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Summary (English)

The goal of this thesis is to explore two improvements for functional magnetic
resonance imaging (fMRI) analysis; namely our proposed decomposition method
and an extension to the non-parametric testing framework. Analysis of fMRI
allows researchers to investigate the functional processes of the brain, and pro-
vides insight into neuronal coupling during mental processes or tasks.

The decomposition method is a Gaussian process-based independent compo-
nents analysis (GPICA), which incorporates a temporal dependency in the
sources. A hierarchical model specification is used, featuring both instanta-
neous and convolutive mixing, and the inferred temporal patterns. Spatial maps
are seen to capture smooth and localized stimuli-related components, and of-
ten identifiable noise components. The implementation is freely available as a
GUI/SPM plugin, and we recommend using GPICA as an additional tool when
performing ICA on fMRI data to investigate the effect of the temporal source
prior.

In fMRI, statistical tests are used to investigate the significance of activation in
specific brain regions. By extending the non-parametric testing framework to in-
corporate functional prior knowledge, an increase in sensitivity can be achieved,
entailing better evaluations and conclusions. The functional prior knowledge
is incorporated by use of a proposed Graph-Based Cluster Permutation Test
(GBCPT), entailing the possibility to expand the use of cluster permutations
to multiple applications, wherever a graph-based setup can be used.
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Summary (Danish)

Formålet med denne afhandling er at undersøge to forbedringer for funktionel
magnetisk resonans (fMRI) analyse; vores foreslåede dekompositionsmetode og
en udvidelse til den ikke-parametriske testramme. Analyse af fMRI giver forskere
mulighed for at undersøge funktionelle processer i hjernen, og kan dermed give
indsigt i de neuronale koblinger der foregår under mentale processer.

Dekompositionsmetoden er en baseret på Gaussiske processer brugt som kilde-
fordeling i uafhængig kilde analyse (GPICA), som derved tilfører en tidsmæssig
afhængighed i kilderne. Der anvendes en hierarkisk model specifikation, der mu-
liggør en specifikation der baserer sig både på en instantan og temporal foldnings
mikstur version af kilderne. De afledte tidsmæssige mønstre og rumlige speci-
ficeringer identificerer glatte og lokaliserede stimuli komponenter, og giver ofte
identificerbare støjkomponenter. Implementeringen er frit tilgængelig som en
GUI/SPM plugin, og vi anbefaler at bruge GPICA som et supplerende redskab,
til at udføre ICA på fMRI data, for at undersøge effekten af den tidsmæssige
afhængighed i kilder.

I fMRI anvendes statistiske test til at undersøge betydningen af aktivering i spe-
cifikke hjerneregioner. Ved at udvide den ikke-parametrisk testramme til at in-
korporere funktionel forhåndsviden, opnås en forøgelse af sensitiviteten, hvilket
medfører bedre evalueringer og konklusioner. Det funktionelle forhåndskendskab
er inkluderet i modellen ved brug af vores Graf Baserede Gruppe Permuterings
Test (GBCPT), der medfører muligheden for at udvide brugen af gruppe per-
mutaterings test til flere applikationer, hvor et graf baseret setup kan bruges.
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Preface

This thesis was prepared at Cognitive Systems, Department for Applied Mathe-
matics and Computer Science at Technical University of Denmark in fulfillment
of the requirements for acquiring a PhD in Engineering. The work was fully
funded by an awarded DTU scholarship, and conducted under guidance from
the main supervisor professor Ole Winther, Department for Applied Mathemat-
ics and Computer Science, Technical University of Denmark. The work was
carried out between April 2012 and June 2016.

The thesis deals with two topics of brain imaging analysis; a proposed indepen-
dent component analysis algorithm and a graph based cluster permutation test.
The thesis consists of a synopsis of the contributions; one chapter in the thesis,
and one submitted article along with a companion implementation.

Lyngby, 20-June-2016

Ditte Høvenhoff Hald
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Independent Analysis for Temporal Source Separation in fMRI. Submitted
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Chapter 1

Introduction

"All models are wrong, but some are useful", Box et al. [1987]

Exploration of the human brain and its functionality has fascinated scientists
for ages, but the means to examine and investigate the brain’s functionality
have never been as good as they are now. In functional neuroimaging, the
most established methods include Electroencephalography (EEG, scalp record-
ings of electrical potentials from the brain), Magnetoencephalography (MEG,
measurement of magnetic fields generated by the brain’s electrical potentials),
and functional magnetic resonance imaging (fMRI, measurement of brain ac-
tivity by registering minute changes in the magnetic field caused by changes in
cerebral blood flow). Neuroimaging has a proven potential in connection with
machine learning to obtain a non-invasive and non-ionizing view of the brain’s
functionality, see Figure 1.1.

Machine learning is a wide field, merging computational sciences, modeling and
statistics that facilitate handling and processing of multivariate data, see Figure
1.2. Machine learning can mainly be classified into two categories; supervised,
p (y | x), or unsupervised learning, p (x), based on whether both the input and
output, x and y, or only the input data, x, is known. Supervised learning covers
problems such as classification, regression and numerical analysis, while unsu-
pervised learning deals with clustering and more generative factor modeling.
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Figure 1.1: (Machine) Learning about the brain. Through neuroimaging,
modeling and machine learning, deep insight into the brain can
be gained. Illustrated here with EEG and fMRI visualizations.
Knowledge about brain function can highlight the brain process-
ing performed in conjunction with e.g. visual stimulation, and
furthermore it can be used in diagnosis of neural diseases. Own
figure design, subimages from [noa, Delorme and Makeig].

Unsupervised learning is said to "Extract an efficient internal representation of
the statistical structure implicit in the inputs" Hinton and Sejnowski [1999], and
makes it possibles to perform a more exploratory analysis.

Supervised fMRI data analysis is most commonly performed through Statistical
Parametric Mapping (SPM8, Wellcome Trust Centre for Neuroimaging1, a soft-
ware plugin for Matlab developed for data processing and hypothesis testing.
SPM employs regression through the General Linear Model (GLM) to incorpo-
rate a stimuli function into the design matrix in order to create a linear model
for the measured data. Based on the linear regression estimation of the effects
and error estimate, a statistical measure can be used for hypothesis testing in
order to detect significant stimuli-dependent areas in the brain. However, when
trying to compare multiple voxel-time points in a statistical test, this method
is subject to the multiple comparison problems (MCP).

Turning to unsupervised models, there are many applications for fMRI analysis.
This thesis will focus on independent component analysis (ICA), since it is a
great tool for performing exploratory analysis to extract components for further
analysis. Independent components (IC’s) can be used for decomposition into
stimuli-dependent and non-stimuli-dependent components, and e.g. for data
de-noising. When using ICA as a preprocessing step, one can couple supervised
with unsupervised analysis by subsequently performing a non-parametric test-

1http://www.fil.ion.ucl.ac.uk/spm/

http://www.fil.ion.ucl.ac.uk/spm/
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Figure 1.2: A view into aspects of machine learning. A great advantage of
machine learning is the numerous multivariate data applications.
This thesis will focus on neuroscience, especially fMRI.

ing. This leads to the two contributions of this thesis; a temporal generative
model to perform ICA, and a graph-based cluster permutation test to mitigate
the effects of MCP.

Outline of Contributions

The work of this PhD study has evolved around two main areas, both concerning
two aspects of fMRI data analysis.

Contribution I: Gaussian Process based Independent Analysis for
Temporal Source Separation in fMRI deals with the proposed method for
temporal-based modelling of independent components through Gaussian pro-
cesses (GP). The goal was to develop a pipeline for source separation in fMRI
that featured temporal dependency. Whereas others have proposed GP based
factor models for induced temporal dependency in the exploratory analysis, our
contribution consists of a hierarchical model specification followed by inference
of spatial source maps and temporal patterns by Markov Chain Monte Carlo,
resulting in a direct fMRI application with a GUI and visual convergence diag-
nostic.

Contribution II: Graph-Based Cluster Permutation Tests propose a new
extension to cluster permutation tests that features graph-based cluster connec-
tions to improve the statistical significance. Previously, only clustering based
on time, space or frequency has been used, but graph-based clustering paves
the way for multiple application possibilities, since networks can be specified on
multiple bases, depending on what prior knowledge we wish to incorporate into
the statistical analysis. In fMRI, the graphs incorporated were based on resting
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state covaiance, and the preliminary work shows promising results on improving
the test statistic.

Outline of the Thesis

This thesis is written as a synopsis, to focus on the contributions in Appendix
A and Chapter 4.

Chapter 2 the thesis building block is briefly introduced, covering functional
brain imaging, Independent Component Analysis, and Bayesian Inference.

Chapter 3 gives an introduction to the contribution of Gaussian-process-based
independent analysis for temporal source separation in fMRI. The chapter
covers a short introduction, additional results for elaboration, and further
discussion and considerations in connection with the article.

Chapter 4 is a little untraditional as it serves as a contribution in itself, and
should be read as a draft in preparation for future publication. This
format has been chosen to make it possible to present the project work
flow, leading to an open discussion on problems encountered and future
modifications. It coves background, simulated and real data applications,
through method description, and following findings and discussions.

Chapter 5 discusses the thesis’ main results and relates them to each other
and to some of the difficulties experienced in the field of neuroscience and
machine learning.



Chapter 2

Preliminaries

The following will introduce some of the building blocks used in the thesis.
The aim is to give a taste on some of the overall background, so please refer
to the separate contributions for more topic specific details. This chapter will
focus on three corner stones, namely functional brain imaging (Section 2.1), the
Cocktail Party Problem (Section 2.2) - and how to solve it with Independent
Component Analysis (Section 2.4), and finally a short intro will be given to
Bayesian Inference (Section 2.4).

2.1 Functional Brain Imaging

One of the most interesting methods for functional brain imaging utilizes MRI.
Functional MRI (fMRI) is of interest as it is a non-invasive, and non-ionizing
technique, allowing researcher to asses neuronal activity in conjunction with
stimulation (visual, auditoral etc.). It relies on the inherent coupling between
neuronal activity and cerebral blood flow changes. Most fMRI techniques uti-
lizes the blood oxygenation level dependent (BOLD) signal as a contrast agent.
BOLD emerges from metabolic changes that occur in the local brain areas that
are stimulated. The BOLD effect is based on the magnetic properties of hema-
globin (Hb) which, when oxygenated is diamagnetic, and when deoxygenated is
paramagnetic. Neural stimuli, will consume glucose which requires oxygen to
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break down, and therefore increase local consumption of oxygen in an area. This
phenomenon is called the hemodynamic response (HDR), and can be modelled
as seen in Figure 2.1. The use of oxygen to break down glucose, and the con-
sumption of glucose, will both induce an increased blood flow and blood volume
in the area. The resulting change of ratio between deoxygenated Hb (dHb) and
oxygenated Hb, will cause a reduction of the magnetic field inhomogeneity and
thereby increase the local MR signal slightly [Buxton et al., 2004]. The BOLD
signal will increase approx. 2 seconds after initiated neuronal activity. If the
neuronal activity continues, the signal will reach a plateau at approx. 5-8 sec-
onds. Following brain activity, the BOLD response will perform an “undershoot”,
as oxygenated blood will flow slower than brain activity, causing the signal to
drop below the baseline, before normalizing. Large subject to subject variance
has been observed, while inter subject variances is lower, [Aguirre et al., 1998].
Due to the relative slow nature of the HDR, sampling times, or repetition time

Time [s]
0 5 10 15 20 25 30 35
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Figure 2.1: The HDR function with a TR = 0.333 s (as a dataset in this
thesis), developed from SPM, for a delta

(TR), are typically in the order of 1-2 seconds. Compared to other neural ac-
tivity measurement methods (EEG or MEG), this is a low temporal resolution,
but on the other hand fMRI has the advantage of actually coupling neuronal
activity with a spatial location, which makes it a attractive for neuroimaging.
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2.2 The Cocktail Party Problem

2.2.1 Definition

The “cocktail party problem” (CPP) was first described in 1953 by Colin Cherry,
as the human ability to recognize one person’s speech among others interfering
voices and sounds [Cherry, 1953]. The expression covers the human auditory
systems ability to separate incoming signals, and attend to the one in focus.
This type of scene segmentation is widely investigated in neuroscience – in both
visual and auditory systems [Larsen et al., 2000]. It is of great interest to mimic
the human perception, in regards to the ability of extracting source signals for
countless of applications in machine learning. Extracting source signals from a
set of mixed signals is known as “blind source separation (BSS) and can be seen
as the “machine learning solution” to the cocktail party problem.

For more on the auditory perception regarding the cocktail party problem, see
the thorough review by Haykin and Chen [2005]. McDermott [2009] elaborates
on the two challenges of the CPP: sound segregation and directing attention.

2.2.2 Background

Blind source separation can be seen as an unsupervised decomposition method,
and covers the process of finding hidden internal representations of the data, i.e.
to decompose the data into its internal representations [Bishop, 2006]. Specify-
ing the model with its sources, Z, the received mixed signal, X, and the mixing
process, W :

X ≈WZ (2.1)

For the CPP the sources are the speaker, persons and music at the party and
the received mixed signal is represented as the microphones in Figure 2.2.

Blind source separation covers a wide range of algorithms with different con-
ditions/constraints in order to overcome the under-determined aspect of the
problem, and thereby narrow the set of possible solutions. Examples of meth-
ods for blind source separation include inter alia Principal Components Analysis
(PCA) (though not cable to solving the CPP, since the representation of W and
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X ZW

≈X W
Z
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𝑒𝑠

…

Figure 2.2: The cocktail party problem. Visualized with the partying people,
Z, and the measurements units, the microphones, in X. The mix-
ing matrix,W illustrated the sources mapping to the measurement
places.

Z will not be unique)1, Independent Component Analysis (ICA), Non-negative
matrix factorization [Lee and Seung, 1999] and common spatial pattern [Koles
et al., 1990].

BSS is not only applicable to the auditory cocktail party problem, but has a huge
multidimensional applicability, covering inter alia (neuro)-imaging and musical
decomposition. The following will focus on ICA, as it is one of the most used
algorithms for solving BSS and thereby the CPP.

