exists a finite path s...s’ starting in s and ending in s’. A state s € S is
said to be reachable if it is reachable from the initial state sg. The reachable states of K is the set of all
reachable states.

In the context of this article, the states of a Kripke structure are represented by valuation functions
s:V — D over finite sets V = {vy, ..., v,} of variables, where each variable v; € V has an associated finite
domain D,,. The range of a state s is D = |,y Dy. The whole state space S is the set of all valuation
functions s : V. — D for which s(v) € D, for all v € V. The equality relation (=) between states is defined
by the equality of mathematical functions as follows: two states s and s’ are equal — denoted by s = s’ — iff
every variable v € V is evaluated to the same value in s and ¢/, i.e.,

(s=4s)= (/\ s(v) = S’(v)> (1)

For a proposition ¢ over free variables in V', we use ¢(s) to denote the proposition obtained by replacing
every occurrence of v € V' in ¢ by the value s(v). A proposition ¢ over free variables in V is said to hold in a
state s € S, denoted as s = ¢, iff ¢(s) holds. An invariant in K is a proposition that holds in all reachable
states of K. The initial state sy can be represented by the following proposition.

I(so) = /\ v = 50(v) (2)

The transition relation R C S x S can also be represented in propositional form as a proposition ® over
free variables in V UV’ such that

R={(s,8)eSxS|P(s,5)} (3)

where V' = {v' | v € V'} is a duplicate of V used to representing the next state, and ®(s, s’) is the proposition
® with every occurrence of v € V replaced by the value s(v), and every occurrence of v/ € V' replaced by
the value s'(v).

A finite path s,,.8p41 ... Sp+k—1 of length k through the model K, starting in an arbitrary state s,, (which
may or may not be reachable), is identified by a solution to the satisfiability of the following proposition.

k—1
(s vsSnh-1) =\ ®lsnpio1,5n40) (4)
i=1
An acyclic path of length k is a finite path s,,.8,41...Sp+k—1 in which there does not exist a pair of
states in the path that are equal. Such a path is characterised by a solution to the satisfiability of the
following formula.

T (Sny- -y Sntk—1) =T(Sny -y Sntk_1) A /\ (si # s5) (5)
n<i<j<n+k—1

2.2. Bounded Model Checking

Model checking can be used to verify that a model of a given system obeys the specification of its
intended behaviours. This is done by exploring the state space in an exhaustive, efficient, and highly
automatic manner. However, the state space grows exponentially in the number of system components,
which is referred to as the state space explosion problem. This is the main obstacle preventing model
checking from being applied to complex systems in industrial applications. Bounded model checking (BMC)
remedies this problem by investigating model properties within the vicinity of a state, exploring only those
states that are reachable by means of a bounded number of transition steps. Reachability is decided using
satisfiability solving, hence avoiding to explore the whole state space [3]. Theoretically, BMC can verify
global properties — properties that hold in all reachable states of a system, e.g., invariants as described in
the previous subsection — if the transition relation is unrolled for a sufficient number of steps, known as the
recurrence diameter of the given transition system [3, 5]. In practice, the recurrence diameter of a given
transition system is often too large, resulting in exhaustion of memory or unacceptable verification time,
because the worst case complexity of the satisfiability solving grows exponentially in the number of unrolling
steps.

2.8. k-Induction

In order to avoid unrolling too many transition steps when verifying global properties, k-induction — a
technique that combines BMC and inductive reasoning — is used.

k-induction Scheme. The following two-step k-induction scheme based on acyclic paths [30, 27] can be
applied in order to prove a proposition ¢ is an invariant in K.

(1) Base Case: prove that ¢ holds in every state of every acyclic path sg.s1 ... sg—1 of length k > 0, starting
from the initial state sg, i.e., the following holds, where = is logical implication.

k-1
(Z(so) NT=(50,.--,8k-1)) = /\ o(ss) (6)
i=0

(2) Induction Step: prove that if ¢ holds in every state of an acyclic path s,,.8,41 ... Sp+k—1 of length k£ > 0,
starting from an arbitrary state s,,, then ¢ will also hold in every (k -+ 1)** state s, 4. In other words,
the following holds

k—1
(W_(Sna AR 5n+k) A /\ ¢(5n+z)> = ¢(sn+k) (7)
=0

Transformation to Bounded Model Checking Problems. Both the base case and the induction step can be
transformed to bounded model checking problems of finding witnesses for the violations. Violations of the
base case are identified by the negation of Formula 6 as shown in the following.

k—1
Z(s0) AT~ (0, sk-1) A=\ b(si) (8)
1=0

A solution, if found, for Formula 8 identifies an execution of the system in which ¢ does not hold in at
least one state within the vicinity of k transition steps from the initial state sg. Likewise, violations of the
induction step are identified by the negation of Formula 7 as shown in the following.

k—1
7T:(sna AR 5n+k) A /\ ¢(Sn+z) A _'¢(5n+k) (9)
=0

A solution, if found, for Formula 9 shows an execution of length (k + 1) of the system where ¢ holds for
the first k states, but not in the last one. If no violation is found for the base case or the induction step,
then ¢ is an invariant in K.

Strengthening Invariants. As pointed out in [27], when ¢ is not strong enough to be inductive, counterex-
amples are found for the induction case. If ¢ is indeed an invariant in K, then these counterexamples are
spurious, i.e., they start from an unreachable state and do not correspond to any actual run of the considered
system. In order to make ¢ inductive, it is strengthened with an extra invariant v, i.e., in the k-induction
proof, one should prove ¢ A 9 instead of ¢. v is called the strengthening invariant, which eliminates the
spurious counterexamples. An example of a strengthening invariant is given in Section 9.

An alternative to invariant strengthening is to increase k until reaching a value where one of the following
occurs: (1) the base case fails, i.e., the property does not hold; or (2) both the base case and the induction
step succeed, i.e., the property holds. According to [27], any k-induction proof can be reduced to a 1-
induction proof by means of invariant strengthening. In this article, we decided not to use the alternative
method, as our experiments in Section 10 showed that increasing k had severe penalty on the verification
performance due to the state space explosion problem.

3. The new Danish Route-based Interlocking Systems

In this section we introduce briefly the new Danish interlocking systems and the domain terminology. The
subsequent subsections explain (1) different components of a specification of an interlocking system which
is compatible with ETCS Level 2, (2) the interlocking principles and the strict procedure that interlocking
systems employ to ensure safety, and (3) the sequential release feature, respectively.

3.1. Specification of Interlocking Systems

The specification of a given route-based interlocking system consists of two main components: (1) a
railway network, and (2) a corresponding interlocking table.

Railway Networks. A railway network in ETCS Level 2 consists of a number of track-side elements of
different types:® linear sections, points, and marker boards. Figure 1 shows an example layout of a railway
network having six linear sections (b10,£10,£12,t14,£20,b14), two points (t11,t13), and eight marker boards
(mb10, ..., mb21). These terms, as well as their functionality within the railway network, are explained in
more detail in the next paragraphs.

DOWN mb20 Uli
e R T
' .
: t20 '
i} | i} I il il {| L.
b10 t10 t11 t12 t13 t14 bl4
mbl0 mbl3 mbl4

Figure 1: An example railway network layout.

A linear section is a section with up to two neighbours: one in the up end, and one in the down end.
For example, the linear section t12 in Figure 1 has t13 and t11 as neighbours at its up end and down end,
respectively. In Danish railway’s terminology, up and down denote the directions in which the distance from
a reference location is increasing and decreasing, respectively. The reference location is the same for both up
and down, e.g., an end of a line. For simplicity, in the examples and figures in the rest of this article, the up
(down) direction is assumed to be the left-to-right (right-to-left) direction, if it is not indicated otherwise.

A point can have up to three neighbours: one at the stem, one at the plus end, and one at the minus
end, e.g., point t11 in Figure 1 has t10, t12, and t20 as neighbours at its stem, plus, and minus ends,
respectively. The ends of a point are named so that the stem and plus ends form the straight (main) path,
and the stem and minus ends form the branching (siding) path. A point can be switched between two
positions: PLUS and MINUS. When a point is in the PLUS (MINUS) position, its stem end is connected
to its plus (minus) end, thus traffic can run from its stem end to its plus (minus) end and vice versa. It is
not possible for traffic to run from plus end to minus end and vice versa.

Linear sections and points are collectively called (train detection) sections, as they are provided with
train detection equipments used by the interlocking system to detect the presence of trains on the sections.
Note that sections are bidirectional by default, i.e., trains are allowed to travel in both directions (but not
at the same time) in a given section. For instance, trains can travel a linear section from its up end to its
down end, and from its down end to its up end.

Along each linear section, up to two marker boards (one for each direction) can be installed. A marker
board can only be seen in one direction and is used as reference location (for the start and end of routes)
for trains going in that direction. For example, in Figure 1, marker board mb13 is installed along section
t12 for travel direction up. Contrary to legacy systems, there are no physical signals in ETCS Level 2, but
interlocking systems have a wvirtual signal associated with each marker board. Virtual signals play a similar
role as physical signals in legacy systems: a virtual signal can be OPEN or CLOSED, respectively, allowing
or disallowing traffic to pass the associated marker board. However, trains (more precisely train drivers) do
not see the virtual signals, as opposed to physical signals. Instead, the aspect of virtual signals (OPEN or
CLOSED) are communicated to the onboard computer in the train via a radio network. For simplicity, the
terms virtual signals, signals, and marker boards are used interchangeably throughout this article.

5Here we only show types that are relevant for the work presented in this article.

Interlocking Tables. An interlocking system monitors constantly the status of track-side elements, and sets
them to appropriate states in order to allow trains traveling safely through the railway network under control.
The new Danish interlocking systems are route-based. A route is a path from a source signal to a destination
signal in the given railway network. A route is called an elementary route if there are no signals that are
located between its source signal and its destination signal, and that are intended for the same direction as
the route.

In railway signalling terminology, setting a route denotes the process of allocating the resources — i.e.,
sections, points, and signals — for the route, and then locking it exclusively for only one train when the
resources are allocated. On the other hand, releasing a route denotes the process of releasing the resources
that have been allocated for a route after they have been used by a train.

An interlocking table specifies the elementary routes in the given railway network and the conditions
for setting these routes. The specification of a route r and conditions for setting r include the following
information:

e id(r) — the route’s unique identifier,

e src(r) — the source signal of r,

e dst(r) — the destination signal of r,

e path(r) — the list of sections constituting r’s path from sre(r) to dst(r),

e overlap(r) — a list of the sections in r’s overlap, i.e., the buffer space after dst(r) that would be used in
case trains overshoot the route’s path,

e points(r) — a map from points® used by r to their required positions,
e signals(r) — a set of protecting signals used for flank or front protection [32] for the route, and
e conflicts(r) — a set of conflicting routes which must not be set while r is set.

