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ABSTRACT 

Numerous studies have shown that radar rainfall estimates need to be adjusted against 

rain gauge measurements in order to be useful for hydrological modelling. In the current 

study we investigate if adjustment can improve radar rainfall estimates to the point 

where they can be used for modelling overflows from urban drainage systems, and we 

furthermore investigate the importance of the aggregation period of the adjustment 

scheme. This is done by continuously adjusting X-band radar data based on the previous 

5-30 minutes of rain data recorded by multiple rain gauges and propagating the rainfall 

estimates through a hydraulic urban drainage model. The model is built entirely from 

physical data, without any calibration, to avoid bias towards any specific type of rainfall 

estimate. The performance is assessed by comparing measured and modelled water 

levels at a weir downstream of a highly impermeable, well defined, 64 ha urban 

catchment, for nine overflow generating rain events. The dynamically adjusted radar 

data perform best when the aggregation period is as small as 10-20 minutes, in which 

case it performs much better than static adjusted radar data and data from rain gauges 

situated 2 – 3 km away.  

 

Keywords: Radar; rainfall; stormwater; dynamic adjustment; distributed hydraulic 

model; combined sewer overflow. 

 

1 INTRODUCTION 
Accurate rainfall estimates are required in much higher temporal and spatial resolution 

to perform successful hydrological modelling of urban stormwater runoff than for most 

other uses, due to the fast hydraulic response of the urban stormwater systems. Today’s 

detailed distributed urban drainage models can operate with thousands of sub 

catchments – often of sizes less than one hectare (1 ha=10000 m
2
). Nonetheless the 

typical rainfall inputs to these models are still produced by just a few rain gauges. There 

have long been big expectations to the use of weather radar data for urban drainage 

(Einfalt et al., 2004) and it is apparent that the spatially distributed nature of weather 

radar data fits well with distributed runoff models, but despite the technological 

development within the last decade most radar rainfall estimates are still affected by 

significant errors that are difficult to quantify (Berne and Krajewski, 2013). A recent 

literature study found that the standard deviation of the error of radar rain estimates as a 

proportion of the rain rate typically lies in the range 0.3-0.5 for hourly data (McMillan 
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et al., 2012). In a thorough study of the uncertainties of radar rainfall estimates 

produced using the Hydro-NEXRAD algorithm it was found that “radar-rainfall 

uncertainty is characterized by an almost three times greater standard error at higher 

resolutions (15-minute and 0.5 km scale) than at lower resolutions (1-hour and 8 

km)”(Seo and Krajewski, 2010). This means that it can be challenging to use radar data 

for urban catchments where the spatial and temporal scales are relatively small. 

Fortunately, the quality of weather radar rainfall estimates is continuously improved 

(e.g. Krämer and Verworn, 2009; Nielsen et al., 2013) and in the recent years several 

research projects have shown some success in using radar data for urban runoff models. 

Estimation of the peak rain intensities however continues to be a problem (Thorndahl 

and Rasmussen, 2012). A recent Belgian case study using a modern X-band weather 

radar and testing various calibration methods found that rain gauge data generally 

outperform radar data as input to the distributed urban runoff model used in the study 

(Goormans and Willems, 2012), despite the radar’s advantage of being able to estimate 

the spatial distribution of rain. This shows that even the newest weather radars have 

difficulties in producing rainfall estimates that are suitable for urban runoff modelling. 

The reason for this lies in the way radars detect the rain. Radars do not measure rainfall 

directly but sends out a pulse of microwave radiation and measures the fraction of 

backscattered energy from whatever obstacles the radar pulse may hit. By using a 

relationship between the reflected energy and the rain rate (the Z-R relationship) it is 

possible to estimate the rain rate, a subject already extensively covered in literature (e.g. 

