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Liftings in finite graphs and linkages in infinite
graphs with prescribed edge-connectivity∗

Seongmin Ok†, R. Bruce Richter+‡, and Carsten Thomassen†◦

LATEX-ed: June 20, 2016

Abstract

Let G be a graph and let s be a vertex of G. We consider the structure of the
set of all lifts of two edges incident with s that preserve edge-connectivity. Mader
proved that two mild hypotheses imply there is at least one pair that lifts, while
Frank showed (with the same hypotheses) that there are at least (deg(s) − 1)/2
disjoint pairs that lift. We consider the lifting graph: its vertices are the edges
incident with s, two being adjacent if they form a liftable pair. We have three main
results, the first two with the same hypotheses as for Mader’s Theorem.
(i) Let F be a subset of the edges incident with s. We show that F is independent
in the lifting graph of G if and only if there is a single edge-cut C in G of size
at most r + 1 containing all the edges in F , where r is the maximum number of
edge-disjoint paths from a vertex (not s) in one component of G − C to a vertex
(not s) in another component of G− C.
(ii) In the k-lifting graph, two edges incident with s are adjacent if their lifting
leaves the resulting graph with the property that any two vertices different from s
are joined by k pairwise edge-disjoint paths. If both deg(s) and k are even, then
the k-lifting graph is a connected complete multipartite graph. In all other cases,
there are at most two components. If there are exactly two components, then each
component is a complete multipartite graph. If deg(s) is odd and there are two
components, then one component is a single vertex.
(iii) Huck proved that if k is odd and G is (k+ 1)-edge-connected, then G is weakly
k-linked (that is, for any k pairs {xi, yi}, there are k edge-disjoint paths Pi, with
Pi joining xi and yi). We use our results to extend a slight weakening of Huck’s
theorem to some infinite graphs: if k is odd, every (k + 2)-edge-connected, locally
finite, 1-ended, infinite graph is weakly k-linked.
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1 Introduction1

For distinct vertices x and y in a graph G, λG(x, y) denotes the maximum number of pair-2

wise edge-disjoint xy-paths in G. We shall assume that x and y have a target connectivity3

τG(x, y) ≤ λG(x, y). In the cases of immediate interest, either τG ≡ λG or τG is constant,4

but the target unifies and generalizes both these particular cases.5

Let s be a vertex of G and let sv and sw be two edges incident with s. The lift of G6

at sv and sw is the graph Gv,w obtained from G− {sv, sw} by adding the edge vw.7

The lift of G at sv and sw is τG-feasible if, for every pair x, y of distinct vertices in8

G−s, λGv,w(x, y) ≥ τG(x, y). We will just say feasible, since τG will always be understood.9

Let s be a vertex in a graph G that does not have degree 3 and is not incident with10

an isthmus. (An isthmus is an edge whose deletion from G increases the number of11

components.) Mader [5] proved (for target λG and therefore for any target) that there12

is always a feasible lift in G using two edges incident with s. Frank [3] extended this to13

show that there are bdeg(s)/2c pairwise disjoint such feasible pairs.14

For any subset A of V (G), we set δG(A) to be the set of edges of G having one15

end in A and one end not in A. By Menger’s Theorem, the obstruction to sv and sw16

yielding a feasible lift is that there is a pair a, b of vertices and a set A of vertices so17

that a ∈ A, b, s /∈ A, and |δGv,w(A)| < τG(a, b). Since obviously |δG(A)| ≥ τG(a, b) and18

|δGv,w(A)| ≥ |δG(A)|−2, we see that |δG(A)| ≤ |τG(a, b)|+1. Thus motivates the following19

important notion.20

Let A be a subset of V (G)\{s}. Then r(A) is defined to be max{τG(a, b) | a ∈ A, b /∈21

A ∪ {s}}. Also, A is a dangerous set if |δG(A)| ≤ r(A) + 1. The preceding paragraph22

readily implies the observation that sv and sw do not have a feasible lift if and only if23

there is a dangerous set A such that v, w ∈ A.24

Henceforth, all considerations are in G, so we write δ(A) instead of δG(A).25

The first of our three main results is the following. The “if ” part of the statement is26

trivial; the “only if ” is proved in the next section.27

Theorem 1.1 Let G be a graph and let s be a vertex of G that does not have degree 328

and is not incident with an isthmus. Let F be any set of at least two edges, all incident29

with s. Then no pair of edges in F yields a feasible lift if and only if there is a dangerous30

set A so that, for every sv ∈ F , v ∈ A.31

Let G be a graph, let s be a vertex of G, and let τ be the edge-connectivity target32

function. The lifting graph L(G, s, τ) has as its vertices the edges of G incident with s and33

two edges are adjacent in L(G, s, τ) if they form a τ -feasible pair. If there is a positive34

2



integer k so that τ ≡ k, then we write L(G, s, k) for L(G, s, τ); L(G, s, k) is the k-lifting35

graph.36

Thomassen [8] proved that the k-lifting graph of an Eulerian graph has a disconnected37

complement. This was used to prove a decomposition theorem for infinite graphs that38

implies, among other things, a conjecture from 1989: every 8k-edge-connected infinite39

graph has a k-arc-connected orientation.40

Part (1.2.4) of our second main result generalizes Thomassen’s Eulerian result to the41

k-lifting graph when deg(s) and k are both even.42

Theorem 1.2 Let G be a graph with a vertex s and let k be a positive integer such that43

any distinct vertices different from s are joined by k pairwise edge-disjoint paths. If s is44

not incident with an isthmus and deg(s) ≥ 4, then:45

(1.2.1) the k-lifting graph L(G, s, k) has at most two components;46

(1.2.2) if deg(s) is odd and L(G, s, k) has two components, then one has only one47

vertex and the other component is complete multipartite;48

(1.2.3) if deg(s) is even and L(G, s, k) has two components, then each component is49

complete multipartite with an even number of vertices; and50

(1.2.4) if deg(s) and k are both even, then L(G, s, k) is a connected, complete multi-51

partite graph (in particular, it has a disconnected complement).52

If either L(G, s, k) is not connected or both deg(s) and k are even, then any component53

of L(G, s, k) with at least 4 vertices is not a star K1,r.54

A graph G is weakly k-linked if, for any sequences x1, x2, . . . , xk and y1, y2, . . . , yk of55