1In PCA the singular value decomposition is used: X = UΣV >, where U and V are
orthonormal, and Σ is diagonal. In the factor analysis/ICA view we can write X = UΣV > =

U
(
ΣV >

)
= WZ = (UQ)

(
Q−1

(
ΣV >

))
= Ŵ Ẑ. The representation for W is thus not unique

because we can always multiply by a rotation matrix Q from the the right U → UQ. Like-wise
Z is not unique because we can multiply by Q−1 from the left.
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2.3 Independent Component Analysis

The classical model formulated for independent component analysis for P 2 com-
ponents is:

X =WZ + ε (2.2)

X =

P∑

p=1

wpzp + ε. (2.3)

The components zp are assumed to be mutually statically independent (uncor-
related) and non-Gaussian. Depending on the model, the error ε term can be
excluded, but is defined to have zero mean and σ2 variance. The ICA model is
a generative model, since X can be generated by a process of mixing the latent
variables zp. ICA maximizes the statistical independence of the components,
and some measures of independency include: Minimizing the mutual informa-
tion (maximizing the log likelihood), as in e.g. the Infomax algorithm Bell and
Sejnowski [1995]. Another method uses entropy/negentropy (since maximizing
negentropy, minimizes the mutual information, as in fastICA Hyvärinen [1999]).
The applications of ICA are manifold and covers neuroimaging, including fMRI
and EEG, audio and hearing aids, speech recognition, music decomposition, im-
ages and text, [Larsen et al., 2000, Hastie et al., 2005]. For more background
on ICA, please refer to e.g. the survey article by Hyvärinen and Oja [2000] or
Hyvärinen et al. [2001], or the “original” ICA proposed by Comon [1994].

The following will shortly introduced the two well-established methods in the
field:

The Molgedey-Schuster Independent Component Analysis (icaMS)
The icaMS decorrelation algorithm, Molgedey and Schuster [1994], utilize that
the mixing matrix, W , can be estimated using the covariance to find the quo-
tient matrix. Eigenvalue-decomposition is performed on the quotient matrix to
achieve W , since the quotient matrix has W as its eigenvectors. IcaMS requires
no iterations, and no noise term is included in the model. The independent
sources are expected to have different autocorrelation functions, [Molgedey and
Schuster, 1994, Larsen et al., 2000], and the algorithm main advantage is to
not require parameter tuning. An implementation of the algorithm is found
from noa [2002], where Hansen et al. [2001] gave a likelihood specification of the
problem.

The InfoMax based Independent Component Analysis Infomax ICA
by Bell and Sejnowski [1995] minimize the Mutual Information between the

2Note when p () is used, it symbolizes the probability, and not the p’th source
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components and thereby create maximal independent components. Minimizing
the MI is done through maximizing the log likelihood. With a noise free model.
The model reads,

X = (X)i,j =

P∑

p=1

Wi,pZp,j , (2.4)

with i, j being measurements and time sample points, respectively.

The following will derive the log likelihood for the noise free ICA, from [MacKay,
2003] (with a bit more simplified notation). The likelihood function reads

p (X |W ) =

∫
p (X |W,Z) p (Z) dZ, (2.5)

where p (X |W,Z) = δ (X −WZ), since a noise free model is assumed, and the
prior p (Z) is the assumed source distribution. Thereby,

p (X |W ) =

∫
δ (X −WZ) p (Z) dZ. (2.6)

By introducing the change of base, X̂ = WZ ⇔ Z = W−1X̂ and thereby
dX̂ =WdZ. From here it follows that

p(X̂) = det
(
dZ

dX̂

)
p (Z) (2.7)

p(X̂) =
1

|det W |p(W
−1X̂). (2.8)

The likelihood now reads,

p (X |W ) =
1

|det W |

∫
δ
(
X − X̂

)
p
(
W−1X̂

)
dX̂ , (2.9)

And by used of integrating delta functions the likelihood is found to be,

p (X |W ) =
1

|det W |p(W
−1X), (2.10)

and thereby the log likelihood can be calculated, and maximized with a maxi-
mization procedure of own choice.

2.4 Bayesian Modeling

In the Statistical learning cycle, [Gelman et al., 2014], visualized in Figure 2.3,
the iterative learning process consists of three steps; Modeling, Inference and
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Figure 2.3: Statistical learning cycle, partly from [Gelman et al., 2014], where
the tree corner stones are shortly described.

Evaluation. These will be the topic of following section, keeping the focus on
relevant methods for this thesis.

The first step in the learning cycle describes the modeling of data in the Bayesian
framework, consisting of specifying all assumptions and dependable variables in
joint probabilities and prior distributions. By working with probabilities to
describe the model, simple rules from probability theory apply. Bayes rule is
the fundamental corner stone, specifying the relation between the posterior, the
likelihood, the prior, and the marginal likelihood as in Eq. 2.12:

p (A | B) =
p (B | A) p (A)

p (B)
. (2.11)

With a generative data model, with the data y, and the parameters θ, Bayes
theorem consists of the probability of the data given the parameters p(y | θ),
the probability distribution of the parameters, before observing the data, p(θ),
and the marginal likelihood, p(y) =

∫
p(y, θ)dθ,

p (θ | y) = p (y | θ) p (θ)
p (y)

. (2.12)

With Bayesian modeling it is possible to derive generative models for the speci-
fied models; but knowing that modeling usually cannot be performed precisely,
inference models are used to approximate the posteriors and estimate unknown
variables, [Bishop, 2006]. Multiple inference methods exist, (covered by e.g.
Gelman et al. [2014], Bishop [2006]), but in this thesis the sampling is based on
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Markov Chain Monte Carlo (MCMC). This stochastic technique approximates
the expectations by a finite number of samples, and is suitable for complex
model distributions, since it is constructed to have its equilibrium distribution
at the target posterior distribution, [Gelman et al., 2014]. MCMC is random-
walk based, and keeps a chain of the previous samples, so new samples can be
drawn proposed by the previous. It is expected that each drawn sample becomes
more and more likely to be from the posterior distribution. At convergence (af-
ter a warm-up period), the MCMC chain can be used as samples sampled from
the target distribution in the further analysis, [Gelman et al., 2014].

Multiple MCMC algorithms exist, where two popular methods, Metropolis Hast-
ings (MH) and Gibbs sampling (actually from the same family of MCMC meth-
ods), are especially relevant for this thesis. Gibbs sampling performs iterative
sampling of conditionals, by sampling from one distribution while keeping the
others stationary. MH is often used when Gibbs sampling cannot be performed
e.g. when conjugate priors have been specified, and uses a proposal distribution
to propose new samples, but only keeps the the candidate sample if it passes an
acceptance/rejection rule, [Gelman et al., 2014].

Finalizing the statistical learning cycle, it is of great importance to evaluate the
created model, and iterate the model specifications and the inference schemes
accordingly, if the model and data do not match. Furthermore, for MCMC it is
important to investigate convergence, since this limit is the sampling performed
from the target distribution.



Chapter 3

Gaussian Process Based
Independent Component

Analysis

The following chapter is based on the article in Appendix A on Gaussian process
based independent analysis for temporal source separation in fMRI. This chap-
ter will focus on model elaboration and considerations regarding choices taken
towards the end results reported in the article. The reader is therefore referred
to Appendix A for further model details and results. This chapter will shortly
introduce the work (Section 3.1), present additional results that were not in-
cluded in the article (Section 3.2), then discuss model considerations (Section
3.3), and end comments in the conclusion (Section 3.4).

3.1 Model Summary

Gaussian Process based Independent Component Analysis (GPICA) is a pro-
posed method to extract independent components in fMRI, as summarized in
Figure 3.1. By the use of Gaussian process priors, it takes advantage of the
incorporated temporal dependency to extract interpretable classifiable compo-
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nents from the data. The novel contribution in this work covers the hierarchical
model specification, holding both instantaneous and convolutive mixing, and
the direct fMRI application toolbox, available here1. Figure 3.1 provides a con-
centrated view of the algorithm, covering the model setup, specifications and a
short output demonstration.

There exist a decent amount of GP based regressing and GP incorporation
into factor models [Yu et al., 2009, Luttinen and Ilin, 2009, Schmidt and Lau-
rberg, 2008, Schmidt, 2009], and preliminary work on GP source separation has
furthermore been formulated by Park and Choi [2007, 2008]. But for fMRI
analysis we found it of great interest to build and explore a Gaussian process
based source separation procedure, that can: feature temporal support for the
sources, be extended to a convolutive model, and foster easily analyzable length
scale parameters.
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Update 𝑍:

𝑝 𝑍 ∣ 𝑋,𝑊,Ψ, ℓ 

Update W:
𝑝 𝑊 ∣ 𝑋,𝑍,Ψ,𝛼  

Update ARD 𝛼 :
𝑝 𝛼 ∣ 𝑊, 𝑠𝑏 , 𝑟𝑏

Update Ψ:
𝑝 Ψ ∣ 𝑋,𝑍,𝑊, 𝑠𝑎 , 𝑟𝑎

Metropolis Update:
Propose ℓ∗:
𝑞 ℓ∗ ∣ ℓ,𝜎
ℓ = ℓ∗ if accepted

end

Figure 3.1: Schematic figure of GPICA, including model setup, concatenated
updates, inference formulas and the common output for single-slice
data. Setup includes 1) data and knowledge of TR. 2) Specifying
parameters and MCMC settings. In 3) the prior for ` is visualized
together with the initial proposed reflective Gaussian distributions
with the specified step-size. 4) Example of the running model,
with updates of the inference scheme and the Metropolis sampling.
The model output covers 5) the inferred parameters, and 6) the
convergence assessment. For the sake of simplicity, single-slice
data is used for visualization in this schematic form. Taken from
Appendix A.

1https://github.com/dittehald/GPICA
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3.1.1 The Magic of Gaussian Processes

A Gaussian process (GP) can be seen as a generalization of a multivariate Gaus-
sian distribution to infinitely many variables. Instead of being specified by mul-
tiple means and covariances, a GP for a process f (t) can be fully specified by
a mean function, m (t), and a covariance function , k (t, t′), [Rasmussen and
Williams, 2006].

f (t) ∼ GP (m (t) , k (t, t′)) . (3.1)

Definition: “A Gaussian process is a collection of random variables, any finite
number of which have (consistent) Gaussian distributions.” [Rasmussen and

Williams, 2006]

By the use of GP’s, temporal dependency can be incorporated into the prior
for the sought time sources. Instead of drawing samples from the posterior
distribution for each element, the time series for each component is assumed
to have its own distribution and thus is drawn from a Gaussian process. The
dependency of previous elements is determined from the covariance function,
where high correlation is assumed for the closest elements; and that the de-
pendency will decrease exponentially in time, a kernel function is specified as
the squared exponential covariance function [Rasmussen and Williams, 2006].
The length scale parameter ` gives the possibility to regulate the temporal de-
pendency induced by the kernel. For further model specifications and model
inference, please confer Appendix A.

3.1.2 Summarizing Model Results

In the article results on two data sets were presented; a decomposition of single
slice data set and a full volume data set. The GPICA did produce a convincing
source separation, with identifiable time source and associated localized spatial
maps, even though no spatial assumptions were incorporated. The single slice
data gave a clear demonstration of the interpretability of the length scales,
entailing longer length scales the smoother the time source. The convolutive
extension yields a great possibility to investigate the spatial prorogation of the
source throughout the lags. The full volume data set was a bit more challenging,
due to a high amount of low frequent drift and the considerable lower sampling
frequency, but GPICA could still extract components that can serve a further
basis of analysis. With GPICA a view into the convergence diagnostic was also
opened, in order to observe the propagation and the samplers reliability.
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3.2 Additional Results

As described in Contribution I, the results are acquired from the analysis of
non-standardized data, honing a part of the goal - being as close to end-to-end
[Saltzer et al., 1984] usage as possible. Even a correction to unit variance can
change the data, by e.g. inflating more noise. But to simplify the parameter
settings for the plug-in, it was decided to apply a mean-variance standardiza-
tion to the datasets. By transforming the hyperparameters to account for the
standardization, similar results as presented in the article are obtained. To give
a short verification, the convolutive stimuli holding components is presented in
Figure 3.2, and compares nicely to Appendix A Figure 6 (the rest of the findings
compares as well, but are not presented here for brevity).

lag 0 lag 1

(a)

lag 2 lag 3 lag 4

Time (s)
0 50 100 150 200 250 300 350 400

-0.4

-0.2

0

0.2

0.4

0.6

0.8

(b)

Figure 3.2: Convolutive results for the stimuli holding component. (a) Spatial
map for all lags of the corresponding time series components in
(b). The maps (a) show the 2.5% (blue) and 97.5% (red) quantiles
of the mixing matrix’s median, superimposed on an anatomical
reference image created by averaging over all acquired images. In
(b) the blue time source median is surrounded by the 5% and 95%
quantiles in red.

Another interesting finding, not visualized for the 3D data in the article, is the
results for the inferred precision parameters, α. In Figure 3.3a high variation
areas in the components spatial maps are captured by the lowest 5% precision
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element locations2 . Note that the figure are produced by the end-sample itera-
tion, since a all sample median procedure, as normally incorporated in the arti-
cle, would hold a very data amount not suitable for storage. It has though been
demonstrate, that the end and median sample results are similar if convergence
has been reach after the warm-up period. The expected clear correspondence
between the mixing matrix, W (Figure 3.3b), and its precision parameters tes-
tifies to a good spatial localization in the model. The low precision elements
co-locates with the source spatial maps, since a low precision allows the param-
eter to be non-zero. These spatial maps (both α and W ) can also be used for
identifying noise/stimuli components (in connections with their respective time
source), since e.g. a very unlocalized spatial source is more inclined to contain
a noise component, than a more localized source.

A note on the visualization of the maps concerns the choice of visualization
cut-off, i.e. when deciding to focus only on the 2.5% highest and lowest areas
of the median. When investigating the distribution of the W values (as well
as the 5% cut for α). But actually, the precision parameters could get a rough
estimate on whether the W cut is set too high or too low. It also gives a clue
about, that there are not always information in both the highest and the lowest
areas, which could be considered when interpreting the results.

3.3 Model Considerations

There has been a great amount of decisions made throughout the model devel-
opment, and with every decision follows a deselection of other opportunities.
The following will cover a fraction of the model considerations that have been
discussed during the model development. As with all models there are always
room for improvement e.g. additional tests using simulated data in order to per-
form ground truth comparisons and error estimations are still to be performed.
Improvements can furthermore be done in order to perform an estimation of the
number of components to infer.