Atlas, 1990; Rinehart, 1991; Sauvageot, 1992; van de Beek et al., 2010). The Z-R 

relationship is not constant, however, and has even been observed to change 

dramatically several times during a rainfall event (Clemens et al., 2006). Since the Z-R 

relationship is heavily dependent on the drop size distribution (DSD) of the rain these 

changes can be explained by changes in the DSD, since this has been shown to vary 

drastically during events in multiple studies (Chapon et al., 2008; Cifelli et al., 2000; 

Smith and Krajewski, 1993; Smith et al., 2009). These changes pose a limit to how 

accurate the quantitative precipitation estimates from radars can be when a constant 

relationship between radar reflectivity and rainfall intensity is used throughout an entire 

event (Lee and Zawadzki, 2006). Several studies have shown that quantitative 

precipitation estimates from weather radars are improved by dynamically adjusting the 

radar data by rain gauge measurements (Cole and Moore, 2008; Creutin et al., 1997; 

Goudenhoofdt and Delobbe, 2009; Shrestha et al., 2013; Thorndahl et al., 2014; Wood 

et al., 2000). None of these, however, have focused on producing rainfall estimates 

suitable for online modelling of urban runoff for high intensity events. 

 

It is rarely the absolute depth of a rain event that induces problems in urban areas such 

as local flooding, water in the basements and combined sewer overflow (CSO). 

Problems occur as soon as the mean areal rain intensity exceeds the bottle neck capacity 

of the sewer system for a period of time that is comparable to the response time of the 

system. For this reason the highest intensities are of the highest interest for the urban 

runoff modeller and therefore the dynamic adjustment scheme proposed in this study 

aims at improving especially the radar’s ability to estimate the highest intensities.   

 

In the current study radar data are provided by a DHI LAWR (Local Area Weather 

Radar) (Jensen, 2000). This is a small X-band weather radar of growing popularity 

among municipalities due to its low cost and ability to provide rainfall estimates with a 
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pixel size of just 100 m and a 1 minute temporal resolution. This means that the 

resolution of the radar data is more detailed than necessary in order to describe the 

temporal and spatial variability of the precipitation of importance for urban runoff 

modelling (Berne et al., 2004; Ochoa-Rodriguez et al., 2015). The most important 

disadvantages of this radar type, compared with C- and S-band radars, is its limited 

range (maximum range is 60 km and quantitative estimation is possible up to 20 km) 

and larger attenuation due to the X-band frequency. Besides that the LAWR has the 

same problems with quantitative precipitation estimates as other radar types and 

therefore needs to be adjusted using rain gauge data in order to be useful in urban 

hydrology (Willems et al., 2012).  

 

The dynamics and depths of the stratiform rain events of the winter season are in 

general well described by gauges (Shrestha et al., 2013), while these are less good at 

describing the convective events of the summer season. The latter events happen to be 

those that most often cause problems in the urban environment due to high local 

intensities, but to catch the spatial variability of such a convective storm over an entire 

city an unrealistically high number of gauges would be required. Therefore, these are 

the kind of events where high resolution radar data could be useful and thus the radar 

rainfall estimates should be validated against this kind of events. The rain events used in 

the current study have been selected based on the criterion that they should have 

resulted in at least 100 m
3
 of CSO from a specific structure. This led to nine events 

which are mainly of a convective nature.   

 

Validation of radar rainfall estimates is not a simple task and using rain gauges as the 

“ground truth” is problematic. Rain gauges at best represent the rainfall at one specific 

point covering only a few hundred square centimetres, while the validation ideally 

should be done on areal rainfall, which is the quantity of interest for runoff modelling. 

Since runoff is a direct response to the areal rainfall on the catchment, the quality of 

different rainfall estimates are in this article assessed by comparing modelled and 

measured runoff from a highly impervious, well defined urban catchment. This 

validation method is not affected by the various kind of catching errors associated with 

rain gauge measurements (McMillan et al., 2012), and it focuses on a property of direct 

interest in urban drainage modelling, here the volume of CSO events. Instead 

uncertainties regarding the model setup are introduced. These are attempted minimized 

by building a highly detailed distributed model for an area where the system is very well 

known and well defined. Furthermore, a very impervious area is chosen as base for the 

model to minimize the big uncertainties regarding the fast runoff from permeable 

surfaces. To avoid bias towards any specific type of rainfall estimates, the runoff model 

is built purely from physical data without any calibration. 

 

The paper has the following main aims: 

 Test whether rainfall estimates from an X-band weather radar can be improved 

by adjusting the rainfall estimates from nearby gauge measurements, to the point 

where the radar data can be used for modelling urban sewer overflows.  

 Explore the impact of the length of the time horizon used for the dynamic 

adjustment of the radar data. 