(not necessarily distinct) vertices of G, there are k edge-disjoint paths P1, P2, . . . , Pk such56

that Pi has ends xi and yi. By choosing all the xi to be the same vertex and all the yi to be57

the same vertex, we see that any weakly k-linked graph is k-edge-connected. Thomassen58

[7] conjectured that, when k is odd, the converse holds. Okamura [6] obtained the first59

significant result about this conjecture (roughly: if G is 4
3
k-edge-connected, then G is60

weakly k-linked). Then Huck [4] proved that, if k is odd and G is (k+ 1)-edge-connected,61

then G is weakly k-linked.62

We use Huck’s Theorem and Theorem 1.2 (1.2.4) to prove the following. Recall that63

an infinite graph G is locally finite if, for every vertex v of G, deg(v) is finite. Also, a64

graph G is 1-ended if, for every finite set S of vertices, G − S has at most one infinite65

component.66
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Theorem 1.3 Let k be an odd positive integer. If G is a (k+2)-edge-connected, 1-ended,67

locally finite graph, then G is weakly k-linked.68

We remark that we can prove that the hypothesis of Theorem 1.3 implies that any69

(k+2)-edge-connected, infinite, locally finite graph with only finitely many ends is weakly70

k-linked. There are some technicalities that are not germane to the application of Huck’s71

Theorem and Theorem 1.2. We believe the following much stronger statement is true and72

so choose not to include this intermediate result.73

Conjecture 1.4 Let k be an odd positive integer. If G is a (k + 2)-edge-connected (infi-74

nite) graph, then G is weakly k-linked.75

2 Characterizing independent sets in the lifting graph76

Our goal in this section is to prove Theorem 1.1. It is evident that, if there is a dangerous77

set A such that, for every sv ∈ F , v ∈ A, then no two edges in F give a feasible lift. It78

was the converse that attracted us.79

Chan et al [2] give a very closely related argument, presented very efficiently. Our80

theorem is used significantly in the next section, so we include our slightly modified81

version of their proof.82

For the proof, it will be helpful to set σ(A) = |δ(A)| − r(A) and δ(A,B) as the set of83

edges with one end in A and other end in B. We note that A is dangerous if and only if84

σ(A) ≤ 1. The following observation is due to Frank.85

Lemma 2.1 [3, Prop. 2.3] Let s be a vertex in a graph G and let A and B be subsets of86

V (G) \ {s}. Then either87

(2.1.1) σ(A ∪B) + σ(A ∩B) + 2|δ(A \B,B \ A)| ≤ σ(A) + σ(B) or88

(2.1.2) σ(A \B) + σ(B \ A) + 2|δ(A ∩B, V (G) \ (A ∪B))| ≤ σ(A) + σ(B).89

The key lemma for our proof is the following variant of [2, Lemma 2.7]. The proof90

requires only very minor modifications from that in [2].91

Lemma 2.2 Let G be a graph and s a vertex of G. Suppose sa, sb, and sc are three edges92

incident with s so that none of the lifts of {sa, sb}, {sa, sc}, and {sb, sc} is τ -feasible.93

For {x, y, z} = {a, b, c}, let Dx be a dangerous set containing y and z. Then either s has94

degree 3, or s is incident with an isthmus, or there is a dangerous subset of Da ∪Db ∪Dc95

containing all three of a, b, and c and at least one of Da, Db, and Dc.96
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Proof. If any two of a, b, c are the same, then the result is trivial, so we assume a, b,97

and c are all distinct. We consider two cases.98

Case 1: For at least one of the pairs (A,B) from (Da, Db), (Da, Dc), or (Db, Dc), (2.1.1)99

holds in Lemma 2.1.100

We may choose the labelling of a, b, and c, so that101

σ(Da ∪Db) + σ(Da ∩Db) + 2|δ(Da \Db, Db \Da)| ≤ σ(Da) + σ(Db) .102

As each term on the right side is at most 1, the left-hand side is at most 2. If Da ∪Db is103

dangerous, then we are done, so we may assume σ(Da∪Db) ≥ 2. Therefore, the right-hand104

side is exactly 2, σ(Da ∪Db) = 2, σ(Da ∩Db) = 0, and |δ(Da \Db, Db \Da)| = 0.105

Suppose Lemma 2.1 (2.1.1) holds for A = Da ∩Db and B = Dc; that is,106

σ((Da ∩Db) ∪Dc) + σ((Da ∩Db) ∩Dc) + 2|δ((Da ∩Db) \Dc, Dc \ (Da ∩Db))|107

≤ σ(Da ∩Db) + σ(Dc) .108

Since σ(Da ∩ Db) = 0, the right side is at most 1 and, therefore, (Da ∩ Db) ∪ Dc is109

dangerous, and we are done. Therefore, we may assume Lemma 2.1 (2.1.2) applies to110