Table 1 shows an excerpt of an interlocking table for the network shown in Figure 1. Each row of the table
corresponds to a route specification. The column names indicate the information of the route specifications
that these columns contain. As can be seen, one of the routes has id 1a, goes from mb10 to mb13 via three
sections t10, t11 and t12 on its path, and has no overlap. It requires point t11 (on its path) to be in PLUS
position, and point t13 (outside its path) to be in MINUS position (as a protecting point). The route has
mb11l, mb12 and mb20 as protecting signals, and it is in conflict with routes 1b, 2a, 2b, 3, 4, 5a, 5b, 6b, and
7.

Table 1: Excerpt of the interlocking table for the network layout in Figure 1. The overlap column is omitted as it is empty for
all of the routes. (p means PLUS, m means MINUS.)

id | src dst path points signals conflicts
la | mb10 | mb13 | t10;t11;t12 | t11:p;t13:m | mb1l;mb12;mb20 | 1b;2a;2b;3;4;5a;5b;6b;7

7 mb20 | mb11 | t11;t10 til:m mb10;mb12 la;1b;2a;2b;3;5b;6a

6These include points in the path and overlap, and points used for flank and front protection. For detail about flank and
front protection, see [32].

3.2. Interlocking Principles

In order to prevent hazardous situations, e.g., collision and derailment of trains, route-based interlocking
systems employ a classic principle: a route is locked exclusively for use of one train at a time. This is obtained
by following a strict procedure for setting and releasing routes based on information in their interlocking
tables. As an example, let us consider the following procedure for route 1a specified in Table 1:

(0) Initially the route is free.

(1) The route is dispatched either manually by a signalman or automatically by a traffic management
system. As a result, the route is marked as requested.

(2) The interlocking system checks the status of different track-side elements in the system to figure out
whether it can start allocating resources for route 1a, e.g., sections t10, t11 and t12 must be vacant, and
the conflicting routes must not be allocated or locked. If so, the interlocking commands the protecting
signals of the route — i.e., mb11, mb12 and mb20 — to change to CLOSED, and it commands points to
switch to their required positions according to the route’s specification — i.e., it commands t11 to switch
to PLUS, and t13 to switch to MINUS.

(3) The interlocking system monitors constantly the status of the track-side elements. When the signals
and points have changed their status as commanded in step (2), the route is locked and its source signal
mb10 is commanded to change to OPEN, allowing a train to enter the route.

(4) When the locked route is occupied — i.e., a train enters it, the source signal mb10 is set to CLOSED
preventing other trains from entering.

(5) The whole route is released (set back to free) when the train has finished using it — i.e., the train has
passed mb13, or the train has come to a standstill in t12 in front of mb13.

3.3. Sequential Release
The new Danish interlocking systems employ sequential release (also known as sectional release) [32,
chap. 4]. This feature results in two major changes to the procedure explained above:

(a) With sequential release, the interlocking can release an element in a locked route as soon as the train
has passed it, instead of waiting until the train has finished using the route and then releasing the route
as a whole. Consequently, the capacity increases.

(b) As a direct result of (a), a route may be allocated — in step (2) of the procedure in Section 3.2 — while
some of its conflicting routes are still occupied by trains, instead of waiting for all of its conflicting
routes to be released as specified in the procedure.

The advantage of sequential release is better illustrated by an extended example as shown in Figure 2
where one or several linear sections have been added between sections t11 and t12 on route la in Table 1.
For this example, as soon as a train T1 has left t11 while going along route 1a, t11 can be released. As
a consequence, route 7 (see Table 1) can already be allocated by another train T2 (assuming that other
allocation conditions are fulfilled), while 1a is still occupied by T1. If sequential release had not been
allowed, route 7 could first have been allocated, when route 1a had been released (i.e., when T1 had passed
mb13, or it had come to a standstill in t12 in front of mb13).

Note that the term sequential release may be used differently at different operational levels. (1) At a
high operational level, sequential release is performed on compound routes (i.e., routes created by chaining
multiple elementary routes together so that all of them can be set in one go): each single elementary route
of a given compound route is released sequentially. In that sense, sequential release is a route-wise feature.
(2) On the other hand, at a low operational level, sequential release is performed on elementary routes: each
single element of an elementary route is released sequentially [32, chap. 4]. In this case, sequential release
is an element-wise feature. In the work documented in this article, we consider sequential release in its
latter usage of the term. In order to include this feature into the models of interlocking systems, additional
variables and transitions are required as described in Section 7 below. Therefore, the models become more
complex with a higher level of concurrency. Consequently, the verification tasks are more challenging.

7

Figure 2: Extended example illustrating sequential release’s advantage.

4. Method Overview

Our method for modelling and verification of railway interlocking systems is a combination of domain-
specific approaches and formal methods. According to this, an environment consisting of the following
components is provided.

a) A generic (configurable) behavioural model of the Danish interlocking systems and associated generic
g g g sy g
(configurable) desired properties. These properties include generic safety properties, and generic
strengthening invariants used for the k-induction scheme described in Section 2.

(b) A domain-specific language (DSL) that is specially tailored for the railway interlocking domain [36].
In this language one can specify configuration data consisting of a network layout and an interlocking
table for an interlocking system, as described in Section 3.

(¢) A DSL specification editor and static checker for configuration data of interlocking systems.

(d) A model generator that takes the generic model and a well-formed DSL specification of configuration
data as input, and produces a concrete behavioural model of the given interlocking system as output.

(e) A properties generator that takes the description of generic properties and a well-formed DSL
specification of configuration data as input, and produces concrete properties as output.

(f) A bounded model checker that can perform k-induction.

The modelling and verification process uses this environment and consists of the following steps as
illustrated in Figure 3. The steps (1)—(5) are further elaborated in subsequent sections, Section 5—Section 9,
respectively.

(1) A DSL specification of the configuration data (a network layout and its corresponding interlocking table)
is constructed.

(2) The static checker verifies whether the configuration data is statically well-formed according to the static
semantics of the DSL.

(3) The model generator instantiates the generic model with well-formed configuration data. This results
in a model instance in the form of a Kripke structure.

(4) Similarly, the properties generator instantiates the generic properties. This results in concrete properties
expressed as state invariants in the Kripke structure generated in step (3).

(5) The generated model instance is then checked against the concrete properties by the bounded model
checker using a combination of BMC and inductive reasoning as described in Section 2. If the model
instance does not satisfy the properties, counterexamples will be generated. An interface for visualising
the counterexamples at the DSL level is integrated into the editor in Eclipse, see [18].

8

Generic

Generator Safety Prop.

¢ Generic

(2) static > Well-formed? Safety Prop.
Checker

Table

(1) CONFIGURATION DATA Behavioural
(specified in the DSL) M‘ldel
(\) Vo Formal Counterexamples
| Network I p " —> Behavioural %
| | enerator Model
. v .
I I (5)
| (1) ITG I k—induction
by BMC

[¢ |
| |

Interlockin, 4) Prop. Formal
| g (4) Prop v
\)

Figure 3: Verification method and the associated toolchain.

The toolchain associated with the method has been implemented using the RT-Tester framework [28, 34].
The bounded model checker in RT-Tester uses the SONOLAR SMT solver [29] to compute counterexamples
showing the violations of the base case or induction step. RT-Tester has been selected because (1) it is an
integrated model-based testing and BMC tool, and (2) its SMT solver also supports floating point arithmetic.
The first property is crucial for us, because our objective is to complement the model verification with
HW /SW integration tests. The second capability is vital, because we also plan to extend the model by
real-time aspects, such as train velocity and braking curves.

5. Interlocking Configuration Data Construction

This section describes how interlocking configuration data is constructed in step (1) of the modelling and
verification process described in Section 4.

We have developed a domain-specific language (DSL) for specifying configuration data for route-
based interlocking systems that are compatible with ETCS Level 2. The configuration data that can be
described in this language consists of the specification components that were described in Section 3, i.e., a
DSL specification consists of a network layout and an associated interlocking table. The DSL has been
formally specified by the authors in a previous publication, see [36], and an eXtensible Markup Language
(XML) representation of the language has been implemented as a front-end of our toolchain. The XML
representation of some sample networks can be found at http://www.imm.dtu.dk/~aeha/RobustRailS/
data/casestudy, and at the end of this section, an excerpt of the XML representation of the railway
network layout shown in Figure 1 and the XML representation of the interlocking table shown in Table 1
can be found.

A graphical user interface for the language has also been implemented [18].

In the first step of our modelling and verification process, a DSL specification of configuration data in
XML format should be created. The specification can be created manually, or exported from computer-aided
design tools supporting the XML format. Alternatively, the user can use the graphical user interface [18]
to specify the configuration data by drawing the network layout and type in the interlocking table via an
editor implemented as an Eclipse plug-in. The editor can then export the specification to the XML format.

The interlocking table generator (ITG) specified in [36] has also been implemented in our toolchain. As
an option the user may not explicitly provide an interlocking table, but only a network layout and then
use the ITG to get a complete interlocking table (for all possible routes) including route protection [32] (by
protecting signals and/or protecting points) created automatically from the network layout [36].

http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy
http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy

Ezxample of XML representation. The XML representation of a network layout consists of a description of
each track section and a description of each marker board in the network. Here is an excerpt of the XML
representation of the railway network layout shown in Figure 1:

<network id="mininetwork">

<trackSection id="b10" length="100" type="linear">
<neighbor ref="t10" side="up"/>

</trackSection>

<trackSection id="t10" length="87" type="linear">
<neighbor ref="b10" side="down"/>
<neighbor ref="t11" side="up"/>

</trackSection>

<trackSection id="t11" length="26" type="point">
<neighbor ref="t10" side="stem"/>
<neighbor ref="t12" side="plus"/>
<neighbor ref="t20" side="minus"/>

</trackSection>

<markerboard id="mb10" track="b10" mounted="up" distance="50"/>
<markerboard id="mb11" track="t10" mounted="down" distance="50"/>

</network>

As it can be seen, for each track section there is a description of its id, its length, its type (whether it is a
linear section or a point), and its neighbor-sections on each side, as far as defined. For each marker board
there is a description of its id, the track section at which it is placed, the travel direction in which it is
mounted, and the distance from the marker board to the end of the track section.

The XML representation of an interlocking table consists of a specification of each row in the table. Here
is an XML representation of the first row of the interlocking table shown in Table 1:

<route id="1a" source="mb1l0" destination="mb13">
<condition ref="t10" type="trackvacancy"/>
<condition ref="t11" type="trackvacancy"/>
<condition ref="t12" type="trackvacancy"/>
<condition ref="t13" type="point" val="minus"/>
<condition ref="t11" type="point" val="plus"/>
<condition ref="mb1l1l" type="signal"/>
<condition ref="mb12" type="signal"/>
<condition ref="mb20" type="signal"/>
<condition ref="1b" type="mutualblocking"/>
<condition ref="2a" type="mutualblocking"/>
<condition ref="2b" type="mutualblocking"/>
<condition ref="3" type="mutualblocking"/>
<condition ref="4" type="mutualblocking"/>
<condition ref="5a" type="mutualblocking"/>
<condition ref="5b" type="mutualblocking"/>
<condition ref="6b" type="mutualblocking"/>
<condition ref="7" type="mutualblocking"/>

</route>

In the first line, it can be seen how the id, the source marker board and the destination marker board of the
route are specified. In the following lines, the remaining information about the route is represented in the

10

form of conditions of different types: Conditions of type "trackvacancy" contain references to the track
sections constituting the path of the route. Conditions of type "point" contain references to the points
together with their required position. Conditions of type "signal" contain references to the protecting
signals. Conditions of type "mutualblocking" contain references to the conflicting routes.

