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Abstract

This thesis addresses the problem of extracting image structures for repre-
senting images effectively in order to solve visual recognition tasks. Prob-
lems from diverse research areas (medical imaging, material science and
food processing) have motivated large parts of the methodological develop-
ment. The solutions are inspired by and extend state-of-the-art techniques
for describing and learning image content.

More specifically, the thesis explores two approaches to constructing
image representations, namely feature engineering and feature learning. In
the feature engineering approach, we devise a new image representation
for texture-like patterns based on count statistics of second-order image
structure. We demonstrate the discriminative capabilities of this represen-
tation on medical images and perform both cell classification and mitosis
detection. Moreover, we develop an object identification method based on
vector quantized local image descriptors allowing us to distinguish indi-
vidual meat cuts along a production line and trace them in a non-intrusive
manner. In the feature learning approach, we propose to solve the task
of segmenting scanning electron microscopy images of calcite crystals by
learning a meaningful pixel description to facilitate the actual segmentation.
Finally, we present a new unsupervised generative image model addressing
the problem of pixel-based similarity measures for images. We propose a
scheme for employing feature-based similarity measures and demonstrate
how this improves the ability to learn high-level concepts in images of faces.

The thesis argues in favor of learning features and presents new methods
for domains with limited amounts of labeled data allowing feature learning
to be applied more broadly.
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Abstract (Danish)

Denne afhandling beskæftiger sig med at udtrække billedstrukturer for
at repræsentere billeder effektivt med henblik på at kunne løse billedgen-
kendelsesproblemer. Metodeudviklingen er inspirereret af problemer fra så
forskellige forskningsområder som medicinsk billedbehandling, fødevarebe-
handling og materialevidenskab. Løsningerne er inspirerede af og udvider
teknikkens standpunkt inden for beskrivelse og læring af billedindhold.

Mere specifikt undersøger denne afhandling to tilgange til at konstruere
billedrepræsentationer, nemlig ved manuelt design af billedmønstre samt
ved automatisk læring af billedmønstre fra data. I den manuelle tilgang
foreslår vi en ny billedrepræsentation til at beskrive teksturmønstre baseret
på histogrammer af anden-ordens billedstruktur. De diskriminative egen-
skaber ved denne repræsentation demonstreres på medicinske billeddata til
klassifikation af celler samt til detektion af mitosisforekomster. Derudover
udvikler vi en en identifikationsmetode baseret på vektorkvantificerede
lokale billedbeskrivelser, hvilket tillader ikke-intrusiv genkendelse af indi-
viduelle kødstykker langs en produktionslinje. I læringstilgangen foreslår
vi at segmentere scanning-elektronmikroskop-billeder af kalcit-krystaller
ved at lære en meningsfuld pixelbeskrivelse der muliggør segmenteringsop-
gaven. Endelig præsenterer vi en ny ikke-superviseret generativ billedmodel
der addreserer problematiske pixel-baserede similaritetsmål til billeder. Vi
foreslår at benytte lærte billedmønstre som basis for similaritetsmålet og
demonstrerer hvordan dette forbedrer evnen til at fange højniveau struk-
turer i billeder af ansigter.

Denne afhandling argumenterer for at lære billedmønstre og præsenterer
nye metoder for applikationsområder med begrænsede mængder super-
viserede data, hvilket tillader mønsterlæring at blive anvendt i bredere
omfang.
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Preface

This thesis deals with methods for characterizing the contents of images
using hand-made as well as learned image patterns. I have tried making the
text accessible to fellow researchers by favoring the broader perspective of
visual recognition rather than diving into technical details. The thesis com-
prises an introduction to existing state-of-the-art methodology, an overview
of my scientific contributions in relation to the methodology as well as a
discussion of the contributions. Four articles (listed below) are attached as
appendix.

The thesis was prepared at the Department of Applied Mathematics and
Computer Science at the Technical University of Denmark in fulfillment of the
PhD degree requirements. Professor Rasmus Larsen has acted as main adviser
with associate professor Anders Bjorholm Dahl as co-adviser. The thesis
is made possible with funding from the inSPIRe project by the Strategic
Platforms for Innovation and Research under the Danish Council for Strategic
Research.

Kongens Lyngby, June 10, 2016
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1 Introduction

The goal of visual recognition is to extract information from images in order
to solve a given task. Here, the meaning of extract information is broad since
visual recognition is applied across different image types (natural, biomed-
ical, depth maps, 2D/3D, etc.) and spans methods for both processing,
interpreting and learning the image input.

Among the earliest examples of successful visual recognition systems is
for transistor assembly in the early 70’s (Kashioka et al. 1976). Since then,
by facilitating the mass production and verification of entire wafers, visual
recognition has played an important role in the development of the semicon-
ductor industry and thereby also in the digital revolution (Andreopoulos
et al. 2013; Ejiri 2007). Today, visual recognition is applied in many settings
including factories, offices, research and surveillance. Examples of higher-
level problems where visual recognition systems can compete with human
performance are mitosis detection (Veta et al. 2015), traffic sign classification
(Stallkamp et al. 2011) and Chinese handwriting recognition (Yin et al. 2013).
Looking forward, visual recognition at a human level in complex natural
environments is a crucial step towards reaching the long-standing goal of
artificial intelligence (AI).

On the face of it, many recognition tasks seem easy and well-defined
to humans. E.g. the task of locating birds in images. Even if a person
have never seen a bird, we can relatively easily explain the components
that make up a bird (beak, wings, feathers, etc.) and the person should
then be able to learn a generalized bird representation from seeing only a
few examples. In contrast, such tasks are inherently hard for computers to
solve. Simply just explaining to a computer the concept of a feather and how
it appears in a plumage requires a preexisting understanding of material
properties in a 3D world. As a consequence, visual recognition problems are
often underestimated by overly optimistic beginners and even practitioners.
Most famous is the example from Massachusetts Institute of Technology
in 1966 where a summer project proposal begins with the sentence: “The
summer vision project is an attempt to use our summer workers effectively in the
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Figure 1: Computer science in a nutshell for the uninitiated. Visual recognition
problems are often surprisingly harder than what they may seem. Source: http:
//xkcd.com/1425/

construction of a significant part of a visual system.” (Papert 1966). Half a
century later, we still have not finished what the summer project set out
to. The difficulty of judging problem sizes in computer science is comically
illustrated in Figure 1. Thus, the discrepancy between human capabilities of
visual perception and our valuation of its complexity is remarkable. Humans
are given a visual system (eyes and neurons) from nature and learn visual
perception during infancy along with a 3D understanding of the world.
What we consider a trivial and autonomous task builds on years of training
and learning about our environment.

Taking a more philosophical perspective, one can compare a computer
learning visual recognition to the setup from Plato’s Allegory of the cave
(Jowett 1941). In this story, a group of persons have been confined their
entire lives in an underground cave chained and fixated towards the wall of
the cave such that the wall is all they have ever seen. Behind them burns
a fire, and between them and the fire objects are moving around casting
shadows on the wall. Thus, the persons see only shadow projections of
the real objects as they have never been able to turn their heads. Similarly,
a computer program starts from scratch and typically see the world as
projections in form of 2D pixel arrays. Now in the allegory, one of the
persons (the philosopher) escapes the chains and discovers the truth by
exploring the cave as well as the nature outside. He then returns to the
chained persons and tries to explain to them the true world whose shadow
appearance they are mistaking for reality. The allegory is an example of
Plato’s theory of the perfect world of Ideas versus the imperfect world as
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it is perceived by humans. Comparably, human visual perception is the
perfect world relative to the computer’s imperfect vision full of restraints
(slow data processing, poor sensor signal and little understanding about
the world). The job of a computer vision engineer then becomes that of the
philosopher; to teach the program about the perfect world in terms of the
crude projections the program is given as input. Curiously, the allegory ends
fatally when the chained people violently resists the philosopher’s nonsense
as he appears blinded after having been exposed to the bright light sources!

1.1 The effectiveness of good image representations

This thesis focuses on the problem of representing images on a form allowing
for efficient processing and higher-level abstractions. A good representation
is crucial for the performance of a visual recognition system since it can
greatly simplify the decision-making part on top of the image representation.

The representation of RGB pixel arrays is the standard format for storing,
distributing and displaying images. RGB pixels are designed for visual
fidelity to humans but are poorly suited for computer vision methods. Pixel
arrays have a large memory footprint requiring many CPU clock cycles for
operations over the data. Moreover, the abstraction level of pixels is as low
as possible since pixels are intended to be the atoms of the image.

For many years, the feature description subfield of computer vision has
focused on devising clever image representations (also called features) to
improve on the poor efficiency and low abstraction level of pixels. While
these alternative representations lack the ability to be visually interpretable
like pixels, they make it possible to build efficient computer vision systems
to solve a given task. Many popular image representations capture simple
structures like edge orientation and summarize them with count statistics
as this has shown widely useful (Dalal et al. 2005; Felzenszwalb et al. 2010;
Lowe 2004).

Until recently, feature description schemes have mostly been designed
manually by computer vision researchers using methods from image/sig-
nal processing. The task of finding a good feature representation for a
given problem is cumbersome and typically requires many iterations of
trial and error. In fact, the famous SIFT descriptor paper (Lowe 2004) is
the result of many years of parameter tuning. Even today, the method is
still being tweaked for numerous new applications which explains why the
paper ranks among the top cited computer science articles (CiteSeerX 2016).
Therefore, when the seminal work of Krizhevsky et al. (2012) successfully
demonstrated a data-driven approach to learning image features for object
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recognition, the implications were profound throughout the computer vi-
sion community. Using a convolutional neural networks (convnet) (LeCun
et al. 1998) they were able to learn image features far superior to existing
hand-crafted features for visual recognition in natural images (Russakovsky
et al. 2015). Thus, the challenging job of devising feature descriptors had
been automated and even surpassed by a machine learning-based approach.

This thesis is written during the radical changes in the field of visual
recognition. Originally setting out to explore traditional feature description,
the thesis has changed focus towards the learning-based approach. Thus,
this work strives to provide a view on image representations from both
angles.

1.2 Contributions

In one sentence, this thesis explores a range of visual recognition problems
and contributes to the field with methods for solving the problems as well as
new models for both representing and learning to represent image content.
In more detail, the contributions of the thesis are:

● A feature descriptor for texture-like image structures based on his-
tograms of second-order image structure.

● A method for classifying cell images based on the new image descrip-
tor.

● A method for identifying images of meat cuts along a production line
using histograms of local image features.

● A method for segmenting images of calcite particles by learning pixel
classification as preprocessing.

● A generative model for unsupervised learning using learned represen-
tations to better measure similarities in image space.

1.3 Outline

The thesis comprises three sections not including this introduction. In Sec-
tion 2, we introduce feature description from the ground up to popular
image features. At the end of the section, we introduce two of the included
papers that employ these feature description methods. In Section 3, we
describe the learning approach to image description before introducing two
papers on learned image representation. Section 4 discusses the contribu-
tions of the thesis and a more general outlook on image representation.
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The thesis is structured linearly as it first covers relevant methodological
concepts before introducing the related papers. The reader can also choose to
skip directly to the paper introductions and use the methodological sections
as reference.
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2 Manual image representations

This part of the thesis introduces the classical approach to feature description
for computer vision. Here, the mapping from pixels to feature representation
is designed wrt. the image input as well as the decision making (machine
learning) on top of the features. The literature on feature description is
abundant and in the following we will try to cover the popular approaches.
In general, feature descriptor pipelines comprise three following steps which
we will each describe in separate sections: 1) Extraction of low-level features,
e.g. edges. 2) Summarization of the low-level features to represent them
with a more convenient vector-form. 3) Aggregation of summarized features
with the purpose of learning archetypes among the features.

The concepts of invariance and robustness are central to feature descrip-
tion. When a feature representation feat(x) of an input x is invariant towards
a transformation transf(⋅), the features are not affected by these transforma-
tions of the input, i.e.

feat(x) = feat(transf(x)) . (2.1)

Invariance is important to account for the different sources of variability that
affect object appearances (e.g. illumination, orientation, size and position).
Ideally, if the illumination of an object is irrelevant for the given task, the fea-
ture representation should discard information about illumination since this
may complicate later steps of the vision system. Robustness is reminiscent
of invariance and can be thought of as handling visual variability gracefully,
e.g. by not being too sensitive to image rotations. Robustness is also impor-
tant in anomaly situations like occlusions or extreme transformations that
may destroy parts of the image content.

2.1 Low-level feature extraction

Low-level image structures are the atomic building blocks for visual recog-
nition. These can be anything from individual pixels (intensities) to edges
and higher-order structure (e.g. saddle points). Many of these structures
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are designed from intuition and implemented with crude but fast approxi-
mations in the form of small convolutional filters (Dalal et al. 2005; Laws
1980; Leung et al. 2001). Usually, the filters can also be derived using the
sound mathematical framework of scale space theory which we will use in
the following. In practice, though, approximations with small convolutional
filters work fine; Dalal et al. (2005) even report the best performance with
the vector [−1, 0, 1] as first-order derivative filter.

2.1.1 Differential image structure

We describe low-level image features as the differential structure of a 2D
image I(x)∶Ω → R, Ω ⊆ R2. When working with images, the notion of scale
is fundamental as the structure we are interested in has a certain size that
we should try to match. The Gaussian scale space representation computes an
image at scale σ as

L(x; σ) = (G(σ) ∗ I)(x) , (2.2)

where ∗ denotes convolution and G is the Gaussian kernel and σ controls
the width of the kernel,

G(x; σ) = 1
2πσ2 exp(−x ⋅ x

2σ2 ) , σ ≥ 0 , G(x; 0) ≡ δ . (2.3)

For σ = 0, we have the original image. By increasing σ we can blur the image
thereby removing structure at smaller scales while preserving larger image
structures.

We seek to describe image structure by computing derivatives. However,
pixel images are discrete and therefore non-differentiable. Luckily, the com-
mutativity property of convolution allows us to compute image differentials
by convolving derivatives of the Gaussian with the image:

Lxn ym(x; σ) = σn+m ∂n+m

∂xn∂ym
(G(σ) ∗ I) (x) (2.4)

= σn+m (( ∂n+m

∂xn∂ym
G(σ)) ∗ I)(x) . (2.5)

Here, n and m indicate the differentiation order along the x and y axis respec-
tively. The factor σn+m scale-normalizes the image derivatives to account for
the amplitude of Gaussian that decreases as the scale increases (Lindeberg
1998). For future notational convenience we may omit the function argu-
ments and substitute Lxn ym(x; σ) with simply Lxn ym . Thus, Lxn ym is implicitly
assumed to be computed at some scale σ and location x.
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2.1.2 Gradient orientation

Edge structures described as the orientation of image gradients is perhaps
the most widely used computer vision feature as it forms the basis for SIFT
(Lowe 2004) and its many derivatives. Using first-order derivatives, we
calculate gradient orientations o from

o(x; σ) = arctan2 (Ly , Lx) , ounsigned(x; σ) = arctan(
Ly

Lx
) . (2.6)

Depending on the image characteristics, unsigned orientations spanning
180○ may be preferable over signed orientations spanning 360○. E.g. un-
signed orientations are used for pedestrian detection since the brightness
level of a person relative to the background is uninformative in natural set-
tings. To measure the strength of the orientation, we compute the gradient
magnitude m from

m(x; σ) =
√

L2
x + L2

y . (2.7)

2.1.3 The shape index

Beyond first-order image structure, the literature becomes more varied
as there is no dominating feature extractor. Higher-order structures are
often used for texture recognition problems (Crosier et al. 2010; Ojala et al.
2002), but can also complement first-order structure to improve recognition
performance (Larsen et al. 2015; Wang et al. 2009). In the following we
present the shape index measure for describing second-order image curvature
(Koenderink et al. 1992).