Convergence diagnostic Convergence diagnostic has been performed in a
couple of different ways. Simple checks with multiple chains, i.e. different start-
ing points, has testified to a stable performance, with converge to the same
distribution. The visual inspection set-up designed for the plug-in, follows the
convergence of the GP kernel hyperparameters. The potential scale reduction

2A small note on the 3D glass brains used throughout this thesis: The a bit nontraditional
fMRI display tool is developed to give a fast and condensed 3D visualization. It requires a
bit ’getting used to’, but can in the toolbox been rotated and investigated as requested. The
brain outline is extracted by the SPM mask.
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[Gelman et al., 2014] was also investigated, (by running multiple chains, and
splitting the after-warm-up samples in half, a number of sequences are acquired.
By investigating within and between sequence variance, a so-called potential
scale reduction, can explain the factor the estimated sequence distribution are
scaled by, if the iterations are continued infinitely. No scaling factor, i.e poten-
tial scale reduction at 1, will indicate stationarity in the distribution [Gelman
et al., 2014]. But since it is most correct to do convergence estimations on all
inferred parameters, the amount of data were too large to incorporate into the
toolbox. Thorough analysis to estimate a suitable number of iterative samples
is a desirable future application.

Reporting Sampling Results When reporting sample results it was decided
to report the median, since it is less sensitive to outliers (compared to the mean
estimate), and gives a representation for all the collected samples (after the
warm-up period). Other possibilities could be to report the end-sample result,
and, as mentioned earlier, the end-sample would have a good correspondence to
the mean and median results if convergence are reached after the warm-up.

Proposal Distribution For the GP kernel length-scale parameter distribution,
a gamma has also been used as the proposal distribution. By specifying the
variance to be dependent on the current sample value, the dynamic gamma
function would adapt to have a high variance for larger values of `, whereas the
proposal distribution also could be used for fine tuning at the smaller values
of `. Thereby it were expected that the convergence would be reached faster,
and that the estimation of ` would be more precise. But since no convergence
enhancement were seen, we adapted the reflective Gaussian, and achieved a
simple Metropolis update and the same convergence performance. Additional
work on exploring different proposal distribution could be performed.
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3.3.1 Plug-in Specific Details

Figure 3.4: Screen shot of the GUI for the GPICA toolbox available from
https://github.com/dittehald/GPICA.

The GUI for GPICA is depicted in Figure 3.4. It is possible to adjust all hyper-
parameters, or used the a default set shown to work acceptable on standardized
fMRI data. In order to deliver a more smooth experience when running the
model in the GUI, the convolutive model only reports the energy of the mean
error, instead of calculating over all samples as reported in the article. Both
energy calculation methods are available in the code package.

More work is currently being performed in order to speed up the model. The
memory problem is, at the moment, a slightly issue when saving the data anal-
ysis, and when performing postprocessing of the data. Handling the huge W
matrices for all samples requires a high memory server, and a reduction in the
number of saved samples will make the software more applicable. A considera-
tion would be to only save every 10th sample, and thereby still make it possible
to report median sample results, without taking up too much memory.

https://github.com/dittehald/GPICA
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3.4 Conclusion

A GPICA incorporating temporal source prior has been developed, with features
extraction of smooth reliable sources, and appertaining localized spatial maps.
The temporal dependency seen in neural data can thereby be supported in the
inference of the sources, and the applications to other neuroimaging methods,
like EEG, are therefore oblivious.
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Chapter 4

Graph-Based Cluster
Permutation Tests

4.1 Prolog

Inspired by the non-parametric statistical test performed by Maris and Oost-
enveld [2007] and Bullmore et al. [1999], and in connection with the graph-
based-clusters approach suggested by professor L. K. Hansen, we propose a
graph-based cluster permutation test for fMRI data.

The following is a summary of the work conducted with Professors Ole Winther
and Lars Kai Hansen. Text, figures and large parts of the implementation were
performed by the author, and the fMRI preprocessing was kindly performed
by PhD Kasper Winther Andersen. The following is work in progress, and
this chapter will introduce our work and touch upon some of the difficulties
we encountered. It should be noted that the following is a proof of concept
of a graph-based cluster permutation test, and functional brain connectivity
is not the focus of the work. However, simple functional brain networks will
be covered briefly, and wider applications discussed. The notation has been
changed slightly compared to that used in Chapter 3.
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4.2 Background and Introduction

A cluster-based permutation test is a non-parametric statistical test that deals
with the Multiple Comparison Problem (MCP). The MCP arises when it is
necessary to compare a large number of test pairs e.g. when evaluating the test
statistic of a large number of time-voxel pairs for fMRI signals.

Bullmore et al. Bullmore et al. [1999] validated the use of a permutation test
at cluster level in structural MRI data. Furthermore, Maris and Oostenveld
[2007] used non-parametric testing for EEG and MEG data by clustering in
the time and the frequency domain. Cluster permutation tests (CPTs) are also
incorporated in FieldTrip1 for EEG and MEG data, and in SnPM2 for fMRI.
The main advantage of these permutation tests is the freedom to choose any
test statistic as a base. This allows for incorporation of prior knowledge and
constraints to priors relevant for the biophysics behind the experiment, which
will improve the sensitivity of the statistical test.

For this reason, clustering based on fMRI network graphs was proposed under
the name the "Graph-Based Cluster Permutation Test (GBCPT)". By creating
both functional and geometric graphs, it is possible to compare the significant
areas identified, and show that a functional graph incorporation will increase
the test statistic. The novel contribution consists of specifying graph-based
clustering for permutation tests, that can not only be used in fMRI, but in a
wide range of applications.

4.3 Theoretical Background

4.3.1 Statistics: t-test in SPM

fMRI data are usually (especially through SMP) modeled using General Linear
Models (GLM):

Y = Xβ + ε, (4.1)

where Y is the fMRI signal (including the BOLD signal for activated areas), X is
the design matrix holding the regressors expressing the model for the measured
signal, ε describes the residual noise, which is assumed to be normally distributed

1http://www.fieldtriptoolbox.org/ [Oostenveld et al., 2011]
2http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/

software/snpm [Nichols and Holmes, 2001]

http://www.fieldtriptoolbox.org/
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm
http://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/nichols/software/snpm
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with zero mean and covariance σ2 (each observation j having εj
iid∼ N

(
0, σ2

)
). In

the most simple setup, the design matrix holds the stimuli function convolved
with the hemodynamic response and a constant factor (all known influential
factors can be included in the design matrix). [Frackowiak et al., 2003]

In order to create the mapping of the activated areas, a null-hypothesis for each
voxel is specified. The null-hypothesis states that the signal in a voxel is not
affected by the stimuli, i.e the stimuli-related β value(s) is/are zero. Since the
design matrix can hold multiple stimuli (e.g. for left and right hand), a contrast
vector, c, is used to specify the test of the null-hypothesis, i.e. which regressor
is to be tested. The null-hypothesis can stated as

c>β = 0, (4.2)

where β values are estimated by minimizing the residual,

β̂ = arg minβ ‖Y −Xβ‖2 (4.3)

and found using the pseudo-inverse,

β̂ =
(
X>X

)−1
X>Y . (4.4)

A full rank design matrix will result in normally distributed β̂ values, (by
use of the minimum-variance unbiased estimator, E

[
β̂
]
= β, and var

(
β̂
)

=

σ2
(
X>X

)−1). For the null-hypothesis, c>β = 0, it therefore follows that

c>β̂ ∼ N
(
c>β̂, σ2c>

(
X>X

)−1
c
)
, (4.5)

and the t-statistic (t = contrast
normalized noise term ) can now be carried out as [Ashby,

2011, Frackowiak et al., 2003]:

t =
c>β̂√

σ2c> (X>X)
−1
c
. (4.6)

4.3.1.1 The Multiple Comparison Problem

From the resulting summarizing t-statistic (the t-map of the entire data), a
threshold must be applied in order to determine which voxels are significant.
In order to do this, a problem occurs when it is necessary to compare multiple
voxel-time points. When performing hypothesis testing, two type of errors can
emerge, as described in Table 4.1. When performing multiple tests, the Type I
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errors become the family-wise error rate, since theH0 hypothesis now is a family-
wise hypothesis (claiming that there is zero activation everywhere). fMRI gives
rise to a massive MCP due to the high number of voxels (often >100,000) and
the many time samples (>200). Given a small brain volume of 20x20x25 voxels
(10,000 voxels), a p-value of 0.05 would still yield 500 false-positive voxels that
by chance could cluster and be mistaken for significant clusters.

H0 is in reality 

True False

De
ci

sio
n

Accept 
H0

Correct
True Negative (TN)

”Correctly found that 
there is no signal in 

this area”

Type II
False Negative (FN)

”There is signal in this
area but is was not 

detected”

Reject
H0

Type I
False Positive (FP)
”This area has no 

signal, but it was said
to have”

Correct
True Positive (TP)

”Correctly found that 
there is significant 
signal in this area”

Figure 4.1: Types of errors in univariate hypothesis testing, also known as the
confusion matrix or the contingency table. Note that the probabil-
ity of making Type I errors is the level of significance, α. Adapted
from Kohavi and Provost [1998], Freund and Johnson [2011] .

The standard SPM procedure overcomes the MCP by performing Random
Field Theory (RFT) corrections, cluster level inference, or False Discovery Rate
(FDR), [Frackowiak et al., 2003, Brett et al., 2004, Pernet and Pernet, 2016,
Chumbley and Friston, 2009], but as mentioned, cluster permutation tests can
be also be applied, [Nichols and Holmes, 2001].

4.3.2 Nonparametric Statistical Testing

Nonparametric statistical testing is a procedure to overcome the MCP. It is ap-
plied by constructing a histogram to achieve a non-parametric estimate of the
probability distribution. The use of the permutation test to estimate the distri-
bution is well-established [Good, 2013], since a permuted data test is expected
to resenble the unpermuted version under the H0 hypothesis. From rearranging
the labels of the test, it is possible to achieve a permutation histogram as an
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estimate of the permutation distribution (of the test statistic), and thereby as-
sess p-values for rejection of the H0 hypothesis, see Figure 4.2. The permutation
test enables the freedom to choose any test statistic, thereby incorporating prior
information e.g. clustering in time (EEG) [Maris and Oostenveld, 2007] and/or
space (fMRI) [Bullmore et al., 1999, Nichols and Holmes, 2001], or by using net-
works to specify the neighborhood in which the t-statistics can be summed. As
in Bullmore et al. [1999], Nichols and Holmes [2001], a cluster statistic is used
as the test statistic, where the cluster mass is the summed voxel test statistic,
tm,

tm =

vm∑

i=1

ti, (4.7)

for M clusters with vm voxels/pixels in each cluster.

Figure 4.2: The idea behind permutation tests. Under a paradigm, the t-
statistics are calculated (indicated with the red t). By permuting
the paradigm, a new t-value is calculated, which will represent
one observation in the permutation histogram (blue mark). After
performing a number of permutations, the permutation histogram
will estimate the permutation distribution, and the p-value for H0

can thereby be assessed as the fraction of permutations above the
observed t-value.

4.3.3 Graph-Based Modeling

A graph, or network, is a representation of linked pairs of objects, and a graph,
G = (V,E), can be defined by its objects, called nodes or vertices, V , and the
links, called edges, between them, E. When dealing with images, the nodes
are usually voxels of the image, or resampled versions of those, and the edges
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are used to link different voxels together. Graphs can either be un-directed
or directed, specifying if a link between two nodes is unidirectional or not. A
graph’s so-called adjacency matrix, A, is used to specify these links through a
binary Aij = 1, if a link goes from vertex i to vertex j. A so-called un-directed
graph will always have Aij = 1, Aji = 1, and will therefore always be symmetric,
A = A>. An example of a graph and its adjacency matrix is visualized in Figure
4.3

(a)
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(b)

Figure 4.3: Illustration of graph connections in a symmetric graph with the
vertices, V = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the undirected edges,
Eundir = {(1, 2), (2, 3), (5, 4), (9, 5), (7, 6), (9, 8), (9, 10)} . (a) is a
graphic representation of the graph given by the adjacency matrix
specified in (b). Note that the adjacency is colored according
to the nodes’ affiliation (and not according to the nodes’ values,
which in this case are always unity). The clustering of the graph
components has been performed with Depth First Search [Tarjan,
1972].

Human Brain Networks

In fMRI it is of great interest to establish brain networks that can improve
our understanding of how the human brain is connected. Resting state fMRI
is of particularly great interest, since it has been suggested that the BOLD
activation under rest will correspond to functionally relevant networks in the
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brain, [Biswal et al., 1995, Damoiseaux et al., 2006, Raichle et al., 2001]. These
complex networks can be estimated by investigating correlation of the temporal
dynamics between voxels, or regions of voxels, [van den Heuvel et al., 2008,
Biswal et al., 1995].

4.3.4 Connected Components

A way to retrieve graph information is to look for connected components in
the network. Since only undirected graphs are in focus, it is only necessary to
perform the search for connected components on the lower triangle of the adja-
cency matrix. The proposed GBCPT uses the ’Depth first search’ algorithm by
Tarjan [1972] from the Matlab standard graph toolbox to extract the connected
components as shown in Figure 4.3 (a). For undirected graphs, the ’Depth first
search’ is shortly described with the graph in Figure 4.3 as an example. A ran-
dom node is chosen and all connected nodes are visited and kept track off by
listing them in a ‘sequence’ - to track the search stage a ‘stack’ is used to specify
the current standing. As an example, choose node 4. From there a link makes
it possible to visit node 5. From here it simply follows to visit node 9, and the
sequence is now 4, 5, 9. Two unvisited nodes are now possible to visit, e.g. let it
be node 8 (Stack: 4-5-9-8). From there it is only possible to go back to a node
already in the sequence (node 9), and node 8 is therefore left, resulting in a stack
specifying 4-5-9. An unvisited node can now be visited, and the sequence/stack
becomes: 4, 5, 9, 8, 10 / 4-5-9-10. Now, no unvisited nodes are left and we
move back through our track (to check for other branches/unvisited nodes not
present in this example): 4-5-9-10 / 4-5-9 / 4-5 / 4. With an empty stack, it is
guaranteed that a connected component is fully specified by the sequence 4, 5,
9, 8, 10, and a random node, not in the sequence, can now be visited and the
process can proceed to specify more connected components.

4.4 Data Description

Two data sets were used to evaluate the developed method. The simulated data
was used for the GBCPT proof-of-concept test, and the real fMRI data was used
to test the GBCPT on real-life data, with noise artifact etc. The two datasets
are described in detail below.
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4.4.1 Simulated data

A simulated 3D dataset was created in order to prove the concept of GBCPT.
The dataset is illustrated in Figure 4.4 and the following will describe the gen-
eration of the dataset. The full data volume is 25 × 25 × 32 voxels holding a
‘brain’ masked to contain 20 × 20 × 25 voxels. Two sources are incorporated;
both being located with two activation spots in diagonal corners, as seen in (a).
The blue and green sources are constructed from an activation pattern, as de-
picted in black, in subplot (b), convolved with the HDR function3 constructed
with a TR of 0.333 s. The resulting response to the stimuli function is shown
in blue in (b), and a downscaled version in green. This is constructed in order
to simulate an fMRI response in two spatially separated areas, with the same
stimuli but with different amplitudes. The red source in (a) is a sine function
with a lowered amplitude (0.8), as can be seen in red in (b). Random noise is
then added to the data and the 3D matrix is filtered/convolved with a uniform
3×3×3 filter. A resulting data slice is seen in (c) (the 3D location is illustrated
by the green slice in (a)). The slice is extracted in the time instance illustrated
by the gray line in (d), where two time series from each of the source areas are
also illustrated (voxel location specified in (c) with the associated colors).