A = Da ∩ Db and B = Dc. In particular, σ(Dc \ (Da ∩ Db)) ≤ σ(Da ∩ Db) + σ(Dc),111

showing Dc \ (Da ∩Db) is dangerous. (It is evidently not empty, as it contains a and b.)112

Set D′c = Dc \ (Da ∩Db). The edges sa and sb show that |δ((Da ∪Db) ∩D′c, V (G) \113

(Da ∪Db ∪D′c))| ≥ 2. On the other hand, the labelling for this case shows σ(Da ∪Db) ≤114

σ(Da) + σ(Db) ≤ 2 and the preceding paragraph shows σ(D′c) ≤ 1. Thus,115

2|δ((Da ∪Db) ∩D′c, V (G) \ (Da ∪Db ∪D′c))| ≥ 4 > 3 ≥ σ(Da ∪Db) + σ(D′c) .116

Consequently, Lemma 2.1 implies117

σ((Da∪Db)∪D′c)+σ((Da∪Db)∩D′c)+2|δ((Da∪Db)\D′c, D′c\(Da∪Db))| ≤ σ(Da∪Db)+σ(D′c) .118

If (Da∪Db)∪D′c is dangerous, then we are done, so we may assume σ((Da∪Db)∪D′c) ≥119

2. As σ(Da ∪ Db) = 2 and σ(D′c) ≤ 1, we conclude that σ((Da ∪ Db) ∩ D′c) ≤ 1 and120

|δ((Da∪Db)\D′c, D′c \ (Da∪Db))| = 0. The inequality shows (Da∪Db)∩D′c is dangerous,121

while |δ(Da\Db, Db\Da)| = 0 implies |δ((Da∩D′c)\(Db∩D′c), (Db∩D′c)\(Da∩D′c))| = 0.122

We claim that either sa or sb is an isthmus of G. We have just seen that (Da∪Db)∩D′c123

is dangerous, so,124

1 ≥ σ((Da ∪Db) ∩D′c)125

= |δ((Da ∪Db) ∩D′c)| − r((Da ∪Db) ∩D′c)|126

≥ |δ(Da ∩D′c)|+ |δ(Db ∩D′c)| −max{r(Da ∩D′c), r(Db ∩D′c)}127

≥ min{|δ(Da ∩D′c)|, |δ(Db ∩D′c)|} .128
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Therefore, either |δ(Da ∩D′c)| ≤ 1 or |δ(Db ∩D′c)| ≤ 1. We may choose the labelling of a129

and b so that the former holds. Since b ∈ Da ∩D′c, sb shows |δ(Da ∩D′c)| ≥ 1, so we have130

|δ(Da ∩D′c)| = 1. Therefore, sb is an isthmus, completing the proof in Case 1.131

Case 2: For every one of the pairs (Da, Db), (Da, Dc), and (Db, Dc), (2.1.2) holds in132

Lemma 2.1.133

The assumption of the case implies that, for example,134

σ(Da \Db) + σ(Db \Da) + 2|δ(Da ∩Db, V (G) \ (Da ∪Db))| ≤ σ(Da) + σ(Db) ≤ 2 .135

Since c ∈ Da ∩ Db and s ∈ V (G) \ (Da ∪ Db), |δ(Da ∩ Db, V (G) \ (Da ∪ Db))| ≥ 1. We136

conclude that |δ(Da ∩Db, V (G) \ (Da ∪Db))| = 1, σ(Da \Db) = 0, and σ(Db \Da) = 0.137

As in the preceding paragraph, since b ∈ (Da \Db) ∩Dc, we see that |δ((Da \Db) ∩138

Dc, V (G) \ ((Da \Db) ∪Dc))| ≥ 1. Also, σ(Da \Db) = 0 and σ(Dc) ≤ 1. Thus, Lemma139

2.1 (2.1.2) does not hold for A = Da \Db and B = Dc. Therefore (2.1.1) holds in Lemma140

2.1; in particular, σ((Da \Db) ∪Dc) ≤ σ(Da \Db) + σ(Dc) ≤ 1. That is, (Da \Db) ∪Dc141

is dangerous. Since this does not contain c, we could set D′c = (Da \ Db) ∪ Dc and142

conduct this argument over again. When we do this, Da \ Db ⊆ D′c, so we may assume143

this happens in the first place. That is, we may assume Da \Db ⊆ Dc; likewise, we may144

assume Dc \Da ⊆ Db, and Db \Dc ⊆ Da.145

We still have |δ(Da ∩Db, V (G) \ (Da ∪Db))| = 1. Likewise both |δ(Da ∩Dc, V (G) \146

(Da ∪ Dc))| = 1 and |δ(Db ∩ Dc, V (G) \ (Db ∪ Dc))| = 1 hold. In particular, we know147

there is only one edge from s to each of a, b, and c. Also, it follows that |δ(Da ∪ Db ∪148

Dc, V (G) \ ({s} ∪Da ∪Db ∪Dc))| = 0.149

If s is not incident with an isthmus, then, for every component K of G−s, |δ(V (K))| ≥150

2. Since |δ(Da ∪Db ∪Dc)| = 3 and all edges in δ(Da ∪Db ∪Dc) are also incident with s,151

we conclude that G[Da ∪Db ∪Dc] is connected and is a component of G− s. Therefore,152

there are two edge-disjoint as-paths in G[{s} ∪Da ∪Db ∪Dc].153

If the degree of s is not 3, then we conclude that G− s has at least two components.154