The shape index is computed from the partial derivatives contained in
the Hessian matrix

∇2L(x; σ) = [Lx2 Lxy
Lxy Ly2

] . (2.8)

The Hessian matrix is square and symmetric allowing us to compute the
pair of real eigenvalues κ1 and κ2:

κ1(x; σ) =
1
2
(Lx2 + Ly2 −

√
(Lx2 − Ly2)2 + 4L2

xy)

κ2(x; σ) =
1
2
(Lx2 + Ly2 +

√
(Lx2 − Ly2)2 + 4L2

xy) (2.9)

κ1 and κ2 are the principal curvatures. They describe the strength of the
curvature along the extremal directions where the curvatures are minimal and
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Figure 2: Second-order curvatures along the shape index interval ]−π/2, π/2[. The
shapes are aligned vertically and have the same curvedness.

maximal, respectively. The shape index s ∈ ]−π2 ,
π
2 [ is defined as

s(x; σ) = arctan(κ1 + κ2

κ1 − κ2
) . (2.10)

Note that κ1 and κ2 are invariant to the orientation of the curvature which is
captured by the eigenvectors of ∇2L (the extremal directions). By discarding
the eigenvectors, the shape index becomes invariant to image rotations.
Moreover, the shape index has the attractive property of describing all
second-order shapes onto a continuous interval providing a smooth and
intuitive transition between the shapes, see Figure 2. In addition to the
shape index a measure of curvedness c is defined,

c(x; σ) =
√

κ2
1 + κ2

2 . (2.11)

The curvedness indicates the strength of the shape described by the shape
index such that we differentiate between flat and indistinct vs. prominent
shapes. See Figure 3 for examples. We can think of the shape index measures
s and c similar to the gradient orientation measures o and m, as the first rep-
resents the structure while the second represents its strength. Alternatively,
we can skip the explicit calculation of the Hessian eigenvalues and express s
and c as functions of the second-order derivatives:

s(x; σ) = arctan
⎛
⎜
⎝

−Lx2 − Ly2
√

(Lx2 − Ly2)2 + 4L2
xy

⎞
⎟
⎠

(2.12)

c(x; σ) =
√

L2
x2 + 2L2

xy + L2
y2 . (2.13)

2.2 Low-level feature summarization

After having computed low-level features on top of the image pixels, we
want to bring them on a form more convenient than the pixel grid. This
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Figure 3: The saddle shape s = 0 with increasing curvedness.

is typically done by summarizing feature statistics in histograms. By con-
struction, the histogram representation have two very practical properties
for visual recognition: 1) The histogram contributions are collected over a
local region, this means that the histogram representation becomes robust
to small image translations. 2) Bin contributions are usually smoothed with
neighboring bins such that the histogram representation is also robust to
small changes of the feature (e.g. image rotation for gradient orientations).
For these reasons and thanks to the widespread adoption of SIFT-like feature
description, local feature histograms have become ubiquitous in computer
vision.

In continuation of the scale space framework, we will describe local
histograms using the locally orderless image representation (Koenderink
et al. 1999). In practice, most descriptors calculate their histograms with
alternative faster formulations. In the following, we present histogram
construction for gradient orientations, but very similar ideas apply features
like the shape index. Feature histograms are constructed by first choosing a
set of n bin centers b1, . . . , bn uniformly distributed along the feature value
interval, i.e. ]−π, π[ for signed gradient orientations. For the SIFT descriptor
n = 8. We calculate the bin contribution c to the bin centered at bi by applying
a Gaussian window with scale β,

c(bi , x; β, σ) =
m

β
√

2π
exp(−(o − bi)2

2β2 ) . (2.14)

Note that the gradient magnitude m is also applied as weight allowing
prominent edges to have larger influence than indistinct edges. Because
the gradient orientation has a circular range, bin contributions should be
wrapped such that the angle 1○ contributes to 359○. This is achieved using
the circular normal distribution:

ccircular(bi , x; β, σ) =
m

I0(β−2)2π
exp (β−2 cos(o − bi)) , (2.15)

where I0(⋅) is the modified Bessel function of order 0. At this point, c is
still pixel-wise bin contributions. To collect bin contributions from the local
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neighborhood, we convolve with (yet another) Gaussian kernel with scale
parameter α.

h(bi , x; α, β, σ) = G(α) ∗ ccircular(bi , x; β, σ) (2.16)

Finally, we build the locally orderless histogram H as the concatenation of
bin contributions:

H(x; α, β, σ) = [h(b1, x; α, β, σ), . . . , h(bn , x; α, β, σ)] (2.17)

To recap the feature extraction so far, there are three scales in play: The
inner scale σ determines at what level of detail the image feature is extracted.
The tonal scale β regulates the bin width of the feature histogram and the
smoothing of contributions to neighboring bins. The outer scale α determines
the size of the spatial support of the histogram contributions. The locally
orderless representation for feature histograms is arguably a bit involved for
something that often gets described in papers as “we convolve with the kernel
[−1, 0, 1]”. However, the locally orderless images formulation is capable of
expressing the feature extraction in a consistent mathematical framework.
Most appealing, this framework explicitly models the different scales/dis-
tributions that are implicitly chosen when using off-the-shelf convolutional
kernels.

Using Eq. 2.17 we can sample feature histograms from any image po-
sition. Though, most feature descriptions sample histograms in a regular
m × n grid:

featH(I) =
⎡⎢⎢⎢⎢⎢⎣

H (x1,1) . . . H (x1,n)
⋮ ⋱ ⋮

H (xm,1) . . . H (xm,n)

⎤⎥⎥⎥⎥⎥⎦
(2.18)

We then concatenate the extracted histograms into a single vector which we
normalize to unit sum. The normalization step is crucial because it makes
the histogram entries invariant to affine transformation of image intensities.

For many tasks, the multi-histogram representation is used directly for
decision-making with some machine learning method on top. Since the
histograms are computationally cheap to extract densely from an image,
this representation is ideal for sliding window methods where a fast linear
classifier is applied on top to determine if the object of interest is present
(Dalal et al. 2005; Felzenszwalb et al. 2010).

2.3 Feature aggregation

Feature histograms extracted in a grid are good at capturing rigid objects
where the layout of the object parts is limited in variation, e.g. for the
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pedestrian detection task where people usually are standing in an upright
position. For objects where this is not the case, the histogram templates break
down as they cannot capture the variations efficiently. Instead, a common
approach is to discard the global object structure and describe the image
at many small locations. These locations can be chosen by an interest point
detector (usually finding blob structures) or simply by sampling densely
across the image. The idea behind this approach is that small image patches
are representative for the image content even though they do not reveal
the entire object. Recently, Ullman et al. (2016) have explored the ability
of humans to recognize objects from small image regions. While humans
are good at this task compared to computers, their recognition performance
is surprisingly sensitive to small changes in the size and the location of
the image regions as the image content quickly become ambiguous. Thus,
by going from global to local description we avoid the challenging part of
modeling global object variations at the risk of increased ambiguity when
relying on small image patches.

After having subdivided the image into many small parts, we need a
way to bring the image parts on a manageable form, that is, a fixed-size
vector representation. The so-called bag of visual words (BOVW) approach
provides a popular solution (Csurka et al. 2004) to this problem. Given the
n image regions, we extract local image patches P(1), . . . , P(n) and compute
their feature histogram representations featH (P(i)). In this feature space,
we perform vector quantization to capture the distribution of local image
features. This can be achieved offline by performing k-means clustering
yielding k cluster centers µ1, . . . , µk. For each local image feature we then
determine its nearest cluster center:

µ(i)min = argmin
µ′∈{µ1 ,...,µk}

∥µ′ − featH (P(i))∥ (2.19)

We represent an image by counting in (yet another) histogram the number
of feature assignments to each cluster:

featBOVW(I) = [
n
∑
i=1

[µ1 = µ(i)min] , . . . ,
n
∑
i=1

[µk = µ(i)min]] , (2.20)

This histogram is subsequently normalized. Several alternatives/extensions
to the vanilla BOVW method exist. For example, histogram contributions
can be weighted using posterior probabilities from clustering with a Gaus-
sian mixture model. Moreover, instead of counting occurrences we can sum
up residuals between features and the cluster centers (Jégou et al. 2010).
We can also reintroduce global spatial structure by decomposing the input
image into multiple subregions and computing BOVW vectors for each of
them (Lazebnik et al. 2006).
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Figure 4: Examples of the 6 different staining pattern classes.

2.4 Contribution: Shape index histograms for medical
image analysis

In this section, we approach the problem of characterizing image structure
in medical images. The related paper is attached in Appendix A:

– Larsen, A. B. L., Vestergaard, J. S., and Larsen, R. (2014). “HEp-2 Cell Classifica-
tion Using Shape Index Histograms With Donut-Shaped Spatial Pooling”. In:
Medical Imaging, IEEE Transactions on 33.7, pp. 1573–1580.

In the paper, our goal is to classify images of cells under indirect im-
munoflourescence illumination in order to diagnose autoimmune diseases.
See Figure 4 for examples of the cell images. We approach the problem
with a traditional visual recognition setup consisting of feature extraction
followed by classification with a kernel-based support vector machine.

Our method is an example of how careful feature engineering to a spe-
cific problem can lead to significant performance improvements. We employ
shape index histograms to capture the blob-like structures in a rotation
invariant manner which is a good fit for many types of medical images.
Moreover, to increase distinctiveness of the feature representation, we per-
form a rotation invariant spatial decomposition suitable for cell images.
That is, we sample histograms with concentric donut-shaped spatial sup-
port instead of typical grid sampling schemes (Eq. 2.17) which imposes a
rotation-sensitive structure in feature description, see Figure 5.

2.4.1 Competition entries

The method was originally developed with the intention of entering two
competitions: Contest on HEp-2 Cells Classification (Hobson et al. 2015) and
Assessment of Mitosis Detection Algorithms (Veta et al. 2015). We have already
described the first competition as this is the problem our paper is concerned
with. The second competition is similar in many aspects as the task is to
detect cells undergoing mitosis in whole slide histopathology images, see
Figure 6. The level of mitotic activity in a tissue sample is an important
prognostic marker for cancer and is currently determined from cumbersome
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Figure 5: Spatial support of local feature histograms. Left: ordinary grid sampling
with Gaussian windows. Right: concentric donut sampling.

Figure 6: Crops from histopathology images. Examples of mitosis are marked with
green arrows. Image adapted from http://amida13.isi.uu.nl.

manual inspection. We convert the detection task to a classification task
simply by detecting cell location with a purple blob filter (the cell DNA has
been stained purple). What remains is the task of learning a binary classifier
between mitotic/non-mitotic cells.

In both competitions, shape index histograms have shown competitive
performance. For HEp-2 cell classification, our method was ranked 2nd just
0.11% below the winner which was statistically insignificant, see Figure 7.
For mitosis detection, our method was also ranked 2nd, this time with a
significantly larger margin to the 1st place that relied on deep convolutional
neural networks. Compared to conventional visual recognition methods,
though, shape index histograms showed superior performance. The results
from both competitions are shown in Figure 8. In general, we consider
the performance of shape index histograms impressive compared to the
simplicity of the method compared to the other competition entries that
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Figure 7: Results from the HEp-2 cell classification competition. Our
method is named Vestergaard. Image source: http://nerone.diem.unisa.it/

contest-icip-2013-test.

Figure 8: Results from the mitosis detection competition. Our method is named
DTU. Image source: http://amida13.isi.uu.nl.

combine many feature extractors.

2.5 Contribution: BOVW-based identification of meat
cuts

In this section, we describe a method for identifying individual meat cuts in
images. The related paper is attached in Appendix B:
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Figure 9: Two images of the same pork loin.

– Larsen, A. B. L., Hviid, M. S., Jørgensen, M. E., et al. (2014). “Vision-based
method for tracking meat cuts in slaughterhouses”. In: Meat Science 96.1, pp. 366–
372.

In the food industry, traceability of products is important for public health
concerns. The use of ordinary chip-based tracking is problematic for meat
product because the chips cannot be attached as they may disappear into the
product. We apply visual recognition to the problem of recognizing/identi-
fying images of meat cuts, thereby establishing traceability non-intrusively.
For this purpose, we have constructed a dataset of 211 pork loins for which
we have taken two images a day apart, see Figure 9 for an example.

To represent the images, we propose to extract BOVW features (Eq. 2.20)
sampled in a 4 × 2 grid along the pork loins. We use gradient orientation
histograms with the DAISY scheme for sampling local gradient histograms
(Tola et al. 2010). Based on the feature descriptions, we simply match up
pork loins based on the χ2 distance between their BOVW histograms.

Our results show that the BOVW representation is sufficiently robust
and distinctive to correctly match up all 211 pork loins, even pork loins that
a mistreated altering their visual appearance.
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3 Learned image representations

This part of the thesis presents an alternative approach to traditional visual
recognition pipelines where machine learning is applied on top of hand-
engineered features. In the feature learning approach, the learning signal
is propagated all the way through to the input pixels which allows the
intermediate representations to adjust according to the given task. Con-
ceptually, feature learning yields a more unified pipeline since the feature
transformations become part of the machine learning objective.

The paradigm shift towards learning features is caused by recent ad-
vances in machine learning under the name of deep learning (LeCun et al.
2015; Schmidhuber 2015). The idea of deep learning is to model high-level
abstractions directly from raw data through multiple layers of transfor-
mations. The assumption underlying this approach is that the layered
representation of the input will correspond to levels of increasing abstrac-
tion. Because the layers build on each other, the upper layers can learn
higher-level concepts expressed in terms of lower-level concepts from the
previous layer. Ideally, we want the learned representation to be disentangled
meaning that concepts are expressed in terms of lower-level concepts in
a hierarchical manner (Bengio et al. 2013). E.g. we want a face feature to
be expressed from features corresponding to eyes, nose and mouth, not in
terms of edge structures.

In recent years, the deep paradigm for building machine learning sys-
tems have shown an impressive range of results. Thanks to the availability
of large datasets and more processing power, neural networks have shown
that highly expressive models can successfully be trained to disentangle
meaningful structure in complex data distributions. In the following, we
will go through the basics of deep learning for images and discuss a promis-
ing direction for deep unsupervised models that may allow us to learn good
representations without the need for large amounts of labeled data.
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3.1 Neural networks

We can think of neural networks as a function approximators. Thus, we
represent a neural network as function f with input x and parameters θ:

f (x; θ) (3.1)

The universal approximation theorem (Hornik 1991) states that a multi-
layer feedforward neural network can approximate any function f ∶Rd → R.
While this is not a new result, only the recent wave of deep neural networks
have begun living up to the theory. Arguably, being able to learn arbitrary
functions from data is one of the most important messages of the deep
learning era. In feedforward neural networks, f typically consists of n
hidden layers with the sequential composition

f (x; θ) = h(n) (. . . h(2) (h(1) (x; θ(1)) ; θ(2)) . . . ; θ(n)) . (3.2)

In the following, we may omit the parameters in notation for brevity. The
classic implementation of these network layers is fully-connected meaning
that each output unit u of a layer is computed from a weighted sum of all
its input units plus a bias term:

u = act (w ⋅ x + b) , x ∈ Rd , w ∈ Rd (3.3)

A pointwise activation function act, e.g. tanh, allows the layer to perform
a nonlinear stretch which increases the expressiveness (Cybenko 1989).
In fact without the nonlinearity, we could collapse the sequential linear
operations to a single linear operation. When a layer has multiple outputs,
the dot product becomes a matrix multiplication which we plug in to the
formulation of multi-layer neural networks:

h(0)(x) = x (3.4)

h(l) (x; θ(l)) = act (W(l)h(l−1)(x) + b(l)) , l = 1, . . . , n , (3.5)

where θ(l) = {W(l), b(l)} are the layer-wise parameters. Figure 10 depicts
this architecture.

The goal of neural network is to learn the function mapping f from given
example pairs x , y. Training the network consists of optimizing the network
parameters θ wrt. some loss function L between the predicted output and
the real output. For example, we can choose the squared Euclidean distance:

L(y, ŷ) = ∥y − ŷ∥2 (3.6)

Optimization is usually limited to first-order methods due to the high num-
ber of network parameters. To efficiently compute parameter gradients,
we use the backpropagation algorithm (Rumelhart et al. 1986) that takes a
dynamic programming approach using the chain rule.
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Figure 10: Vanilla feedforward neural network. The hidden representations come
from the layered composition of f . Black arrows represent connectivity of the
weight matrices W while grey arrows represent connectivity of the bias terms b

3.2 Convolutional neural networks

When the network input is an image, we can exploit its spatial structure by
replacing fully-connected with convolutional layers. Thus, the weights take
the form of convolutional filters. We call this architecture a convolutional
neural network (convnet) as pioneered by Fukushima (1980) and LeCun et al.
(1998). See Figure 11 for a simple comparison between fully-connected
and 1D convolutional connectivity. The 2D convolution operation com-
putes a each pixel u in the output image U as a weighted sum of the local
neighborhood around the corresponding pixel from the input image X.

ui , j = act
⎛
⎝
b +

c
∑
k=1

n′

∑
i′=1

m′

∑
j′=1

wk, i′, j′ ⋅ xk, i+i′, j+ j′
⎞
⎠

(3.7)

U ∈ Rn×m , X ∈ Rc×n×m , W ∈ Rc×n
′
×m′

Here, the filter response is summed over all c input image channels and
n′ ×m′ is the window size of the convolutional filter and n ×m is the size of
the image. To obtain multiple output channels, one has to stack the results
from multiple convolutions. By construction, the operation is translation
equivariant meaning that a translation in the original input followed by
convolution is equivalent to a convolution followed by a translation. In
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Figure 11: Full connectivity versus 1D convolutional connectivity. The convolution
window spans 3 elements. By sliding the windows over the 1D input signal, we
can compute an output with same spatial layout as the input and where output
elements are only connected to neighboring input elements.

relation to the concept of invariance (Eq. 2.1), we define equivariance as

transf(feat(x)) = feat(transf(x)) . (3.8)

This property is especially beneficial in deep architectures because transla-
tion of the input will not change feature representations up in the network
but simply translate them as well allowing subsequent layers to also exploit
the spatial structure. Comparing convolutional to full connectivity, con-
volution causes a substantial reduction in the number of parameters since
the weights only span a neighborhood. The fewer parameters means that
the convolutional layers have lower capacity making them less prone to
overfitting.