Figure 4.4: The simulated data.

In order to generate the resting state data, the procedure described above is
3From SPM http://www.fil.ion.ucl.ac.uk/spm/.

http://www.fil.ion.ucl.ac.uk/spm/
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followed, and afterwards the signal strength is reduced, and noise is added.
This simple setup is used, since the assumption regarding resting state data is
that connected areas in the brain will convey, even when resting. In proving the
concept for GBCPT, a relatively high correlation between the resting state and
the active state is accepted.

4.4.2 fMRI Data

The data consists of an fMRI dataset4 collected at Hvidovre Hospital from an
experiment where the 28 test subjects were instructed to follow a finger tapping
paradigm. The data was collected with a scan repeat time of TR = 2.49 s over
240 samples. The stimuli changed, alternating between left and right hand and
starting with the left hand movement. Each active period was 20 s, followed
by 10 s rest. During the resting period a fixation cross was shown in the mid-
dle of the screen; and there was a visual cue in the left and right conditions
(red/green blinking dot at 1 Hz) to pace movements. The full data volume is
53× 63× 46 voxels, but is masked to contain 60,678/153,594 voxels holding the
brain volume. A resting state measurement was collected prior to the stimuli.
The subject was instructed to relax with closed eyes during the measurement
over 480 samples [Rasmussen et al., 2012].

The resting state data will be used for prior graph creation. The data under
stimuli will be used for testing with the general linear model.

4.5 Method and Code Description

The following will summarize and serve as a guide for the GPCPT. All steps
will be covered, so to keep track of the process, please refer to the graphical
illustration in Figure 4.5. The letters and numbers of the subplots are used as
a reference in the text. Stage 1 and stage 2 data is the resting state and the
active state, respectively. The term ‘prior graph’ is used to specify the networks
needed to be specified prior to the CPT. Note that the figure is constructed
with data from the finger tapping experiment.

Framework for the network-based Cluster Permutation Test:

4Note same dataset as in Contribution I
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Construct a functional ‘prior graph’ from a geometric graph specifying
voxel neighbors under the active state (a.1), and a resting state covariance
(a.2).

Find the t-maps (b) and extract sub-graphs with activation over a thresh-
old value for both the functional and geometric prior graphs.

Find connected areas in the graphs and calculate aggregate t-values (c).

Perform a permutation test (permute the activation), and for each permu-
tation, calculate the t-values (d).
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Figure 4.5: Step-by-step function illustration of the GBCPT. Please refer to
the text for a thorough explanation. The functional and geomet-
ric prior graphs are calculated in the resting state (a), followed by
t-statistic calculations during activity (b). In (c), the calculated
t-statistics are thresholded to derive areas of activity. (d) Permu-
tation is performed with new design matrices to assess significance
of identified t-statistics.
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(a.1) Geometric Graph Construction in Resting State

The geometric graph in (a.1) is created using a specified neighborhood around
each voxel. Different geometric neighbors have been used, and for 3D data the
number of neighboring voxels is: 6, 24, 32, 64, as specified by Figure 4.6. Note
that many other neighborhood set-ups can be used (e.g. a 3 by 3 cubic set-up).
The following were chosen to give a wide spread of the number of neighbors
tested against the functional graph set-up.

(a) 6 neighbors (b) 24 neighbors

(c) 32 neighbors (d) 62neighbors

Figure 4.6: Geometrical neighbors in 3D together with the associated adja-
cency matrices for the simulated data in Figure 4.4. Note that
the graphs have been constructed for the entire data volume (the
unmasked data), and therefore more sparse.

(a.2) Functional Data-Based Graph Construction in Rest-
ing State

The subject-specific functional graph in (a.2) is created using the covariance
matrix as in Eq. 4.8.
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C =
X>X
N − 1

, (4.8)

where X is the data matrix with zero mean. Note that the graph construction
is performed on non-smoothed data (normally a preprocessing step in the SPM
pipeline), in order not to capture inflicted smoothing on the graph.

To be able to build the functional adjacency matrix for a full fMRI resting state
dataset, the computation of the covariance matrix is split into blocks (otherwise
it would cause a memory problem). The number of highest correlation values,
NN, for each voxel is found and saved to construct the sparse adjacency ma-
trix for the functional graph. In order to construct an undirected graph, the
adjacency matrix is made symmetric, and hence the NN for each voxel will no
longer be the same, and the number of nonzeros (nz) will increase.

Since we aim to compare the geometric and functional graph setup, the number
of possible graph connections/number of nz should be approximately the same.
From the number of neighbors in the geometric setup, the nz follows from Figure
4.6. By determining the nz in a functional setup using the same number of
neighbors as in the geometric setup, a correspondence between the geometric
and functional non-zeros can be found, as in Figure 4.7. Thereby the nz in the
functional graph can be downgraded by use of a different number of neighbors;
see the spy plot of the adjacency matrices of the functional graphs in Figure 4.8.
In order to simplify the notation of which graph size is used, the geometric NN
will be used in the following to define both the function and geometric graph
size.

Tested Functional Graph Manipulations

Adjusting the Number of Nonzeros

Even with the correction to control the number of connections in the graph, the
functional setup still fosters more connections, again following from the symmet-
ric adjacency matrix. In order to achieve a more even number of connections per
voxel, removing the weakest links is tested by checking the correlation values.
The procedure is performed for each row in the adjacency matrix, but requires
a large amount of data storage. However, there is a risk that clusters can be
divided into sub-clusters, and even create more single-voxel clusters, which are
not of interest.
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Figure 4.7: Determination of the number of neighbors of the functional graph
based on the number of nz (on the simulated data). The regression
has resulted in the following number of neighbors for the functional
graph: 5, 17, 23, 44. Note that the gradient is not consistent
among subjects, and must be computed for all datasets.

Cluster Density Filtering

As can be seen in Figure 4.5 (a.2), the functional resting state network is quite
un-localized, and will thereby give rise to many different cluster connections,
both when testing the correct paradigm, and during permutations. In order
to promote a more stable cluster connection, we apply a geometrically based
density filtering, see Figure 4.9. The correction is actually first performed after
applying the t-threshold to achieve the cluster areas (Figure 4.5 (c.2)), and we
seek to decouple functional clusters that are not strongly connected to a geomet-
rically clustered area. The density count for a functional cluster is calculated
from the geometric cluster areas, and only functional between-cluster links are
included. No normalization regarding cluster size is performed, and a cut off is
specified in order to filter out ‘loosely’ connected clusters. The cut off is half
the number of neighbors (i.e. 3, 12, 16, 31), i.e two functional clusters will be
decoupled, if there only exist NN/2 links between the geometrically specified
areas. The filtering is performed for all permutations, and only on the ex-
tracted, activated areas. However, it is desirable to perform this non-traditional
functional-geometrical combination on a global scale, and possible solutions will
be discussed in Section 4.7.
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Figure 4.8: Example of a functional graph for the simulated data (and con-
structed to correspond to a geometric 32 neighborhood setup).
Note the visible cluster connections in the corners, corresponding
to the linkage of the diagonal clusters in Figure 4.4. There is also
a clear connection to the neighboring voxels specified by the high
density areas near the diagonal.

Using the Highest Percentage

Going away from the process of taking the row-wise NN highest values in the
covariance, using the max percentages of the covariance has been considered.
This would create an easy, controllable number of non-zeros (easy to match
with the geometric graphs), but require a large amount of data storage and
bookkeeping. Another pitfall is the likelihood of creating hubness in the data,
without capturing the desired effect. The procedure will therefore not be used
in the following.

(b) Statistic Under Activation

In Figure 4.5 (b) the t-statistic under the stage 2 data is performed, as described
in Section 4.3.2. The figure holds the left hand stimuli depicted together with
the design matrix, holding the corresponding HDR response for both stimuli
situations. The contrast depicted below specifies the test performed, i.e. left
hand movement against the rest. By use of the GLM, the t-heatmap in (b) is
constructed. However, it is necessary to specify a number of voxels (a maximum
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Figure 4.9: Proposed cluster-density filtering. The first sub-figure illustrates
the geometrically defined clusters, with the dotted lines indicating
separated areas. The second sub-figure describes the functional
clusters, consisting of two clusters, a blue and an orange. By
applying the geometric areas from the first plot, the link density
between areas can be calculated. The link density is visualized by
the thickness of the blue intersecting lines. The functional orange
clusters that exist in the same geometric area as the blue have
no link to the defined cluster areas, and will be left untouched.
In the last sub-figure, the cluster with low link density (purple
cluster) has been disconnected from the blue cluster, and only
strong linkage between clusters exists.

t-value) that have to be investigated as clusters, [Nichols and Holmes, 2001].
The corresponding cut-off t-value is used in the following permutations. Use
e.g. a group histogram over t-values in all subjects to specify an appropriate
t-level/number of voxels to investigate.

(c) Graph Connections and Thresholding

The following is performed for both the functional and geometric graphs in
the ‘active’ state (under stimuli). The thresholded statistical parametric maps
from 4.5.(b) is seen in the top of (c.2). The adjacency matrices of the resting
state graphs are also depicted in (c.1), as well as the thresholded voxels used to
extract subgraphs with only voxels above the specified t-level, as seen in (c.3),
for the functional and geometric setup. The corresponding 3D ‘glass brains’ can
now be used to investigate the performed clustering, as in Section 4.3.4. The
accumulated t-statistic is calculated for each cluster, as in (c.4).
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In Figure 4.10, the subgraphs and the 3D glass brains can be seen for the
simulated data. Figure 4.11 holds all the tested NN for both the functional and
geometric setup. Note how the connected components grow when NN increases.

Figure 4.10: Geometric and functional subgraphs, and the corresponding con-
nected clusters. The color-coding is used to specify connected
clusters. Note that the two areas with co-varying stimuli are
connected in the function graph setup. The setup with 24 NN
has been used for all NN results, see Figure 4.11.

(d) Permutations

The goal is now to assess the significance of the previously identified cluster
t-values. To do so, the permutation distribution is approximated by the permu-
tation histogram in order to assess the p-values. By permuting the labels, here
the stimuli, a new design matrix can be designed ((d).1) and new t-values are
calculated ((d).2). By applying the global t-level ((d).3), the new subgraphs can
be extracted, and the connected clusters can be found ((d).4). Since the theory
behind permutation tests gives the freedom to choose any test statistic on hand,
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Figure 4.11: Geometric and functional 3D glass brains on all clusters above
t-threshold. The clusters are color-coded according to the con-
nected clusters. A higher number of neighbors features more
connected clusters in both the geometric and the functional set-
tings.

it is decided to use the largest aggregated t-value, as in [Nichols and Holmes,
2001]. For each permutation, the largest cluster’s t-values give one datapoint
for the histogram (see Figure 4.2), and after e.g. 1,000 label permutations, a
reasonable histogram approximation can be found.

Quantitative Performance Measurement

In order to compare and evaluate the performance on different data, a quan-
titative performance measurement is defined. The performance measurement,
named P-fraction (P ) is given by:

P =
tmax − tα

tα
, (4.9)

where tmax is the cumulative t-value in the largest cluster, and tα is the t-values
for a significance level of α = 5% on the permutation histogram. Normally, when
assessing the significance, the proportion of permutations above the observed
t-value is used to reject the H0 hypothesis if it is above the critical α level. Since
it is not guaranteed to have any permutations above the observed t-value, it is
proposed to specify a P-fraction in order to account for the size of the t-value,
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and the distribution of the histogram. A high P-fraction is desirable, and will
specify the low probability of observing permutations above the t-value. Please
refer to Section 4.7 for more discussion on the use of P-fraction.



42 Graph-Based Cluster Permutation Tests

4.6 Results

4.6.1 Simulated Data

The resulting permutation histograms for the simulated data can be seen in
Figure 4.12. Cluster t-values are indicated by letters, and clusters are signifi-
cant with α = 0.05 when they are above the red line indicating the tα value.
The reported p-value for the highest cluster is seen to be < 1/1, 000, since no
permutation yields a higher t statistic. Note that two clusters are significant for
the geometric graphs setup, where only one larger significant cluster remains in
the functional version. The difference in the values for increasing NN is more
clearly illustrated in Figure 4.13, where the significant clusters are visualized in
the 3D glass brain.

From Figure 4.13, it is apparent that the excepted active areas can be found
regardless of the settings, but the geometric setup finds it as two disconnected
clusters. It is clear to see how NN in the resting state graphs affects the con-
nected cluster (even though there is not a high difference between 24 and 32).
When increasing NN in the geometric setting, nearby clusters are being con-
nected, resulting in a more diffuse cluster representation. The number of sig-
nificant voxels is increasing, but the P-fractions are not considerably different
NN in between. Note, however, that the P-fraction for the second cluster is
much lower than that of the first. For the functional settings, there is only one
significant cluster, since the two active areas are functionally connected by the
graph. The increase in NN is observed to connect nearly all clusters above the t-
level (see Figure 4.13 and Figure 4.11), inducing a large amount of false-positive
errors.

The results reported above were obtained without density filtering, so in order
to visualize the effect, Figures 4.14 to 4.16 hold the density filtered results.
Comparing Figure 4.11 and 4.14, a clear difference is seen in the number of
connected clusters for the functional clusters. The link density filtering has
definitely decoupled multiple clusters - especially for a higher number of NN.
Nearly no tail is seen on the permutation histograms in Figure 4.15, entailing a
higher p-value and a much lower tα levels, compared to Figure 4.12. Note that
the significant cluster depicted in Figure 4.16 can therefore be described by a
much higher P-fraction. For the setting with 24 NN, two significant clusters
are now produced in the functional setup up as well, due to the decoupling of
weakly connected clusters.
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Figure 4.12: Permutation histograms over max t-value (simulated data) for
both geometric (top row) and functional configurations (bottom
row). Note the semi-logarithmic y-axis in order to display the
tail of the histogram. The superimposed letters symbolize the
t-value for the clusters to investigate (as seen in Figure 4.11).
The red vertical line indicates the tα level, and clusters above
this line are significant, and depicted in Figure 4.13. The title
of each subplot displays the t-values for (up to the three high-
est) significant clusters, together with the p-values of the largest
cluster and the tα value. The different columns correspond to
the NN setting.
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Figure 4.13: 3D glass brain of significant clusters in the simulated data. The
subfigure setup in geometric/functional vs NN results is main-
tained, as in Figure 4.12. Color-coding indicates connected clus-
ters (with no cluster size dependency), and the title specifies the
number of significant voxels and the P-fractions for significant
clusters.