 Use a well determined runoff model to assess the quality of the rainfall 

estimates.  This is done by using the rainfall estimates as input to a detailed 
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distributed hydrodynamic urban runoff model and comparing the modelled and 

measured water levels at a downstream overflow structure. In this way the point-

area sampling error and other error sources connected with rain gauge 

observations that often distort studies regarding radar quantitative precipitation 

estimation (QPE) are minimised.  

   

The paper is structured in the following manner: In Section 2 the data is presented 

followed by Section 3 in which we present the various ways the final rainfall data 

products are produced. In Section 4 the model based validation methods are described 

while the results are presented and discussed in Section 5. Finally the conclusions are 

presented in Section 6.  
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2 DATA BASIS 

2.1 Instruments 

The radar used is a DHI LAWR X-band radar located 7 km from the centre of the 

Danish city Odense. The processed radar data used as basis for the investigation have a 

spatial resolution of 100 x100 m and a temporal resolution of 1 minute. The opening 

angle of the radar is ±10 degrees, which implies that the radar detects rain up to an 

elevation of 700 m above the centre of Odense and up to 1200 m in the northern most 

outskirts of the city. Four RIMCO tipping bucket rain gauges with 0.2 mm resolution 

are used for the adjustment of the radar data. The raw gauge data are transformed into 

time series as described in (Jørgensen et al., 1998). The location of the rain gauges and 

radar can be seen in Figure 1. Note that gauge A is situated centrally in the small 

validation catchment and therefore this gauge is expected to represent the rainfall over 

the catchment much better than the other gauges.  

 

The runoff from the validation catchment is only measured indirectly by a water level 

gauge situated at the downstream weir. This is used instead of discharge data simply 

because only water level data are available. A sketch of the overflow structure can be 

seen in Figure 2. The gauge is a pressure gauge situated in level 6.66 m above datum, 

0.42 m above the bottom of the structure, which means that the gauge has a lower 

detection limit at this level. The crest of the weir is situated 6.95 m above datum and is 

a 2 m wide horizontal crest situated orthogonally to the flow direction and with free 

overflow.   

 

Figure 1: Location of the four rain gauges and the radar. The validation catchment is 

located within the gray shaded square covering gauge A, see Figure 4. 
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Figure 2: Sketch of the overflow structure seen from the side. 

 

2.2 Rain events 

The rain events used in this study are the nine events during the summer of 2008 that 

generated more than 100 m
3
 of overflow at the weir used for the validation and for 

which radar data, rain gauge data and weir water level data are available. The event 

definition used is the time span from either of the rain gauges record the first rain until 

none of the gauges record rain. The individual events are separated by at least four 

hours without any recorded rain, which is much more than it takes for the stormwater 

from a rain event to drain from the catchment (the catchment properties are described in 

section 4.1). 

 

 

Figure 3:   Event depths measured by gauge plotted on top of the calculated overflow 

volumes (grey bars). 
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The depths of the nine events measured by the rain gauge within the catchment range 

from 3 to 27 mm. Descriptive data of the events can be seen in Table 1 and Figure 3, 

and the rainfall hyetographs are shown in the Appendix. Note that overflow sometimes 

occurs for surprisingly small rainfall events, which however have short intense periods 

causing this CSO structure in the old city centre of Odense to overflow.  The rain cell 

speed in Table 1 is calculated by cross-correlation analysis of the radar data (Austin and 

Bellon, 1974). By looking at Figure 3 it is easily seen that the overflow volume is not 

strongly correlated to the event depth, since event 7, which results in the largest 

overflow with a factor of six down to the second largest, has an event depth comparable 

to that of event 2 and 3. Furthermore it is noticeable that event 6, for which only 2 – 7 

mm rainfall is recorded (3.2 mm at gauge A), still manages to generate a substantial 

overflow. This shows that the dynamics of the rainfall is just as important as the event 

depth for generating overflow. The reason for this is that overflow only happens when 

the discharge from the catchment exceeds the capacity of the throttle pipe, and this is a 

consequence of a period with intense rainfall which is only vaguely related to the event 

depth for most events.  

 

 

 

Table 1: Date and time for the nine events, the horizontal rain cell speed acquired by 

correlation analysis of the radar images and the event rain depth recorded by gauge A.  