Another important component in convnets is pooling/subsampling.
Images are high-dimensional and not really suitable for taking decisions at
an abstract level. Therefore, we subsample by a factor s along the spatial
dimensions of the image to reduce dimensionality. The subsampling is
usually preceded by a pooling function to aggregate features locally, e.g. by
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Figure 12: 2D convnet taking a 32 × 32 image with 3 color channels as input.
Convnets are usually designed to such that upper layers trade off spatial resolution
for features.

taking the average or the maximum value in a n′ ×m′ pixel neighborhood:

avg.: uk, i , j = 1
n′m′

n′

∑
i′=1

m′

∑
j′=1

xk, i+i′, j+ j′ (3.9)

max: uk, i , j = max
i′∈{1, ..., n′},
j′∈{1, ...,m′}

xk, is+i′, js+ j′ (3.10)

U ∈ Rc×n×m , X ∈ Rc×n×m ,

Note that the aggregation is performed channel-wise. Pooling is an im-
portant part of convnets because we loose the exact spatial origins of the
features thereby causing invariance to small image translations.

In Figure 12, we show a convnet with two consecutive blocks of convo-
lution and pooling/subsampling. The last step of the convnet is a flattening
operation in which we simply bring the image structure on a vector form
allowing it to be processed further in a fully-connected manner.

In terms of image representation, convnets enforce a hierarchical feature
disentangling in the network because of the limited spatial support of the
weights. E.g. at a low level we may learn features corresponding to small
objects such as an eye because the weights cannot span a larger area. At a
higher level, the convolutional weights span a larger area and can begin to
capture larger objects in terms of the learned underlying features, e.g. that a
face is constructed from eyes and a mouth.

3.3 Encoder-decoder networks

By construction, neural networks lend themselves to supervised learning as
they require both an input and a target output to produce the error signal
required for training. However, by creatively combining neural network
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Figure 13: Overview of a 2D convolutional autoencoder.

functions and devising alternative targets it is possible to create a meaningful
error signal without the use of supervised information. While the networks
are not trained towards solving a particular task, this form of unsupervised
training often serves the purpose of feature learning. That is, learning features
that may be useful in other contexts.

A popular architecture for unsupervised learning is the autoencoder
(Bourlard et al. 1988). The autoencoder takes an input x and encodes it
using a neural network enc to a low-dimensional representation z. We then
employ a second neural network dec to decode z and reconstruct the original
input as x̃:

z = enc(x; θenc) , x̃ = dec(z; θdec) (3.11)

We train this setup by optimizing the parameters of both networks according
to a chosen loss function measuring the discrepancy between the input
and its reconstruction, e.g. the Eucliean distance (Eq. 3.6). Because the
latent space is low-dimensional compared to the input, the z representation
becomes a bottleneck forcing the encoder network to disentangle features to
represent them in a compact manner.

The decoder network architecture defies the traditional view on neu-
ral networks as functions that condense high-dimensional inputs to low-
dimensional outputs. For many years, decoder networks have mainly been
fully-connected architectures capable of generating small images of digits.
Recent convnet-based decoders, however, have convincingly shown capa-
ble of producing high-dimensional structured outputs like natural images
(Dosovitskiy et al. 2015; Kulkarni et al. 2015; Larsen, Sønderby, et al. 2016;
Radford et al. 2015). The architecture of a convnet decoder is constructed
inversely to the encoder in order to dilute the high-level information back
to the image space, see Figure 13 for a depiction.

Lately, more general forms of encoder-decoder architectures have be-
come popular across many data domains. Instead of reconstructing an
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input, they exploit the context in which the input occurs as supervisory
signal during training. For words or sentences as input the decoder tries to
predict preceding/succeeding text (Kiros et al. 2015; Mikolov et al. 2013).
For images, the context can be spatial (Doersch et al. 2015). For video, the
decoder performs sequence prediction (Lotter et al. 2016; Mathieu et al.
2015). The encoder-decoder approach has also shown applicability across
different input domains. E.g. for machine translation between different
written languages (Sutskever et al. 2014) or for image captioning (Mao et al.
2014).

Encoder-decoder networks have played an important part among ad-
vances towards unsupervised learning. In the beginning of the deep learning
wave, autoencoders were used to pretrain network parameters to prevent
networks from overfitting during subsequent supervised training. This
went out of fashion as network training techniques improved through better
regularization and more efficient error signal propagation (Glorot et al. 2011;
Srivastava et al. 2014). Though there since have been attempts at unsuper-
vised image feature learning for supervised tasks, the gains of this approach
have not yet been substantial for natural images (Makhzani et al. 2015; Zhao
et al. 2015). In comparison, encoder-decoder architectures have had better
luck for semi-supervised learning driving generative models. In this setup,
the decoder network acts as teacher in the unlabeled case for the discrimina-
tive model. If the discriminative model predicts incorrectly, the generative
model will produce a poor reconstruction allowing the discriminative model
to learn from the mistake. This approach has led to substantial performance
improvements on problems with very few labeled examples (Maaløe et al.
2016; Rasmus et al. 2015).

3.4 Contribution: Learned image segmentation for au-
tomatic particle size measurements

In this section, we describe an image segmentation method that relies on a
learned pixel classification. The related paper is attached in Appendix C:

– Larsen, A. B. L., Schultz, L. N., Dahl, A. B., et al. (2016). “Automatic particle size
measurements from a learned image segmentation”. In: submitted.

The goal is to segment images of calcite particles in scanning electron mi-
croscopy (SEM) images in order to measure the particle sizes for further
analysis. Because the particles agglomerate and are difficult to separate, the
measuring task is performed manually. We suggest that the user instead
annotates a small training image from which we can learn a pixel-wise
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Figure 14: Image of calcite particles with annotations for learning a pixel classifier.
In the right image, the three colors represent the classes: crystal (green), border
(red) and background (blue). For simplicity, we show only a single class per pixel,
though, we allow pixels belonging to multiple classes.

classifier. The annotation assigns the class labels particle, particle border and
background for each pixel, see Figure 14. We then learn a feedforward convnet
to predict class probabilities for all pixels. Using the probability images, the
segmentation task can be solved using simple image processing techniques.

Like it has been the case for feature engineering, the devil is in the
details for feature learning. Initially, we cast the prediction problem as
ordinary multi-class classification where each pixel could only belong to
one class. However, this is not ideal because pixels on the border between
particles are also particle pixels. Instead, we let the network predict separate
binary classification tasks which yields a better probability images for the
segmentation task.

3.5 Contribution: Autoencoding beyond pixels using
a learned similarity measure

In this section, we present an extension of the autoencoder framework
addressing the issues of element-wise similarity measures for images. The
related paper is attached in Appendix D:

– Larsen, A. B. L., Sønderby, S. K., Larochelle, H., et al. (2016). “Autoencoding
beyond pixels using a learned similarity metric”. In: Proceedings of the 33rd
International Conference on Machine Learning (ICML).

We argue against element-wise loss functions that are usually employed
when training encoder-decoder architectures for images. The loss does
not reflect the properties of visual perception, e.g. by being sensitive to
translations, which causes decoder networks to generate unnatural and
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Figure 15: Autoencoder reconstructions of face images. The VAE model is trained
with ordinary pixel-wise measures. The VAE/GAN model is trained with feature-
wise similarity measures which allows it to generate sharp and more natural-
looking image structures.

overly smoothed images. To go beyond element-wise measures, we propose
to use a learned feature representation of the images instead. This idea is
inspired by the recent findings regarding convnet feature representations for
images. Notably, Gatys et al. (2015) have demonstrated impressive results
by combining two images in terms of their convnet feature representation
to form a third image combining subject and style from the inputs.

To implement our idea, we combine a variational autoencoder (VAE)
(Kingma et al. 2014; Rezende et al. 2014) with a generative adversarial net-
work (GAN) (Goodfellow et al. 2014) by letting their decoder/generator
networks share parameters. We train the two models together and express
the log-likelihood (the reconstruction error) of the VAE using a feature
representation of the GAN discriminator.

We train our method on a dataset of face images (Liu et al. 2015) and
show that the generated images have higher visual fidelity and are capable
of better imitating dataset samples as shown in Figure 15. Moreover, high-
level facial features like glasses or bangs are truly disentangled in the latent
representation z of the autoencoder as we can express these using simple
vector arithmetic in z space.
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4 Discussion and conclusion

This thesis places itself between two different approaches to representing
images for visual recognition, namely engineering versus learning. In the
following, we compare the two from a more general perspective.

Traditional features for computer vision are based on low-level image
structures often extracted using hand-crafted convolutional filters. These
filters usually contain edges or blobs which have also been shown to exist
as visual stimuli in nature (Hubel et al. 1962; Marĉelja 1980; Young 1987).
Interestingly, the same structures occur in the first layers of convnets when
training on large natural image datasets like ImageNet (Russakovsky et al.
2015). This may suggest that the first levels of visual perception in nature
are the result of a similar optimization problem. See Figure 16 where we
show hand-engineered filters (Leung et al. 2001) in comparison with learned
filters (Krizhevsky et al. 2012).

On top of low-level image structure, the two approaches start diverging.
For hand-crafted feature descriptions, we typically summarize feature re-
sponses locally in histograms and sample the histograms at a lower spatial
resolution. Like pooling in convnets, this introduces robustness towards
translation and reduces the feature dimensionality. Moreover, hand-crafted
features are built with robustness towards image rotations which can eas-
ily be achieved for e.g. gradient orientation histograms by smoothing bin
contributions. We can build similar properties with convnets if we apply
convolutional filters rotated at different angles followed by a pooling opera-
tion over the rotated feature responses (Cohen et al. 2016). For this approach

Figure 16: Hand-crafted convolutional filters (left) versus learned convolutional fil-
ters (right). Image sources: http://www.robots.ox.ac.uk/~vgg/research/texclass/
filters.html and https://github.com/akrizhevsky/cuda-convnet2.
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to be tractable, however, efficient parallel implementations are required
which is a nontrivial task. Explicit rotation invariance/equivariance has
not yet been shown to be worthwhile for natural images indicating that
convnets are already capable of learning some robustness during training.
In fact, robustness towards small rotations is implicitly modeled in most
dataset augmentation schemes (Hauberg et al. 2016; Simard et al. 1992).

Hand-engineered features are often criticized for being hand-engineered.
That is, humans have made qualified decision about feature extraction
parameters (e.g. the scales α, β, σ from the locally orderless image represen-
tation). To some extent, the same criticism also applies to neural networks
and especially convnets that have plenty of hyperparameters mostly due to
the many architectural choices that go into designing an efficient network. In
fact, the explosion of architectural tweaks and alternative layer formulations
in recent deep learning literature is reminiscent of the feature description
literature following the popularization of SIFT. E.g. He et al. (2015), Jarrett
et al. (2009), Springenberg et al. (2014), Szegedy et al. (2015), Urban et al.
(2016), and Zagoruyko et al. (2016) versus Bay et al. (2008), Dalal et al. (2005),
Larsen et al. (2012), Mikolajczyk et al. (2005), and Tola et al. (2010). That
said, the choice of image structure captured in hand-crafted features is fixed
compared to the structure that convnets learn.

In terms of feature capacity/complexity, the continuing performance
improvements using deep convnet representations (Russakovsky et al. 2015)
leave little doubt that traditional computer vision features are no longer
competitive for describing images structures much beyond the texture level.
Hand-engineering simply does not scale to abstract concept description
because we cannot describe the variability of object appearances in a mean-
ingful way. For example describing the appearance of a person with a
standing posture is straightforward. But when we have to take into account
the variation caused by lighting, viewpoint, changing postures, occlusion,
etc., the appearance variations grow exponentially. In comparison, convnets
have been shown to learn robust high-level object detectors (e.g. faces) as
part of their intermediate feature representation (Yosinski et al. 2015). This
is particularly intriguing since we are not modeling any prior knowledge
about the visual variations of objects which is often the case for traditional
image features.

Today, one of the biggest caveats of deep learning is the need for large
quantities of labeled training data in order learn general object representa-
tions and avoid overfitting. Unfortunately, labeled datasets are expensive
to construct which prohibits deep learning from being applied to a large
number of visual recognition problems, especially in many research do-
mains where the amount of data is also scarce. While transfer learning has
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shown to works surprisingly well for convnet features (Yosinski et al. 2014),
it cannot be applied across widely different image domains. In this light, the
recent progress of deep unsupervised learning is of great importance with
the prospects of facilitating representations learning in many application
areas where feature engineering is still king.
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Abstract—We present a new method for automatic classifica-
tion of indirect immunoflourescence images of HEp-2 cells into dif-
ferent staining pattern classes. Our method is based on a new tex-
ture measure called shape index histograms that captures second-
order image structure at multiple scales. Moreover, we introduce
a spatial decomposition scheme which is radially symmetric and
suitable for cell images. The spatial decomposition is performed
using donut-shaped pooling regions of varying sizes when gath-
ering histogram contributions.We evaluate our method using both
the ICIP 2013 and the ICPR 2012 competition datasets. Our results
show that shape index histograms are superior to other popular
texture descriptors for HEp-2 cell classification. Moreover, when
comparing to other automated systems for HEp-2 cell classifica-
tion we show that shape index histograms are very competitive;
especially considering the relatively low complexity of the method.

Index Terms—Cell classification, feature histograms, indirect
immunofluorescence, shape index, spatial pooling, texture de-
scription.

I. INTRODUCTION

I NDIRECT immunofluorescence (IFF) of Human Epithelial
Cells type 2 (HEp-2 cells) is a popular technique for diag-

nosing autoimmune diseases where the human defense mecha-
nism erroneously produces antibodies against its own antigens.
The test is carried out by searching for the presence of anti-
bodies in a patient’s blood serum: a serum sample is incubated
with HEp-2 cells such that antibodies will bind to the antigens
on the cells. Moreover, a fluorescent tag that binds to the anti-
bodies is added to make them visible under a fluorescence mi-
croscope. The cell staining patterns are indicative for the type of
autoimmune disease. The recognition of these patterns is a typ-
ical medical image analysis problem where reliable automation
is the key to an efficient diagnosis. For a more thorough moti-
vation and description of the problem, we refer the reader to the
overview presented in [1].
In this work, we seek to develop an automatic method for

classifying staining patterns of HEp-2 cell IIF images. We eval-
uate our method on the dataset from the Competition on Cells
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Fig. 1. Examples of the six different staining pattern classes. In general, we
have good inter-class variation among the classes. Intra-class variation, how-
ever, may give rise to cases of doubt; e.g., the third speckled cell that looks
similar the Centromere cells.

Classification by Fluorescent Image Analysis at ICIP 2013.1

From the dataset, we are given 13 596 categorized cell images
of 83 patients. Each cell belongs to one of the six classes:
• centromere, 2741 samples;
• golgi, 724 samples;
• homogeneous, 2494 samples;
• nucleolar, 2598 samples;
• nuclear membrane (NuMem), 2208 samples;
• speckled, 2831 samples.

Examples from each class are shown in Fig. 1. We see that the
classification problem is largely a texture classification problem
as the cell images contain little spatial structure but rather tex-
ture patterns.
The novelty in our classification method consists of a texture

descriptor based on second-order image structure captured by
the shape index [2], [3].We summarize the statistics of the shape
index in histograms using a new pooling scheme consisting of
concentric donut-shaped rings centered on the cell. This pooling
scheme allows for a rotation invariant spatial decomposition of
the cell image. The novelty of our method is in the feature de-
scription part of the classification pipeline, and hence, this ar-

1Competition website and dataset available at http://nerone.diiie.unisa.it/con-
test-icip-2013/index.shtml

0278-0062 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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ticle will not focus on the classifier built on top of the image
features.
Our method has been evaluated at the ICIP 2013 competi-

tion and got the second place just 0.11% below the winner (the
accuracy scores were 83.54% and 83.65%, respectively). Our
method received the title merit winner as it was the top per-
former in most classes.