If K is a component of G − s other than G[Da ∪ Db ∪ Dc] and s is not incident with155

an isthmus, then, for any neighbour t of s in K, there are two edge-disjoint ts-paths in156

G[{s} ∪ V (K)]. It follows that there are two edge-disjoint at-paths in G, showing that157

r(Da ∪Db ∪Dc) ≥ 2.158

Since |δ(Da∪Db∪Dc)| = 3, we conclude that σ(Da∪Db∪Dc) ≤ 1. Thus, Da∪Db∪Dc159

is dangerous, as required.160

The proof of Theorem 1.1 is now quite simple.161
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Proof of Theorem 1.1. We proceed by induction on |F |, with the cases |F | = 2 and162

3 being, respectively, trivial and an immediate consequence of Lemma 2.2. So assume163

|F | ≥ 4, with F = {su1, su2, . . . , suk}. By induction, there are dangerous sets Ak−1 and164

Ak containing, respectively, all of F \ {suk−1} and F \ {suk}. If either uk−1 ∈ Ak−1 or165

uk ∈ Ak, then we are done, so we may assume neither of these containments occurs.166

Because suk−1 and suk do not make a feasible lift, there is a dangerous set A containing167

both uk−1 and uk; among all such dangerous sets, we choose A to be maximal. If, for every168

i ∈ {1, 2, . . . , k−2}, ui ∈ A, then we are done. Otherwise, there is some i ∈ {1, 2, . . . , k−2}169

such that ui /∈ A.170

We apply Lemma 2.2 to the pairs {ui, uk−1}, {ui, uk}, and {uk−1, uk} and the sets A,171

Ak−1, and Ak. We conclude that there is a dangerous set A∗ containing all of ui, uk−1,172

and uk and also containing one of A, Ak−1, and Ak.173

If A ⊆ A∗, then, since ui ∈ A∗ \ A, we contradict the maximality of A. Therefore,174

either Ak−1 or Ak is contained in A∗, from which we conclude that every uj is in A∗, as175

required.176

3 Connection in the lifting graph177

In this section, we prove Theorem 1.2 dealing with the structure of the k-lifting graph178

L(G, s, k).179

The proofs are inductive and the base cases deg(s) = 4 or 5 require some effort. There180

is one special argument needed for deg(s) = 6 when k is odd. The inductive arguments181

are based on the following simple observation and its contrapositive.182

Observation 3.1 If, after lifting the feasible pair {e1, e2}, the pair {e3, e4} is feasible,183

then {e3, e4} is feasible in the original graph. 2184

3.1 Some general arguments185

In this subsection, we give a few elementary general arguments used later for describing186

the lifting graph. The first arguments are based on standard methods for “crossing cuts”.187

Let A1 and A2 be two subsets of V (G). It is an easy exercise to verify that, where188

A = V (G) \ A,189

2

[
|δ(A1)|+ |δ(A2)| −

(
|δ(A1 ∩ A2, A1 ∪ A2)|+ |δ(A2 \ A1, A1 \ A2)|

)]
= (3.1)190

|δ(A1 ∩ A2)|+ |δ(A2 \ A1)|+ |δ(A1 \ A2)|+ |δ(A1 ∪ A2)| .
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A typical application will be when all four sets A1 ∩A2, A2 \A1, A1 \A2, and A1 ∪ A2191

are non-empty and G is k-edge-connected. In that case, the right-hand side is at least 4k.192

If, for example, both δ(A1) and δ(A2) have size k, we deduce that δ(A1 ∩ A2, A1 ∪ A2)193

and δ(A2 \ A1, A1 \ A2) are both empty. Furthermore, it is a routine exercise to verify194

that this extreme case can only occur with k even.195

We will apply a slightly more sophisticated consequence of Equation 3.1.196

Lemma 3.2 Let k be a natural number, and let G be a graph with a vertex s such that197

any two vertices in G− s are joined by k pairwise edge-disjoint paths in G. For i = 1, 2,198

let Fi be an independent set in L(G, s, k) of size ri and suppose there is a dangerous set199

Ai so that Fi = δ({s}) ∩ δG(Ai). Set α = |F1 ∩ F2|. If α > 0, r1 > α, r2 > α, and200

A1 ∪ A2 ∪ {s} 6= ∅, then r1 + r2 ≤ bdeg(s)/2c+ 2.201

Proof. Observe that: |δG−s(A1)| ≤ k + 1 − r1; |δG−s(A2)| ≤ k + 1 − r2; |δG−s(A1 ∩202

A2)| ≥ k − α; |δG−s(A2 \ A1)| ≥ k − (r2 − α); |δG−s(A1 \ A2)| ≥ k − (r1 − α); and203

|δG−s(V (G− s) \ (A1 ∪ A2))| ≥ k − (deg(s)− (r1 + r2 − α)).204

From Equation 3.1, we deduce that205

2(k+1−r1+k+1−r2) ≥ (k−α)+(k−(r2−α))+(k−(r1−α))+(k−(deg(s)−(r1+r2−α))) .206

Rearranging, we see that deg(s) + 4 ≥ 2(r1 + r2). Since every term except possibly deg(s)207

is even, bdeg(s)/2c+ 2 ≥ r1 + r2, as required.208

Our final preliminary result gives our first glimpse of some structure in L(G, s, k).209

Lemma 3.3 Let k be a natural number, and let G be a graph with a vertex s such that210

any two vertices in G − s are joined by k pairwise edge-disjoint paths in G. If deg(s) is211

at least 4, then:212

(3.3.1) every independent set in L(G, s, k) has size at most
⌈
1
2

deg(s)
⌉
; and213

(3.3.2) if deg(s) is even and at least 6, then any two distinct independent sets in214