6. Interlocking Configuration Data Validation

A static checker for validating interlocking configuration data in step (2) of the modelling and verification
process described in Section 4 has been implemented in our toolchain. The static checker checks whether
a given DSL specification of configuration data (constructed in step (1)) is well-formed with respect to
the static semantics [36] of the DSL. For example, the static checker checks whether conflicting routes are
correctly listed in the interlocking table, and whether every route in the specification has proper protection
provided by protecting signals and/or protecting points. If the checker discovers errors in the configuration
data, suggestions for fixing them will be provided to the user. Examples of such suggestions can be to add
protecting signals/points, or to list physically conflicting routes when such information is missing from the
given interlocking table.

For instance, if route 7 were not listed in the conflicts of route 1a in Table 1, the following error message
would be given:

Routes l1la and 7 are in conflict, but route 7 is not listed in the conflicts of route 1la.
Reasons to be in conflict: Non-concatenated routes with shared elements: t10, ti1l.

And if signal mb11 were not listed in the protecting signals of route 1a, the following error message would
be given:

For route la, signal mbll at section t10 should have been listed as a protecting signal.

7. Behavioural Models Generation

This section describes how formal, behavioural models of the new Danish interlocking systems are
generated in step (3) of the modelling and verification process described in Section 4.

We have developed a generic model [35] (in the form of a model pattern) of the Danish interlocking
systems and a model generator that can be used to instantiate this generic model with configuration data
specified in the DSL described above.

In step (3) of our method, this generator is applied to the configuration data that was created in step (1)
and verified to be statically well-formed in step (2). This results in a model instance in the form of a Kripke
structure. Due to the complexity of the Kripke structure encodings, in the following subsections, we only
outline how the state space S, the initial state sg, and the transition relation in propositional form & of the
resulting Kripke structure are obtained from the configuration data consisting of a network layout N and an
interlocking table T'. The model instances that are obtained by applying the generator to the sample networks
mentioned in Section 5 can be found at http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy.

Through the rest of this article, for readability, named constants and their corresponding integral values
are used interchangeably. We use the notation name(integral-value) to mean that name is the name of a
constant having the value integral-value. For instance, PLUS(0) denotes a constant PLUS having the value
of 0. Furthermore, integral values prefixed with 0b are written in their binary forms, e.g., 00110 is the binary
value 110 (which is 6 in decimal).

7.1. State Space

As described in Section 2, the state space S is the set of all valuation functions s : V' — (J,cy Do
for which s(v) € D, for all v € V, where V is a set of variables used to represent the status of different
components, such as track elements and routes, in the given interlocking system. Each variable v € V has
an associated finite domain D, C Ny. The subsequent paragraphs present the set of variables V' and their
associated value domains D,,.

11

http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy

Occupancy Status. As mentioned in Section 3, trains can travel in any physically possible direction on a
section. Thus, for each section in the network layout N, we use, for each physically possible travel direction,
a variable to keep track of the occupancy status of that section in that possible travel direction. For instance,
for each linear section [in IV, the variable [. U2D records the occupancy status of [in the direction from its
up end to its down end, while the variable [.D2U records the occupancy status in the opposite direction.
Similarly, for each point p in N, three variables p.S2PM, p.P2S, and p.M2S record the occupancy status
of the point in the direction from its stem end to its plus/minus ends, from its plus end to its stem end,
and from its minus end to its stem end, respectively. The movement of trains through a given network
are reflected by state transitions of the occupancy status variables of the sections in the network. This is
specified in detail in Section 7.7 below.

The occupancy status of a section in a given travel direction is encoded using the three least significant
bits HTO of a non-negative integer variable as shown in Figure 4. The value 1 of the bits H, T, 0 indicate: (H)
the head of the train is within the section, (T) the tail of the train is within the section, and (0) the section is
occupied, respectively. Note that in some cases the encoding contains redundant information, e.g., a section
is obviously occupied when the head of a train is inside the section. However, the 0 bit is necessary for
modelling the case where a train is occupying the section, but the head and the tail are outside the section,
as it is the case for section t3 in Figure 5.

This occupancy status encoding offers two advantages: (a) the encoding can cover the case where a train
occupies more than one section (e.g., when it is crossing the joint between two sections), and (b) the safety
properties can be expressed efficiently using arithmetic operations on integer variables as will be shown in
Section 8.

o [ufr]o]

Figure 4: A variable recording occupancy status of a section.

Figure 5 shows some examples of how different values of occupancy status variables reflect how a train
occupies sections. Let us assume that the train is travelling in the direction down-to-up. Section ¢1 is
occupied by the whole train, thus its occupancy status variable ¢1.D2U is 00111 indicating that all three
bits H, T, and O are set. t2 is occupied by the tail of a train, thus its occupancy status variable is
t2.D2U = 0b011, t3 is occupied without a head or a tail of a train in it — i.e., the train is long enough to
cover the whole section, thus t3.D2U = 0b001. Lastly, ¢t/ is occupied by a head of a train, therefore its
occupancy status variable is t4.D2U = 0b101.

MR L OO /0

t2 t3 t4

tl

Figure 5: Example of sections having different occupancy status.

A section is vacant when all of its occupancy status variables are evaluated to zero. For example, a linear
section [is vacant when both [.D2U and [.U2D are evaluated to zero. Since all occupancy status variables
are non-negative, we can define the following formula to determine whether a linear section [is vacant.

vacant(l) = (1.D2U + 1.U2D = 0) (10)
An analogous formula can be defined for a point.

Lockable Elements. In order to accommodate sequential release in our model, we consider a linear or point
section as a lockable element. For each lockable element e in the network layout NN, there are two variables
for representing the status of e:

o ¢.MODE — recording the mode of the element, and

12

e ¢.PREV — recording whether the previous section in the route has been released.

The possible values of e. MODE are: FREE (the element is not ezclusively locked by a route, or used by
any train), EXLCK (the element is ezclusively locked for a route), or USED (the element has been used,
i.e., occupied, by a train after it was exclusively locked for a route). The possible values of e. PREV are:
PENDING(0) and RELEASED(1).

Point Positions. For each point p in the network layout N, there are two variables:
e p.POS — for representing the actual position of the point, and
e p.CMD — for representing the point position commanded by the interlocking.

The possible values of p.POS are: PLUS(0), MINUS(1), and INTERMEDIATE(2) — the position where the
point is switching from plus (minus) to minus (plus). The possible values of p.CMD are only PLUS and
MINUS, as the interlocking cannot command a point to switch to the INTERMEDIATE position.

Signal Aspects. For each virtual signal s in the network layout N, there are two variables:
o 5. ACT — for representing the actual aspect of the signal as “seen” by the train, and
e 5.CMD — for representing the aspect of the signal as commanded by the interlocking system.

The possible values of these variables are: OPEN and CLOSED. The values of these two variables may differ
due to the delay in the communication between the interlocking system and the onboard computers in the
trains.

Routes. For each route r in the interlocking table T', there is a variable .M ODE to represent the current
mode of that route. A route can be in one of the following modes: FREE, MARKED, ALLOCATING,
LOCKED, or OCCUPIED.

7.2. Initial State

The initial state so is the state in which all sections are FREE and vacant (i.e., there are no trains in
the network), the commanded and actual aspects of all signals are CLOSED, all routes are FREE, and
the commanded and actual positions of all points are PLUS. Our encodings in Section 7.1 are deliberately
chosen so that sg is the state in which all variables are evaluated to 0. Therefore, the propositional form of
the initial state is

I(so)= [\ v=0 (11)

7.8. Transition Relation

This section describes how the transition relation in propositional form & is constructed. The general
construction principles are as follows:

(a) Propositions (also called transition rules) specifying transitions for atomic events, referred as atomic
transitions, are defined. They take the form guardAeffect, where guard is a proposition over the variables
in V describing the precondition for the transition and effect is a proposition over free variables from
V UV’ specifying how the values of the variables are changed by the transition. The guard and the
effect propositions are obtained by instantiating generic proposition patterns with data from the given
network layout and the associated interlocking table.

Exactly one atomic transition is taken at a time, i.e., interleaving semantics is used. When an atomic
transition is taken, all changes in the values of variables in effect occur in one time-step, as a shared
memory, cycle-based software execution model is used. This model fits well with the realistic execution
of interlocking controllers for two reasons. First, an interlocking controller and its environment are

13

concurrent processes communicating over shared variable interfaces. Second, in practice, the execution
of interlocking controllers is divided into cycles. In each cycle, the controllers read their inputs, make
decision based on their control algorithm, and then write changes to the outputs. Inputs do not change
within a cycle, and outputs are not accessible until the cycle ends.

(b) Different types of events/transitions are assigned priorities because different types of events in
interlocking systems occur at significantly different speed and we prefer to avoid introducing time
into the model.

(¢c) Propositions for atomic events are combined according to their relative priorities. If two transitions
having different priorities are enabled at the same time, the one with higher priority should be taken.
On the other hand, transitions with the same priority should be chosen nondeterministically, if they
are enabled at the same time. Therefore, if transitions represented by propositions ®, and ®; have the
same priority, their combined behaviour is described by the proposition ®, V ®;. On the other hand,
if the transitions represented by ®, has higher priority than the ones represented by ®;, then their
combined behaviour — denoted as @, [>] ®; — is described by ®,V (—g, A Pp), where g, is the condition
for at least one of the transitions in ®, to be enabled. Thus

P, [>} Py =0, Vv (ﬁga A\ (bb) (12)
Note that [>] operator is right-associative, i.e.,

o, [>] @y, [>] o, = ((I)a [>] ((I)b [>] (I)c)) (13)

Overview of Transitions and their Priorities. We group the transitions of atomic events of an interlocking
system into four types, such that the transitions of each type have the same priority and their propositions
can be combined using the V operator, resulting in a proposition for the combined behaviour of the transitions
of that type. The types and their combined propositions are as follows:

(0) @5 — representing route dispatching transitions;
(1) @, — representing interlocking controller transitions, e.g., setting the mode of a route;

(2) @, — representing track element transitions, e.g., switching a point, or communicating a signal aspect to
a train; and

(3) @, — representing train movement transitions.

Transitions of type (0) are not prioritised, i.e., they can be taken nondeterministically whenever they are
enabled, independently from other transitions. On the other hand, transitions of types (1), (2), and (3)
are prioritised in the descending order that they appear in the list, i.e., transitions of type (1) have the
highest priority and transitions of type (3) have the lowest. This priority of transitions is based on the
intuition that in practice, the events in the interlocking controller occur at significantly higher speed than
the ones occurring in a track element. For example, a cycle of a route controller occurs within a hundred
milliseconds, while switching a point from one position to another may take a few seconds. An analogous
argument applies to events related to track elements compared to events related to train movements. For
instance, switching a point may take a few seconds, while it may take a train minutes to pass a section.