A. Related Work

Several methods have been proposed to perform staining pat-
tern classification. At ICPR 2012, the first competition in the
field was organized with a total of 28 teams participating [1], [4].
We categorize the different classification methods into the fol-
lowing two approaches. One approach is the popular bag of vi-
sual words (BoVW) pipeline where each method customize one
or more of the pipeline stages. 1) Spatial decomposition (using
cell boundary information [5], image intensities [6]). 2) Local
feature description (gradient histograms [6], sparse coding [5],
covariance of Gabor features, linear projections[7]). 3) Feature
encoding (k-means, Fisher tensors [8]). 4) Classification (linear/
kernel/multi-kernel support vector machines). The second ap-
proach skips the visual word encoding and train classifiers di-
rectly on a broad range of image features (gray-level co-oc-
currence matrix (GLCM) [9] or local binary patterns (LBP)
[10], scale-invariant feature transform (SIFT) [11]) [12]–[15].
Among thesemethods, the top performer of ICPR 2012 employs
an extension of LBPs where the spatial relations among adja-
cent LBPs are encoded in a rotation invariant manner [16]. Our
method belongs to the second approach as we apply a classifier
directly on top of the shape index features.
The shape index is a curvature measure that maps

second-order differential structure to a real-valued index.
In recent years it has gained popularity for range imaging
where it is used as a robust surface descriptor, typically for
visual recognition [17], [18]. In some cases, the shape index
is summarized in histograms [19]–[21] following the trend of
the popular local image features like SIFT and histograms of
oriented gradients (HOG) [22]. A related approach to texture
description is basic image features (BIF) [23] based on first-
and second-order differential structure. This descriptor captures
multi-scale differential structure by summarizing the distribu-
tion of quantized image structure in a histogram. Because the
histogram captures the joint distribution over image structure
at multiple scales, it becomes high dimensional (1296 dims)
and sparse.
Spatial pooling schemes for histogram-based local feature

descriptors exist in different flavors. The traditional 4 4
grid decomposition of SIFT with spatial interpolation across
adjacent histograms is by far the most popular. Alternatives
include GLOH [24] with a log-polar grid and DAISY [25] with
Gaussian windows sampled in circles with increasing radii.
None of these pooling schemes are rotation invariant since
their goal is to provide a distinct image structure description.
For feature description tasks that require rotation invariance, a
dominant orientation of the local image structure is typically
detected and the description rotated accordingly. However, this
is not possible for cell classification because the cell images
have no distinct orientation. Therefore, we seek a spatial de-

composition that is also rotation invariant. Our donut-shaped
rings are similar to the ones proposed in the RIFT descriptor
[26]. Note that the donuts do not require information about
the HEp-2 cell borders like the spatial decomposition schemes
presented in [5].

B. Contributions

In this paper, we do the following.
• Introduce shape index histograms for texture description.
• Propose a rotation-invariant spatial pooling scheme for the
shape index histograms.

• Perform a comparative evaluation of our texture descriptor
against other popular texture measures using the ICIP 2013
dataset.

• Show that: 1) shape index histograms are very effective
at discriminating between the HEp-2 cell staining patterns
compared to other popular texture measures; 2) the spatial
decomposition increases the discriminative performance.

II. SHAPE INDEX HISTOGRAMS

The shape index is an image geometry measure proposed by
Koenderink and van Doorn [2]. It captures second-order image
structure in a continuous interval which allows us to summarize
the distribution of curvatures in a histogram. In the following
we shall first see how the shape index is calculated, then howwe
can represent shape index statistics. Note that we have made our
implementation of shape index histograms available online.2

A. Differential Image Structure

We formulate the shape index using the Gaussian scale-space
framework [27] where the linear scale-space of a 2-D image

, defined by

(1)

Convolution is denoted by and is the Gaussian aperture
function

(2)

where (also known as the inner scale parameter) defines the
width of the Gaussian kernel. The semicolon in indi-
cates that the convolution is performed over the spatial coordi-
nates while the arguments following the semicolon are param-
eters of the observation.
We compute the differential structure of the image from the

normalized scale space derivatives

(3)

where and indicate the order of the differential along the
and axis, respectively. For notational convenience we omit

the arguments and substitute with simply .
Thus, is implicitly assumed to be computed at some scale
and location .

2Python implementation available at http://compute.dtu.dk/abll/
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Fig. 2. Second-order curvatures along the shape index interval .
We see cup, rut, saddle, ridge, and cap shapes. Shapes are aligned vertically and
have the same curvedness.

Fig. 3. Saddle shape with increasing curvedness.

B. The Shape Index

The shape index is derived from the Hessian matrix that
captures the second-order curvature at scale

(4)

The Hessianmatrix is square and symmetric allowing us to com-
pute the pair of real eigenvalues and

(5)

and are the principal curvatures. They describe the
strength of the curvature along the extremal directions where
the curvatures are minimal and maximal, respectively. Note that
and are invariant to the orientation of the curvature. The

eigenvectors of capture the extremal directions. However,
we discard these as we want our texture measure to be rotation
invariant. The shape index is defined as

(6)

The shape index has the attractive property that it maps all
second-order shapes onto a continuous interval providing a
smooth and intuitive transition between the shapes, see Fig. 2.
In addition to the shape index a measure of curvedness is
defined

(7)

The curvedness indicates the strength of the shape described by
the shape index. A small means that the shape is almost flat
and not very distinct while a large means that the shape is very
prominent, see Fig. 3 for an example.
An alternative formulation of and that skips the explicit

calculation of the Hessian eigenvalues is given by

(8)

(9)

Fig. 4. Diagram of the donut weight calculations. Black circle represents the
mode of the distribution. Gray circles indicate the standard deviation .

Fig. 5. Different donuts with increasing and values. Note that we have set
in the first donut which results in a Gaussian window.

As we shall see shortly, the measures and allow for a simple
yet powerful texture description. For readers familiar with his-
tograms of gradient orientations (e.g., as used in SIFT) we note
that can be thought of as the gradient orientation and as the
gradient magnitude which is used for weighting the histogram
contribution of the gradient orientation.
To construct multi-scale shape index responses, we propose

to select different scales such that

(10)

is the smallest shape index scale and is the ratio
between and . Typically, as this is the natural
step size in order to utilize efficient factor 2 subsampling.

C. Spatial Decomposition

Inspired by the success of feature descriptors like SIFT, we
propose to represent an image as a concatenation of histograms
gathered from a spatial decomposition of the image. However,
we cannot split a cell image in e.g., a 4 4 grid like SIFT, be-
cause the cells have no fixed orientation. Instead, we propose an
alternative spatial pooling scheme using overlapping concentric
donut-shaped rings. A donut centered around the cell center
is calculated from

(11)

The parameter determines the width of the Gaussian fall-off
from the ring radius given by . The idea is to use a donut for
spatial weighting when gathering bin contributions for a his-
togram. This allows us to give large weights to shapes at dis-
tance to the center. To illustrate the parameters we show a
diagram of the donut calculation in Fig. 4. Moreover, in Fig. 5
we show examples of different donuts. We argue that the pro-
posed spatial pooling scheme is well-suited for the cell staining
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patterns (shown in Fig. 1), because the different texture pat-
terns occur approximately at the same radius in all cell images.
Thus, the donut shapes allow for spatial decomposition without
committing to a specific cell orientation. Note that this spa-
tial decomposition is a result of using different spatial weights
when gathering histogram contributions. In comparison, SIFT
and HOG subdivide the image and generate a histogram per
sub-image.

D. Histogram Construction

We generate shape index histograms by choosing a set of
bin centers uniformly distributed along the shape
index interval . For a bin centered at , we calcu-
late its total contributions from a weighted sum using both the
spatial donut weighting and the curvedness measure ,

(12)

We apply a Gaussian window in the shape index range (aka. the
tonal range) such that a shape index may contribute to neigh-
boring bins. The tonal scale parameter adjusts this smoothing.
We also perform a normalization of the bin contributions rel-
ative to the total spatial weight of the donut. This makes his-
tograms with spatial pooling from small donuts to have the same
influence as histograms with spatial pooling from large donuts.
The reader familiar with Koenderink’s locally orderless

image formulation [28] should notice that the donuts serve as
spatial apertures from which feature response are gathered.
At this point, it should be clear that (12) allows us to construct

histograms capturing image structure at different scales and
with different spatial pooling ( and ). Thus, we can construct
a feature vector by concatenating histograms with different pa-
rameters such that image structure at multiple scales is captured
with different spatial decompositions.
As the final step we normalize the feature vector. That is, we

normalize across all histograms in order to make the description
robust to image contrast variations among the cell images. We
experimented with different normalization schemes that try to
diminish the dominance of large bin values in order to empha-
size the influence of smaller bin values get higher influence. For
example, the normalization proposed by Lowe for SIFT ( nor-
malization followed by clipping followed by normalization)
or the square root normalization described in [29] ( normal-
ization followed by element-wise square rooting followed by
normalization). However, we have not found significant perfor-
mance gains from any of these techniques, and we therefore use
plain normalization.

III. EXPERIMENTS

In this section, we investigate the potential of shape index his-
tograms for HEp-2 cell classification. For the first part we use
the ICIP 2013 competition dataset for our experiments (only the
training set since the test set has not been published). For the
last part we evaluate shape index histograms on the ICPR 2012
dataset to compare our method with other HEp-2 cell classifica-
tion methods.

A. Comparison With Other Texture Measures

First, we want to compare shape index histograms with other
popular texture measures. For simplicity, we perform this ex-
periment without any spatial decomposition. That is, we regard
the cell classification task a pure texture classification problem
with the cell image being the texture. For the comparison we
have included the following textures descriptors.
• The GLCM properties contrast, dissimilarity, homo-
geneity, energy, correlation, and angular second moment.
We calculate features from multiple GLCMs with different
offsets.

• Local binary patterns (LBP). We use the rotation invariant
uniform LBP and extract multiple histograms using LBPs
with different radii.

• Basic image features (BIF) extracted over different scales.
Because all cell images in the dataset are at the same scale,
we disregard the scale-invariant similarity measure pro-
posed in the original paper. Instead we use the RBF kernel
of the SVM classifier.

• Shape index histograms (SIH) extracted at multiple scales.
We perform the classification using an RBF kernel SVM with
a fixed penalty parameter and a kernel coefficient

where is the dimensionality of the feature
vector. Multi-class support is achieved with a one versus one
comparison scheme.We argue that thisfixed classifier configura-
tion is suitable for our comparison since the focus of this paper is
on feature description and because our (nonshown) experiments
indicate that only insignificant performance improvements can
be achieved from adjusting these parameters. We assess clas-
sification performance from a leave-one-out cross-validation
study across all 83 patients in the dataset. Because the patients
have different numbers of cells, we measure performance as
the weighted average over classification accuracies for the 83
patients where the weights are the number of cells per patient. In
an attempt to make the comparison as unbiased as possible, we
optimize the parameters for each texturemeasure usingBayesian
optimization [30] with the framework provided in [31]. For each
texture measure, we let the framework perform around 150
function evaluations before selecting the optimal configuration.
To avoid selecting an accidentally good parameter setting among
the 150 parameter configurations that overfits to the dataset, we
perform the Bayesian optimization using cross-validation on
40 randomly selected patients.
For the GLCM features we have determined the number of

grey-scale levels (135), the different offsets used (1, 3, , 17),
and the number of equally spaced angles (3). This gives a 180-
dimensional feature vector. For the LBP we have determined
the radii (2, 4, , 20) and the number of angular samples (24).
This gives a 275-dimensional feature vector. For the BIF we
have determined the base scale (1.2), the number of scales (4),
the scale ratio (2.3), and the noise threshold (0). Note that these
parameters are fairly close to the ones proposed in the original
paper. The BIF feature vector has 1296 elements. For the SIH
we have determined the number of scale , the base
scale , scale ratio , the number of
bins per histogram , and the tonal scale .
The SIH feature vector has dimensionality .
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Fig. 6. Comparison of texture descriptors. Boxplot statistics are gathered from
the cross-validation across 83 patients. Boxplot is generated using weighted per-
centiles with the weights being equal to the number of cells per patient. Black
square indicates the weighted average accuracy. For the four texture measures
the weighted average accuracies are 0.66, 0.66, 0.72, 0.75.

Fig. 7. Performance comparison of different donut configurations. Weighted
average accuracies are 0.75, 0.78, 0.79, 0.80, 0.80.

The results are shown in Fig. 6. We see that the GLCM prop-
erties and the LBP yield similar accuracies around 0.66 while
BIF scores around 0.72. Compared to these texture measures,
SIH offers an improvement with an accuracy of 0.75. Moreover,
the median accuracy of SIH is clearly higher than the other tex-
ture measures.

B. Spatial Decomposition

In the next experiment, we investigate how to augment the
shape index histograms using our donut-shaped spatial pooling
scheme. To minimize the number of free parameters, we use the
SIH configuration from earlier and adjust only the donut param-
eters.We compare different spatial decompositions by fixing the
number of donuts to ,2,3,4 and optimizing the radii and
widths for each choice of . We perform Bayesian optimiza-
tion using cross-validation similar to the previous experiment.
Thus, the dimensionality of the feature vectors are .
The performance of the feature descriptors is shown in Fig. 7.

Moreover, Fig. 8 shows the optimal donut configuration for the
different . Interestingly, we see both blobs and donuts among
the donut configurations. There is a clear improvement by per-
forming the spatial decomposition and it seems that the im-
provement converges at . We therefore choose ,

, as the optimal con-
figuration yielding a weighted average accuracy of 0.80. We
will refer to this configuration as . The performance

Fig. 8. Donut layouts for different choices of . denotes the final
feature descriptor.

improvement from SIH to is significantly different at
a 0.0038 significance level.3

C. Final Feature Descriptor

In our last experiment, we wish to find the optimal configu-
ration of our feature description. We optimize over the joint pa-
rameter space of both shape index histograms and donuts. We
choose since this has shown a good trade-off between
descriptor dimensionality and performance. Moreover, as the
ICIP 2013 dataset provide more information per cell than just
the image, we include the following in the feature vector.
• A single integer encoding the fluorescent intensity level of
the cell image (positive or intermediate).

• Image features extracted from the binary cell mask (in-
cluding area, eccentricity, major and minor axis length,
perimeter, and different image moments). This adds 44 el-
ements to the feature vector.

We have arrived at the following shape index parameters:
, , , , . Fig. 8 shows
the optimized donut layout. This gives a total feature dimen-
sionality of We call this descriptor
variant .
On the ICIP 2013 dataset we achieve a weighted average

accuracy of 0.82 which is a small improvement over
considering the extra information we are utilizing. This per-
formance improvement is significantly different at a 0.0757
significance level. In Fig. 9 we show the classification perfor-
mance for the different classes in the dataset. The Golgi and
Speckled classes stand out as difficult classes with average
accuracies lower than 0.82. We note in this connection that part

3Our hypothesis test for determining if descriptor A has greater performance
than descriptor B is based on bootstrapping [32]. We generate 10 000 bootstrap
samples. Each sample is obtained by drawing 83 patients with replacement and
computing where is descriptor A’s weighted mean perfor-
mance on the drawn patients. That is, our bootstrap estimator is the difference
between the two weighted mean performances. We wish to test
versus . We report the significance level as the bootstrap esti-
mated -value .
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Fig. 9. Performance of SIH+ for the entire dataset and for the different
staining patterns. Weighted average accuracy for the dataset is 0.82.

Fig. 10. Confusion matrix for . Rows are actual (true) labels.
Columns are predicted labels.

of the explanation for the Golgi class performance may be that
it contains cells from only four patients. Thus, we cannot expect
the class variance to be represented by three patients when
doing cross-validation. In Fig. 10 we show the confusion matrix
among the different classes. In Fig. 11 we show examples of
cell classifications. The misclassifications clearly illustrate the
inter-class overlap, e.g., the confusion between nucleolar and
homogeneous. Interestingly, the classification examples reveal
which samples from class X that try to imitate class Y. For
example, the Speckled cell patterns do a good job imitating the
Centromere class. We also see a large intra-class variation by
comparing the cell images in the same row, i.e., from the same
class.

D. Classification Performance on the ICPR 2012 Dataset

To compare with other HEp-2 cell classification methods in
the literature we have evaluated our method on the ICPR 2012
dataset [1]. Compared to the ICIP 2013 dataset, this dataset is
smaller containing 1457 cells from 28 image slides. Moreover,
the image acquisition setup differs and the staining classes
are different (centromere, coarse speckled, cytoplasmic, fine
speckled, homogeneous and nucleolar).
We optimize our method parameters using Bayesian opti-

mization (as in Section III-A) with leave-one-out cross-valida-
tion over the 14 image slides in the training set. In Fig. 12 we
list our classification performance on the test set alongside other
methods.