Event no. Date Time Rain Cell  

Speed [m/s] 

Rain depth  

gauge A [mm] 

1 19. maj 04:10 - 07:30 9 7.2 

2 26. maj 03:50 - 16:00 5 27.4 

3 4. aug. 01:30 - 09:00 10 14.6 

4 11. juli 00:15 - 02:10 13 4.0 

5 21. juli 04:20 - 06:50 10 5.7 

6 21. aug. 15:50 - 16:50 13 3.2 

7 21. aug. 21:00 - 23:10 11 16.8 

8 23. aug. 06:00 - 09:10 7 11.1 

9 23. aug. 15:10 - 22:00 9 11.5 

 

The observed water level at the weir and the rainfall hyetographs for all the gauges and 

for all events can be seen in the appendix. 

3 PROCESSING OF RADAR DATA 

3.1 Preliminary processing 

The internal software of the LAWR system converts the raw polar radar images into 

cartesian precipitation maps. This process includes a distance correction algorithm 

which ensures that the radar signal is corrected for the decline in returned signal as the 

distance to the radar increases, and an en-route correction procedure that adjust the 

signal for beam blockage effects. Clutter is removed before and after the final 

conversion into cartesian coordinates by subtracting the values from a clutter map 

generated on a rain-free day (Pedersen et al., 2010). 

 

The LAWR converts the radar data into precipitation estimates by multiplying the value 

at each radar pixel with the ratio between accumulated rain gauge data and accumulated 

radar data for a period with spatially uniform rainfall. The use of this kind of empirical 
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relationship for conversion into precipitation estimates is possible because the LAWR 

has a logarithmic receiver, which gives a linear relationship between rainfall and 

reflectivity (Pedersen et al., 2010).  The accumulated rain depth recorded by the 

gauge(s) is assumed to be representative for the entire area covered by the radar. If the 

rainfall is in fact not spatially uniform during the calibration period, the consequence 

will be that the LAWR systematically over- or underestimates the rainfall in areas 

where the actual rainfall depth deviated from the rainfall depth recorded by the rain 

gauges during the calibration. The calibration period used for the preliminary calibration 

of all the radar data in the current study lasted from early April to mid-May 2008, in 

which period approximately 40 mm of rainfall was recorded by the rain gauges. The 

maximum recorded 5 minute rainfall intensity in this period was just 7.2 mm/h. 

 

3.2 Definition of adjustment factors 

The gauge adjustment of the radar data is a final processing step that correct for errors 

in the already calibrated radar rain estimates. The adjustment factor α relates the rain 

rate estimated by the radar Rr with the actual mean areal rain rate R on an area covered 

by a radar pixel by assuming that: 

 

R = α · Rr + ϵr   (1) 

 

where ϵr is the radar rainfall estimation error. Likewise it is assumed that if a rain gauge 

is situated within a radar pixel then R can be related to the rain gauge measurements Rg 

by: 

 

R = Rg + ϵg   (2) 

 

where ϵg is the rain gauge rain estimation error including catching errors and area to 

point estimation errors. Combining these to equations leads to:  

  

Rg = α ·Rr + ϵtotal   (3) 

 

where ϵtotal is an error term that represents mean areal rain estimation errors from both 

radar and rain gauge. By ignoring that the variance of ϵtotal most likely is bigger for 

larger values of Rr and therefore does not fulfil the requirement of homoscedasticity, it 

is possible to estimate α using the Least Squares Method for a linear regression through 

the origin (Gordon, 1981). By furthermore assuming that ϵtotal is of much larger 

magnitude than the spatial variations in the actual rainfall-to-radar relationship within 

the area covered by the gauges in the setup, the linear regression used to estimate α can 

be written as:  
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where N is the number of rain gauges used for the adjustment and Tad is the number of 

one minute time steps that are used.  
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This method possesses the desired property that data pairs where Rr is relatively large 

have a relative high impact on the result, while data pairs where Rr is small or zero have 

little or no impact at all. This is an advantage for two reasons. When Rr is large, Rg will 

tend to be large as well, which decreases the uncertainty induced by the coarse 0.2 mm 

discretisation of the tipping bucket rain gauge, and secondly it is more important to 

estimate the adjustment factor correctly for large Rr due to the potential larger impact of 

high radar rainfall estimates on the runoff model.  