With this grouping, ®, models the behaviours of the system under consideration — the interlocking
controller; while &5, ®., and ®, model the behaviours of the operational environment that interacts with
the interlocking controller. The interlocking system is a closed system that evolves according to the combined
transition relation ® as specified in the following.

P =35V (P, [>] D [>] O;) (14)

14

The route dispatching transitions ®s is given the same priority as the priority given to the combined
transition relation specifying all the other transitions in order to allow routes to be dispatched arbitrarily. If
route dispatching transitions were given higher priority than the one given to any of the other transitions, all
routes which could be dispatched would have to be dispatched before interlocking controller, track elements,
or trains could make any transitions. On the other hand, if route dispatching were given lower priority
than any of the other transitions, then a route could not be dispatched, if another route is processed by the
interlocking controller, or a track element or a train could make a transition.
In the subsequent subsections, we highlight the essence of the transitions of each type.

7.4. Route Dispatching Transitions

The route dispatching transitions of a given interlocking system, represented by ®5, model how routes are
dispatched as the result of manual requests from signalmen or automatic requests from a traffic management
system. Figure 6 shows the life-cycle of a route, i.e., its different modes and the transitions from one mode
to another. The life-cycle of a route is described in detail in the next subsection. The route dispatching
is modelled by the transition labelled (1) in Figure 6. A route can be dispatched arbitrarily whenever its
mode is FREE. This means that multiple routes can be dispatched before any of them are processed by
the interlocking controller, and routes can be dispatched when other routes are being processed. Upon
dispatching, the route’s mode changes from FREE to MARKED.

Hence, for each route r in the interlocking table T', the proposition dispatch(r) specifying the dispatching
of that route is specified as follows.

r.MODE = FREE A ».MODE' = MARKED (15)

Since the objective of the verification is to check safety properties, and not to analyse the effect of specific
train sequences following a given time table, we can over-approximate the train behaviour. Therefore, in any
system state, it is assumed that every route may be requested by a train in a nondeterministic way, so the
transition from FREE to MARKED is always enabled. This leads to a super-set of the model state sequences
that could really occur in the real system. Since we are able to prove safety for this super set, the practically
infeasible sequences do not present a problem. On the contrary, by making the model more nondeterministic
than any real behaviour that might occur in practice, the proposition representing the transition relation is
effectively simplified, because state-dependent decisions are over-approximated by nondeterministic ones.

(1)
dispatch(r)

(6) ®3)
release(r) . lock(r)

- ~
’ N

’ \
(Sb) II \l
\/cEpath(T) seqRelease(r, ¢) OCCUPIED) LOCKED
\

2

allocate(r)

4)

N ’ occupied(r)

(50)
Veepnl,h,(r) use(r,e)

Figure 6: Life-cycle for route r, showing how the value of r.MODE is changed.

7.5. Interlocking Controller Transitions

The interlocking controller transitions of a given interlocking system, represented by ®,, model the
internal behaviours of the interlocking controller. Specifically, they model how the status of routes and
lockable elements change as response to the changes in the environment. The subsequent paragraphs outline

15

the life cycle of a route, and a life cycle of a lockable element internally to the interlocking controller,
respectively.

Life-cycle of a Route. The life-cycle shown in Figure 6 reflects the procedure for setting and sequentially
releasing a route r as described in Section 3.2. The transitions labelled (1), (2), (3), (4), and (6) in
Figure 6 correspond to items (1) — (5) in the procedure presented in Section 3.2 for setting and releasing
a route. Transitions (5a) and (5b) model the sequential release that can take place while the route stays
in OCCUPIED mode: as the train moves along the route, its elements are used (5a) when the train enters
them, and then they are released sequentially (5b) as soon as the train has passed them. Transition (2) is
adapted to sequential release: allocating resources for a given route r is now also allowed even if a conflicting
route 7’ is in the OCCUPIED mode, given that the elements shared between r and r’ have been sequentially
released.

For each route r in the interlocking table T', for each of the transitions (2), (3), (4), (5a), (5b), and (6),
there is a proposition specifying the transition in a similar way as transition (1) was specified in Formula 15.

Life-cycle of a Lockable Element. Figure 7 depicts the life-cycle of a lockable element e within the network
controlled by a given interlocking system. Each node in the diagram in Figure 7 is labelled with the following
information about the status of the element e, and the status information is shown in bold when it differs
from the corresponding status of the previous node.

(a) vacant(e) — indicating whether the element is vacant where vacant(e) is a formula over occupancy
status variables of e as shown in Section 7.1;

(b) its current mode — i.e., the value of e. MODE as described in Section 7.1; and

(c) the value of the e. PREV variable indicating whether the previous element prev(r, e) of e in the route
r has been released

An element e is initially in a state where it is vacant, in FREE mode, and its PREV variable is PENDING.
(1) When the interlocking controller is allocating a route r that uses e, the mode of the element is set to
EXLCK, meaning that the element is locked exclusively for . (2) The element becomes occupied, i.e., not
vacant, as a train enters. (3) The interlocking controller detects the change in the occupancy status of e,
consequently sets e’s mode to USED. (4) When the train leaves the previous element prev(r,e) of e in the
route r, prev(r, e) is released, and it informs e by setting the variable e. PREV to RELEASED. (5) When
the train leaves e, the element becomes vacant again. (6) The interlocking controller again detects the
change, releases e and informs the next element next(r, e) in the same route by setting next(r, e). PREV to
RELEASED.

1) (2)

vacant(e) allocate(r) vacant(e) train enters e —vacant(e)
— FREE EXLCK EXLCK
PENDING PENDING PENDING

(6) .
seqRelease(r,e) A filw o)
next(r,e).PREV' = RELEASED R

—wacant(e)
USED
PENDING

vacant(e)
USED
RELEASED

—wacant(e)
USED
RELEASED

(5)

train leaves e

seqRelease(r, prev(r, e))

Figure 7: A life-cycle of a lockable element e.

16

7.6. Track Element Transitions

The track elements transitions of a given interlocking system, represented by ®., model the behaviour
of track-side elements in the railway network under control, i.e., how points are switched and how signal
aspects are communicated from the interlocking controller to the onboard computer in a train.

Switching Points. A point p can be switched if it is commanded to be switched to a position p. CMD that
is different from its current position p.POS. The point switching process occurs in two steps: First the
point moves from its current position to the intermediate position, and then the point is switched from the
intermediate position to the requested position. Hence, for each point p in the network layout N, there are
two transition rules for switching the point:

p.POS # p.CMD A p.POS # INTERMEDIATE A p.POS' = INTERMEDIATE (16)
p.POS = INTERMEDIATE A p.POS' = p.CMD (17)

Communicating Signal Aspects. For each signal s in the network layout N, there is a transition rule for
changing the setting of the signal:

s.ACT # 5s.CMD A s. ACT" = 5s.CMD (18)

It states that whenever the actual aspect s.ACT of the signal s differs from its commanded aspect s.CMD,
the actual aspect of the signal is updated to the commanded aspect.

7.7. Train Movements Transitions

Trains are not explicitly specified in our model, in the sense that there are no explicit train objects.
Instead, train movements and related aspects are implicitly modelled via the occupancy status of sections,
inspired by the “rubber-band” model described in [1]. This implicit model is advantageous compared to the
explicit one, because it can model arbitrary numbers of trains of arbitrary length. Therefore, we do not have
to investigate how many trains should be instantiated in the model and how the length of the trains should
be specified for the safety proof to be sound. Additionally, in the implicit model of train movements, the
length of a train — in terms of numbers of sections that the train occupies — may vary as the train moves,
although the train has a fixed geometric length. This variation reflects the actual view that interlocking
systems have on train lengths as they record which sections the trains occupy.

Trains in our model are assumed to be well-behaved, meaning that all of the following hold.

(1) Trains always move according to the actual settings of the physical railway network under consideration,
e.g., if the actual position of a point is PLUS (MINUS) then trains can only move from the stem end of
the point to the plus (minus) end of the point and vice versa.

(2) Trains do not “fly” — i.e., they do not move from a section ¢, to a further section ¢, without making a
continuous path through the intermediate sections between ¢, and t.

(3) Trains always stop in front of a signal whose actual aspect is CLOSED, and they only proceed when
authorised by a signal whose actual aspect is OPEN.

(4) Trains can change their travel direction, but do not reverse.”

(5) Trains do not split.

"The difference between changing direction and reversing is explained further below.

17

These assumptions are well justified for the following reasons. (1) The first assumption is a physical
constraint. (2) The primary causes of “train flying” as seen by interlocking systems are failures in the
train detection systems (also known as Track Occupancy Detection systems) which detect whether a section
is vacant or occupied by a train [32]. New interlocking systems use axle counters which are far more reliable
than track circuits used by legacy systems for train detection. Thus, for simplicity at the high-level design,
failures in train detection systems are not included in the model, hence eliminating the possibilities of having
“flying trains”. (3)-(4) The third and fourth assumptions are taken, as in ETCS Level 2, the sophisticated
onboard computer systems in a fitted train ensure that the train would not go further than what it is
authorised to move forward and that the train does not accidentally reverse [14, chap. 3]. An emergency
brake will be triggered to bring a train to a full-stop if the train violates its movement authority. (5) The
fifth assumption is taken as we do not include shunting in our model and for simplicity we assume that
trains do not fall apart.

The movements of a train as seen by interlocking systems are like an “elastic band” as illustrated in
Figure 8. The band extends to the next section in front of the train when its head starts occupying the
next section — movement from (a) to (b) in Figure 8. The band shrinks when the train leaves the section
occupied by its tail — movement from (b) to (c) in Figure 8.

Figure 8: “Elastic band” train movements.

Train movements in the “elastic band” model are categorised into the following types: (1) head
movements, (2) tail movements, (3) change direction movements (only on linear sections), (4) entering
interlocked area movements, and (5) leaving interlocked area movements. The interlocked area is the network
or the fraction of a network under control of the considered interlocking system. The head movements and
tail movements respectively model the extensions and shrinking shown in Figure 8. The movements of type
(3) model the case where a train changes its travel direction. Note that change direction movements differ
from reversing movements: in a change direction movement, the driver has to move from the front driver cab
to the back driver cab and drives the train forward (w.r.t. the direction that the driver cab is facing), while
in a reversing movement the driver stays in the front driver cab and drives the train backward [14, 5.12-13].
Change direction movements are allowed in our model of train movements, while reversing movements are
not allowed. The movements of type (4) and (5) account for the movements at the boundary of the network
under control. In other words, they model how trains are put into the network and taken out of the network
under consideration. The subsequent paragraphs describe in details the movements of each type.

Head Movements. A head movement can occur on a section e if it is occupied by a train and the head of the
train is in the section, i.e., the H and O bits of the variable representing the occupancy status of e are set
(see Section 7.1). If e is a linear section and has a signal s intended for the same direction as the direction
of the train, then the actual aspect of s has to be OPEN. The effect of the head movement is illustrated in
Figure 9: the head of the train leaves e, effectively toggles the H bit of e’s occupancy status variable; and
then the head of the train enters the next section in the travel direction — in this case up(e), consequently
toggles the H and O bits of the occupancy status variable of up(e). If e is a point, the train will move

18

according to the physical (actual) position of the point. For example, if the position of the point is plus,
then train will move from the plus end to the stem end or vice versa.