L(G, s, k) of size 1
2

deg(s) are disjoint.215

Proof. By Theorem 1.1, an independent set F corresponds to a dangerous set A con-216

taining all the non-s ends of the edges in F , so |δ(A)| ≤ k + 1. If |δ({s}) \ F | < |F | − 1,217

then δ(A ∪ {s}) has size at most k − 1, a contradiction. Thus, |δ({s}) \ F | ≥ |F | − 1, as218

required for (3.3.1).219

Suppose F1 and F2 are non-disjoint independent sets of size 1
2

deg(s), with correspond-220

ing dangerous sets A1 and A2. At most deg(s)− 1 of the edges of δ({s}) have one end in221
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A1 ∪ A2, so A1 ∪ A2 ∪ {s} 6= ∅. Also, each of A1 ∩ A2, A2 \ A1, and A1 \ A2 has an end222

of an edge in F1 ∪ F2. Since, for i = 1, 2, Lemma 3.3 (3.3.1) implies Fi = δ({s}) ∩ δ(Ai),223

the hypotheses of Lemma 3.2 are satisfied. However, r1 = 1
2

deg(s) = r2, showing the224

conclusion of Lemma 3.2 fails, a contradiction that proves (3.3.2).225

3.2 deg(s) = 4226

In this subsection, we treat the case deg(s) = 4. Let e1, e2, e3, e4 be the four edges incident227

with s. It is a triviality that if some pair, say e1, e2 is feasible, then so is the complementary228

pair e3, e4. It follows that L(G, s, k) is a union of perfect matchings; Mader’s Theorem229

already shows there is at least one such matching in L(G, s, k). Since it has only four230

vertices, it can only be one of: a perfect matching; a 4-cycle C4; and K4. These are all231

realizable. However, when k is even, the perfect matching is not achievable, as we show232

next.233

Proposition 3.4 Let k be a natural number, and let G be a graph with a vertex s such that234

any two vertices in G− s are joined by k pairwise edge-disjoint paths in G. If deg(s) = 4,235

then L(G, s, k) is one of: a perfect matching; C4; and K4. If k is even, then L(G, s, k) is236

not a perfect matching.237

Proof. We only prove the second assertion. Suppose both pairs e1, e2 and e1, e3 are not238

feasible. Then there are dangerous sets A2 and A3 so that the non-s ends of e1, e2 are in239

A2 and the non-s ends of e1, e3 are in A3.240

By definition, |δG(A2)| ≤ k + 1, while the hypothesis implies |δG(A2 ∪ {s})| ≥ k.241

Therefore, e3 and e4 have their non-s ends in A2 = V (G) \ (A2 ∪ {s}). The analogous242

statement holds for A3.243

It follows that |δG−s(A2∩A3)|, |δG−s(A2\A3)|, |δG−s(A3\A2)|, and |δG−s(A2 ∪ A3)| are244

all at least k−1, while |δG−s(A2)| and |δG−s(A3)| are both at most k−1. But k−1 is odd,245

so Equation 3.1 cannot be realized (as mentioned in the paragraph following Equation246

3.1).247

We comment that the proofs of Proposition 3.4 and Equation 3.1 also imply that,248

when k is odd, there is only one pattern for G for which L(G, s, k) is a perfect matching;249

this is illustrated in Figure 3.5, where there are four edges incident with s and the thick250

edges represent (k−1)/2 edges. No two edges consecutive in the illustrated cyclic rotation251

at s form a feasible pair.252
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s

Figure 3.5: Each thick edge represents (k − 1)/2 edges.

3.3 deg(s) = 5253

In this subsection, we prove the following, dealing with the case deg(s) = 5.254

Proposition 3.6 Let k be a natural number, and let G be a graph with a vertex s such that255

any two vertices in G− s are joined by k pairwise edge-disjoint paths in G. If deg(s) = 5,256

then L(G, s, k) is either an isolated vertex plus a 4-cycle or a connected graph. If k is257

even and L(G, s, k) is connected, then G is a complete multipartite graph.258

Proof. Lemma 3.3 (3.3.1) implies the largest independent set in L(G, s, k) has size at259

most 3. We break the proof into two cases.260

Case 1: L(G, s, k) contains an independent set of size 3.261

Let F be an independent set in L(G, s, k) of size 3 and let A1 be a dangerous set in262

G so that the non-s ends of the edges in F are all in A1. As there are only two edges263

incident with s and not in F , they both have their non-s ends in A1 = V (G) \ (A1 ∪{s}).264

In particular, |δG(A1)| = k+ 1 and |δG(A1 ∪ {s})| = k, so the two edges in δ({s}) \F are265

also independent in L(G, s, k).266

Suppose e1 ∈ F and e2 ∈ δ({s}) \ F do not form a feasible pair and let A2 be a267

dangerous set that witnesses this. As in the preceding paragraph, there are at least two268

edges in δ({s})\{e1, e2} having their non-s ends in A2; at least one of these is in F \{e1}.269

Thus, there is at least one edge from s to each of A1 ∩ A2 (namely, e1), A2 \ A1 (e2),270

and A1 \ A2 (the one at the end of the preceding paragraph).271

If A1 ∪ A2 ∪ {s} 6= ∅, then Lemma 3.2 implies 3 + |δ({s}) ∩ δ(A2)| ≤ 4. But e1, e2 ∈272