IV. DISCUSSION

As shown in the first part of our experiments, shape index
histograms are superior to other popular texture descriptors for
indirect immunoflourescence image analysis. We speculate that

the second-order structure captured by the shape index is ideal
for the blob-like structures in the staining patterns. Another at-
tractive property of shape index histograms is that its param-
eters (shape scale) and (pooling scale) are very intuitive
compared to LBP or GLCM where one has to specify pixel off-
sets and angular spacing. However, like the other histogram-
based texture measures SIH also requires setting the number of
bins which typically is determined in an ad hoc-manner. Note
that we could have chosen to formulate the shape index his-
tograms using fewer parameters. For example, we could have
disregarded the smoothing along the tonal range and just let each
shape index contribute to its nearest bin. According to our (non-
shown) experiments, the change in performance is statistically
insignificant on this dataset. However, this simplification is not
justified because the absence of the parameter is just an im-
plicit parameter choice. Therefore, we have preferedmaking our
formulation as generic as possible.
Our donut pooling scheme adds the radius and the Gaussian

width parameters to the model but offers a significant per-
formance improvement. We believe the donut shapes are able
to perform a meaningful spatial decomposition of the cell be-
cause cells are round and have the different staining patterns
occurring at certain radii. Note that the feature description be-
comes rotation invariant by construction because the donuts are
radially symmetric and because the shape index is based on the
eigenvalues of the Hessian matrix. This contrasts the approach
taken in [15], [16] where LBPs are made rotation invariant by
estimating a canonical orientation and modifying the LBP ac-
cordingly. Moreover, we remark that our pooling scheme is
not available for only shape index histograms since it is pos-
sible to e.g., perform a similar weighting of the contributions to
the GLCM, BIF or LBP histograms. We suspect, however, that
it will be less suitable for high-dimensional histograms (e.g.,
GLCM and BIF), as the donuts decrease the number of bin con-
tributions meaning the histograms may fail to capture the image
feature statistics.
Shape index histograms are comparable to BIF since they are

both based on differential image geometry and therefore capture
similar structures. The difference in the features extracted is that
BIF uses first-, second-, and third-order information while SIH
only relies on second-order information. Our results in favor
of SIH could therefore indicate that the discriminative image
structure between cell staining patterns is mainly second-order
structure. Furthermore, our results also suggest that the joint
multi-scale histogram of BIF can be replaced effectively by the
marginal histograms across feature scales of SIH. This gives
shape index histograms the advantage of having much lower
feature dimensionality (90 versus 1296).
Regarding our performance comparison on the ICPR 2012

dataset we have seen that shape index histograms are competi-
tive with other HEp-2 cell classification methods from the liter-
ature. By performing well on two datasets with different image
acquisition setups, our method has demonstrated robustness to-
wards changes in laboratory setups which are likely to occur
in practice. It should be noted that the two methods that out-
perform shape index histograms are more complex as they rely
on learning a codebook for BOVW [6], [15]; combine multiple
features [15]; and learn a dissimilarity measure of features [15].
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Fig. 11. Classification examples for SIH+ organized in a confusion table. Rows are actual (true) labels. Columns are predicted labels. Cell images are
selected based on their SVM probability estimates [33], such that the cell images that look most like the predicted class are chosen. The off-diagonal elements are
misclassifications, i.e., the least likely misclassifications according to the SVM. Diagonal contains correct classifications. When there are less than four examples
in a table entry it means that we have misclassified less than four images of the row class as the column class.

Fig. 12. Performances comparison on the ICPR 2012 dataset of the top per-
forming methods in the literature.

In comparison, our classification is performed directly in the
shape index histogram feature space (similar to the winner of the
ICPR 2012 competition [1], [16]). That said, we speculate that

the shape index could be well-suited for capturing second-order
image structure as visual words in a BOVW pipeline.
We round of our discussion by remarking that shape index

histograms are very fast to extract. The image derivatives are
computed by convolutions while the shape index and the his-
togram contributions are computed from element-wise opera-
tions. For example, the descriptor takes around 40 ms
to extract from a cell image. In terms of computational com-
plexity, the feature extraction from an image runs in

when performing convolutions in the
Fourier domain.

V. CONCLUSION

In this work, we have developed a new method for auto-
matic classification of HEp-2 cell IIF images. We have used the
scale-space framework to derive shape index histograms for tex-
ture description. The shape index captures second-order image
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structure and is well suited for the blob-like structures promi-
nent in the cell images. We have demonstrated this on the ICIP
2013 competition dataset, where shape index histograms are su-
perior to the other texture measures included in our study. Fur-
thermore, we have proposed a spatial decomposition of the cell
images based on donut shapes. This extension improves the dis-
criminative abilitiy of shape index histograms significantly and
resulted in the title merit winner at the ICIP 2013 competition.
On the ICPR 2012 dataset, shape index histograms show very
competitive performance compared to other HEp-2 cell clas-
sification methods, especially when considering the low com-
plexity of the method.
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Meat traceability is important for linking process and quality parameters from the individual meat cuts back to
the production data from the farmer that produced the animal. Current tracking systems rely on physical tagging,
which is too intrusive for individualmeat cuts in a slaughterhouse environment. In this article, we demonstrate a
computer vision system for recognizing meat cuts at different points along a slaughterhouse production line.
More specifically, we show that 211 pig loins can be identified correctly between two photo sessions. The pig
loins undergo various perturbation scenarios (hanging, rough treatment and incorrect trimming) and ourmeth-
od is able to handle these perturbations gracefully. This study shows that the suggested vision-based approach to
tracking is a promising alternative to the more intrusive methods currently available.
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1. Introduction

In recent years, traceability has become an increasingly important
aspect of the meat industry. For consumers, meat safety and quality is
a persistent concern strengthened by reoccurring food recalls and scan-
dals as well as increased animal welfare awareness (Vanhonacker,
Verbeke, Poucke, & Tuyttens, 2008). In Western markets, this public
concern has lead to legislations and regulations regarding food trace-
ability to ensure quality and safety standards (Trienekens & Zuurbier,
2008). For producers, traceability adds extra value to their end products
(Wang & Li, 2006). Demand for traceability information is on the rise
yielding a competitive advantage to the producers who can deliver bet-
ter guarantees of origin and handling (Buhr, 2003; Carriquiry & Babcock,
2007; Pouliot & Sumner, 2008).

In industrial abattoirs individual meat cuts become hard to trace
after having cut up the carcass. Today most tracking systems are based
on secondary systems like boxes or Christmas trees with RFID technol-
ogy or conveyor belts. These systems offer only batch-level tracking of
meat cuts because the secondary devices cannot be attached to the
products individually.

In this work we propose a new technology for enabling meat trace-
ability of individual meat cuts in slaughterhouse environments. Our ap-
proach is based on modern methods from the field of computer vision
and image processing. Instead of attaching identification information

to an object in order to track it we capture an image of the object and
can identify the same object at a later point by capturing a new image.
That is, we extract a description of an object from its appearance and
use it as identifier for that object. We believe that this approach offers
attractive advantages compared to current technology. While our ex-
periments are limited to tracking pork loins, the method is sufficiently
generic to be applied in other domains where the objects exhibit ade-
quate diversity in appearance like themeat cuts considered in thiswork.

1.1. Related work

Food traceability has been approached from many angles with dif-
ferent applications in mind. This has led to a diverse literature with a
limited agreement on how to implement food traceability. For an over-
view of food traceability literature, we refer to Karlsen, Dreyer, Olsen,
and Elvevoll (2013).

In this article, we focus on a single aspect of traceability in the meat
industry; the technology that enables object tracking along a production
line. In recent literature, the use of RFID tags as underlying food tracking
technology is dominating (Cimino &Marcelloni, 2012; Lefebvre, Castro,
& Lefebvre, 2011; Regattieri, Gamberi, &Manzini, 2007). However, RFID
tagging of meat in a slaughterhouse environment has drawbacks for
mainly one reason: Tags may disappear into the meat product and
turn up on the consumer's plate. This is a very critical point with the
consequence that slaughterhouses avoid tagging meat cuts directly; in-
stead they attach a tag to the device carrying the meat.

Regarding tracking technology in the meat industry, the following
approaches have been suggested. Mousavi, Sarhadi, Fawcett, Bowles,
and York (2005) present a conveyor belt system capable of tracking
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meat cuts in a boning hall. To facilitate the tracking, RFID chips are em-
bedded in carrier hooks for the meat cuts. Fröschle, Gonzales-Barron,
McDonnell, andWard (2009) examine the usability of barcodes printed
on the beak and legs of chickens. This approach does not generalizewell
to othermeat tracking scenarios because it requires themeat product to
have non-edible parts suitable for barcode printing. Arana, Soret, Lasa,
and Alfonso (2002); Suekawa et al. (2010) perform breed identification
of beefs based on DNA analysis, and Tate (2001) investigates the possi-
bility of using DNA analysis for tracing individual meat cuts back to the
original carcass. Our vision-based approach is reminiscent of DNA iden-
tification in theway identification is derived from the object rather than
from a tag attached to the object. However, DNA identification is still a
cumbersome process for a slaughterhouse environment.

Of the three tracking technologies mentioned above, the conveyor
belt system is most representative of current slaughterhouse practice.
Typically, meat cuts are tracked individually or in a batch by attaching
a tag to the container or carrier device. A drawback of this method is
that it is prone to accidents where pieces are lost or exchanged between
carrier devices. Such accidents may happen since the meat cuts cannot
be directly connected to the carrier device at all times. With a vision-
based approach, this scenario will not be a problem since the meat cut
carries identification in its appearance.

For both the food and the non-food industry we have not been able
to find examples of visual recognition methods similar to ours applied
in a tracking/identification setup. Weichert et al. (2010) propose com-
bining RFID trackingwith a vision system that can recognize and decode
2D barcodes. Using cheap cameras they can offer a more continuous
identification and localization of the products and thereby improve
fault detection. Again, this approach is not viable for meat cuts as the
goal is to avoid foreign objects (both barcodes and RFID tags) that can
end up in the product. Therefore, to the best of our knowledge, tracking
from visual recognition of the products directly has not been attempted
before.

1.2. Contributions

In this work we investigate a new technology for enabling traceabil-
ity of individual meat cuts in a slaughterhouse environment. The inves-
tigation extends the work presented by Hviid, Jørgensen, and Dahl
(2011) by scaling up the experiment to 211 pork loins and introducing
nuisance factors to simulate a slaughterhouse environment. We show
that the pork loins can be recognized and identified correctly between
the two photo sessions. These results indicate that current computer vi-
sion methods for object recognition are mature for integration in pro-
duction lines.

2. Experiment setup

The dataset for our experiment is constructed using 211 pig loins.
The pig loins are photographed in two sessions separated by 1 day.
Overnight, the loins are hanging on Christmas trees stored in a chill
room, see Fig. 1.

The photographing setup (see Fig. 2) is the same for both photo ses-
sions.We use the popular and inexpensiveMicrosoft Kinect camera that
captures a depth map along with a standard RGB image of the loin. Ex-
amples of both images are shown in Fig. 3. Next to the camera a fluores-
cent tube is mounted spreading light at a wide angle. The loins are
photographed separately by placing them one by one on a table and
capturing a photo.

A selection of the loins undergoes different perturbation scenarios in
an attempt to simulate slaughterhouse treatment. All perturbations
occur after the first and before the second photo session. The perturba-
tions are:

Rough treatment 19 loins are knocked hard onto a table before the sec-
ond photo session.

Incorrect trimming Pieces of meat and bones are cut off from 18 loins
before the second photo session.

Incorrect hanging 19 loins are stored overnight by hanging them side-
ways on Christmas trees which causes bends.

Fig. 1. Pork loins are stored overnight on Christmas trees between the two photo sessions.

table surface

light source

Kinect camera

Fig. 2. Camera setup. Pork loins are placed on the table and are photographed from above.
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Illumination and orientation changes 37 loins are rotated between
45° and 180° around the optical axis before being
photographed. This creates variations in lighting
because the light falls differently on a rotated ob-
ject. Moreover, the rotated loins serve as a check
to see if our algorithm is invariant to different ob-
ject orientations.

All loins except those subject to incorrect hanging are photographed
normally on day 2 before any perturbations occur. Because some loins
are reused inmultiple perturbation scenarios (e.g. a loin is photographed
at a different orientation and again after a trimming), we cannot perform
a matching on all 211 loins by combining all perturbations. Instead, we
combine each perturbation scenario with the remaining unperturbed
images from day 2 in 4 separate experiments. This means that for the in-
correct hanging scenario we want to match all 211 loins whereas for the
other scenarios we want to match 192 loins.

3. Visual recognition method

The purpose of the visual recognition method is to match the pork
loin images correctly between the two photo sessions. Our recognition
method is divided into 4 steps listed here as an overview.

1. Segmentation. First, we perform a segmentation of the pork loin. That
is, we cut the pork loin out from the background image pixels.

2. Canonization. The segmented pork loin images are then brought to a
canonized form thatminimizes variability from external sources, e.g.
illumination.

3. Description. From the canonized images we generate a description of
the image structure.

4. Matching. Finally, we perform the pork loin matching by comparing
the descriptors from the previous step.

In total, the recognition method takes under 2 s per image in pro-
cessing time on a 2.67 GHz CPU. It should be possible to speed this up
significantly since our method has not been implemented with speed

efficiency as a priority. Note that we have made all implementation de-
tails available online.1

3.1. Segmentation

To separate the loin from the background we use the depth image
provided by the Kinect camera. We know the depth of the table surface
which makes it easy to differentiate between the surface and the meat.
To account for noisy depth data, we employ themax-flow/min-cut graph
cut algorithm to perform segmentation of the depth image (Boykov &
Kolmogorov, 2004). This yields a binary mask specifying which pixels
belong to the loin andwhich pixels belong to the background. The result
of the segmentation algorithm is shown in Fig. 4.

3.2. Canonization

The goal of the canonization step is to bring the pork loin images to a
common form making them invariant to changes in illumination, rota-
tion and size.

Since the pork loin primarily consists of red color nuances we can
discard the colors by converting the image to greyscale without losing
significant information. Moreover, we perform a histogram equalization
to increase the contrast and compensate for differences in lighting.

To ensure the sameorientation for all pork loins, we use the segmen-
tation mask and calculate the image moments of the mask region. The
second-order moments can be used to derive the covariance matrix of
the image region. The dominant orientation of the region is then calcu-
lated from the angles of the covariance matrix eigenvectors. We rotate
the loin such that the dominant orientation is parallel to the x axis,
that is, the loin is orientated horizontally along its broad side. Notice
that this rotation does not consider if the loin is placed upside-down.
We handle this situation by performing a pixel-wise comparison of
a loin image with the average of 20 upright loin images. If a loin is
pixel-wise closer to the upside-down version rather than upright ver-
sion, it should be rotated 180°.

Fig. 3. RGB and depth images of a pork loin as captured by the Kinect camera.

1 Source code available at http://compute.dtu.dk/~abll/meat_recognition.

Fig. 4. Pork loin segmentation. Top image shows the segmentationmask derived from the
depth image (see Fig. 3). Bottom image shows the pork loin cut out using the segmenta-
tion mask.
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Finally, the pork loin images are trimmed to remove the background
border followed by a scaling to 600 × 180 pixels giving all loins the same
dimensions. An example of the canonization is shown in Fig. 5.

3.3. Description

In the image description step we seek to achieve an image repre-
sentation that captures the image structure in a manner suitable for
comparative purposes. E.g., the standard pixel representation is not suit-
able because it is sensitive to object translations.

We employ the popular bag-of-words approach (Prince, 2012) and
perform K-means clustering on image patches extracted from 30 out of
the 211 loin images. The cluster centers yield a finite set of different
image patches (the visual vocabulary). An image can now be described
by extracting numerous image patches and mapping each patch to its
nearest entry (aka. visual word) in the vocabulary and counting the
number of occurrences of each visual word. The bag-of-words image
characterization thus constitutes a histogram over visual words. An
overview of bag-of-words description is shown in Fig. 6.

3.3.1. Feature description
Instead of using raw image patches asmentioned above, we perform

feature description of these patches. Feature description yields a low-
dimensional representation of an image patch that attempts to capture
the image structurewhile being invariant to various image perturbation
factors. A wide selection of feature descriptors exists in the literature
but their performance varies only little for general applications (Dahl,
Aanæs, & Pedersen, 2011; Kaneva, Torralba, & Freeman, 2011). We use
the DAISY descriptor (Tola, Lepetit, & Fua, 2010) as it is formulated for
dense extraction. However, we use our own variation of DAISY since
the original is based on unsigned gradient orientations spanning 180°
(whereas signed orientations span 360°). Unsigned orientations offer
invariance towards more complicated illumination situations where
light areas become dark and vice versa due to surface reflectance prop-
erties. Our scenario is sufficiently constrained allowing us to benefit
from signed orientations.