CURRENT | NEXT

S S

Figure 9: Example of head movement on section e from down to up.

The conditions and effects on occupancy status variables can be modelled efficiently by bit-wise AND
(&), OR (]), and XOR (@) operators and arithmetic shift left (<) and arithmetic shift right (>>) operators.
The following proposition models the head movement transition in the example shown in Figure 9.

(e.D2U & 0b101) = 06101 A 5. ACT = OPEN
A e.D2U" = (e.D2U & 0b100) A up(e).D2U" = (up(e).D2U & 0b101) (19)

Tail Movements. A tail movement can occur on a section e if it is occupied by a train and the tail of the
train is within the section, while the head of the train is not in e. This means that e’s occupancy status
variable has the T and O bits set, and the H bit unset, i.e., its value is 06011. Figure 10 illustrates the effect
a tail movement: the tail of the train vacates e, hence resetting e’s occupancy status variable to 0; then the
tail of the train moves to the next section in the travel direction — in this case up(e), consequently toggles
the T bit of the occupancy status variables of up(e). As with head movements, if e is a point, then tail
movements on it will depend on e’s physical position.

CURRENT | NEXT

[
| | I

e up(e) e up(e)

Figure 10: Example of tail movement on section e from down to up.
The following proposition specifies the tail movement transition in the example shown in Figure 10.

e.D2U = 0b011 A e.D2U" = 0b000 A up(e).D2U" = (up(e).D2U & 0b010) (20)

Change Direction Movements. Change direction movements allow trains to change their travel direction to
the opposite. As specified in [14, 5.12-13], a change direction movement has to follow a strict procedure
that requires the train to have reached the end of its movement authority and be at a stand-still position.
For simplicity, it is assumed that a train is only allowed to change its travel direction on a linear section
which has signals intended for both up and down directions as shown in Figure 11. A train can change its
direction on a section e when the signal the train is facing has the actual aspect of CLOSED, and the whole
train is inside e. These conditions ensure that no further movements can be made forward by the train,
i.e., the train is in a stand-still position. The effect of the movement is straight-forward: the values of the
occupancy status variables e.D2U and e.U2D are swapped.
The following proposition specifies the change direction movement in the example shown in Figure 11.

e.D2U = 0b111 A s2.ACT = CLOSED A e.D2U' = e.U2D A e.U2D’ = ¢.D2U (21)

Note that we do not check the setting of sI in the condition, however the existence of sI is essential,
since the interlocking controller should use it to prevent the unauthorised movements of the train after it

19

Figure 11:

has changed the direction.

CURRENT | NEXT
sl

Change direction from up to down. It is analogous from down to up.

Entering Interlocked Area Movements. A train enters an interlocked area by two steps: (a) first the head
of the train enters the interlocked area, then (b) the tail enters the interlocked area as shown in Figure 12
and Figure 13, respectively. The details about these movements are explained in the following.

non-interlocked -.
cee I

CURRENT | NEXT '

=)

S

| non-interlocked r%{
1] °°° T
e I |—ﬂ : e

S

Figure 12: The head of a train enters the interlocked area.

non-interlocked :}% |

S

CURRENT | NEXT '

| == =
n?n interlocked : '!_\.‘J_
11
e I Lﬂ . e

S '

Figure 13: The tail of a train enters the interlocked area.

(a) The head of a train can enter the section e at the boundary of the interlocked area when the actual
aspect of signal s is OPEN, as shown in Figure 12. Consequently, the head of the train is simply “put”
on e — i.e., the H and O bits of e’s occupancy status variable are toggled. The following proposition
expresses the transition for the example shown in Figure 12.

s.ACT = OPEN A e.D2U' = (e.D2U & 0b101) (22)
The tail of the train can enter the boundary section e after the head has entered the section. The
condition is that e is occupied by a train without its tail in the section, as shown in the left of Figure 13.
If this condition holds, then the tail of the train will be “put” into the network — i.e., the T bit of e
occupancy status variable is toggled — as illustrated in the right of Figure 13. The following proposition
expresses the transition for the example in Figure 13.

(e.D2U & 0b011) = 06001 A e.D2U" = (e.D2U & 0b010) (23)
Leaving Interlocked Area Movements. Similar to entering interlocked area movements, a train leaves an
interlocked area in two steps: (a) first the head of the train leaves the interlocked area, then (b) the tail
leaves the interlocked area as illustrated by Figure 14 and Figure 15, respectively. These movements are
further elaborated below.

20

CURRENT | NEXT

%ﬁ: non-interlocked
:l— oo
e X I

S

non-interlocked

Figure 14: The head of a train leaves the interlocked area.

CURRENT | NEXT

}%l non-interlocked , | non-interlocked
| e | :
e Co e LY

' s '

S

Figure 15: The tail of a train leaves the interlocked area.

(a) The train can leave the interlocked area at a boundary section e if the train occupies e in the direction
toward the non-interlocked area and the head of the train is inside e. As the effect, the head of the
train is removed from e — i.e., the H bit of e’s occupancy status variable is toggled. The following
proposition specifies the transition for the movement shown in Figure 14.

(e.D2U & 0b101) = 06101 A e.D2U" = (e.D2U & 0b100) (24)

(b) The tail of a train can leave the interlocked area at a boundary section e if e is occupied in the direction
toward the non-interlocked area, the tail of the train is in the section, and the head of the train is not
in e. The train is removed from the interlocked area — i.e., e’s occupancy status variable is reset to 0
— as the effect of the transition. The movement in Figure 15 is modelled by the following proposition.

e.D2U = 0b011 A e.D2U" = 06000 (25)

Note that in Figure 14, the signal s is not controlled by the considered interlocking system, but the
neighbouring one. Therefore, in our model, we do not check the setting of s for the movement shown in
Figure 14. Intuitively, this is an over-approximation because trains would move more freely than they are
supposed to. This over-approximation does not jeopardise the soundness of the safety proof of the considered
interlocking. Moreover, if we want to verify the safety of the combined model of two interlockings, the train
movement model can easily be restricted to allow trains to pass s only when s is OPEN. Thus, the safety of
the combined model can be inferred from the safety of the two element interlocking models. A formal proof
for such composition may be made, however it is out of the scope of this work.

8. High-level Safety Properties Generation

This section outlines the formal safety properties of an interlocking system generated in step (4) of the
verification process described in Section 4.

We have developed a properties generator that can be used to instantiate generic safety properties (in the
form of property patterns) with configuration data specified in the DSL described in Section 5. In step (4)
of our method, this generator is applied to the configuration data that was created in step (1) and verified
to be statically well-formed in step (2) of our method. This results in concrete properties expressed as state
invariants in the Kripke structure generated in step (3) of our method. Below we give more details on this.

Interlocking systems must at least guarantee the high-level safety properties of no-collisions and no-
derailments. These properties can be expressed as invariants over the occupancy status variables of linear
and point sections in the given network layout. Basically, an interlocking system is safe if no hazardous

21

situations occur on any linear or point sections at any time. Thus, the high-level safety properties can be
expressed formally by the following invariant.

o=\ Hiv \/ Hy) (26)

lel peP

where L is the set of all linear sections and P is the set of all points in the network layout of the given
configuration data, and H; and H,, specify conditions for hazards to occur on a linear section [and a point
p, respectively. These propositions are disjunctions of sub-propositions expressing hazards of different types
on a section as shown in Figure 16 such as: (a) head-to-head collision on a section, (b) head-to-tail collision
on a section, or (c¢) derailment on a point. Some examples of sub-propositions are given in the subsequent
paragraphs.

(a) Head-to-head collision (b) Head-to-tail collision (¢) Derailment on points

Figure 16: Hazardous situations on a section.

Head-to-head collision on a linear section. A head-to-head collision occurs on a linear section [, when two
trains running in opposite directions meet in /. This situation is expressed by the following formula where
1.D2U (1.U2D) is the variable representing the occupancy status of the section in the travel direction from
down (up) to up (down).

1.D2U % 1.U2D > 0 (27)

As [.D2U % 1.U2D > 0 iff [.D2U > 0 and [.U2D > 0, the formula expresses that the section is occupied in
both down-to-up (I.D2U > 0) and up-to-down (I.U2D > 0) directions. Head-to-head collisions on points
are formulated in the similar way.

Head-to-tail collision on a linear section. A head-to-tail collision occurs on a linear section | when a train
Ty enters [while it is already occupied by another train 7'; travelling in the same direction. Although two
trains may never collide if [is long enough to accommodate both of them, or if T; travels at higher speed
than Ts does, these cases are still considered as collisions. These situations are reflected by the values of
the occupancy status variables of [. For example, when [is occupied by a train 7'; in the direction from
down to up, [.D2U will have its O bit set. If another train T enters [in the same direction, the H and O
bits of [.D2U will be toggled according to the train movement model described in Section 7.7, resulting in
[.D2U having O bit unset, while at least one of its H or T bits are set. Therefore, a head-to-tail collision
on [in the direction up is detected by the following formula where & is bit-wise and operator.

1.D2U % (1 — (1.D2U & 1)) > 0 (28)

As Formula 28 holds iff I.D2U > 0 and 1 — (1.D2U & 1) > 0, the formula expresses that the section
is occupied in direction up (I.D2U > 0) while the O bit of [is unset (1 — (I.D2U & 1) > 0). Head-to-tail
collisions on linear sections in the down direction and on points are formulated analogously.

Derailment on a point. A derailment occurs when a train traverses a point p which is not locked in the
correct position for the travel direction of the train. This situation is expressed by the following formula
where p.POS is the point’s actual position, p.S2PM, p.P2S, and p.M2S are variables representing the

22

occupancy status of the point in the travel direction entering the point from its stem, plus, or minus ends,
respectively, and > is arithmetic shift right operator.

p.POS x p.P2S + (1 — (p.POS & 1)) * p.M2S + (p.POS > 1) x p.S2PM > 0 (29)

Formula 29 captures the following cases: (a) a train is entering a point from its plus end (p.P2S > 0) while
the point is in not in the plus position (p.POS > 0); (b) a train is entering a point from its minus end
(p.M2S > 0) while the point is not in the minus position (1 — (p.POS & 1) > 0); and (c) a train is entering
a point from its stem end (p.S2PM > 0) while the point is in the intermediate position ((p.POS > 1) > 0).

9. Verification of High-level Safety Properties

This section explains step (5) of the modelling and verification process described in Section 4.

In this step the task is to verify that the the safety property ¢ (see Formula 26) generated in step (4) is an
invariant in the Kripke structure K generated in step (3). To verify that, we use a bounded model checker
(RT-Tester) to perform k-induction as explained in Section 2. As mentioned in Section 2, we strengthen
¢ with another invariant v in order to eliminate spurious counterexamples. Then instead of proving that
¢ is an invariant in K, we prove that ¢ A ¢ is an invariant in K. 1 is a conjunction of a number of
propositions constraining the starting state of the induction step. An example of such propositions is given
in the following.