Figure 4.14: Geometric and functional 3D glass brains on all clusters above
t-threshold, when applying link density filtering. Compare to
Figure 4.11.
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Figure 4.15: Permutation histograms (simulated data) for both geometric (top
row) and functional configurations with link density filtering
(bottom row). Note the semilogarithmic scale, and the titles
t, p, and tα values, and the setup as described in Figure 4.12.

Figure 4.16: 3D glass brain of significant clusters in the simulated data with
link density filtering. The figure setup remains the same as in
Figure 4.13.
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4.6.2 Finger Tapping Data

Figures 4.17 to 4.20 hold results from two subjects from the finger tapping
dataset. 1,000 voxels were chosen to investigate and 1,000 permutations were
performed. The same graph setup as for the simulated data is used, and link
density filtering is performed, but the effect of applying the filtering was not as
effective as for the simulated data. For both subjects, there is a clear activation
in the motor cortex corresponding to the left hand movement, as well as a
counter cerebellar activation. These areas are known to co-vary [Rasmussen
et al., 2012], and are seen to be connected in the functional setup. It appears
that the geometric constellation is less sensitive to the choice of NN than the
functional. Again, the functional constellation tends to connect all clusters when
using a 62 NN setup. It is also possible to see the diversity between subjects
with respect to the amount and size of the extracted clusters.

Figure 4.17: Permutation histogram for Subject A. Note the semilogarithmic
scale, and the titles t, p, and tα values, and the setup as described
in Figure 4.12.

To summarize, all subjects’ performances Figure 4.21 give a view into the per-
formance of the functional setup compared with the geometric. The four bar
charts represent the test results from different choices of voxel numbers to in-
vestigate (750, 1000, 1250 and 1500 voxels). The colors in the bar charts specify
the distribution of the 28 subject results, and are described as follows: Dark
blue corresponds to the functional graph setup having the largest P-fraction
and the highest number of significant voxels. The light-blue specifies an equal
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Figure 4.18: Significant clusters in Subject A. The figure setup remains the
same. Note that the shift in cluster color is of no importance -
the cluster color is only interpretable for one test.

performance of both the functional and geometric setup. The turquoise areas
mark the number of subjects in which the geometric setup gives the highest
number of significant clusters and the highest P-fraction. The green number
of subjects are when the geometric setup has the highest number of significant
voxels (GV), but the lowest P-fraction (FP). In contrast, the orange number is
when the functional setup has the highest number of significant voxels (FV),
but the geometric setup has the highest P-fraction (GP). A number of subjects
are also marked as having no significant clusters at all, and these are increasing
for higher NN.
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Figure 4.19: Permutation histogram for Subject B. Note the semilogarithmic
scale, and the titles t, p, and taplha values.

Figure 4.20: Significant clusters in Subject B. The figure setup remains the
same. Note that the shift in cluster color is of no importance -
the cluster color is interpretable for one test only.
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Figure 4.21: All subjects’ performance evaluated based on P-fractions and
number of significant voxels (as specified by the colors), for four
different settings of the number of voxels to investigate, and for
the four settings on NN. For in-depth description, please see the
text.
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4.7 Discussion

The preceding has summarized the current workflow of the proposed GBCPT,
but there are still many aspects that need to be considered. The following will
discuss some of the current results, but also touch upon future possibilities of
development.

When reviewing the results of the simulated data, the hypothesis of connecting
areas to gain a high test statistic is very clear. However, the functional per-
mutation histogram will also tend to be connected under a permutation, and
can therefore entail a higher permutation value than an equivalent geometric
setup will foster. Link density filtration drastically improves the results for the
simulated data, but for the real data, the reported results were not as evident.
This could be due to the link cut-off being set too low for real data, and could
be investigated further. The strong results from the link-density-filtered simu-
lated data could be due to slightly too strong filtering, implying that nearly no
clusters are functionally connected under permutations. This could also be due
to the simple nature of the simulated resting state data having little connec-
tion except in the predefined areas. Other improvements could include a cluster
size filtration and a further combination of a graph holding both functional and
geometric connections.

The introduced P-fraction can take the difference in the permutation histogram
into account, and present an arbitrary value that is more robust than the p-value
e.g. if both the geometric and functional setups had a p<0.001 (no permuta-
tions over the tmax), the P-fraction can indicate which setup is most reliable.
A high P-fraction indicates a low probability of observing permutations with
values above the tmax. It should be noted, however, that the P-fraction is
slightly in favor of the geometric setting, since tα in the real data tends to
be lower than the functional level. When comparing the setups, it is also of
great importance to account for the fact that the geometric design gives rise
to many separate significant clusters. Even though Nichols and Holmes [2001]
uses the largest-cluster-test-statistic histogram produced to assess the p-values
of the smaller cluster, it could be argued, that a new histogram based on second-
largest-cluster-test-statistic must be produced in order to more correctly report
the p-value of the second largest cluster (and so on). In this work, the largest-
cluster-test-statistic histogram will still be used to assess the P-fractions of all
the significant clusters. Another way to describe the geometric settings’ multiple
significant clusters is to consider taking the mean P-fraction over all the signif-
icant clusters - which could give a more fair comparison between the geometric
and the functional setup. With the previous in mind, the simulated data shows
a proof of concept of the GBCPT, both with and without link-density filtering,
and gives rise to considerations about the number of neighbors chosen.
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When considering the NN influence on the simulated data, Figure 4.13, the
geometric setup already produces type 1 error areas when increasing to 24 NN.
The 24 and 32 NN geometric setup are very similar to the spatial extent, see
Figure 4.6, and will therefore often produce almost similar geometric results.
In the functional setting, an NN of 64 nearly connects all clusters, resulting in
many false positives. On that note, the problems with a fully connected graph
should be discussed. The setup has been tested for both simulated and real
data (not shown), and it naturally shows equal results for the geometric and
functional settings, and a generally lower P-fraction. The reported number of
significant voxels (as also reported in Nichols and Holmes [2001]) is therefore a
number that should be seen in connection with e.g. the P-fraction, since a fully
connected graph will obviously create a high number of significant voxels.

It should be noted that it is not possible to translate the simulated experiments
directly to the real data. Even though the simulated data is designed to mimic
simple fMRI behavior, limitless differences exist. Still, more simulated experi-
ments should be performed, as they facilitate ground truth results for a frame
of reference. More tests could be explored by investigating a specific number of
voxels, as done for real fMRI data. It would also be obvious to report the false
positives and false negatives to estimate performance.

Another aspect is the size of the cluster areas sought for, which are resolution
dependent. If the goal is to estimate the significance for a e.g. 500 voxel area,
the allowed number of neighbors must be set appropriately (compared to a 50
voxel area). A too low number is not likely to connect two distant clusters, since
the NN can only cover inter-cluster connections.

The difference between the areas of the two subjects shown is most likely due to
their different t-statistics. The chosen number of voxels is the cause, as different
numbers of voxels will create very different cluster areas to investigate. In an
SPM plugin (under construction), it would be convenient to use the directly
calculated SPM t-statistic (includes a more comprehensive design matrix), and
investigate other methods to extract a correct threshold.

When considering the result in Figure 4.21, all the above comments on P factions
and number of significant voxels should be taken into account. It is therefore
hard to directly define what functional or the geometric setup is to be preferred
over another. In fact, the work done should not be seen as a comparison between
the geometric and the functional constellations, but more as proof of concept
of a graph-based cluster permutation test. Permutations in general have the
drawback of the processing time to construct the histogram, and the GPICA
has an extra time dimension due to the creation of the resting state graphs. Our
proposed procedure of permutation of the stimuli is questioned by Nichols and
Holmes [2001], but we claim that exchangeability is still fulfilled under the H0
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hypothesis.

The overall aim is to develop a plugin for SPM that offers the possibility of
a graph-based cluster permutations test based on resting state connectivity
graphs. Collaborative work could be done to supply a standard graph for rest-
ing state data. Either produced as a ‘simple’ mean over all subjects, or with
incorporation of brain connectivity over different regions. An article based on
this chapter is therefore planned to be completed. Additional applications of
GPCPT can also be investigated, since the graph based setup are not only lim-
ited to fMRI, and a possible utilization could be AB testing with a graph based
prior from social networks.

Functional Graph Improvements

The issue regarding the functional graph adjustments should perhaps be dealt
with in an entirely different way (since the link density filtering procedure can
be questioned as the adaption of the graphs is only done on the subgraphs). Our
proposed solution is constructed to give each voxel (nearly) the same amount of
connections, but work on whole-brain connectivity could be the background for
changing the functional graph development. By defining more grouped areas,
e.g. through ICA, [Damoiseaux et al., 2006], or by Infinite Relational Modeling,
[Møup et al., 2010], to extract coherent groups in the resting state networks,
better functioning resting state graphs for permutation could be developed.
Extending the coherence to be based upon Mutual information could also serve
as an improvement, and more brain connectivity studies can be investigated.

4.8 Conclusion

A graph based cluster permutation test has been proposed for fMRI data, with
the clustering information extracted from resting state networks. The concept
was proven by achieving a sensitivity for the highest cluster statistic. The
great room for improvement in specifying the the function graphs, opens for
achieving even more prominent results. The high sensitivity that can be attained
is desirable for neuroscientists when testing for various conditions to improve
our understanding of the brain. By incorporation prior information in graphs,
cluster permutation tests could now be applied on a wide range of fields due to
the diversity of the graph applications.



Chapter 5

Discussion and Conclusion

The main topic of this thesis has been two fold, focusing on a unsupervised and a
supervised method to improve the analysis of fMRI data. First, an unsupervised
ICA incorporating temporal source prior is developed (GPICA). The temporal
dependency is facilitated by incorporation of Gaussian process source priors, and
feature extraction of smooth reliable sources. Concurrently representing known
noise patterns of the data. In the second part, covering supervised improvement,
the application of cluster permutation tests is expanded. By extending the
model to be graph based (GBCPT), multiple cluster possibilities arise. Through
incorporation of functional brain connectivity, in the network, it is possible
to improve the test statistic, when testing for functional significant areas in
the brain. Work is still conducted to increase the significance of the improved
sensitivity, but appears more than promising.

Incorporating prior knowledge on neural responses in GPICA, would be ap-
propriate for EEG applications, where an even higher temporal dependency is
present, due to the higher sampling rate. A toolbox for GPICA on EEG is
therefore under development, whereto high performance expectations exist. A
better, prior based ICA on neuroscience data will help improving our knowl-
edge of the brain processes. The convolutive extension to GPICA is a further
expansion, providing an extra dimension in which the propagation of the brain
processes can be investigated.
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Considering the GBCPT, promising results have been achieved, by combining
well-known cluster permutation test with state of the art methods of extracting
clusters in resting state networks, of the human brain. By improving the quality
of the statistical analysis, identified contributors will be of greater statistical
significance and thus provide valuable insight that would otherwise be considered
to be nothing more than a trend. That could in the end improve our knowledge
of the human brain and e.g. neurological diseases.

To tie together the two methods proposed, it should be investigated whether
GPICA extracted spatial maps on resting state data, can be used to specify
clusters in the resting state network for the GPCPT. As the GPICA is developed
to support the nature of the BOLD signal, it would indicate that the inferred
components capture some of the temporal dynamics in coherent brain regions
under resting state. Improvements on both methods are still being carried out.

This thesis also proves, that the fields of ICA on fMRI data and statistical
testing are far from exhausted, and that ICA is an informative tool even on single
subject data. However, both proposed analysis methods are relatively slow with
a high memory requirement, but thanks to the drastic rise in computational
power and data storage, it is not considered to be an issue compared to the gain
in knowledge and performance.

Returning to the opening line: "All models are wrong, but some are useful"
[Box et al., 1987]; Stating that all models have various model assumptions, and
in even the most simple cases, assumptions that can be hard to fulfill. In general
it is hard work getting models to work, considering both model assumptions,
model parameters and multiple model evaluation possibilities. The search for
the optimal data, the optimal model, and the optimal solution will therefore
never end; but keeping these limitations in mind, the development in science
and machine learning can take us in the right direction.
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Abstract

Functional Magnetic Resonance Imaging (fMRI) gives us a unique insight into the processes

of the brain, and opens up for analyzing the functional activation patterns of the underlying

sources. Task inferred supervised learning with restrictive assumptions in the regression

set-up, restrict the exploratory nature of the analysis. Fully unsupervised independent

component analysis (ICA) algorithms, on the other hand, can struggle to detect clear

classifiable components on single subject data. We attribute this shortcoming to inadequate

modeling of the fMRI source signals, by incorporating a temporal source prior. fMRI

source signals, biological stimuli and non-stimuli related artifacts, are all smooth over a

time-scale compatible with the sampling time (TR), and we therefore propose Gaussian

process ICA (GPICA), which facilitates temporal dependency of the extracted sources, by

use of Gaussian Process priors.

On two fMRI data sets with different sampling frequency, we show that the GPICA

inferred temporal components, and associated spatial maps, that allow for a more definite

interpretation than standard ICA methods. The temporal structure of the sources are

controlled by the covariance of the Gaussian Process, specified by a kernel function with

a interpretable and controllable temporal length scale parameter. We propose a hierarchi-

cal model specification, considering both instantaneous and convolutive mixing, and infer

Preprint submitted to NeuroImage June 8, 2016
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source spatial maps, temporal patterns and temporal length scale parameters by Markov

Chain Monte Carlo. A companion implementation made as a plug-in for SPM can be

downloaded from https://github.com/dittehald/GPICA.