δ({s}) ∩ δ(A2), so we deduce that A1 ∪ A2 ∪ {s} = ∅.273

It follows that both edges in δ({s}) \ F have their non-s ends in A2 \ A1. Thus,274

|δ({s}) ∩ δ(A2)| ≥ 3. Since A2 is dangerous, Lemma 3.3 implies |δ({s}) ∩ δ(A2)| ≤ 3.275

Therefore there are also two edges in δ({s}) with ends in A1 \ A2.276

An immediate consequence of the preceding is that e1 has no feasible lift with any277

other edge in δ({s}). Frank’s Theorem implies that there is at most one edge incident278
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with s that is not in any feasible pair. It follows that e1 is the only such edge; now279

applying the above argument to another edge e′1 in F \ {e1} and an edge e2 in δ({s}) \ F280

shows e′1, e2 is a feasible pair.281

We conclude that, in the event there is an independent set of size 3 in L(G, s, k),282

L(G, s, k) is either K2,3 or an isolated vertex plus C4.283

s

Figure 3.7: If each thick edge represents k− 2 edges, then L(G, s, k) is an isolated vertex
and C4. Changing one thick edge to k − 1 edges turns L(G, s, k) into K2,3.

Case 2: every independent set in L(G, s, k) has size at most 2.284

Suppose there are three edges e0, e1, e2 in δ({s}) such that neither e0, e1 nor e0, e2 is a285

feasible pair.286

(F1) The assumption of this case implies e1, e2 is a feasible pair.287

For i = 1, 2, let Ai be a dangerous set containing the non-s ends of both e0 and ei.288

Because we are in Case 2, none of the three edges in δ({s}) \ {e0, ei} has an end in Ai.289

Thus, each of these three edges has an end in Ai ∪ {s}. Since these three edges do not290

make an independent set in L(G, s, k), |δ(Ai ∪ {s})| > k + 1. Evidently, |δ(Ai)| ≤ k + 1,291

so |δ(Ai)| = k + 1.292

Moreover, there is precisely one edge from δ({s}) having an end in each of A1 ∩ A2293

(e0), A2 \A1 (e2), and A1 \A2 (e1). Therefore, the remaining two edges have their non-s294

ends in A1 ∪ A2 ∪ {s}.295

Since {e0, e1, e2} is not an independent set of size 3, |δG(A1 ∪ A2)| ≥ k+2. Thus, each296

of δG−s(A1 ∩A2), δG−s(A2 \A1), δG−s(A1 \A2), and δG−s(A1 ∪ A2 ∪ {s}) has size at least297

k − 1 (as this is trivially true for the first three). Since δG−s(A1) and δG−s(A2) have size298

precisely k − 1, as before from Equation 3.1, k − 1 is even.299

It follows that, for k even, e0, e1, and e2 do not exist, so L(G, s, k) is complete multi-300

partite.301

In the case k is odd, |δG(A1 ∪ A2 ∪ {s})| = k + 1, showing the following.302

(F2) The pair e3, e4 of edges in δ({s}) \ {e0, e1, e2} is not feasible.303
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Subcase 2.1: e1, e3 is not feasible.304

Applying (F1) to e1, e0 and e1, e3, we see that e0, e3 is a feasible pair.305

On the other hand, (F2) implies the pair of edges e2, e4 in δ({s}) \ e1, e0, e3 is not306

feasible. Now using e2, e0 and e2, e4, we conclude from (F1) that e0, e4 is feasible.307

Finally, (F1) and the infeasible pairs e3, e1 and e3, e4 show e1, e4 is feasible, and anal-308

ogously e2, e3 is feasible. In this case, L(G, s, k) is C5.309

Subcase 2.2: no version of Subcase 2.1; that is, {e1, e2, e3, e4} induces K4 − e3e4 in310

L(G, s, k).311

(We remark that this subcase occurs in the version of Figure 3.8 with one thick edge312

being (k+1)/2 edges.) Suppose e0, e3 is not a feasible pair. Then (F2) applied to e0, e1, e3313

yields the contradiction that e2, e4 is not feasible. Therefore, e0, e3 and, symmetrically,314

e0, e4, are feasible pairs. In this final case, L(G, s, k) is K5 − {e0e1, e0e2, e3e4}.315

Figure 3.8 gives two examples for odd k. One has L(G, s, k) being a 5-cycle, while, for316

the other, L(G, s, k) is K5 − {e0e1, e0e2, e3e4}.317

s

Figure 3.8: If each thick edge represents (k− 1)/2 edges, then L(G, s, k) = C5. Changing
one thick edge to (k + 1)/2 edges turns L(G, s, k) into K5 − {e0e1, e0e2, e3e4}.

3.4 The inductive step318

In this subsection, we proceed with the induction to complete the proof of Theorem 1.2.319

Proof of Theorem 1.2. For (1.2.1), we observe that if deg(s) = 4 or 5, then L(G, s, k)320

has at most two components. For the induction, suppose deg(s) ≥ 6. If L(G, s, k) has321

more than two components, then it is the union of three subgraphs J1, J2, J3, with each322

Ji a union of components of L(G, s, k).323

Suppose, for some i ∈ {1, 2, 3}, Ji has at least three vertices. Frank’s Theorem implies324

Ji has an edge e1e2. Lifting e1e2 produces a graph G′ with degG′(s) = degG(s) − 2 and325
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there is no edge of L(G′, s, k) between any two of the Jj ∩ L(G′, s, k). This contradicts326

the inductive assumption that L(G′, s, k) has at most two components.327

Therefore, each Ji has at most two vertices; since deg(s) ≥ 6, each Ji has precisely328

two vertices and deg(s) = 6. However, in this case, there are 8 different independent sets329

of size 3, each consisting of one vertex from each of the Ji. This contradicts Lemma 3.3330