Train Integrity. Some states are not feasible and are not reachable in the model of a given interlocking
system because the combinations of the values of the occupancy status variables of sections (see Section 7)
in such states reflect situations that are not physically possible. Examples of infeasible states are shown
in Figure 17. A section e is occupied by a train T'1, and the head of the train is not in e; while the next
section e’ of e in the travel direction is occupied by another train T2 as shown in Figure 17a, or ¢’ is vacant
as shown in Figure 17b. These situations are physically impossible, because they imply that the train T'1
does not have a head.

(a) (b)

Figure 17: Examples of infeasible states x

In order to eliminate such states, we strengthen the safety properties with ¢rain integrity invariants. As
illustrated intuitively in Figure 18, train integrity invariants, as the name suggests, ensure the integrity of
all the trains (modelled implicitly by the occupancy status variables of sections) in the model, i.e., every
train is a unity object with a head and a tail, except for trains that are entering or leaving the considered
network. The idea is simple: starting from a section e that is occupied by the head (tail) of a train, if we
search backward (forward) — w.r.t. the train’s travel direction — we should find a unified train without a gap.
In other words, we should eventually find (1) the tail (head) of the same train somewhere in one of the
previous (next) sections of e — w.r.t. to the train’s direction — or (2) the boundary of the interlocked area,
before we find the head (tail) of another train or a vacant section.

[=2
Figure 18: Train integrity invariant illustration

The train integrity invariants can be formalised as a conjunction of formulas over the track occupancy
variables. For each possible travel direction on a non-boundary section e, there is a formula expressing the

23

constraints between the occupancy status variable of e and the occupancy status variable of the next section
¢’ in the same travel direction. The pattern of such a formula depends on which type of section (linear or
point) the current section e and the next section e’ are. For instance, for travel direction up and a linear
section e that has another linear section e’ as the neighbour in travel direction up — i.e., ¢ = up(e), the
formula will take the following form:

(e.D2U & 0b101) = 06001 <= (e/.D2U & 0b011) = 0001 (30)

This formula expresses that section e is occupied by a train in direction up (the O bit of e.D2U is 1) without
the head of the train being on the section (the H bit of e.D2U is 0), iff section €’ is also occupied by a train in
direction up (the O bit of e’.D2U is 1) without the tail of the train being on the section (the T bit of s’.D2U
is 0). It can easily be seen that Formula 30 rules out the situations shown in Figure 17. Formula 30 shows
the expressiveness of our state encodings allowing properties to be efficiently and compactly formulated.

10. Experiments

This section first presents some verification experiments with our toolchain, and then it presents some
benchmarking results in comparison with different invariant checking techniques supported by NUXMV.

10.1. Ezxperiments with Our Toolchain

We have used the toolchain described in Section 4 to generate safety properties and model instances for
a number of railway networks (cases) as shown in Table 2 and to verify that the generated safety properties
hold for the generated model instances. The cases in Table 2 are listed in the approximate order of increasing
network complexity. The first seven cases are made-up networks inspired by the typical examples used in
other studies about formal verification of railway interlocking systems [20, 38, 25, 24]. For instance, the
example network shown in Figure 1 is case Mini in Table 2. Gadstrup-Havdrup (Gt-Hd) and Kgge are real
networks extracted from the Early Deployment Line (EDL) in the Danish Signalling Programme. The EDL
is the first regional line in Denmark to be commissioned in the Danish Signalling Programme. The line
spreads over 55 kilometres from Roskilde station to Naestved station. There are in total eight stations in
the EDL ranging from simple stations similar to the one shown in Figure 1, to complex stations such as
Kgge. The network descriptions (in XML representation) and the corresponding generated properties and
model instances for the first seven cases can be found at http://www.imm.dtu.dk/~aeha/RobustRailS/
data/casestudy.

Table 2: Verification metrics for different networks when using simple induction (k = 1).

Linears Points Signals Routes logi9(]S|) Time Memory

Tiny 3 0 4 2 11 1 22
Toy 6 1 6 4 26 3 87
Twist 8 2 8 8 39 10 177
Fork 9 2 8 6 40 10 171
Cross 8 2 8 10 41 15 192
Mini 6 2 8 12 37 17 199
Lyngby 11 6 14 24 79 243 867
Gt-Hd 21 5 24 33 113 230 1159
Kgge o7 23 60 73 332 5415 8436
EDL 110 39 126 179 651 19678 23413

In our first trials of verifying the models, we used simple induction (k-induction with k& = 1) with only
safety properties. As discussed in Section 9, we got spurious counterexamples because the safety properties

24

http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy
http://www.imm.dtu.dk/~aeha/RobustRailS/data/casestudy

are not strong enough to be inductive. In order to remedy the issues, we tried two different approaches:
(1) increasing k, and (2) strengthening the invariant to be verified (in this case, the safety properties). It
turned out that the verification time increased significantly as k increased in the former approach, making
it impractical to verify the properties even for the small networks. In the latter approach, we were able to
derive strengthening properties ¥ (see Section 9) for which the verification could be done just using simple
induction. According to De Moura et al. [27], any k-induction proof can be reduced to a simple induction
proof with invariant strengthening. Note, however, that in some applications k-induction has been shown to
be advantageous, see, for example, [23]. Table 2 shows metrics for the final verification using the invariant
strengthening approach. Each row of the table lists the size of a network in terms of the number of linear
sections, points, signals, and routes in the configuration, and the approximate number of possible states
(IS]) in the corresponding model instance. For brevity, the approximate number of states are represented
in their common logarithm values (logio(|S|)); for example, the tiny case has approximately 104 possible
states. The two last columns show the approximate accumulated verification time (in seconds) and memory
usage (in MB). All experiments have been performed on a machine with Intel(R) Xeon(R) CPU E5-2667 0
@ 2.90GHz, 64GB RAM, CentOS 6.6, Linux 2.6.32-504.8.1.16.x86 64 kernel.

We also injected errors into models. Counterexamples for these were normally found in relatively short
time. This appears to be a general trend when dealing with interlocking systems [26]. In a few cases, it took
long time to find counterexamples. Counterexamples show how errors in the model or the configuration data
lead to violations of properties, which may be overlooked by manual inspection. For example, if a check
for the status of protecting points was missing while allocating a route, it would result in a counterexample
where a point is commanded to move while it is in use.

10.2. Comparison with Other Techniques

In order to study how other invariant checking techniques perform on our models compared to
our toolchain, we translated our models into the input language of NUXMV. NUXMV is “a new
symbolic model checker for the analysis of synchronous finite-state and infinite-state systems” [9]. It
extends one of the most popular open-source model checkers, NUSMV2 [10], with support for various
state-of-the-art abstraction techniques such as Binary Decision Diagram (BDD)-based techniques [§],
CounterExample-Guided Abstraction Refinement (CEGAR) [11], Incremental Construction of Inductive
Clauses for Indubitable Correctness (IC3) (7], and Cone of Influence (COI) [4] techniques. The subsequent
paragraphs report the translation, techniques, configurations, settings, results, and discussion of our
benchmarking experiments.

Translation. In order to ensure a faithful translation as the ground for our comparison, the following
principles were used for translating the behavioural models and properties to the input language [6] of
NUXMV.

e Variable declarations representing the state space of a Kripke structure model were translated to
corresponding variable declarations in NUXMV using the type unsigned word [6].

e The transition relation of a Kripke structure model was translated to a TRANS constraint [6] in NUXMV.

e Safety properties and strengthening invariants were translated to NUXMV’s invariant specifications
INVARSPEC [6].

Techniques. We tried to verify the safety properties in the NUXMV translation of the concrete models using
various invariant checking techniques [9] supported by NUXMV as listed in the following.

(1) check_invar: BDD-based invariant checking using reachability analysis.
(2) check_invar_bmc_inc: induction using a SAT solver, incremental algorithm.

(3) check_invar_cegar_predabs: performs CEGAR [11] loop.

25

(4) check_invar_ic3: checking invariant using the IC3 [7] engine in which instead of unrolling the transition
relation, the given property is gradually refined using clauses that are inductive relative to stepwise
approximate reachability.

(5) check_invar_inc_coi_bdd: BDD-based incremental COI [4] invariant checking.

(6) msat_check_invar_inc_coi: SMT-based incremental COI invariant checking.

Configurations. The techniques are run on three different configurations of the properties to be verified
denoted by the suffixes appended to the name of the technique as described in the following.

(a) all: the technique is used to verify the conjunction of all properties including both safety properties
and strengthening invariants.

(b) safety: the technique is used to verify the conjunction of all safety properties (strengthening invariants
are not included).

(c) safety_individually: the technique is used to verify each safety property individually (strengthening
invariants are not included).

For example, check_invar_all means that check_invar is used to verify the conjunction of all
properties, including both safety properties and strengthening invariants.

These configurations allow us to study whether other techniques can verify the safety properties efficiently
without strengthening invariants, which are required for a successful verification in our toolchain. Note that
some techniques work only with a subset of the above configurations (all). In such cases, only results of
working configurations are reported.

Settings. All experiments are run with NUXMV 1.0.0 on the same machine specified in Section 10.1, where
the evaluation with our toolchain in RT-Tester has been performed. Each technique is run on networks
with increasing complexity as listed in Table 2. Running time and memory usage are profiled during the
experiments. Running time threshold is 24 hours, and memory usage threshold is 54G. These thresholds
are chosen based on the following factors: the computation capacity of the machine where the experiments
were run, the verification results of our toolchain as shown in Table 2, and the limit amount of time we
had for experiments (experiments should not be run forever). If an experiment exceeds at least one of these
two thresholds and produces no conclusion so far, it will be terminated. Once an experiment is terminated,
no further experiments will be run for the same technique because the technique would simply reach the
thresholds again for more complex networks.

Results. Table 3 shows the running time and memory usage collected from the benchmarking experiments
where rt_tester denotes our toolchain implemented in RT-Tester. For each technique, the running time (in
seconds) of successful experiments are listed in the first row (with white background and underlined), while
the memory usage (in MB) of successful experiments are listed in the second row (with white background).
Experiments that were terminated are marked with grey background denoting that they have exceeded
the running time threshold or the memory threshold without producing any conclusion. The value “-”
denotes the experiments that were not run because the experiments with the same technique on smaller
cases have been terminated due to too long running time or memory exhaustion. Few techniques, e.g.,
check_invar_bmc_inc, have running time and memory usage of zero for tiny case because the experiments
ran too quick for the profiler to measure.

Discussion. As seen in Table 3, among all of the techniques used in the benchmarking experiments, only
our toolchain (rt_tester) was able to deliver a conclusion for the largest case, the EDL, within the running
time and memory limits. All other techniques exceeded either the running time threshold or the memory
threshold without delivering a conclusion for the EDL case, hence they were terminated.