Keywords: Gaussian Processes, fMRI, Source Separation, Independent Component

Analysis, Convolutive Mixing, Bayesian Inference

1. Introduction

The hemodynamic response (HDR) of the brain, and the emerged blood-oxygen-level

dependent (BOLD) contrast image captured by functional magnetic resonance imaging

(fMRI), is a window into many aspect of the brain. In order to analyze fMRI signals,

independent component analysis (ICA) is one of the most common ways to extract signal5

constituents. These sub-parts of the fMRI signal arise from different independent processes

related to the stimuli, non-stimuli effects (such as heart beat) and artifacts (such as head

movement), (Duann et al., 2002, McKeown et al., 2003). Proper source separation will thus

allow both identification of stimuli related signals and artifact removal. These independent

processes are expected to vary smoothly over time, on a time scale that is often comparable10

with the fMRI acquisition frequency. It therefore seems obvious to use this information in

the modeling of the sources. This is, however, computationally involved, and ICA models

based on (non-Gaussian) independent identically distributed (iid) sources are the most

common used in practice, e.g Infomax and FastICA (Bell and Sejnowski, 1995, Hyvärinen,

1999).15

The fMRI data, X, is assumed to be a linear combination of stimuli, non-stimuli and

artifact signals plus additive noise. Each signal can be thought as consisting of a source,

Z, and its dispersion in space, W , by X = WZ + ε, with ε being the noise contribution.

The estimation of W and Z is identifiable (up to permutation and sign symmetries) for

some choices of prior distributions on the model parameters (Kagan et al., 1973, Henao20

and Winther, 2011). The non-identifiable case is an i.i.d. Gaussian priors on Z and W cor-

responding to probabilistic PCA and standard factor analysis. In blind source separation,

ICA is the most widely used generative model to solve the problem, and most notably

2
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identifiable model specification is based upon non-Gaussian i.i.d. priors or temporally

correlated Gaussian priors. Most common used algorithms using the non-Gaussian i.i.d.25

priors either explicitly, or implicitly, are inter alia InfoMax (Bell and Sejnowski, 1995)

and FastICA (Hyvärinen, 1999). The Molgedey-Schuster algorithm (icaMS) (Molgedey

and Schuster, 1994) is a notable example of a model that implicitly uses a temporally

correlated source prior.

In this paper we work with temporally smooth sources. We accomplish this by modeling30

each source as a temporal Gaussian process. In Gauss processes (GP) (Rasmussen and

Williams, 2006), the covariance functions shape and parameters, determine the length-

scales on which the signal is correlated. Consequently, in our algorithm, Gaussian process

ICA (GPICA), different sources will differ both in terms of their spatial and temporal

patterns, as in standard ICA, and additionally by the length-scale of their characteristic35

temporal correlation. As a part of the algorithm we infer W and Z and for each source

the length-scale parameter of its kernel function.

A prerequisite for this model to make sense is that the sampling time (TR, the inverse

of the sample frequency) is on the same length-scale as temporal correlation in the signal

components we would like to recover. Typically the fMRI acquisition frequency is around40

0.5-1 Hz (that is TR ≈ 1-2 sec.). We consider two data sets with different sampling rates:

a fast acquisition visual paradigm dataset with TR = 1/3 sec. and motor paradigm dataset

with a more standard TR = 2.49 sec. In both cases, we show that GPICA can recover

clearly interpretable time scale signals, compatible with the TR used.

The Gaussian process has the property that it reverts back to independent Gaussian45

variables (that is probabilistic PCA), if the temporal length-scale parameter in the covari-

ance function is much shorter than TR. We can in principle still get identifiable source

recovery in this limit as long as the prior over the W matrix has a non-Gaussian distribu-

tion. Therefore we use i.i.d. Student’s t-distributions on the elements of W . This choice

has the added benefit of promoting more discriminative W because relative to the Gaus-50

sian, Student’s t has more shrinkage towards zero of non-important parameters and less

for important ones.

3
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Gaussian processes (GP) are widely applied in inter alia regression problems, and has

previously been employed into factor analysis (FA), where Yu et al. (2009) uses time point

FA tied together by a GP in order to perform dimension reduction and smoothing simulta-55

neously. Luttinen and Ilin (2009) developed a GPFA algorithm for reconstructing missing

data, with GP attached to both factors and loadings. They uses a variational Bayesian

framework for learning the model, and factorize the posterior approximation either in

time or space - due to model complexity. (Luttinen and Ilin, 2009) are closely related to

the GP work by Schmidt et al. (Schmidt and Laurberg, 2008, Schmidt, 2009). Schmidt60

and Laurberg (2008) focuses on probabilistic non-negative matrix factorization (NMF),

and models factor smoothness with a GP. In the follow-up work, Schmidt (2009) uses

non-linear mapped GP’s (Warped GP’s, (Snelson et al., 2004)) to perform function fac-

torization. Bayesian inference is performed with Hamiltonian Markov chain Monte Carlo.

Preliminary work on source separation with GP sources has also been formulated by Park65

and Choi (2007, 2008). Park and Choi (2007, 2008) use mutual information minimization

(Park and Choi, 2007) or Gradient-based optimization (Park and Choi, 2008) of the log-

pseudo-likelihood to infer the mixing matrix. Their proposed model is closely related to

our GPICA model. Our novel contributions are the hierarchical specification of the model,

Markov Chain Monte Carlo (MCMC) based inference, application to fMRI datasets and a70

companion plug-in for SPM to make the algorithm available for other researchers. The al-

gorithmic workflow is illustrated in Figure 1. We also propose a convolutive mixing matrix

extension of the algorithm. This extension is related to the work by Olsson and Hansen

(2006). The main difference in the model specification is that the temporal model is a

linear state space model (AR model), that may be seen as a different parameterization of75

the GP temporal covariance (Hartikainen et al., 2010). Furthermore, the model was not

hierarchical and inference was carried out with expectation-maximization (EM).

The proposed algorithm has relatively high complexity, mainly due to the number of

MCMC samples needed to get sufficiently accurate estimates. However, our empirical re-

sults show that this is sometimes a price worth paying. For minimally pre-processed data80

we can recover stimuli related sources even in cases where the amplitude of these sources

4
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𝑝 𝑊 ∣ 𝑋,𝑍,Ψ,𝛼  

Update ARD 𝛼 :
𝑝 𝛼 ∣ 𝑊, 𝑠𝑏 , 𝑟𝑏

Update Ψ:
𝑝 Ψ ∣ 𝑋,𝑍,𝑊, 𝑠𝑎 , 𝑟𝑎

Metropolis Update:
Propose ℓ∗:
𝑞 ℓ∗ ∣ ℓ,𝜎
ℓ = ℓ∗ if accepted

end

Figure 1: Schematic figure of GPICA, including model setup, concatenated updates and inference formulas,

and the common output for single-slice data. Setup includes 1) data and knowledge of TR, 2) Specifying

parameters and MCMC settings. In 3) the prior for ` is visualized together with the initial proposed

reflective Gaussian distributions with the specifies step-size. 4) symbolize running the model with updates

of the inference scheme and the Metropolis sampling. The model output covers 5) the inferred parameters,

and 6) the convergence assessment. For the sake of simplicity, single-slice data is used for visualization in

this schematic form.

are only a small fraction of the total variance in the data. Standard ICA algorithms applied

to the same datasets are not showing the same ability to recover meaningful sources. The

careful time-consuming modeling and inference in GPICA are, without a doubt, contribut-

ing factors to these results.85

The remainder of the paper is organized as follows: In Section 2, we introduce the

GP-based ICA model with GP sources and both instantaneous and convolutive mixing.

Appendix AppendixA gives the details of the Gibbs sampling based inference scheme. In

Section 3 we give a brief description of the two fMRI data sets used in Section 4. In

Section 4.5 we describe an implementation, as a plug-in to SPM. In Section 5 we interpret90

the empirical results. In Section 6 we provide an outlook and perspective for the model.

5
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2. Independent Component Analysis with Gaussian Process priors

In this Section we will describe the independent component analysis (ICA) model with

Gaussian process based sources. We will specify hierarchical Bayesian priors for model

parameters and describe a Markov chain Monte Carlo (MCMC) framework for inference.95

We consider both instantaneous and convolutive versions of the mixing model.

2.1. Instantaneous Independent Component Analysis

The basic ICA model is defined as

Xij =
P∑

p=1

wipzpj + εij (1)

X = WZ + ε , (2)

where Xij is the data matrix with subscripts representing voxel and time sample, respec-

tively. Each row in Z represents the time course of one source and W is the component

map, or mixing matrix. P is the number of independent components in which the data

is decomposed. P is much smaller than the number of voxels I and the number of time

points J . εij, the spatial-temporal noise contribution, is assumed to be iid Gaussian with

zero mean and spatially varying noise variance Ψii. We can thus write the likelihood for

the jth timeslice as

P (xj | W, zj,Ψ) = N (xj | Wzj,Ψ) (3)

and the joint distribution of the whole data set is

P (X|W,Z,Ψ) =
N∏

j=1

P (xj | W, zj,Ψ) , (4)

where Ψ is diagonal with elements Ψii.

2.2. Bayesian Prior Specification

We adopt a hierarchical Bayesian framework specifying priors on Z, W and Ψ. As in

Park and Choi (2007, 2008) we use independent Gaussian process (GP) priors for each of

6
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the P temporal source sequences z[p] = (zp1, . . . , zpN)T :

p
(
z[p]|`p

)
= N (z[p]|0, K`p) (5)

p(Z|`) =
∏

p

p(z[p]|`p) (6)

where `p is shorthand for the hyperparameters of the pth GP. Formally, the GP specifies

a joint Gaussian distribution for any finite collection of input variables t1, . . . , tJ . The

covariance matrix is calculated using the covariance function k`(·, ·). In this work, we will

use a temporal covariance function: Kjj′,` = k`(tj, tj′), where tj is the time of sample j

with a squared exponential covariance function, with ` being a scalar temporal length-scale

parameter:

k`(t, t
′) = e

−
|t− t′|2

2`2 . (7)

We will make a hierarchical model specifying a prior on `p. An `p much smaller than

∆t = tj − tj−1 corresponds to an iid Gaussian prior, as the covariance matrix degenerates

to Kjj′,` = k`(tj, tj′) = δjj′ . The model will thus fall back to factor analysis in that limit.

A high ` induces a wider distribution around the diagonal, entailing more dependency

on surrounding samples, and thus a function smoother on a longer time-scale. A high

dependency of the previous samples will moreover not allow for high frequency content.

Thereby ` can be considered as a frequency controlling parameter. Since ` is non-negative,

the Gamma distribution is a convenient choice as prior for `p:

p(`p) = Ga (`p|se, re) (8)

p(`) =
∏

p

p(`p) , (9)

where se and re are the scale and rate, respectively. Rough knowledge of the length-scale of100

the different processes (paradigm, blood flow due to pulse, movement artifacts, etc.) allow

us to specify these parameters as discussed in Section 3 on the data sets used.

For the remaining parameters standard conjugate hierarchical priors with natural pa-

rameters are used. This means we work with priors over precisions = inverse variances.

7
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The inverse noise variance, Ψ−1, that is the noise precision, has a gamma distribution with

a scale and rate adapted to match realistic biological signals (see data Section 3). This

in turn corresponds to an inverse Gamma distribution for the noise variances (with rate

inverted compared to the precision prior):

p
(
Ψ−1

)
=

D∏

i=1

Ga
(
Ψ−1ii | sa, ra

)
(10)

p (Ψ) =
D∏

i=1

Ga−1 (Ψii | sa, 1/ra) . (11)

Again sa and ra are the scale and rate, respectively.

For the mixing matrix, W , we would like to have a model that encourages more discrim-

inative inferences, that is the elements should be allowed to become large, if necessary, but

we also expect many to be close to zero. This can be achieved by a Student’s t-distribution

which has more probability mass in the tails and close to zero, than the Gaussian distri-

bution. We use a hierarchical construction convenient for Gibbs sampling based inference

to get Student’s t-distribution elements of W : Elements are iid Gaussian with individual

precisions αij:

p (W |α) =
D∏

i=1

P∏

p=1

N
(
wip | 0, α−1ip

)
. (12)

The precision elements in turn has a gamma prior

p (α) =
D∏

i=1

P∏

p=1

Ga (αip | sb, rb) . (13)

To see that this is equivalent to Student’s t one may marginalize out the precision param-

eters:

p(wip|sb, rb) =

∫
N
(
wip | 0, α−1ip

)
Ga (αip | sb, rb) dαip = t

(
wip|0,

rb
sb
, 2sb

)
, (14)

where t(w|µ, σ2, ν) is a Student’s t-distribution with mean µ, scale σ and ν degrees of

freedom.105
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This concludes the model specification. The graphical model representation is shown in

Figure 2. To sum up, we can write the joint distribution of data X and model parameters

p(X,W,Z,Ψ, `, α) = p(X|W,Z,Ψ)p(Z|`)p(`)p(W |α)p(α)p(Ψ) (15)

as specified by Equations (4), (6), (9), (11), (12) and (13). The hyperparameters of the

model are scale and rate parameters of the priors for GP covariance length-scale, the noise

and mixing matrix precision. Posterior inference that is estimating p(W,Z,Ψ, `, α|X) is

handled with MCMC as described in the next section.

2.3. Inference110

Posterior inference can be handled with Gibbs sampling (iterative sampling of condi-

tionals) for all parameters apart from ` because conjugate priors have been used. These are

standard updates listed in AppendixA. Since the conditional distribution for `p, which is

proportional to p(z[p]|`p)p(`p), Equations (5) and (8) is not in a standard family we instead

adopt a Metropolis-Hastings approach: Propose new `∗p from proposal density q(`∗p|`p) and

accept the proposed value as the next value in the chain with probability:

min

(
1,
p(z[p]|`∗p)p(`∗p)q

(
`p | `∗p

)

p(z[p]|`p)p(`p)q
(
`∗p | `p

)
)

. (16)

If not accepted the next value in the chain is the set equal to the current value `p. This

step, that can be performed for all sources in parallel, requiring recomputing and inversion

of the covariance matrix and is thus a O(P 3) operation.

The proposal distribution for `p, is chosen to be a so-called reflective Gaussian distri-

bution i.e. the absolute value of a Gaussian variable with mean `p and variance σ2:

q
(

ˆ̀
p | `p

)
= N

(
ˆ̀
p | `p, σ2

)
(17)

q
(
`∗p | ˆ̀

p

)
= δ

(
`∗p −

∣∣∣ˆ̀p
∣∣∣
)
. (18)

The reflective Gaussian is chosen to achieve the properties of the Gaussian random walk

when `p is a few σs above zero while, preserving the restriction to only non-negative values.

9
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We can show that the proposal is symmetric and thus reduces to the Metropolis algorithm1

min

(
1,
p(z[p]|`∗p)p(`∗p)
p(z[p]|`p)p(`p)

)
. (19)

The step-size, σ, controls the properties of the Metropolis-algorithm and a step-size cor-

responding to an acceptance ratio around 10-20% is usually a good choice to aim for. We115

assess convergence diagnostics in Section 4.2.