(3.3.2), completing the proof of (1.2.1).331

For (1.2.2), the claim holds for deg(s) = 5, so suppose deg(s) ≥ 7. Let H and J be the332

components of L(G, s, k) with |V (H)| < |V (J)|. Then |V (J)| ≥ 4 and if we lift an edge333

from J to get the graph G′, there is still no edge between H∩L(G′, s, k) and J∩L(G′, s, k)334

and the latter has at least two vertices. Thus, H ∩ L(G′, s, k), and therefore H, has only335

one vertex, as required.336

To see that J is complete multipartite, suppose there exist e0, e1, e2 in V (J) such that337

e0 is not adjacent in J to either of e1 and e2, while e1e2 ∈ E(J). Lift the pair e1, e2 to get338

the graph G′. Since J has at least 6 vertices, J ∩L(G′, s, k) is a component of L(G′, s, k)339

with at least 4 vertices. By the inductive assumption, it is not a star, so it has an edge340

e3e4 not incident with e0. Then e3e4 is an edge of J .341

Lift e3, e4 in G to get G′′; the pair e1, e2 is feasible in G′′ (the resulting graph is the342

same as first lifting e1, e2 and then lifting e3, e4), so e1e2 is an edge in J ∩L(G′′, s, k). But343

neither e0e1 nor e0e2 is an edge in J ∩L(G′′, s, k), contradicting the inductive assumption344

applied to L(G′′, s, k). Thus, J is both complete multipartite and not a star, as required.345

For (1.2.3), we first prove that every component of L(G, s, k) has an even number of346

vertices; this is trivial if there is only one component. This is known for deg(s) = 4, so347

we suppose deg(s) ≥ 6. Let H and J be the two components with |V (H)| ≤ |V (J)|. Let348

e1e2 be an edge of J and let G′ be the result of lifting the pair e1, e2. Then H ∩L(G′, s, k)349

and J ∩ L(G′, s, k) are the two components of L(G′, s, k). By induction they each have350

an even number of vertices, so this also holds for L(G, s, k).351

If deg(s) = 6, then the induction and Lemma 3.3 (3.3.2) imply that L(G, s, k) is the352

disjoint union of K2 and either C4 or K4. Therefore, we may assume deg(s) ≥ 8.353

Case 1: both components of L(G, s, k) have at least four vertices.354

Suppose by way of contradiction that there are vertices e0, e1, e2 in the component K355

of L(G, s, k) such that neither e0e1 nor e0e2 is an edge of K, while e1e2 is an edge of K.356

Let J be the other component of L(G, s, k).357

Lift e1, e2 to get G′. Then K ∩ L(G′, s, k) and J ∩ L(G′, s, k) are the two components358

of L(G′, s, k). Thus, there is an edge e3e4 in J ∩L(G′, s, k). Now lift e3, e4 in G to get G′′.359

Then K ∩ L(G′′, s, k) is a component of L(G′′, s, k). The edge e1e2 is in K ∩ L(G′′, s, k),360

while neither e0e1 nor e0e2 is an edge of K ∩ L(G′′, s, k). This contradicts the inductive361
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assumption that K ∩ L(G′′, s, k) is complete multipartite.362

Case 2: one component of L(G, s, k) has precisely two vertices.363

Let J and K be the components of L(G, s, k) so that J has precisely two vertices; thus364

K has at least six vertices. Suppose e0, e1, e2 are vertices of K such that neither e0e1 nor365

e0e2 is an edge of K, yet e1e2 is an edge of K.366

Lift e1, e2 to obtain the graph G′. By the induction, K ∩L(G′, s, k) is a component of367

L(G′, s, k), and it has at least 4 vertices, so it is not a star. Therefore, it has an edge e3e4368

disjoint from e0; we lift e3, e4 in G to obtain G′′. Induction tells us that K ∩L(G′′, s, k) is369

complete multipartite, which contradicts the fact that e0, e1, e2 are all in K ∩L(G′′, s, k),370

e0e1 and e0e2 are not edges, and e1e2 is an edge.371

Lastly, we prove (1.2.4). Proposition 3.4 gives the result for deg(s) = 4, so we assume372

deg(s) ≥ 6. Suppose e0, e1, e2 are vertices in L(G, s, k) such that e0 is not adjacent to373

either e1 or e2, but e1e2 is an edge of L(G, s, k). Lifting e1, e2 yields a graph G′ for374

which L(G′, s, k) has at least 4 vertices. By induction, L(G′, s, k) is connected, complete375

multipartite, and not a star; in particular, it has an edge e3e4 disjoint from e0.376

Lifting e3, e4 in G produces a graph G′′; by induction L(G′′, s, k) is complete multi-377

partite. However, e0 is still not adjacent to either e1 or e2, while e1e2 is an edge. This378

contradiction shows L(G, s, k) is complete multipartite and Frank’s Theorem [3] shows it379

is not a star, as required.380

We conclude this section with Figure 3.9. This is an example having deg(s) = 6381

and k = 5 so that L(G, s, k) is K3,3 minus an edge; in particular, it is connected and not382

complete multipartite. The three edges incident with s on the left side are one independent383

set, the three on the right are a second, and the two going to the bottom are not feasible.384

s

Figure 3.9: Each thick edge represents 2 edges and k = 5.