26

1G0€G9G 9¥681 CLIT 609 j298 €ET LIT G¢1 69 0 TR 100~ DUT~IRAUT ¥0BUD 1RSW (®Q)
G¢09¢ 11T 36 9 ¥ ¥ 4 (4 4
- - - - - - - ve 0 - ~5DA=TOS— UL~ -
— =4 = ATTenptaTput £3o7es TOD DOUT IRAUT 300UYD (O
_ _ _ _ B _ _ T0798 26 I TTenpTATPUT Jes ppq T ! L73o8yd (99)
- - - - - - - 69¢ O -5DA=TO5—SUT— -
— I = Lqo7yesS TODTOUT IRAUT YO0YD
_ _ _ _ _ _ _ 10793 6 I F PPQq ¥o8Yd (qQG)
- - - - - - - 68¢ 0 -5DA=TO5—OUT— -
— I = e TODOTOUT IRAUT 08YD (®
_ _ ~ _ ~ _ _ 00798 6 I TTe PPq T ! L7 3o8Yd> (®B9)
H H H H H H H 107E4S W‘MH Mm A1TenpTaTpuT £19JBSTEOT IRAUT ¥DOUD (OF)
- - - 6€¢ £€€C 0T¢ 6¢9 9IT ¢S e -
B DO 66O Yo ve= 2 & f1oFRS O T IRAUT HDOOUD
- - - «10798 09¢T G99 061 €€¢ 9¢ 4 e e e (A
- [4PXé £66 LC¢C ¥ve L1¢ Lcc 91T 79 - -
_ ¢lac <bb &6 14 = = 2 z BTEOT IRAUT O0UD (®
- 10798 €R8LT Lid! 0T . ¥ L (4 ! e et Foed (57
H H H H H H H H H 126854 TTe sqepead xe3e0 IeAUT YO8YD (®g)
I8TE€SS 8YIST 7.6 L8V €11 TcT L0T €T1 09 0 e UL OWA = TRAUT-H28U (B
SV1 €1 ! (4 € (4 (4 1 4 t] 4 Folee (%)
- - - - - - - L9¢ 0 - - -
— = = ATTenptatpur £3eFes IeAutr yooyd (D
- _ _ _ _ _ _ 70798 8 z TTenpTATD 7 fo8Yd (O1)
- - - - - - - ¥éec 0 - -
— | = = £qoJeS IRAUT " YOOUD
- - - - - - - LT0P8 6 1 ! e (an
- - - - - - - 98¢ 6¢ - -
S - o BTIRAUT 09YD (®
_ _ _ _ _ _ _ 0798 6 1 1T L73o8yd (®BT1)
€IVec 9EV8 6STT 198 661 a61 TLT LLT L8 [44 ITe- 10186221
81961 GIyS 0€C 1944 LT ST 0T 0T € 1
Tad 980y PH-YD AqSud ruiy ssor) qIof gsimy, Ko, Aul,
PoYRUTULIo) D SBY dUO SNOIASId S)T 9STIRII(PO[OIURD -
UOISN[DUOD OU ‘PIJRUINLID} U UOISTI[OUOD OU ‘POJeUIULIS) AIOWOW JO (N W posn pue W

‘Papaaoxa pPloYsal[} AIOWoU

‘popeeoxe PloYsall) owl) SUTUUNI

LU SPU0DdS 1 YOO} ‘POpPasdons UOIJedYLIon U

o8esn AI0WOW pUe SUIT} UOIPEIYLIoA — SIMNSaI Sulsrewrypuag ¢ 9[qe],

27

As discussed in Section 2.2, checking techniques based on complete model representations also failed for
the NUXMV tool. The BDD-based invariant checking technique — check_invar — did not perform well on
our models. It exceeded the running time threshold for small cases on all of the three configurations.

BDD-based incremental COI technique — check_invar_inc_coi_bdd — did not perform better compared
to its BDD-based peer — check_invar. It exceeded the running time threshold for small cases on all three
configurations.

CEGAR technique — check_invar_cegar_predabs — did not perform well on our models either. When
run with configuration all, it exceeded the memory threshold while refining the abstraction, even for the
smallest case. When run with configuration safety, or configuration safety_individually, it gave a
segmentation fault error (thus the results are not shown in Table 3).

IC3 technique — check_invar_ic3 — was not able to handle the large cases: it exceeded the memory
threshold when run on Kgge with all configuration, and exceeded the running time threshold on even
smaller cases when run with safety or safety_individually configurations.

Induction using an SMT solver — msat_check_invar_inc_coi — performed better than our toolchain for
small cases. For large cases, e.g., Kgge, it used more memory and time than our toolchain. Consequently,
it exceeded the memory threshold without delivering a conclusion for the EDL case.

It is evident that induction using a SAT solver in NUXMV — check_invar_bmc_inc — outperformed
our toolchain for cases up to Kgge as far as the running time is concerned. On the other hand, it used
increasingly more memory compared to our toolchain as the size of cases grows. As a consequence, the
technique exceeded the memory threshold without delivering a conclusion for the EDL case. Based on the
rate of increasing memory usage of check_invar_bmc_inc and our toolchain, we would expect the technique
to use — for the EDL case — at least six times the amount of memory it used for verifying Koge case, i.e., at
least 90GB. Thus our memory threshold is not the limiting factor preventing the technique from succeeding
on the EDL case. An analogous argument holds for msat_check_invar_inc_coi.

The better running time of check_invar_bmc_inc_all can be explained by the fact that the BMC
algorithms implemented in RT-Tester are optimised for situations where witnesses can be found, because
these witnesses typically represent test cases. In the model verification cases considered here, the verification
goal is always to show that witnesses cannot be found. Moreover, the inductive techniques used by
check_invar_bmc_inc_all are based on temporal induction according to [12]; this approach shows some
subtle optimisations when compared to our k-induction strategy which is based on [30]. In RT-Tester,
the induction strategy is implemented in a separate layer on top of the SMT solver. This layer could be
exchanged by another one also implementing the strategies described in [12].

11. Related Work

In recent years, the railway domain has become one of the most promising application domains of formal
methods. Several research groups have investigated how formal methods would help efficiently producing
more robust railway control systems. An overview of recent trends can be found in [16], and recommendations
and best-practices for efficient development and verification of safe railway control systems are summarised
in [22]. Re-configurable systems and automated verification are among these recommendations that we have
followed.

Model checking is a promising technique for verifying safety properties of interlocking systems thanks
to its capability to be fully automated. Unfortunately, due to the state space explosion problem, the
technique is only able to verify applications of small size [17]. Several techniques have been proposed in
order to push the applicability bounds toward industrial size. Winter et al. suggest using ordering strategies
optimised for interlocking models [38]. A number of high-level abstractions for reducing the complexity of
interlocking models are presented in [25]. In [15], Fantechi et al. suggest a distributed interlocking model
whose verification can be divided into small tasks and verified in parallel. SAT-based model checking and
slicing technique are used in [26]. In order to remedy the problem with state space explosion in the global
model checking approach, we have recently used BMC for the work described here and for some other
applications [23, 24]. In the current work, a combination of SMT-based BMC with inductive reasoning

28

allowed us to verify safety properties without having to explore the whole state space, hence we were able
to push the bounds even further to handle larger networks of industrial size. As an alternative to the model
checking approach, theorem-proving-based techniques have also shown success in the railway domain, see,
e.g., [2, 21], but these provide a lesser degree of automation.

Although sequential release has been used in some interlocking systems, we have not found any published
formal models of interlocking systems that integrate this feature. In [33], the conditions for elements to be
unlocked and reused in sequential releases are pre-computed and specified in the interlocking tables. In our
approach, sequential release is integrated into the behavioural model rather than into the configuration data.
This reduces the complexity of the configuration data and makes interlocking configuration data relatively
independent from the chosen interlocking approaches.

12. Conclusion and Future Work

This article presented a fully automated, formal method and an associated tool suite for verifying the
forthcoming Danish railway interlocking systems. The new systems are compatible with the ETCS Level 2
and feature sequential release. A formal model for these systems was outlined. A novelty in our contribution
is that the system is part of a signalling system based on ETCS Level 2 for which there are no physical signals
along the tracks; instead, movement authorities are communicated to onboard computers via a radio block
center (RBC). By introducing the concept of virtual signals, ETCS Level 2 compatible interlocking systems
can be formalised in a similar way as conventional interlocking systems with physical signals. Another
novelty is that the formal model features sequential release. As a consequence, the model is more complex
than those supporting route-based release only, because additional variables and transitions are required.
Therefore the verification becomes more challenging. In spite of this difficulty, using a combination of
SMT-based BMC and inductive reasoning, we were able to successfully verify safety properties for systems
controlling large networks of realistic size. This was enabled by encodings of the state space, the transition
relation, and of the safety properties that can be efficiently evaluated by SMT solvers supporting bit vectors
and integer arithmetic.

For future work, we will benchmark how sequential release affects the complexity, and hence the
verification challenges, of interlocking models. Furthermore, we will investigate advanced techniques for
automating the process of discovering strengthening invariants, and for reducing the size of the networks
that need to be modelled. For the current model there are potential overlaps between the strengthening
invariants, which should be eliminated in order to reduce the size of the formula to be solved by the SMT
solver.

The encoding of the transition relation suggested in this article relies on the availability of an SMT solver
which can handle bit vector and integer arithmetic. This design decision was motivated by the fact that
changes in the model state usually affect several bits, and the bit vector or integer expressions allowed to
model this in an intuitive way. It is obvious, however, that a pure Boolean encoding would still be possible
to represent the transition relation with acceptable complexity. We plan to investigate whether the resulting
SAT-based approach yields any performance gains.

Acknowledgments. The authors would like to thank Ross Edwin Gammon and Nikhil Mohan Pande from
Banedanmark (Railnet Denmark) and Jan Bertelsen from Thales for helping us with their expertise about
Danish interlocking systems and always being helpful when we had questions; Dr.-Ing. Uwe Schulze and
Florian Lapschies from the University of Bremen for their help with the implementation in the RT-Tester
toolchain; and the anonymous referees and Alessandro Fantechi for valuable proposals for improving the
presentation.

References

[1] M. Aanes, H.P. Thai, Modelling and Verification of Relay Interlocking Systems, Master’s thesis, Technical University of
Denmark, DTU Informatics, 2012. Series: IMM-MSC-2012-14.

29

2]

3l

(4]

[5]
(6]

(7]

(8]
(9]

[10]

(11]
(12]
[13]
(14]

[15]

[16]

(17]

(18]

(19]

20]

[21]
[22]
23]

[24]

[25]

S. Behnia, A. Mammar, J.M. Mota, N. Breton, P. Caspi, P. Raymond, Industrialising a Proof-based Verification Approach
of Computerised Interlocking Systems, in: J. Allan, E. Arias, C. Brebbia, C. Goodman, A. Rumsey, G. Sciutto, N. Tomii
(Eds.), 11th International Conference on Computer System Design and Operation in the Railway and Other Transit
Systems (COMPRAIL08), WIT Press, 2008.