DAISY follows a popular approach to feature description based on
image gradient orientations summarized in histograms. From an image
I we can extract the x and y directional derivatives,

Lx ¼
∂Gσ

∂x � I ; Ly ¼
∂Gσ

∂y � I ; ð1Þ

by convolving the imagewith a Gaussianwindow G differentiated along
the x and y axis respectively. * denotes convolution and σ adjust the
width of theGaussian kernel, i.e., the scale atwhichwe extract thederiv-
atives.We can then calculate the image gradient orientations θ and their
magnitude m from

θ ¼ arctan 2 Lx; Ly
� �

; m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2x þ L2y

q
: ð2Þ

To describe the gradient orientation statisticswe select a number of bins
N in the angular range. For each angle ai,i = {1,…,N} we calculate the
bin contribution bi using the circular normal distribution to smooth
out contributions among neighbor bins to be invariant towards small ro-
tations. Moreover, we weigh the bin contributions by the gradient mag-
nitude such that small gradients have less influence than large gradients.

bi ¼ exp κ � cos θ−aið Þð Þ∘m ð3Þ

° denotes the element-wise product. κ adjusts the scale of the bin
smoothing in the angular range. To gather bin contributions spatially,
we convolve with a Gaussian window of scale γ.

bγ;i ¼ Gγ � bi ð4Þ

Finally, we assemble a histogram at the spatial location (u,v) from

hγ u; vð Þ ¼ bγ;1 u; vð Þ;…;bγ;N u; vð Þ
h i

: ð5Þ

To perform DAISY description of an image patch, we sample hγ in a
log-polar grid similar to the original formulation. The histogram vectors
are then concatenated and the entire descriptor vector is L1-normalized.
This normalization makes the descriptor invariant to affine illumination
variations.

Feature descriptors like DAISY have become very popular for visual
recognition. They are effective at capturing both texture information
and local image structure while being robust towards various image
perturbations.

3.3.2. Pork loin image representation
The bag-of-words representation disregards all spatial layout of the

extracted image patches. This is good for achieving invariance to object
translations, but not so good for providing a distinctive object descrip-
tion.We reestablish some of the spatial layout information by sampling
multiple bag-of-words histograms at different positions in the image.
More specifically, we generate 8 histograms from the pork loin image
by weighing the different histogram contributions using Gaussian win-
dows placed in a 2 × 4 grid to reflect the oblong shape of a pork loin. See
Fig. 7. The reason for using Gaussian windows to gather bin contribu-
tions is because the smoothed weighting handles object translations
more gracefully leading to a more robust description.

Fig. 5. The result of the canonization step. Top image shows an average of 20 pork loin im-
ages with the same orientation. The average image is used to check if loin images are
placed upside down. Bottom image shows a canonized loin image.

Visual words HistogramFeature descriptiorsImage

Fig. 6. Overview of the description pipeline. From the raw image we perform a dense extraction of local feature descriptors. The feature descriptors are then quantized into visual words.
Finally the occurrences of visual words are summarized in a histogram that becomes the final image description.
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The final description of a pork loin image is the concatenation of the
8 bag-of-words histograms. Our bag-of-words vocabulary consists of
1500 visual words meaning that each histogram can be represented
by a 1500-dimensional vector. Thus, the concatenation of the 8 bag-
of-words histograms yields a 12,000-dimensional image description
vector.

3.4. Matching

We assess the similarity of two pork loin images by calculating
the histogram distance between their two description vectors gener-
ated in the previous step. For every pork loin from day 1 a match is
established to the pork loin from day 2 with the smallest χ2 distance
defined as

χ2 x; yð Þ ¼
XD

n¼1

x nð Þ−y nð Þð Þ2
x nð Þ þ y nð Þ ; ð6Þ

where D is the dimensionality of the vectors x and y and x(n) is the
nth element of x.

4. Results

We run our recognition method on the 4 different experiments
listed in Section 2. In all experiments we are able to match all pork
loins between the two photo sessions correctly.

To demonstrate the visual impact of the perturbation scenarios, we
show examples of pork loins from both days in Fig. 8. We show the

canonized versions rather than the original camera images as the can-
onization makes visual comparison easier.

Fig. 8 shows a loin without perturbations. i.e. proper hanging over-
night. We observe both local pixel translations due to minor object
deformations and global pixel translations due to improper alignment
in the canonization step. In Fig. 8b and c, we observe local deformations
caused by rough handling of the meat and incorrect trimming. Fig. 8d
shows perturbations due to incorrect hanging overnight. The twist
causes translation, local deformation in the right end of the loin, and
minor local rotation. Finally in Fig. 8e and f, the illumination changes
caused by object rotation are shown. These perturbations are signifi-
cantly diminished by the canonization step, however, we still see that
specularities and shadows change indicating that the experiment
setup could be improved with a more diffuse illumination.

To investigate the robustness of the recognition method we inspect
loins that have been poorly matched in our experiments. We measure
the quality of a match by its distinctiveness d computed by subtracting
the descriptor distance of the nearest incorrect match from the descrip-
tor distance of the correct match.

A large difference means that the matching pork loin image pair
from day 1 and 2 stands out from the rest of the loins. A small difference
means that there exists a mismatching loin from day 2 with an image
description similar to the pork loin from day 1. In Fig. 9, we show 3 ex-
amples of poorly matched pork loin image pairs alongwith the second-
closest match from day 2. In Fig. 9a and b we see two examples where
the appearances of the second-closest matches are similar to the loins
from day 1. If a human were to tell the loins apart, he/she would most
likely rely on smaller details in their appearances. In Fig. 9c a significant
bend affects the aspect ratio of the loin image leading to a poor canoni-
zation caused by improper alignment. Thus, it is the canonization rather
than the image description that fails.

Finally in Fig. 10, we illustrate the distinctiveness statistics for each
experiment. We see that our recognition method is very close to yield-
ing a fewmismatches as the distinctiveness of the lowest outliers come
close to 0 (a negative value means an incorrect match). However, the
main part of the remaining loins (around 200) arematchedwith a com-
fortable margin to the nearest incorrect match.

5. Discussion

In Fig. 8, we have seen examples of different perturbation scenarios
in a slaughterhouse environment. Our image description algorithm is

Fig. 7. The visual word contribution to each bag-of-words histogram is weighted using a
Gaussian window. Visual words that lie outside the segmentation have 0 weight.

(a) No perturbations. (b) Rough treatment. (c) Incorrect trimming.

(d) Incorrect hanging. (e) Illumination variations. (f) Same as (e) with original colors.

Fig. 8. Examples of perturbation scenarios between day 1 (upper image) and day 2 (lower image). Canonized images are shown for better visual comparison (except for (f)).
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constructed to be robust towards such perturbations and our experi-
ments have confirmed this. While our results seem promising, we
should note that we do not have sufficient image data to create proper
training, validation and test sets. Therefore, our method parameters are
likely to be overfitted because of improper training on the test set. How-
ever, as we consider this work a proof of concept, we still believe that
the results show that our approach is feasible. In this connection we
add that pork loins in slaughterhouses are typically processed in batches
of significantly fewer pieces than in our experiment.

From the results in Fig. 9c, we have identified an important short-
coming of our canonization method. The image alignment is not suit-
able for non-rigid deformations because it leads to improper scaling
and placement of the object. We consider this an important bottleneck
of our current recognitionmethod because bad alignment directly influ-
ences the image description.

It is possible to improve the recognition task even further by
disallowing a loin from day 1 to be matched to multiple loins from
day 2 and vice versa (by considering the problem an instance of bipartite
matching). However, since the experiment images do not challenge our
recognition method sufficiently, it will be difficult to draw conclusions
from improvements to themethod. It should be noted that by introduc-
ing bipartite matching, we lose the ability to perform any matching be-
fore all loins have been photographed for the second time. We have not
investigated whether this will be a critical point in practice along a pro-
duction line.

5.1. Perspectives in a slaughterhouse environment

Based on our results, we believe that the proposedmethod is a com-
petitive alternative to current technology relying on RFID tags of carrier
devices. Vision-based tracking is less intrusive as it does not require
physical contact with the tracked objects. Moreover, our relatively sim-
ple camera setup should be easy to integrate in a production line. As our
experiments shows, ourmethod does not enforce strict requirements to
the camera stations wrt. lighting or light shielding. Though, one should
still strive for a good diffuse illumination of the objects as it improves
the matching distinctiveness.

Regarding the IT infrastructure needed to implement this system,we
believe that the requirements of vision-based tracking are similar to
what is currently required by RFID tracking. For both tracking methods
we need IT systems for bookkeeping to keep track of which products
have been seen where and when. A consequence of image-based iden-
tification is that the amount of identification data is many orders of
magnitude bigger than with physical tags (the entire image description
versus a single number per tag). With current computer networking
speeds, however, we do not believe that this will impose any problems.

We imagine that the visual recognition should supplement the RFID
tracking of carrier devices and ameliorate the tracking granularity from
batches to individual meat cuts. Thus, from the RFID tag we can identify
which batch is currently being processed and perform visual recogni-
tion within this batch. This is a subject for further investigation when
our approach is to be tested on a real production line.

So far, we have only experimentedwith pork loins that exhibit a very
characteristic image structure. It is likely that other meat cuts are more
difficult to represent distinctively using our method. More experiments
are needed to assess the robustness of our recognition method in more
challenging situations.

Finally, as a more speculative perspective, we imagine that the
image data gathered can be used for further analysis as a part of a qual-
ity assurance and process control stage. E.g. the fat percentage or the
quality of the cutting process could be quantified by an image-analysis
program using images from camera stations along the production line.

6. Conclusion

Tracking of individual meat cuts is an important part of facilitating
meat traceability from farmer to consumer. In this work we have dem-
onstrated a vision-based system that enables meat traceability in a
slaughterhouse environment. By combining off-the-shelf vision and
image processing technology we are able to track around 200 pig loins
between two points without errors. This approach is meant as an alter-
native to currentmore intrusive trackingmethods and our investigation
shows that it is feasible. Further experiments are needed to determine
the limitations of our method.

(a) Rough treatment. (b) Incorrect trimming. (c) Incorrect hanging.

Fig. 9. Examples of pork loins for which our recognitionmethod yield image descriptionswith little distinctiveness compared to the other image descriptions. Top row shows the pork loin
on day 1. Middle row shows the same loin on day 2. Bottom row shows the closest candidate among the other loins.

Incorrect trimming Rough treatment Incorrect hanging Illumination
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Fig. 10. A box plot describing the statistics of the match distinctiveness d for each experi-
ment. Rectangles represent the interquartile range IQR = Q3 − Q1. Thewhiskers are placed
at Q1 − 1.5 IQR and Q3 + 1.5 IQR. The plusses denote outliers.
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Abstract

We present a system to automatize the cumbersome task of estimating
particle size distributions from scanning electron microscopy (SEM) images.
We propose a user interface that requires the user to annotate a small training
image from which the program learns image structures. The learned structures
allow us to efficiently segment an image and extract crystal size measurements
using off-the-shelf image processing techniques. We apply the method to
inspect grain coarsening of calcite over time and compare automatic versus
manual estimates of particle size distributions. The results show that for 11
out of 15 test images, the measurements of our method are insignificantly
different to manual measurements with p > 0.05. This suggests that our
method can facilitate large-scale experiments for particle measurements where
the amount of manual work has previously been a bottleneck. A Python-based
implementation of the method is available online.

Keywords: crystals/particles, image segmentation, machine learning, deep
learning, convolutional neural network
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1. Introduction

In many fields of science it is important to determine the sizes of objects,
e.g. particles or crystals from microscopy images. Since these particles often
partly overlap or are found in large agglomerates it is difficult to automatically
determine the sizes of the individual particles. Often available algorithms
for such image analysis only work well on images of well separated particles.
Recently Schultz et al. (2014) conducted an investigation of calcite, CaCO3,
crystal growth under different conditions. The calcite crystals formed in the
growth experiments were imaged by SEM and they tended to agglomerate.
Hence the generally available methods for determining the size distributions
could not be used and manual measurement of the crystals was performed.
The task of manually determining the size of crystals in SEM images is
tedious and time-consuming. Therefore, replacing manual measurements by
our method seeks to save man-hours while allowing for much larger quantities
of image data to be processed, thus improving statistical analyses to support
quantification of the results. Central to our method is recent advances in
machine learning, which allows us to perform a good pixel classification of
the SEM images. Instead of hand-crafting image features to solve the task,
we learn the morphology of the features from an example image annotated by
the user. The annotations describe simple image contents (e.g. is this pixel
part of a crystal or the background) and allows the segmentation method to
extract the crystals easily. Thus, we require that the user annotates a small
image region into three components: background, crystals and crystal borders.
Generating the training data manually might take a bit of time, however,
as the amount of image data to be processed typically is magnitudes higher
than the image region to be annotated, the time spent annotating quickly
becomes profitable.

The task of quantifying particle morphology from images can provide an
effective measure for further analysis. Røgen et al. (2001) extract calcite
particles from backscatter electron micrographs which allows for a simple
binary segmentation by thresholding the pixel intensity. They then extract
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particles by deagglomerating calcite regions by region growing. While they do
not capture exact particle sizes, their measure is useful for quantifying calcite
texture types. More recently, Lu et al. (2009); Mingireanov Filho et al. (2013);
Pascal Asmussen and Olaf Conrad and Andreas Günther and Moritz Kirsch
and Ulrich Riller (2015); Jungmann et al. (2014) have presented systems
for characterizing thin section images from grain segmentation. Common
to these approaches is that that they rely mostly on pixel colors and apply
region growing, level set, or graphs to perform the segmentation. Moreover,
they do not require any training data provided by the user as they rely on
interactive corrections to assist segmentation. Ideally, we want the user to
teach the program only once as this will allow the method to run on large
quantities of data without requiring additional manual labor.

Image segmentation is a heavily researched field in computer vision as it
often occurs as a sub-problem for a wide range of higher-level tasks. Recently,
advances in deep learning have shown superior performance across a wide
range of visual recognition problems (LeCun et al., 2015). Whereas traditional
approaches in computer vision focuses on the process of devising clever image
patterns to describe the image contents (feature engineering), deep learning
tries to learn these patterns from data during training. As first demonstrated
by Ciresan et al. (2012), convolutional neural networks (convnets) are very
competitive for segmentation tasks compared to more classical approaches,
even when these incorporate more prior knowledge about spatial structure
of the problem. Laptev et al. (2012) build a binary segmentation method
for serial section transmission electron microscopy images by first estimating
correspondences between image slices using gradient orientation histograms
(Lowe, 2004; Liu et al., 2011). The correspondences are used to align the
image slices which allows them to extract local image features across slices.
They apply a random forest classifier to assign pixel-wise class probabilities
given the array of local image features. Finally, the hard pixel classification is
performed using graph-cut segmentation (Boykov and Kolmogorov, 2004) on
top of the class probabilities. In contrast, Ciresan et al. (2012) achieve better
results on the same problem by simply perform pixel classification using a
convnet on the 2D image slices separately. Thus, convnets allow us to build
simple segmentation pipelines capable of learning good discriminative image
features that can compete with substantially more complicated segmentation
pipelines. A notable downside of neural networks is the computational burden
of learning the image features which usually requires parallel architectures
like GPUs to accelerate training. Though, neural networks are cheap at test
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time allowing them to be deployed on ordinary computers.
An alternative data-driven method for segmentation is sparse dictionary

learning (Dahl and Larsen, 2011), but this approach is shallow as it cannot
learn a hierarchical representation of the image structure like deep neural
networks (Bengio et al., 2013).

In this article, we will present a new approach to segmenting and de-
termining the sizes of individual crystals or particles in images obtained by
scanning electron microscopy. The segmentation task is made easy using a
trainable pixel classifier and this the pixel classifier will be trained on a small
annotated training image. We apply the method to a series of SEM images
of calcite crystals and show that our method yields crystal size distributions
that are statistically insignificant from manual measurements.

Our Python implementation with installation instructions [will be] avail-
able at http://github.con/andersbll/particle_segmentation. For ex-
act details about our method and choice of parameters, we encourage the
reader to inspect the code.

2. Dense pixel classification

Our particle recognition system builds on the idea that a good pixel
classification into meaningful components should can greatly simplify the
segmentation task and allow us to use use simple image processing techniques.
In this section, we describe the method that learns to assign labels densely to
all image pixels.

2.1. Problem formulation

In order to segment crystals in SEM images, we must be able to differentiate
between 1) crystals and the background, and 2) adjacent crystals. This can be
achieved by classifying the image pixels into nc = 3 classes: crystals, crystal
borders and background as shown in Figure 1. Note that a pixel can belong
to several classes, e.g. a pixel on the border between two particles is both
a border pixel and a particle pixel. Therefore, we model the problem as
multi-label binary classification,

To simplify the pixel classification task, we process entire SEM images
patch-wise. That is, we extract and process an image patch of size Q × Q
pixels together with class labels from the center of the image patch. When
generating labels for an entire image, we process overlapping image patches
and combine the labels afterwards. More formally, we wish to learn a mapping
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Figure 1: Training image with annotations. In the right image, the three colors represent
the classes: crystal (green), border (red) and background (blue). For simplicity, we show
only a single class per pixel, though, we allow pixels belonging to multiple classes. Note that
we delineate crystal borders even if the crystals are recessed and part of the background.

from an image patch x ∈ RQ×Q to the class probabilities y ∈ Rnc . That is,
we are modeling p(y | x) in probabilistic terms.