14



4 Weakly k-linked infinite graphs385

In this section we prove Theorem 1.3: if k is odd, then a (k + 2)-edge-connected, locally386

finite, 1-ended, infinite graph G is weakly k-linked.387

If x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) are sequences of (not necessarily dis-388

tinct) vertices in graph G, then an xy-linkage is a set {P1, P2, . . . , Pk} of pairwise edge-389

disjoint paths in G such that, for i = 1, 2, . . . , k, Pi is an xiyi-path.390

Before we prove Theorem 1.3, we require extensions of the theorems of Mader and391

Frank and of our Theorem 1.2 to locally finite graphs. These extensions may all be392

proved as follows. Let Gd be the subgraph of a locally finite graph G consisting of those393

vertices at distance at most d from the specified vertex s. Let G′d be the graph obtained394

from G by contracting each component of G− V (Gd) to a vertex. For infinitely many d,395

the lifting graph L(G′d, s, τ) is the same graph; this is the the lifting graph L(G, s, τ).396

Proof of Theorem 1.3. Let x and y be any sequences of k (not necessarily distinct)397

vertices of G. Let A be the set of vertices that occur in x and y.398

Let S be a finite set of vertices containing A. There is a unique infinite component K399

of G− S. Let P be a largest set of pairwise edge-disjoint, 1-way infinite paths (or rays),400

that begin with an edge in δ(V (K)) and are otherwise contained in K. It is a standard401

fact that there is a finite set S ′ containing S such that |δ(S ′)| = |P|. We are interested402

only in S ′, which we relabel as S, and restrict the rays in P to begin at their edge in403

δ(S ′).404

Because G is (k + 2)-edge-connected, |δ(S)| ≥ k + 2. We consider three cases.405

Case 1: |δ(S)| = k + 2.406

Contract G − S to a single vertex vS, yielding a finite (k + 2)-edge-connected graph407

G/(G− S). Huck’s Theorem shows there is a weak xy-linkage L in G/(G− S).408

Let v be any vertex of G− S. There is a set L′ of (k+ 2) pairwise edge-disjoint paths409

with origin v whose other end is in S and incident with an edge of δ(S). Evidently, we410

can replace any passage of a path in L through vS with an appropriate pair of paths in411

L′. Simplifying the resulting walks as needed, we convert L into a weak xy-linkage in G.412

Case 2: |δ(S)| is odd and at least k + 4.413

In this case, let e be any edge of δ(S) and let G′ = G − e. Now G′ is (k + 1)-edge-414

connected and |δ(S)| is even. We now proceed as in Case 3.415

Case 3: |δ(S)| is even.416

In this case, we need only that G is (k + 1)-edge-connected (so Case 2 continues417

smoothly here). Contract G− S to a single vertex vS resulting in the finite graph GS.418
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We claim that δ(S) partitions into |δ(S)|/2 pairs {ei, e′i}, i = 1, 2, . . . , |δ(S)|/2, such419

that, letting GS
0 = GS and, for i = 1, 2, . . . , |δ(S)|/2, GS

i is the graph obtained from lifting420

{ei, e′i} in GS
i−1:421

1. for i ≥ 1, the pair {ei, e′i} is (k + 1)-liftable in GS
i−1; and422

2. for i = 1, 2, . . . , |δ(S)|/2, there is a path Pi joining ei and e′i with only its end vertices423

and ei, e
′
i not in G − S such that Pi is edge-disjoint from P1 ∪ · · · ∪ Pi−1 and from424

all the rays in P containing ei+1, e
′
i+1, . . . , e|δ(S)|/2, e

′
|δ(S)|/2.425

Suppose we have the pairs {e1, e′1}, . . . , {ei−1, e′i−1} and paths P1, . . . , Pi−1. We show426

the existence of {ei, e′i} and Pi.427

Set δi(S) to be δ(S)\{e1, e′1, . . . , ei−1, e′i−1}. These are the edges in G−{e1, e′1, . . . , ei−1,428

e′i−1} having precisely one end in S. Let Pi denote the paths in P that do not contain429

any of the edges in {e1, e′1, . . . , ei−1, e′i−1}.430

There are two graphs with vertex set δi(S) that are relevant to completing the proof.431

In the end graph Ei, distinct edges e, e′ in δi(S) are adjacent if there are infinitely432

many vertex-disjoint paths in G − S that: (i) join the two paths in Pi containing e and433

e′; and (ii) are edge-disjoint from all the other paths in Pi. Since all the paths in Pi are434

in the same end, Ei is connected.435

The other graph is the (k+ 1)-lifting graph Li for vS in GS
i−1. By Theorem 1.2 (1.2.4),436

Li is a complete multipartite graph. Therefore, its complement is disconnected.437

Since Ei is connected, there is an edge eie
′
i of Ei that is not in the complement of Li;438

that is, eie
′
i is an edge of Li. This is the required next pair of edges.439

Let Q and Q′ be the rays in P containing ei and e′i, respectively. Because eie
′
i is an440

edge of Ei, there are infinitely many vertex-disjoint paths in G joining Q and Q′ that are441

edge-disjoint from the other rays in Pi. Let P be one of these contained in G − S that442

is also disjoint from all of the finitely many finite paths P1, . . . , Pi−1. Then Q ∪ P ∪ Q′443

contains a path Pi containing ei, and e′i. This is the required next path.444

The choices of the lifts {ei, e′i} show that GS
|δ(S)|/2 is (k+1)-connected. Huck’s Theorem445

shows that GS
|δ(S)|/2 has an xy-linkage Q.446

An occurrence of the lift of {ei, e′i} in some path in Q can be replaced by Pi. This447

converts Q into an xy-linkage in G, as required.448
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