A. Biere, A. Cimatti, E.M. Clarke, Y. Zhu, Symbolic Model Checking without BDDs, in: R. Cleaveland (Ed.), 5th
International Conference on Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99, Held as Part
of the European Joint Conferences on the Theory and Practice of Software, ETAPS’99, Amsterdam, The Netherlands,
March 22-28, 1999, Proceedings, volume 1579 of Lecture Notes in Computer Science, Springer, 1999, pp. 193-207.

A. Biere, E.M. Clarke, R. Raimi, Y. Zhu, Verifying Safety Properties of a Power PC Microprocessor Using Symbolic
Model Checking without BDDs, in: N. Halbwachs, D. Peled (Eds.), 11th International Conference on Computer Aided
Verification, CAV ’99, Trento, Italy, July 6-10, 1999, Proceedings, volume 1633 of Lecture Notes in Computer Science,
Springer, 1999, pp. 60-71.

A. Biere, K. Heljanko, T. Junttila, T. Latvala, V. Schuppan, Linear Encodings of Bounded LTL Model Checking, Logical
Methods in Computer Science 2 (2006). arXiv: ¢s/0611029.

M. Bozzano, R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri, S. Tonetta,
nuXmv 1.0 User Manual, Technical Report, FBK - Via Sommarive 18, 38055 Povo (Trento) - Italy, 2014. Available at
https://nuxmv.fbk.eu.

A.R. Bradley, SAT-Based Model Checking without Unrolling, in: R. Jhala, D.A. Schmidt (Eds.), Verification, Model
Checking, and Abstract Interpretation - 12th International Conference, VMCAI 2011, Austin, TX, USA, January 23-25,
2011. Proceedings, volume 6538 of Lecture Notes in Computer Science, Springer, 2011, pp. 70-87.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang, Symbolic Model Checking: 1020 States and Beyond, Inf.
Comput. 98 (1992) 142-170.

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M. Roveri, S. Tonetta, The NUXMv
Symbolic Model Checker, in: A. Biere, R. Bloem (Eds.), 26th International Conference on Computer Aided Verification,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings,
volume 8559 of Lecture Notes in Computer Science, Springer, 2014, pp. 334—342.

A. Cimatti, E.M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, A. Tacchella, NuSMV 2:
An OpenSource Tool for Symbolic Model Checking, in: E. Brinksma, K.G. Larsen (Eds.), 14th International Conference
on Computer Aided Verification, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, volume 2404 of Lecture
Notes in Computer Science, Springer, 2002, pp. 359-364.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided Abstraction Refinement for Symbolic Model
Checking, J. ACM 50 (2003) 752-794.

N. Eén, N. Sérensson, Temporal Induction by Incremental SAT Solving, Electronic Notes in Theoretical Computer Science
89 (2003) 543-560.

European Railway Agency, Annex A for ETCS Baseline 3 and GSM-R Baseline 0, 2012. Available at http://www.era.
europa.eu/Document-Register/Pages/New-Annex-A-for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx.

European Railway Agency, ERTMS — System Requirements Specification — UNISIG SUBSET-026, 2014. Available at
http://www.era.europa.eu/Document-Register/Pages/Set-2-System-Requirements-Specification.aspx.

A. Fantechi, Distributing the Challenge of Model Checking Interlocking Control Tables, in: T. Margaria, B. Steffen (Eds.),
Leveraging Applications of Formal Methods, Verification and Validation. Applications and Case Studies, volume 7610 of
Lecture Notes in Computer Science, Springer, 2012, pp. 276-289.

A. Fantechi, Twenty-Five Years of Formal Methods and Railways: What Next?, in: S. Counsell, M. Nufiez (Eds.), Software
Engineering and Formal Methods, volume 8368 of Lecture Notes in Computer Science, Springer, 2014, pp. 167-183.

A. Ferrari, G. Magnani, D. Grasso, A. Fantechi, Model Checking Interlocking Control Tables, in: E. Schnieder, G. Tarnai
(Eds.), FORMS/FORMAT 2010 — Formal Methods for Automation and Safety in Railway and Automotive Systems,
Springer, 2010, pp. 107-115.

A. Foldager, A Graphical Domain-specific Language for Railway Interlocking Systems, Master’s thesis, Technical University
of Denmark, DTU Compute, 2015.

H.H. Hansen, J. Ketema, B. Luttik, M.R. Mousavi, J. van de Pol, O.M. dos Santos, Automated Verification of Executable
UML Models, in: B.K. Aichernig, F.S. de Boer, M.M. Bonsangue (Eds.), FMCO, volume 6957 of Lecture Notes in
Computer Science, Springer, 2010, pp. 225-250.

A.E. Haxthausen, M.L. Bliguet, A.A. Kjser, Modelling and Verification of Relay Interlocking Systems, in: C. Choppy,
O. Sokolsky (Eds.), 15th Monterey Workshop: Foundations of Computer Software, Future Trends and Techniques for
Development, volume 6028 of Lecture Notes in Computer Science, Springer, 2010, pp. 141-153.

A.E. Haxthausen, J. Peleska, Formal Development and Verification of a Distributed Railway Control Systems, in: IEEE
Transactions on Software Engineering, volume 26, IEEE, 2000, pp. 687-701.

A.E. Haxthausen, J. Peleska, Efficient Development and Verification of Safe Railway Control Software, in: Railways:
Types, Design and Safety Issues, Nova Science Publishers, Inc., 2013, pp. 127-148.

A.E. Haxthausen, J. Peleska, S. Kinder, A Formal Approach for the Construction and Verification of Railway Control
Systems, in: Formal Aspects of Computing, volume 23, Springer, 2011, pp. 191-219.

A.E. Haxthausen, J. Peleska, R. Pinger, Applied Bounded Model Checking for Interlocking System Designs, in: S. Counsell,
M. Nuiiez (Eds.), Software Engineering and Formal Methods, volume 8368 of Lecture Notes in Computer Science, Springer,
2014, pp. 205-220.

P. James, F. Moller, H.N. Nguyen, M. Roggenbach, S. Schneider, H. Treharne, M. Trumble, D. Williams, Verification of
Scheme Plans Using CSP||B, in: S. Counsell, M. Nufiez (Eds.), Software Engineering and Formal Methods, volume 8368

30

https://nuxmv.fbk.eu
http://www.era.europa.eu/Document-Register/Pages/New-Annex-A-for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx
http://www.era.europa.eu/Document-Register/Pages/New-Annex-A-for-ETCS-Baseline-3-and-GSM-R-Baseline-0.aspx
http://www.era.europa.eu/Document-Register/Pages/Set-2-System-Requirements-Specification.aspx

[26]

27]

28]

[29]

[30]

31]

[32]

33]

34]

[35]

[36]

37]

(38]

of Lecture Notes in Computer Science, Springer, 2014, pp. 189-204.

P. James, M. Roggenbach, Automatically Verifying Railway Interlockings Using SAT-based Model Checking, in: Electronic
Communications of the EASST, volume 35, EASST, 2011.

L.M. de Moura, H. Ruef8, M. Sorea, Bounded Model Checking and Induction: From Refutation to Verification, in: W.A.H.
Jr., F. Somenzi (Eds.), 15th International Conference on Computer Aided Verification, CAV 2003, Boulder, CO, USA,
July 8-12, 2003, Proceedings, volume 2725 of Lecture Notes in Computer Science, Springer, 2003, pp. 14—26.

J. Peleska, Industrial-Strength Model-Based Testing - State of the Art and Current Challenges, in: A.K. Petrenko,
H. Schlingloff (Eds.), Proceedings 8th Workshop on Model-Based Testing, Rome, Italy, volume 111 of Electronic
Proceedings in Theoretical Computer Science, Open Publishing Association, 2013, pp. 3-28.

J. Peleska, E. Vorobev, F. Lapschies, Automated Test Case Generation with SMT-Solving and Abstract Interpretation, in:
M. Bobaru, K. Havelund, G. Holzmann, Joshi (Eds.), NASA Formal Methods, volume 6617 of Lecture Notes in Computer
Science, Springer, 2011, pp. 298-312.

M. Sheeran, S. Singh, G. Stalmarck, Checking Safety Properties Using Induction and a SAT-Solver, in: W.A .H. Jr., S.D.
Johnson (Eds.), 3rd International Conference on Formal Methods in Computer-Aided Design, FMCAD 2000, Austin,
Texas, USA, November 1-3, 2000, Proceedings, volume 1954 of Lecture Notes in Computer Science, Springer, 2000, pp.
108-125.

C. European Committee for Electrotechnical Standardization, EN 50128:2011 — Railway applications — Communications,
signalling and processing systems — Software for railway control and protection systems, 2011.

G. Theeg, S.V. Vlasenko, E. Anders, Railway Signalling & Interlocking: International Compendium, Eurailpress, 2009.
D. Tombs, N. Robinson, G. Nikandros, Signalling Control Table Generation and Verification, in: CORE 2002: Cost
Efficient Railways through Engineering, Railway Technical Society of Australasia/Rail Track Association of Australia,
2002, p. 415.

Verified Systems International GmbH, RT-Tester Model-Based Test Case and Test Data Generator - RT'T-MBT - User
Manual, 2013. Available on request from http://www.verified.de.

L.H. Vu, Formal Development and Verification of Railway Control Systems - In the context of ERTMS/ETCS Level 2,
Ph.D. thesis, Technical University of Denmark, DTU Compute, 2015.

L.H. Vu, A.E. Haxthausen, J. Peleska, A Domain-Specific Language for Railway Interlocking Systems, in: E. Schnieder,
G. Tarnai (Eds.), FORMS/FORMAT 2014 - 10th Symposium on Formal Methods for Automation and Safety in Railway
and Automotive Systems, Institute for Traffic Safety and Automation Engineering, Technische Universitat Braunschweig,
2014, pp. 200-209.

L.H. Vu, A .E. Haxthausen, J. Peleska, Formal Modeling and Verification of Interlocking Systems Featuring Sequential
Release, in: C. Artho, P.C. Olveczky (Eds.), Formal Techniques for Safety-Critical Systems, volume 476 of Communications
in Computer and Information Science, Springer, 2015, pp. 223-238.

K. Winter, Optimising Ordering Strategies for Symbolic Model Checking of Railway Interlockings, in: T. Margaria,
B. Steffen (Eds.), Leveraging Applications of Formal Methods, Verification and Validation. Applications and Case Studies,
volume 7610 of Lecture Notes in Computer Science, Springer, 2012, pp. 246-260.

31

http://www.verified.de

	Introduction
	Mathematical Preliminaries
	Kripke Structures
	Bounded Model Checking
	k-Induction

	The new Danish Route-based Interlocking Systems
	Specification of Interlocking Systems
	Interlocking Principles
	Sequential Release

	Method Overview
	Interlocking Configuration Data Construction
	Interlocking Configuration Data Validation
	Behavioural Models Generation
	State Space
	Initial State
	Transition Relation
	Route Dispatching Transitions
	Interlocking Controller Transitions
	Track Element Transitions
	Train Movements Transitions

	High-level Safety Properties Generation
	Verification of High-level Safety Properties
	Experiments
	Experiments with Our Toolchain
	Comparison with Other Techniques

	Related Work
	Conclusion and Future Work