2.2. Image preprocessing

Because of high variability in crystals depths, the exposure level can vary
substantially between SEM images. To compensate for this, we perform
local contrast normalization. That is, we calculate the local pixel mean and
standard deviation use these to normalize the image pixels. See Figure 3b for
an example.

2.3. Network architecture and training

We employ a convolutional neural network to solve the task of mapping
image patches to class labels. The network architecture follows a classical
recipe consisting of consecutive layers of convolution and pooling/subsampling
followed by fully-connected layers. See Figure 2 for an overview of our network
architecture. We use rectified linear units as activation functions in our
network because they are not prone to vanishing gradients compared to
classical sigmoidal functions (Nair and Hinton, 2010). We train the network
using mini-batch stochastic gradient descent with momentum (Sutskever et al.,
2013).

As objective function for optimizing the network parameters, we choose
the binary cross-entropy between a target t and a prediction p:

LBinCE(p, t) = t log p + (1− t) log(1− p) (1)
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Figure 2: Convolutional network architecture. Window sizes of convolutional filters and
pooling operations are provided for each operation.

Let the mapping f(x) : RQ×Q → Rnc represent our network output predictions
with a sigmoid operation appended to ensure that the output is a probability
measure in the range [0, 1]. Moreover, let t ∈ Rnc be the user-annotated
pixel targets, that is a vector of zeros and ones denoting which classes a pixel
belongs to. We then formulate the objective function as the sum over all class
predictions:

L(x, t) =
nc∑
i=1

LBinCE (f(x)i, ti) (2)

For our problem, we have found it beneficial to extend the vanilla objective
function for two reasons. First, the dataset might be unbalanced meaning that
we have uneven number of examples per class. During training, this will cause
the gradient updates to favor the most occurring classes because these are seen
more often. To alleviate this problem we associate a weight vector w ∈ Rnc

with values inversely proportional to the number of occurrences in the training
set for each class. Second, we wish to smooth our pixel classifications by
averaging over several predictions. Typically, this is achieved using separately
trained networks, aka. ensembling (Hansen and Salamon, 1990). We exploit
the spatial structure of our data by letting the network predict classes for
a small pixel neighborhood instead of a single pixel. Ensemble prediction
is then performed by averaging overlapping predictions when classifying
an entire image. To achieve this, we change our network architecture to
output predictions for multiple pixels corresponding to a patch of size L× L
pixels centered on the input image patch. Thus, the network becomes f(x) :
RQ×Q → Rnl×nc , nl = L2, and the target labels become T ∈ Rnl×nc . For
our problem, we find that multiple outputs in the last layer gives a visually
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similar result to ordinary ensembling with the benefit of being computationally
inexpensive as it does not require multiple networks. Combining the two
extensions, we arrive at the following multi-label weighted cross-entropy as
objective function for our network.

L(x,T ) =

nl∑
j=1

nc∑
i=1

wiLBinCE (f(x)ij, tij) (3)

Neural networks are prone to overfitting because of the large represen-
tational capacity of their many parameters. For our application with very
limited amounts of training data, this can be especially challenging. We
alleviate the problem by performing dropout (Srivastava et al., 2014) on the
first fully-connected layer. Moreover, we perform data augmentation to ex-
pand the available training data, that is, we replicate the training image with
small perturbations in rotation, scale, brightness and contrast. With these
precautions, we observe no overfitting on a separately annotated validation
image.

We use the annotated image shown in Figure 1 to train the network
that forms the basis for the rest of our results. Using a GPU to accelerate
computations, the network training converges in less than 10 minutes.

3. Segmenting and measuring crystals

Given a good crystal/border/background classification of an SEM image,
the task of segmenting crystals becomes fairly straightforward using off-
the-shelf image processing tools (thresholding, morphology and watershed
transformations).

To segment crystals individually. As example, we show a given input image
(Figure 3a) and its local contrast normalized version (Figure 3b). From this
we predict the class probabilities using our learned pixel classifier. In Figure
3c and 3d we show the probabilities for the crystal and the border classes
respectively. We threshold the border probabilities using local threshold
estimates which gives us a binary mask (Figure 3e) which we skeletonize
using morphological operations (Figure 3f). We then perform a marker-based
watershed transformation based on the border skeleton yielding separated
image components as shown in Figure 3g. To discard background components
from crystal components, we measure their average pixel probabilities and
discard components with a crystal probability of less that 0.95. This remaining
crystal components are shown in Figure 3h.
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(a) Input image (b) Normalization (c) Crystal probabilities (d) Border probabilities

(e) Border mask (f) Border skeleton (g) Watershed labeling (h) Accepted crystals

Figure 3: Overview of the crystal recognition pipeline. The color scheme in (g) and (h)
represents separated image components with unique colors.

In order to measure the size of each crystal component, we find the convex
hull of the component. This is done as a simple attempt to compensate for
crystals that are not entirely visible due to occlusion. Similar idiosyncratic
conventions applies when measuring the crystals manually. We measure the
crystal size as the diameter of the area assuming it is a circle.

4. Results

We apply our method to SEM images of calcite (CaCO3) crystals aged
in saturated solutions at 100 and 200 ◦C for up to 261 days. Mineralogists
describe this type of particle growth as Ostwald ripening, where molecules
dissolve from smaller particles and reprecipitate on larger particles. While the
solution chemistry does not change, the average particle size grows to become
more thermodynamically stable (Lifshitz and Slyozov, 1961). In Figure 4 we
show SEM images captured from the 200 ◦C experiment. The images reveal
a great level of variability in crystal appearance compared to the single image
we use for training (Figure 1).

Each image is processed as described above yielding a histogram of crystal
sizes, which we compare with distributions obtained by manually measuring
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the crystal sizes as shown in Figure 5. To quantify the difference between
the two distributions, we perform a two-sample Kolmogorov-Smirnov test
under the null hypothesis the two samples come from the same distribution.
The p values from this test for each image are shown in Figure 5. Out of
15 test images, 11 have a p value above 0.05 and 9 have a p value over 0.10.
For distributions with lower p values, we observe the pattern that automatic
measurements tend to count more small particles. To compensate for the
skewness of the distributions, we show the log-transformed data in Figure 6.
In this plot, we report the p values calculated from Welch’s t-test (Welch,
1947) assuming normality of the log-transformed crystal sizes. These p values
are in accordance with those of the Kolmogorov-Smirnov test.

Though we generally observe a good fit between the distributions mea-
sured automatically versus by hand, the discrepancy between distributions is
relatively substantial for day 1 and day 3 from the 100 ◦C experiment. To
investigate this, we show an image crop from day 3 in Figure 7. It is clear
that the problems are caused by poor pixel classification. The image contains
many overlapping crystals and a low-contrast region in the upper middle part
of the image where crystals are hard to separate correctly (even for humans).
Compared to our single training image from Figure 1, the crystal appearance
in is simply too different making pixel classification challenging.

Finally, we report the relative number of particles found by our method
versus the number of particles found by hand to 0.67. Our method finds only
2/3 of the particles found manually because we discard particles with a strict
threshold based on the crystal probability measure. We have chosen to err on
the side of caution as we can easily process more image data if needed.

5. Discussion and conclusion

Motivated by the study in Schultz et al. (2014), we have tried to replicate
their manually measured results with automatic measurements using the same
data. As there are only slight discrepancies between our and their results, we
believe that our method is a promising approach. Especially since automated
measurements allow for experiments of a much larger scale and thereby can
provide data for richer statistical analyses.

From the results it is clear that our method has limitations. In regions
where crystal borders are missing due to low contrast, the pixel classification
will fail to recognize the borders. This situation is understandable since the
image data is substantially different from the training data and we cannot
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Day 1 Day 2 Day 6 Day 15

Day 29 Day 64 Day 120 Day 250

Figure 4: SEM images of calcite (CaCO3) crystals coarsening over time at 200 ◦C.

expect our classifier to generalize well to such extreme cases. A human would
simply discard the entire low-contrast region because of the many ambiguities,
and ideally, we would want an automated method to detect such anomalies
in order to handle them gracefully. However, it is beyond the scope of this
work to perform anomaly detection since this is completely different from
segmentation.

Our method sets itself apart from previous methods in the literature.
Usually, these rely on simple image features, i.e. color intensities, and ap-
ply advanced segmentation techniques on top. In contrast, we argue that
segmentation is difficult on top of raw pixels since these are noisy and do
not incorporate knowledge about the local image structure. We propose a
learning-based approach to segmentation that relies on classifying pixels into
meaningful classes. That is, we want to know if a pixel is part of a crystal
or not. Also, we want to know if a pixel lies on the border of a crystal. We
leverage convnets to learn such a pixel classifier which allows us to learn
directly from the image input without engineering suitable image features.
Using the pixel classifier, we can perform a simple segmentation on top of
the crystal/border probabilities. Moreover, the crystal probabilities allow us
to discard recessed background crystal that cannot be measured properly.

Our approach is a step towards automating the segmentation pipeline
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Figure 5: Evolution of crystal size distribution over time. Manually measured distributions
are colored blue and automatic measurements (our method) are colored red. The two
columns show crystal development in two different experiments. The bottom plots collect
distributions in a cumulative histogram. The x*axis is truncated slightly for clarity. For
each plot we report the significance level p for the null hypothesis that the distributions
are the same.
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Figure 6: log-transformed version of Figure 5.
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(a) Input image (b) Border probabilities (c) Border skeleton (d) Accepted crystals

Figure 7: Difficult image crop from day 3 of calcite aging at 100 ◦C. The image contains
low contrast regions and many overlapping crystals. This causes the border segmentation
to fail such that small particles are recognized as fewer larger particles.

as we try to learn the challenging part of differentiating between image
structures. Ideally, we would learn the last image processing steps as well
by incorporating the spatial segmentation in the learning method . However,
this would require substantially more training data in order to learn about
the spatial structure of entire crystals. Therefore, in this work we have sought
a compromise that requires very little training data but greatly simplifies the
segmentation pipeline.
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Abstract
We present an autoencoder that leverages learned
representations to better measure similarities in
data space. By combining a variational autoen-
coder (VAE) with a generative adversarial net-
work (GAN) we can use learned feature repre-
sentations in the GAN discriminator as basis for
the VAE reconstruction objective. Thereby, we
replace element-wise errors with feature-wise er-
rors to better capture the data distribution while
offering invariance towards e.g. translation. We
apply our method to images of faces and show
that it outperforms VAEs with element-wise sim-
ilarity measures in terms of visual fidelity. More-
over, we show that the method learns an embed-
ding in which high-level abstract visual features
(e.g. wearing glasses) can be modified using sim-
ple arithmetic.

1. Introduction
Deep architectures have allowed a wide range of discrimi-
native models to scale to large and diverse datasets. How-
ever, generative models still have problems with complex
data distributions such as images and sound. In this work,
we show that currently used similarity metrics impose a
hurdle for learning good generative models and that we can
improve a generative model by employing a learned simi-
larity measure.

When learning models such as the variational autoencoder
(Kingma & Welling, 2014; Rezende et al., 2014), the
choice of similarity metric is central as it provides the main
part of the training signal via the reconstruction error objec-
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Figure 1. Overview of our network. We combine a VAE with a
GAN by collapsing the decoder and the generator into one.

tive. For this task, element-wise measures like the squared
error are the default. Element-wise metrics are simple but
not very suitable for image data, as they do not model the
properties of human visual perception. E.g. a small image
translation might result in a large pixel-wise error whereas
a human would barely notice the change. Therefore, we ar-
gue in favor of measuring image similarity using a higher-
level and sufficiently invariant representation of the images.
Rather than hand-engineering a suitable measure to accom-
modate the problems of element-wise metrics, we want to
learn a function for the task. The question is how to learn
such a similarity measure? We find that by jointly training
a VAE and a generative adversarial network (Goodfellow
et al., 2014) we can use the GAN discriminator to mea-
sure sample similarity. We achieve this by combining a
VAE with a GAN as shown in Fig. 1. We collapse the VAE
decoder and the GAN generator into one by letting them
share parameters and training them jointly. For the VAE
training objective, we replace the typical element-wise re-
construction metric with a feature-wise metric expressed in
the discriminator.

1.1. Contributions

Our contributions are:
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• We combine VAEs and GANs into an unsupervised
generative model that simultaneously learns to en-
code, generate and compare dataset samples.

• We show that generative models trained with learned
similarity measures produce better image samples
than models trained with element-wise error mea-
sures.

• We demonstrate that unsupervised training results in a
latent image representation with disentangled factors
of variation (Bengio et al., 2013). This is illustrated in
experiments on a dataset of face images labelled with
visual attribute vectors, where it is shown that simple
arithmetic applied in the learned latent space produces
images that reflect changes in these attributes.

2. Autoencoding with learned similarity
In this section we provide background on VAEs and GANs.
Then, we introduce our method for combining both ap-
proaches, which we refer to as VAE/GAN. As we’ll de-
scribe, our proposed hybrid is motivated as a way to im-
prove VAE, so that it relies on a more meaningful, feature-
wise metric for measuring reconstruction quality during
training.

2.1. Variational autoencoder

A VAE consists of two networks that encode a data sample
x to a latent representation z and decode the latent repre-
sentation back to data space, respectively:

z ∼ Enc(x) = q(z|x) , x̃ ∼ Dec(z) = p(x|z) . (1)

The VAE regularizes the encoder by imposing a prior over
the latent distribution p(z). Typically z ∼ N (0, I) is cho-
sen. The VAE loss is minus the sum of the expected log
likelihood (the reconstruction error) and a prior regulariza-
tion term:

LVAE = −Eq(z|x)

[
log

p(x|z)p(z)
q(z|x)

]
= Lpixel

llike + Lprior

(2)

with

Lpixel
llike =− Eq(z|x) [log p(x|z)] (3)
Lprior =DKL(q(z|x)‖p(z)) , (4)

where DKL is the Kullback-Leibler divergence.

2.2. Generative adversarial network

A GAN consists of two networks: the generator network
Gen(z) maps latents z to data space while the discrimina-
tor network assigns probability y = Dis(x) ∈ [0, 1] that

x is an actual training sample and probability 1 − y that
x is generated by our model through x = Gen(z) with
z ∼ p(z). The GAN objective is to find the binary clas-
sifier that gives the best possible discrimination between
true and generated data and simultaneously encouraging
Gen to fit the true data distribution. We thus aim to maxi-
mize/minimize the binary cross entropy:

LGAN = log(Dis(x)) + log(1−Dis(Gen(z))) , (5)

with respect to Dis /Gen with x being a training sample
and z ∼ p(z).

2.3. Beyond element-wise reconstruction error with
VAE/GAN

An appealing property of GAN is that its discriminator net-
work implicitly has to learn a rich similarity metric for im-
ages, so as to discriminate them from “non-images”. We
thus propose to exploit this observation so as to transfer
the properties of images learned by the discriminator into a
more abstract reconstruction error for the VAE. The end re-
sult will be a method that combines the advantage of GAN
as a high quality generative model and VAE as a method
that produces an encoder of data into the latent space z.

Specifically, since element-wise reconstruction errors are
not adequate for images and other signals with invariances,
we propose replacing the VAE reconstruction (expected log
likelihood) error term from Eq. 3 with a reconstruction er-
ror expressed in the GAN discriminator. To achieve this,
let Disl(x) denote the hidden representation of the lth layer
of the discriminator. We introduce a Gaussian observation
model for Disl(x) with mean Disl(x̃) and identity covari-
ance:

p(Disl(x)|z) = N (Disl(x)|Disl(x̃), I) , (6)

where x̃ ∼ Dec(z) is the sample from the decoder of x.
We can now replace the VAE error of Eq. 3 with

LDisl
llike = −Eq(z|x) [log p(Disl(x)|z)] (7)

We train our combined model with the triple criterion

L = Lprior + LDisl
llike + LGAN . (8)

Notably, we optimize the VAE wrt. LGAN which we regard
as a style error in addition to the reconstruction error which
can be interpreted as a content error using the terminology
from Gatys et al. (2015). Moreover, since both Dec and
Gen map from z to x, we share the parameters between
the two (or in other words, we use Dec instead of Gen in
Eq. 5).

In practice, we have observed the devil in the details dur-
ing development and training of this model. We therefore
provide a list of practical considerations in this section. We
refer to Fig. 2 and Alg. 1 for overviews of the training pro-
cedure.
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Figure 2. Flow through the combined VAE/GAN model during
training. Gray lines represent terms in the training objective.

Limiting error signals to relevant networks Using the
loss function in Eq. 8, we train both a VAE and a GAN si-
multaneously. This is possible because we do not update all
network parameters wrt. the combined loss. In particular,
Dis should not try to minimize LDisl

llike as this would collapse
the discriminator to 0. We also observe better results by not
backpropagating the error signal from LGAN to Enc.