2.4. GPICA Algoritmic Recipe

The resulting algorithm performs generative tracking of the different sources, giving de-

tection of underlying independent components. The computational complexity is O(PJ3)

plus O(IJP ), as the inverses of the covariance matrix and WZ has to be computed for120

each source. The algorithm, Gaussian process independent component analysis (GPICA)

is freely available as a plug-in to SPM2. The MCMC updates for the model is given in

AppendixA. The work-flow of the algorithm is schematized in Figure 1.

2.5. Summarizing Algorithm Output

After a preselected number of warm-ups, Rwarm, (also known as burn-in) steps we take

R MCMC steps and collect MCMC samples for all parameters. We index these samples

by superscript (r) with r = 1, . . . , R and use medians to get point estimates, such as:

W est = Median(W (r)) ,

where Median(. . .) is element-wise median. We also report element-wise 5% and 95%125

quantiles when handling the point estimates of Z.

1We may write the proposal as a mixture of two truncated Gaussians: q
(
`∗p | `p

)
=

[
N
(
`∗p | `p, σ2

)
+N

(
`∗p | −`p, σ2

)]
Θ(`p), where Θ(·) is the Heaviside step-function. The first component

corresponds to the non-reflected transition probability and the second term to the reflected. Both terms

are symmetric to the exchange of `p with `∗p, and it is implicit that also `∗p is non-negative i.e. the proposal

is symmetric.
2from https://github.com/dittehald/GPICA.git
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In order to get an assessment of the relative contribution of the individual sources, we

list the sources according to relative “energy”:

E(p) = 1− 1

||X||2
1

R

∑

r

∑

i,j

(
Xij −W (r)

ip Z
(r)
pj

)2
(20)

where the mean is subtracted from X and ||A||2 ≡ ∑i,j A
2
ij. Since the model is additive,

the sources will be complementary and the ordering and the relative energy should only

taken as a rough indicator of importance. The cumulative relative energy (assuming that

the sources are already sorted according to energy):

C(p) = 1− 1

||X||2
1

R

∑

r

∑

i,j

(
Xij −

p∑

q=1

W
(r)
iq Z

(r)
qj

)2

(21)

is also reported.3 It should give a more reasonable assessment of the collective effect of the

sources considered up to the current.

𝑋𝑖𝑗

𝑧𝑝𝑗

Ψ𝑖

𝑤𝑖𝑝

𝑖 =  1. .𝐷
𝑗 =  1. .𝑁

𝑝 =  1. .𝑃

ℓ𝑝𝛼𝑖𝑝

𝑠𝑏
 𝑟𝑏

𝑠𝑎
 𝑟𝑎

𝑠𝑒
 𝑟𝑒

Figure 2: Graphical model for the GPICA.

3C(p) is expensive to compute so we use Ĉ(p) ≡ 1− 1
||X||2

∑
r

∑
i,j

(
Xij − 1

R

∑p
q=1W

(r)
iq Z

(r)
qj

)2
instead.

In practice we observe little difference between the two expressions.
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2.6. Convolutive ICA

Convolutive approaches in ICA have been widely proposed in order to capture a poten-130

tial complex temporal expansion of the sources (Lee et al., 1997, Parra et al., 1998, Olsson

and Hansen, 2006). It has former been applied to especially EEG procedures and has

shown to give a more comprehensive representation of the signals (Dyrholm and Hansen,

2004, Dyrholm et al., 2007). Convolutive ICA for fMRI has previously been investigated

in inter alia Hansen (2003). It is therefore of interest to investigate if similar results can135

be obtained by a convolutive GPICA algorithm applied on simple fMRI data.

In convolutive ICA, data is assumed to consist of a convolutive mixture of the source

signals (with added iid noise) with a mixing matrix Wτ for each time-lag τ = 0, . . . , T ,

where T is the maximal time-lag. The convolutive part is in this work performed purely in

the time domain, and hence creates T+1 mixing matrices. Let xj, zj and εj denote the jth

time slice of the data, sources and noise, respectively. Then the convolutive linear mixture

model reads

xj =
T∑

τ=0

Wτzj−τ + εj . (22)

The MCMC algorithm for the convolutive model is implemented into the existing model

by re-deriving the posteriors for W and Z, where Equation 3 is updated to encompass

Equation 22. Apart from this extension, all model specifications remain the same. We will

omit the derivation of the inference algorithm for brevity.140

3. Data Description

To validate the proposed method we test the algorithm on two fMRI datasets; one

single slice fast acquired dataset, and a full 3D volume with a longer repetition time, TR.

We will restrict us to single subject fMRI in order to show the strength of the GPICA

on single subject, single train data. We will test if the different paradigms from the two145

datasets (visual and motor skills, respectively) enables different evaluation of the extracted

spatial maps.
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3.1. Fast acquisition visual paradigm

The data is collected at Hvidovre Hospital (Petersen et al., 2000), from an experiment

where a test person was subjected to a visual stimuli paradigm (flickering checkerboard).150

The data size is 3891x1210, where each column contains an fMRI slice at a given time

instance. The slices are cutting though the visual cortex, oriented in the plane of the

calcarine sulcus. (Note that the 3891 pixels is a masked area - the full image slice is 82x68

(5576) pixels). The recording time was 403.3s with a TR = 0.333 s. During this time

period, the subject was subjected to ten rounds of stimuli. A fixating cross is present,155

when the flickering checkerboard is not present.

3.2. Full Volume finger tap paradigm with movement artifacts

The second dataset is part of an fMRI dataset collected at Hvidovre Hospital, (Ras-

mussen et al., 2012), containing 28 test subjects, instructed to perform a finger tapping

paradigm; here we focus on a randomly selected subject. The data is collected with a scan160

repeat time of TR = 2.49 s over 240 samples (reduced data length). The stimuli changes,

alternating between left and right hand, starting with the left hand movement. Each active

period is 20 s followed by 9.88 s rest. During the resting period, a fixation cross is shown

in the middle of the screen; and in the left and right stimuli conditions there is a visual cue

(red/green blinking dot at 1 Hz) to pace movement. The full data volume is 53× 63× 46165

voxels, but is masked to contain 60678 (out of 153594) voxels holding the brain volume.

The preprocessing is kept at a minimum, with simple motion correction, normalization,

smoothing and realignment in SPM. No principal component analysis has been applied for

data reduction, and no highpass filtering, detrending or spike removal has been applied.

4. Experiments170

This section focuses experimental results in order to assess the model performance, and

to perform a comparison with standard algorithms. An ICA of the fast acquisition dataset

is described in detail in McKeown et al. (2003), and the interpretation of the inferred sources

may serve as a reference when comparing to GPICA. We will for bench marking present a
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comparison with the arguably most popular ICA algorithm, InfoMax (Bell and Sejnowski,175

1995), and furthermore compare GPICA with the Molgedey-Schuster algorithm (MSICA)

(Molgedey and Schuster, 1994) to get a comparison to another temporal correlated ICA

algorithm. Note that we will only compare GPICA to the temporal decompostion of

the other algorithms in order to keep the frame of reference for GPICA. The FastICA

(Hyvärinen, 1999) was also tested, but did not yield results better than InfoMax, and have180

therefore been omitted.

Note that it was decided to perform the analysis on non scandalized data, in order

not to amplify low variance noise. It will though require parameter settings to be data

specific in order to account for the noise variance level controlled by Ψ. See Section 4.5 for

standard settings regarding the supplied toolkit.185

In the remainder of the section we discuss the results for the fast acquisition visual

paradigm dataset, Section 4.1, and use that as an example to show how to assess conver-

gence of the algorithm, Section 4.2. We will present the convolutive extension, Section 4.3,

and finally we discuss the results for the full volume finger tapping data set in Section 4.4.

The toolkit application and standard settings on standardized data will be presented in190

4.5.

4.1. Fast acquisition visual paradigm

The high sampling frequency (low TR) on the dataset, due to single slice acquisition, im-

plies higher temporal dependency, and hence data very suitable for the GPICA algorithm.

A hemodynamic response, such as the BOLD signal, has smooth and often low-frequent195

content, since the hemodynamic response function (HRF) peaks after approximately 6s

(for a dirac delta stimuli), (Martin et al., 2006). In order to accommodate both long and

short time scales, the mean of the prior gamma distribution in Eq. 8 is set to match a

common timescale, where a mean of 0.4 s (1.2 samples) is chosen. Note that the short TR

also allows for observing heart beat related signals, and the prior must therefore also allow200

for high frequent content. Having no a priori knowledge of the timescales, the algorithm

will still converge, but can require more iterations. Note that the hyperparameters for Ψ
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is not the most sensitive, as long as a relative flat prior is chosen (Here sa = 1, ra = 1,

confer Section 4.5 for standard settings). For the precision elements, α (of W ), the hyper-

parameters for the Gamma prior is sb = 2, rb = 1, and the prior is visualized in Figure B.8205

together with the result of the posterior sampling.

Figure 3: (a) Spatial map of the corresponding time series components in (b). The percentages given to

outermost left are the energy by each component and cumulative energy of components included from the

top. The definition of energy is given in Section 2.5. The maps (a) show the 2.5 % (blue) and 97.5 %

(red) quantiles of the median mixing matrix, superimposed upon an anatomical reference image created

by averaging over all acquired images. In (b) the blue median is surrounded by the 5% and 95% quantiles,

and the components are sorted according to amount of energy. (c) Frequency spectrum. (d) Marginal

distribution of ` reported in seconds.
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Figure 3 shows the main results for the output of the algorithm. The figure layout

follows that of (McKeown et al., 2003). The spatial maps in (a) are generated from the

median of each of the rows in W (as described in Section 2.5, and holds the 2.5 % (blue)

and 97.5 % (red) quantiles of the median. The time series components in (b), represents210

the median of each of the rows of Z (blue) and its 5% and 95% quantiles in red. Due to

the strong signal in the data and good convergence, the upper and lower quantiles are close

to the mean and gives a high reliability in the results. (c) shows the frequency content

of the source which is clearly related to the spectra of the marginal distribution of ` in

(d). I.e. the longer timescale of `, the lower the frequency content of the component.215

Note the red line in (d) that symbolizes the TR. A ` < TR will still imply prior sample

dependency, but with ` << TR will reduce the algorithm to pPCA. The stimuli related

component 1 exhibit a clear paradigm-related activation, and the corresponding spatial

map shows a clear activation in the area around the visual cortex. Following the reasoning

in (McKeown et al., 2003), component 2 and 4 (more uniform frequency spectre) contains220

a breath related non-stimuli conponent, whereas component 3 is more likely to capture

effects from the heart beat. Component 5 have a broad-band frequency (white noise like)

spectrum, and a activation map close to the edge of the brain, which could be a sign of a

motion artifact. Component 6 is low frequent, and holds the largest ` time scale. Taken

together with the spatial map, the component would likely capture vasomotor oscillations225

(McKeown et al., 2003).

Figure 4 shows the components found by temporal oriented icaMS and temporal Info-

max. There is a clear correspondence between all components in icaMS, whereas Infomax

is struggling to extract a noise free stimuli holding component. Especially the smoother

signal and the concurrently enhanced energy in the GPICA stimuli related component,230

testifies to a outperformance of both ICAMS and Infomax. Note the lower energy per-

centages for for both icaMS and Infomax on the stimuli-holding component (3.35 % and

2.04 %, respectively, compared to GPICA with 3.56 %). For comparison reasons we use

temporal versions of ICAMS and Infomax, and it should be noted, that the spatial versions

of Infomax gives a better stiumli holding representation than the temporal. It furthermore235
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explains 3.85 % of the energy in the first component, but still struggles to extract smooth

noise free activation related time series. Since we aim for a temporal enhancement based

algorithm, we choose only to focus on temporal decomposed ICA’s.
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Figure 4: icaMS and Infomax (in green) as a comparison with Figure 3. They are superimposed upon the

source from GPICA to whom they have the highest correlation (shown in blue). Note the energy notation

in the left hand side.

4.2. Assessing MCMC convergence

The following will give a detailed description on how to asses the the convergence of240

the GPICA algorithm in general - the individual figure discussion will follow. We will use

visual inspection on a selected set of parameters in order to make the interpretation as

easy as possible, see Figure 5 for an example. The figure holds the development of the

parameter ` (leftmost), the acceptance rate (middle) and the loglikelihood (rightmost), all

adding an extra information for the overall convergence assessment. Note that all subplots245

includes the warm-up period to evaluate if a proper warm-up length has been chosen. The

development of ` summarizes the histogram in Figure 3 (after the warm-up period), and

gives an insight to the length scale of the sources. Note that the scale of ` in Figure 5 is
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reported in normalized time points. High fluctuations in the development of ` can testify

to a slightly unspecific prior for longer length scales, or contrary when the length scales250

are so small that they approach the limit for pPCA, where all proposed samples in that

limit will be accepted. Furthermore, the first subplot holds the prior of ` superimposed

in gray, in order to access the support of the prior. An aspect on identifiability can also

been assessed by overlapping histograms, or interchanging ` developments . The chosen

step size (the variance of the proposal distribution) can be evaluated from the sources255

ability to evolve over iterations, and can moreover be regulated by the development of the

acceptance rate in the middle subplot. Extremely high acceptance rates can, as mentioned,

be accepted if we are in the limit for pPCA. Acceptance rates should be lower that 60%

and optimally approx. 30%. Lastly the loglikelihood is visualized in order to evaluate

convergence towards stationarity. Note that all subplots optimally should be stable after260

the warm-up period.
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Figure 5: Assessing convergence over function iterations for the data outcome in Figure 3. Following the

progressing of ` (a), acceptance rate (b) and the loglikelihood (c).

4.3. Convolutive ICA

The stimuliholding component of the convolutive sources are summarized in Figure

6 (all sources in Figure B.9) and Figure B.10. Note that these convolutive results are

exploratory and meant for proving the concept of finding time delayed versions of the265
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sources. In Figure B.9 all investigated lags are visualized with spatial maps and the (zero

lag) corresponding time series. It is important to note the clear effect in the spatial maps

demonstrating that time delayed versions of the signal do exist, and that they can be

captured by convolutive GPICA.

lag 0 lag 1

(a)

lag 2 lag 3 lag 4

Time (s)

0 50 100 150 200 250 300 350 400
-0.5

0

0.5

(b)

Figure 6: Convolutive main results for one component (compared to instantaneous model in Figure 3 ). All

sources can be seen in Figure B.9 (a) Spatial map for all lags of the corresponding time series components

in (b). The maps (a) show the 2.5 % (blue) and 97.5 % (red) quantiles of the mixing matrix’s median

superimposed upon an anatomical reference image created by averaging over all acquired images. In (b)

the blue time source median is surrounded by the 5% and 95% quantiles in red.

4.4. Full Volume data on Finger Tapping Paradigm with Movement Artifacts270

In order to demonstrate the methods performance on more standard fMRI data, we

applied GPICA on the data from Rasmussen et al. (2012), and the following will outline

the results. The lower sampling frequency of the data is expected to force the model to

seek for single sample dependency, and the model prior should thus still allow for both

high and more low frequent content. Different priors has been explored to facilitate fast275

convergence, but still maintain the exploratory behavior of the sampler. The ` prior is set
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based on TR to have a mean around 3s (1.2 samples). Here the hyperparameters for Ψ is

sa = 1, ra = 100, and for the precision elements, α (of W ), the hyperparameters for the

Gamma prior is sb = 2, rb = 1,

Figure 7 holds the overview of a 20 component result, and a closeup on the stimuli-280

holding component (component 19) is shown in B.12. In Figure B.11 the convergence plot

similar to Figure 5 is shown for the finger tapping data. Note that all sources actually

explains > 80% of the signal, and that all sources has around one sample dependency,

except one with a longer length scale (the stimuli holding component). The first compo-

nents exhibits a very low frequent nature, and combined with the superficial scalp map,285

it could be a motion drifting artifact that has not been canceled under the preprocessing.

In the 20 component setup, two stimuli holding components are evident (comp. 13 and

19). Comp. 13 appears not to distinguish between left and right hand movement, whereas

a comp 19 increase corresponds to a left hand activation, and a decrease to right hand

activation (remember the scale ambiguity present).290

4.5. Toolkit application

A plug-in for SPM is available from https://github.com/dittehald/GPICA. The plugin

serves as a GUI for running GPICA on fMRI data loaded in SPM, and not as a fully

integrated part of SPM. The plugin can also be used as a stand alone application, and was

created on Matlab R2015a.295

We recommend running an initial run with a low number of samples (e.g. 200 warm-up

and additional 200 samples), in order to check the initial hyperparameters and settings.

Note that the prior for Ψ can be scaled to match an appropriate expected value for both

standardized and non-standardized data, confer Eq. A.14. A pre-run is though necessary

in order to estaimate the size of the error term. The predefined settings in the plugin are300

though suitable for most standardized fMRI data. The default settings will set the mean

length scale to 1.2 samples based upon the specified TR, but can be customized to fit any

expectation. The standard hyperparameter settings are Ψ: sa = 1, ra = 1, α sb = 2, rb = 1.

The step-size/ variance of the proposal distribution is to be set according ` and TR. The
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Figure 7: Spatial 3D map and the associated time series components. The maps holds the 2.5 % (blue) and

97.5 % (red) quantiles superimposed upon the anatomical mask. The time series holds the blue median

surrounded by the 5% and 95% quantiles, and the components are sorted according to amount of energy.

visual of the convergence assessment will also be available in the plugin, and can guide the305

user for further optimization.

5. Discussion

We demonstrated the GPICA’s potential for fMRI analysis, by analyzing relative un-

processed data from two different datasets (no highpass filtering or detrending, and no

prior PCA data reduction). The following will give an insight to the prospect and outlook310

for the algorithm, as well as the limitations.

For the single slice dataset, we outperform two common used ICA algorithms, by de-

tecting a clear and strong stimuli related component and definable artifacts. The dataset is

optimal for GPICA in terms of the short TR and thereby longer sample dependencies. The

algorithm is seen to converge after 1000 samples, and the runtime of all 2000 samples was315
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around 12h on a 8 AMD Quad-Core AMD Opteron(tm) Processor 8356 2.3GHz with 256

GBRAM. As mentioned, the runtime and the model complexity is the major drawback of

GPICA. This is usually a reasonable price to pay for getting more discriminative findings.

Parallelization and computational optimization could lead to a shorter processing time.

The convolutive exploratory model expansion gives the possibility for extracting addi-320

tional signal information, and enhances prospective model applications. On the convolutive

mixture model, it was possible to extract meaningful mixing matrices, that show a given

source process progress through the lags. A dispersion of the source is seen through the

lags, and the time line gives a smooth and reliable presentation of the signal. Being able

to extract that kind of information may be out to quite important for low TR studies.325

The performance on the 3D data testifies to a model capable of detection low energy

holding stimuli related components in a highly artifact covered data. Especially the high

amount of drift/low frequency oscillation was also detected by the algorithm. Prior high-

pass filtering could remove noise and artifacts data, but to support an end-to-end approach

to data analysis, it was our purpose to demonstrate the prospect to perform on data with330

a limited amount of prepossessing. Preproccesing also may introduce an element of over-

fitting, for example for this dataset the source signal related to the paradigm is quite weak

and easily removed by too aggressive filter. It is not unlikely that the data analyst would

stop experimenting with preprocessing settings once a paradigm related source is identi-

fied. Therefore keeping the preprocessing to a minimum is in genral a good idea. GPICA335

also detects clear evaluable areas from the mixing matrix that can give a great insight into

the sources locations, so even though GPICA is a temporal based algorithm, the spatial

specificity is still keep high.

The proposed method is recommended for time series holding longer timescales in order

to facilitate the best utilization of the smoothness of the GPICA. A potential application,340

that also could take advantages of the a prioi smoothness constrains, would be electroen-

cephalography (EEG). We do often seek a smooth event-related potential ERPs, and for

classification, GPICA could be a very promising method. The high sampling rate in EEG

setups would facilitate GPICA as a great tool for extracting smoother components, par-
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ticularly good for classification of event related potentials (Henriksen, 2012).345

It is also possible to initialize ` with different more specific prior distributions, but it is

not guaranteed, that the different initialized priors always will hold the expected compo-

nents, due to the random walk of the MCMC. Only a very narrow prior distribution would

give higher probability for capturing e.g. pre-known time fluctuations, but it demands

a precise a priori knowledge of the dataset. At the moment only temporally independent350

sources are sought, but it could be extended to spatial-temporal dependency, by expending

the approximations, as in (Luttinen and Ilin, 2009).

To summarize, instantaneous and convolutive GPICA can be used as an additional

tool in the pipeline for extracting source information in fMRI. It is recommended as an

extra tool used e.g. after running standard ICA procedures, to gain valuable additional355

insight in the importance of temporal dependency in the data. GPICA supports end-to-

end mentality, as it is not dependent on restricted data preprocessing, that, in worse case,

can remove important signal contributions.

6. Conclusion

We have introduced temporal smoothness for the sought source priors, and argued that360

the perspectives for GP based ICA could take advantage of the temporal dependency seen

in neural data. It supports end-to-end methods mentality and can be benchedmarked

against well established ICA methods.

7. Acknowledgment

The authors would like to thank DTU for funding the PhD work. A great thanks to365

Lars Kai Hansen for sharing of knowledge and 2D data and to Kasper Winther Andersen

for sharing of the 3D dataset.

23

78
Gaussian Process Based Independent Analysis for Temporal Source

Separation in fMRI



AppendixA. Gibbs sampling

All MCMC updates apart from for ` which is described in Section 2.3 are handled by370

Gibbs sampling. The derivation of the conditional distributions and the computational

details are given in this appendix. The conditional probabilities are proportional to the

joint probability equation (15).

To summarize we have

p (Z|X,W,Ψ, `) ∝ N (X | WZ,Ψ)
P∏

p

N (z[p]|0, K`p) (A.1)

p (W | X,Z,Ψ, α) ∝ N (X | WZ,Ψ)
D∏

i

P∏

p

N
(
wip | 0, α−1ip

)
(A.2)

p (Ψ | X,Z,W, sa, ra) ∝ N (X | WZ,Ψ)
D∏

i

Γ−1 (Ψi | sa, 1/ra) (A.3)

p (α | W, sb, rb) ∝
D∏

i

P∏

p

[
N
(
wip | 0, α−1ip

)
Γ
(
α−1ip | sb, rb

)]
. (A.4)

It will be convenient in the following to introduce the deviation term:

ε = X −WZ (A.5)

and the related deviation term including all contributions except from the pth source

(Knowles and Ghahramani, 2007, Henao and Winther, 2011):

εij\p = xij −
∑

p′ 6=p
wip′zp′j . (A.6)

We will also use the \p notation to denote set of stochastic variables where the the pth

row/column removed. We exploit the structure of the model to make computationally375

efficient Gibbs sampling updates as detailed in the following.

AppendixA.1. p (W | X,Z,Ψ, α)

For W we sequentially sample source slices wp = (w1p, . . . , wDp)
T from

p
(
wp | X,W\p, Z,Ψ, αp

)
∝ N (X | WZ,Ψ)

D∏

i

N
(
wip | 0, α−1ip

)
. (A.7)
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To isolate the wp-dependence in the likelihood, we write

Tr Ψ−1εεT = Tr Ψ−1(ε\p − wpzT[p])(ε\p − wpzT[p])T (A.8)

= zT[p]z[p]w
T
p Ψ−1wp − 2wTp Ψ−1ε\pz[p] + Tr Ψ−1ε\pε

T
\p (A.9)

We combine this contribution with the corresponding prior term
∑

i αipw
2
ip and by com-

pleting the square (identifying mean and variance from matching to (x−µ)TΣ−1(x−µ) =

xTΣ−1x− 2xTΣ−1µ+ µTΣ−1µ) (Bishop, 2006) we get

p
(
wp | X,W\p, Z,Ψ, αp

)
= N

(
wp | ΣΨ−1ε\pz[p],Σ

)
(A.10)

with Σ being diagonal with elements
(

Ψ−1ii z
T
[p]z[p] + αip

)−1
.

AppendixA.2. p (Z|X,W,Ψ, α, `)
We apply the same procedure for Z as for W . The conditional distribution for a time-

slice z[p] of Z is proportional to,

p
(
z[p]|X,W,Z\[p],Ψ, `

)
∝ N (X|WZ, )N (z[p] | 0, K`p) (A.11)

As above we complete the square but this time for z[p] to get:

p
(
z[p]|X,W,Z\[p],Ψ, `

)
= N

(
z[p]|Σzw

>
p Ψ−1ε\p,Σz

)
(A.12)

with Σ−1z = w>p Ψ−1wpI + K−1p and I is the identity matrix. In order to sample from this380

conditional we need to both compute an O(N3) matrix inversion to get Σz and to com-

pute the Cholesky decomposition (or matrix square-root) of Σz. Rasmussen and Williams

(2006) give a numerically stable and fast scheme to achieve both based upon the Cholesky

factorization of Kp + I/w>p Ψ−1wp. In our implementation we use their approach.

Hartikainen et al. (2010) showed how to map temporal Gaussian processes to a Kalman385

filter and thereby achieve O(NP 3) computational complexity. This in general compares

favorable to the O(N3P ) scheme for sampling from conditionals described above since

typically P � N . We therefore implemented a forward filtering-backward sampling version

the Hartikainen et al. (2010) approach. However, we observed substantial computational

overhead and some numerical instability so for the length of the time-series considered here390

we recommend and use the approach described above.
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AppendixA.3. Ψ and α

We use conjugate priors for Ψ−1 and α so we get standard updates for conditionals:

p
(
Ψ−1 | X,Z,W, sa, ra

)
∝N (X | WZ,Ψ)

D∏

i

Γ
(
Ψ−1ii | sa, ra

)
(A.13)

p
(
Ψ−1 | X,Z,W, sa, ra

)
=

D∏

i

Γ

(
Ψ−1ii | sa +

N

2
, ra +

1

2

[
(X −WZ) (X −WZ)>

]
ii

)
,

(A.14)

where [A]ij ≡ Aij.

For α we get:

p (α | W, sb, rb) ∝
N∏

i

P∏

p

[
N
(
wip | 0, α−1ip

)
Γ (αip | sb, rb)

]
(A.15)

p (α | W, sb, rb) =
N∏

i

P∏

p

Γ

(
αip | sb +

1

2
, rb +

1

2
w2
ip

)
. (A.16)
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AppendixB. Supplementary Material

All additional figures not included in the main part will be listed here. Please confer395

the caption and the main text for further discussion and explanation.

AppendixB.1. Inferred Parameters
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Figure B.8: Visual investigation of α. In (a) the development of α is shown for each component. The

median in a full line, and the 2.5% and 97.5% quartiles in dashed. (b) holds the prior for α plotted against

the second axis in order to compare to the inferred posterior result in (a). In (c) the median of each

component is visualized, and it is clear to see the high variance areas, that corresponds to to the activation

in the mixing matrices in 3.
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AppendixB.2. Additional Convolutive Results
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Figure B.9: Convolutive main results (compared to instantaneous model in Figure 3). (a) Spatial map

for all lags of the corresponding time series components in (b). The percentages given to outermost left

are the energy of each component and cumulative energy of components included from the top. The

definition of energy is given in Section 2.5. The maps (a) show the 2.5 % (blue) and 97.5 % (red) quantiles

superimposed upon an anatomical reference image created by averaging over all acquired images. In (b)

the blue median is surrounded by the 5% and 95% quantiles, and the components are sorted according to

amount of energy. (d) Marginal distribution of ` measured in seconds.
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Figure B.10: Assessing convergence over function iterations. Following the progressing of ` (a), acceptance

rate (b) and the loglikelihood (c). Note the prion of ` superimposed upon (a) in gray, and giving a

possibility to evaluate the choice of the prior based upon the inferred parameters. All subplots testifies to

a converged algorithm.
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AppendixB.3. Additional Results on Full Volume Dataset
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Figure B.11: Convergence diagnostic of Figure 7. The development of ` of each sources in the first subplot.

Nearly all source components are seen to converge to around a value of 0.005, corresponding to approx.

one sample dependency. The single source that demands a longer timescale dependency is the stimuli

holding component shown in Figure B.12. The progress of the acceptance rates in subplot three allows

for interpretation of the final acceptance rates, and enables control possibilities for the step size. The

rightmost subplot holds the log likelihood, where a stabilized log likelihood represents convergences.
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Figure B.12: Component view for the stimuli holding component (capturing both left and right hand

movement). Including the histogram over ` showing a time dependency of approx. 3.5 s. (c) holds a slice-

vice activation map of the mixing matrices. The is a clear correspondence bestrewn the left hand stimuli

and the temporal activation of the source. The slice-vice activation maps show a increased activation in

the motor cortex corresponding to left hand movement and a smaller decreased activation in the motor

cortex for the opposite hand. The crossed cerebellar activation is also present as expected.
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