Weighting VAE vs. GAN As Dec receives an error sig-
nal from both LDisl

llike and LGAN, we use a parameter γ to
weight the ability to reconstruct vs. fooling the discrimi-
nator. This can also be interpreted as weighting style and
content. Rather than applying γ to the entire model (Eq. 8),
we perform the weighting only when updating the parame-
ters of Dec:

θDec
+← −∇θDec(γLDisl

llike − LGAN) (9)

Discriminating based on samples from p(z) and q(z|x)
We observe better results when using samples from q(z|x)
(i.e. the encoder Enc) in addition to our prior p(z) in the
GAN objective:

LGAN = log(Dis(x)) + log(1−Dis(Dec(z)))

+ log(1−Dis(Dec(Enc(x)))) (10)

Note that the regularization of the latent space Lprior should
make the set of samples from either p(z) or q(z|x) similar.
However, for any given example x, the negative sample
Dec(Enc(x)) is much more likely to be similar to x than
Dec(z). When updating according to LGAN, we suspect
that having similar positive and negative samples makes for
a more useful learning signal.

3. Related work
Element-wise distance measures are notoriously inade-
quate for complex data distributions like images. In the
computer vision community, preprocessing images is a

Algorithm 1 Training the VAE/GAN model
θEnc,θDec,θDis ← initialize network parameters
repeat
X ← random mini-batch from dataset
Z ← Enc(X)
Lprior ← DKL(q(Z|X)‖p(Z))

X̃ ← Dec(Z)
LDisl

llike ← −Eq(Z|X) [p(Disl(X)|Z)]
Zp ← samples from prior N (0, I)
Xp ← Dec(Zp)

LGAN ← log(Dis(X)) + log(1−Dis(X̃))
+ log(1−Dis(Xp))

// Update parameters according to gradients
θEnc

+← −∇θEnc
(Lprior + LDisl

llike )

θDec
+← −∇θDec(γLDisl

llike − LGAN)

θDis
+← −∇θDisLGAN

until deadline

prevalent solution to improve robustness to certain pertur-
bations. Examples of preprocessing are contrast normaliza-
tion, working with gradient images or pixel statistics gath-
ered in histograms. We view these operations as a form
of metric engineering to account for the shortcomings of
simple element-wise distance measures. A more detailed
discussion on the subject is provided by Wang & Bovik
(2009).

Neural networks have been applied to metric learning in
form of the Siamese architecture (Bromley et al., 1993;
Chopra et al., 2005). The learned distance metric is min-
imized for similar samples and maximized for dissimilar
samples using a max margin cost. However, since Siamese
networks are trained in a supervised setup, we cannot apply
them directly to our problem.

Several attempts at improving on element-wise distances
for generative models have been proposed within the last
year. Ridgeway et al. (2015) apply the structural similar-
ity index as an autoencoder (AE) reconstruction metric for
grey-scale images. Yan et al. (2015) let a VAE output two
additional images to learn shape and edge structures more
explicitly. Mansimov et al. (2015) append a GAN-based
sharpening step to their generative model. Mathieu et al.
(2015) supplement a squared error measure with both a
GAN and an image gradient-based similarity measure to
improve image sharpness of video prediction. While all
these extensions yield visibly sharper images, they do not
have the same potential for capturing high-level structure
compared to a deep learning approach.

In contrast to AEs that model the relationship between a
dataset sample and a latent representation directly, GANs
learn to generate samples indirectly. By optimizing the
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GAN generator to produce samples that imitate the dataset
according to the GAN discriminator, GANs avoid element-
wise similarity measures by construction. This is a likely
explanation for their ability to produce high-quality images
as demonstrated by Denton et al. (2015); Radford et al.
(2015).

Lately, convolutional networks with upsampling have
shown useful for generating images from a latent rep-
resentation. This has sparked interest in learning im-
age embeddings where semantic relationships can be ex-
pressed using simple arithmetic – similar to the suprising
results of the word2vec model by Mikolov et al. (2013).
First, Dosovitskiy et al. (2015) used supervised training to
train convolutional network to generate chairs given high-
level information about the desired chair. Later, Kulkarni
et al. (2015); Yan et al. (2015); Reed et al. (2015) have
demonstrated encoder-decoder architectures with disentan-
gled feature representations, but their training schemes rely
on supervised information. Radford et al. (2015) inspect
the latent space of a GAN after training and find directions
corresponding to eyeglasses and smiles. As they rely on
pure GANs, however, they cannot encode images making
it challenging to explore the latent space.

Our idea of a learned similarity metric is partly motivated
by the neural artistic style network of Gatys et al. (2015)
who demonstrate the representational power of deep con-
volutional features. They obtain impressive results by opti-
mizing an image to have similar features as a subject image
and similar feature correlations as a style image in a pre-
trained convolutional network. In our VAE/GAN model,
one could view LDisl

llike as content and LGAN as style. Our
style term, though, is not computed from feature correla-
tions but is the error signal from trying to fool the GAN
discriminator.

4. Experiments
Measuring the quality of generative models is challenging
as current evaluation methods are problematic for larger
natural images (Theis et al., 2015). In this work, we use
images of size 64x64 and focus on more qualitative assess-
ments since traditional log likelihood measures do not cap-
ture visual fidelity. Indeed, we have tried discarding the
GAN discriminator after training of the VAE/GAN model
and computing a pixel-based log likelihood using the re-
maining VAE. The results are far from competitive with
plain VAE models (on the CIFAR-10 dataset). In an at-
tempt to verify the idea of feature-based similarity metrics,
we have trained a GAN on CIFAR-10. After training, we
compute a feature representation of CIFAR-10 by propa-
gating the images up in the GAN discriminator. We then
measure the k = 5 nearest neighbor classification perfor-
mance. Using a feature-based metric reduces the error to

33.73% from the pixel-based error of 66.02%.

In this section we investigate the performance of different
generative models:

• Plain VAE with an element-wise Gaussian observation
model.

• VAE with a learned distance (VAEDisl ). We first train
a GAN and use the discriminator network as a learned
similarity measure. We select a single layer l at which
we measure the similariy according to Disl. l is cho-
sen such that the comparison is performed after 3 con-
volutional layers with stride 2 downsampling.

• The combined VAE/GAN model. This model is sim-
ilar to VAEDisl but we also optimize Dec wrt. LGAN.
One might suspect that simultaneous training of the
VAE and the GAN from noise initialization is prob-
lematic because the Disl representation starts out as a
random projection of the data. However, we observe
no instabilities in this regard.

• An alternative VAE/GANDis0 model where the VAE
reconstruction error is measured in pixel space,
LDis0

llike = Lpixel
llike . This models serves to confirm that

there is a benefit in using feature-based similarities
and that the GAN is not single-handedly responsible
for the more natural-looking image generation.

• A GAN. This modes has recently been shown capa-
ble of generating high-quality images (Radford et al.,
2015).

All models share the same architectures for Enc, Dec and
Dis respectively. For all our experiments, we use convo-
lutional architectures and use backward convolution (aka.
fractional striding) with stride 2 to upscale images in Dec.
Backward convolution is achieved by flipping the convo-
lution direction such that striding causes upsampling. Our
models are trained with RMSProp using a learning rate of
0.0003 and a batch size of 64. In table 1 we list the network
architectures. We refer to our implementation available on-
line1.

4.1. CelebA face images

We apply our methods to face images from the CelebA
dataset2 (Liu et al., 2015). This dataset consists of 202,599
images annotated with 40 binary attributes such as eye-
glasses, bangs, pale skin etc. We scale and crop the images
to 64×64 pixels and use only the images (not the attributes)
for unsupervised training.

After training, we draw samples from p(z) and propagate

1http://github.com/andersbll/
autoencoding_beyond_pixels

2We use the aligned and cropped version of the dataset.
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Enc Dec Dis

5×5 64 conv. ↓, BNorm, ReLU 8·8·256 fully-connected, BNorm, ReLU 5×5 32 conv., ReLU
5×5 128 conv. ↓, BNorm, ReLU 5×5 256 conv. ↑, BNorm, ReLU 5×5 128 conv. ↓, BNorm, ReLU
5×5 256 conv. ↓, BNorm, ReLU 5×5 128 conv. ↑, BNorm, ReLU 5×5 256 conv. ↓, BNorm, ReLU
2048 fully-connected, BNorm, ReLU 5×5 32 conv. ↑, BNorm, ReLU 5×5 256 conv. ↓, BNorm, ReLU

5×5 3 conv., tanh 512 fully-connected, BNorm, ReLU
1 fully-connected, sigmoid

Table 1. Architectures for the three networks that comprise VAE/GAN. ↓ and ↑ represent down- and upsampling respectively. BNorm
denotes batch normalization (Ioffe & Szegedy, 2015). When batch normalization is applied to convolutional layers, per-channel normal-
ization is used.

VAE

VAEDisl

VAE/GANDis0

VAE/GAN

GAN

Figure 3. Samples from different generative models.

these through Dec to generate new images which are shown
in Fig. 3. The plain VAE is able draw the frontal part
of the face sharply, but off-center the images get blurry.
This is because the dataset aligns faces using frontal land-
marks. When we move too far away from the aligned parts,
the recognition model breaks down because pixel corre-
spondence cannot be assumed. VAEDisl produces sharper
images even off-center because the reconstruction error is
lifted beyond pixels. However, we see severe noisy artifacts
which we believe are caused by the harsh downsampling
scheme of Dis. In comparison, VAE/GANDis0 , VAE/GAN
and pure GAN produce sharper images with more natural
textures and face parts.

Next, we make the VAEs reconstruct images taken from a
separate test set. Reconstruction is not possible with the
GAN model as it lacks an encoder network. The results
are shown in Fig. 4 and our conclusions are similar to what
we observed for the random samples. Note however, that
VAE/GANDis0 fails to capture the same level of detail as
VAE/GAN with feature-based similarities.

Additionally, Fig. 5 shows the influence of the γ hyperpa-
rameter that balances gradient contributions to θDec from
LDisl

llike versus LGAN. We seek a trade-off between the two.

Input

VAE

VAEDisl

VAE/GANDis0

VAE/GAN

Figure 4. Reconstructions from different autoencoders.

If LDisl
llike is too prominent we see artifacts from the feature-

based reconstruction. If LGAN is too prominent we loose
details in the reconstruction, e.g. mouth shape.

4.1.1. VISUAL ATTRIBUTE VECTORS

Inspired by attempts at learning embeddings in which se-
mantic concepts can be expressed using simple arithmetic
(Mikolov et al., 2013), we inspect the latent space of a
trained VAE/GAN model. The idea is to find directions
in the latent space corresponding to specific visual features
in image space.

We use the binary attributes of the dataset to extract visual
attribute vectors. For all images we use the encoder to cal-
culate latent vector representations. For each attribute, we
compute the mean vector for images with the attribute and
the mean vector for images without the attribute. We then
compute the visual attribute vector as the difference be-
tween the two mean vectors. This is a very simple method
for calculating visual attribute vectors that will have prob-
lems with highly correlated visual attributes such as heavy
makeup and wearing lipstick. In Fig. 6, we show face im-
ages as well as the reconstructions after adding different vi-
sual attribute vectors to the latent representations. Though
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Input

LDisl
llike too

prominent

Balanced γ

LGAN too
prominent

Figure 5. Adjusting the γ hyperparameter to balance gradient
contributions to θDec from LDisl

llike versus LGAN.

not perfect, we clearly see that the attribute vectors capture
semantic concepts like eyeglasses, bangs, etc. E.g. when
bangs are added to the faces, both the hair color and the hair
texture matches the original face. We also see that being a
man is highly correlated with having a mustache, which is
caused by attribute correlations in the dataset. In compari-
son, the visual concepts learned by a plain VAE in the same
manner are much less prominent, see Fig. 7.

4.2. Attribute similarity, Labeled faces in the wild

Inspired by the attribute similarity experiment of Yan et al.
(2015), we seek a more quantative evaluation of our gen-
erated images. The idea is to learn a generative model for
face images conditioned on facial attributes. At test time,
we generate face images by retrieval from chosen attribute
configurations and let a separately trained regressor net-
work predict the attributes from the generated images. A
good generative model should be able to produce visual
attributes that are correctly recognized by the regression
model. To imitate the original experiment, we use Labeled
faces in the wild (LFW) images (Huang et al., 2007) with
attributes (Kumar et al., 2009). We align the face images
according to the landmarks in (Zhu et al., 2014). Addition-
ally, we crop and resize the images to 64×64 pixels and
augment the dataset with common operations. Again, we
refer to our implementation online for more details.

We construct conditional VAE, GAN and VAE/GAN mod-
els by concatenating the attribute vector to the vector repre-
sentation of the input in Enc, Dec and Dis similar to (Mirza
& Osindero, 2014). For Enc and Dis, the attribute vector is
concatenated to the input of the top fully connected layer.
Our regression network has almost the same architecture
as Enc. We train using the LFW training set, and during
testing, we condition on the test set attributes and sample
faces to be propagated through the regression network. Fig-
ure 8 shows faces generated by conditioning on attribute
vectors from the test set. We report regressor performance

Model Cosine similarity Mean squared error

LFW test set 0.9193 14.1987

VAE 0.9030 27.59 ± 1.42
GAN 0.8892 27.89 ± 3.07
VAE/GAN 0.9114 22.39 ± 1.16

Table 2. Attribute similarity scores. To replicate (Yan et al.,
2015), the cosine similarity is measured as the best out of 10 sam-
ples per attribute vector from the test set. The mean squared error
is computed over the test set and statistics are measured over 25
runs.

numbers in Table 2. Compared to an ordinary VAE, the
VAE/GAN model yields significantly better attributes vi-
sually that leads to smaller recognition error. The GAN
network performs suprisingly poorly and we suspect that
this is caused by instabilities during training (GAN mod-
els are very difficult to train reliably due to the minimax
objective function). Note that our results are not directly
comparable with those of Yan et al. (2015) since we do not
have access to their preprocessing scheme nor regression
model.

4.3. Unsupervised pretraining for supervised tasks

For completeness, we report that we have tried evaluating
VAE/GAN in a semi-supervised setup by unsupervised pre-
training followed by finetuning using a small number of la-
beled examples (for both CIFAR-10 and STL-10 datasets).
Unfortunately, we have not been able to reach results com-
petitive with the state-of-the-art (Rasmus et al., 2015; Zhao
et al., 2015). We speculate that the intra-class variation may
be too high for the VAE-GAN model to learn good gener-
alizations of the different object classes.

5. Discussion
The problems with element-wise distance metrics are well
known in the literature and many attempts have been made
at going beyond pixels – typically using hand-engineered
measures. Much in the spirit of deep learning, we argue
that the similarity measure is yet another component which
can be replaced by a learned model capable of capturing
high-level structure relevant to the data distribution. In this
work, our main contribution is an unsupervised scheme for
learning and applying such a distance measure. With the
learned distance measure we are able to train an image
encoder-decoder network generating images of unprece-
dented visual fidelity as shown by our experiments. More-
over, we show that our network is able to disentangle fac-
tors of variation in the input data distribution and discover
visual attributes in the high-level representation of the la-
tent space. In principle, this lets us employ a large set of
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Figure 6. Using the VAE/GAN model to reconstruct dataset samples with visual attribute vectors added to their latent representations.
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Figure 7. Using the VAE model to reconstruct dataset samples with visual attribute vectors added to their latent representations.
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Query

Prominent attributes: White, Fully Visible
Forehead, Mouth Closed, Male, Curly Hair,
Eyes Open, Pale Skin, Frowning, Pointy Nose,
Teeth Not Visible, No Eyewear.

VAE

GAN

VAE/GAN

Query

Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Flash, Posed Photo, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior, Receding Hairline.

VAE

GAN

VAE/GAN

Figure 8. Generating samples conditioned on the LFW attributes listed alongside their corresponding image.

unlabeled images for training and use a small set of labeled
images to discover features in latent space.

We regard our method as an extension of the VAE frame-
work. Though, it must be noted that the high quality of our
generated images is due to the combined training of Dec as
a both a VAE decoder and a GAN generator. This makes
our method more of a hybrid between VAE and GAN, and
alternatively, one could view our method as an extension of
GAN.

It is not obvious that the discriminator network of a GAN
provides a useful similarity measure as it is trained for a
different task, namely being able to tell generated sam-
ples from real samples. However, convolutional features
are often surprisingly good for transfer learning, and as
we show, good enough in our case to improve on element-
wise distances for images. It would be interesting to see if
better features in the distance measure would improve the
model, e.g. by employing a similarity measure provided
by a Siamese network trained on faces, though in practice
Siamese networks are not a good fit with our method as
they require labeled data. Alternatively one could investi-
gate the effect of using a pretrained feedforward network
for measuring similarity.

In summary, we have demonstrated a first attempt at un-
supervised learning of encoder-decoder models as well as
a similarity measure. Our results show that the visual fi-
delity of our method is competitive with GAN, which in
that regard is considered state-of-the art. We therefore con-
sider learned similarity measures a promising step towards
scaling up generative models to more complex data distri-
butions.
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