 

The Rg and Rr values used to estimate α are calculated for each minute as an average of 

the last five minutes of data. This is done to ensure some sort of physical connection 

between gauge data and radar data, since it takes time for drops reflecting a radar signal 

to reach the ground and be detected by a point gauge. 5 minutes was chosen since this is 

sufficient time for raindrops larger than 1 mm, falling with a velocity of minimum 4 m/s 

(Beard, 1976), to travel the distance between the maximum elevation of the radar beam 

anywhere over the city to the ground. An optimal averaging period cannot, however, be 

computed simply by looking at the drops vertical fall velocity, since rain drops fall with 

different velocities depending on drop sizes and metrological conditions (Beard, 1976) 

and seldom fall vertically as pointed out by Dai and Han (2014).  Note that due to the 5 

minute averaging period α is actually calculated based on the previous Tad + 4 minutes 

of data. 

 

In the following equation 4 is used for calculating the adjustment factor regardless of 

the size of the time period and number of gauges. That is, the adjustment factor is 

calculated the same way whether it is based on 15 minutes of data from a single gauge 

or data from all nine events from all four gauges. The same α is used for the entire radar 

image.  

 

It was also tested to calculate the adjustment factors as in mean field bias correction of 

Smith and Krajewski (1991) as the ratio between the sum of rain gauge data and the 

sum of radar data, but this method led to worse results when based on small periods of 

time (single events or less) and no improvement for long periods of time. For the 

readability of the paper these results have been omitted in the results section. 

3.3 Static Adjustment 

Static adjustment aims to improve the quality of radar rainfall estimates by correcting 

for the long term bias between gauges and radar. This is done using a single constant-in-

time adjustment factor, which is calculated using the linear regression from equation 4 

on all data for the period for which the factor is used. In this way the static adjustment is 

assumed to perform better than realistically achievable by static adjustment in a real 

time application where only prior data is known.   

 

Three different Event based Static Adjustments (ESA) are tested: ESAA, ESA4 and 

ESA3. These are either based on rain gauge A, on all four rain gauges or on the three 

gauges left when omitting gauge A, respectively. ESAA is used to test the effect of 

adjusting the radar data against a gauge that represents the local rainfall well (ESAA). 

ESA3 is used to test how well adjusted radar data works for an area without a rain 

gauge, which is the typical situation for most small urban catchments, while ESA4 is 

used to see how good a rainfall estimate can be obtained when combining all available 
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data. A static adjustment that is constant for all nine events and based on the data from 

all four gauges is also tested. This is referred to as CSA4 (Constant Static Adjustment). 

 

Note that the static adjustments differ conceptually from the preliminary conversion into 

precipitation estimates described in section 3.1. The preliminary conversion assumes 

that rain gauge data is representative for the rainfall for the entire area covered by the 

radar, while the static adjustments assume that rain gauge data is representative for the 

specific radar pixel covering the gauge only and let the spatial distribution of the rainfall 

be determined by the radar data.  

3.4 Dynamic Adjustment 

The purpose of using a dynamic adjustment scheme for radar data of such a high spatial 

and temporal resolution as used in this paper and for such a small area is to be able to 

adjust for the changes in the Z-R relationship, that happen during an event. To be able 

to detect and react upon these changes the period used to calculate the adjustment factor 

should be as small as possible. On the other hand, the uncertainty of the calculated 

adjustment factor will increase with the decreasing data basis for the calculation. This 

can be counteracted by using more gauges for the calculation. If these gauges are 

located far apart, it will result in some smoothing of the calculated adjustment factor 

due to the spatial and temporal correlation of the structure of the rain. The typical 

horizontal speed of the rain cells was 10 m/s, see Table 1, which means that it will take 

a rain cell 10 minutes to travel the 6 km between the two gauges that are the furthest 

apart (gauge B and D). This implies that changes in Z-R relations that are faster than 10 

minutes will be smoothened by the adjustment scheme when multiple gauges are used.  

 

To allow changes to take effect quickly α is calculated for each one minute time step, 

based only on the data available up to, and including, the current time step. This makes 

the method suitable for online situations in which rapid response is required, as opposed 

to the mean field bias adjustment of Smith and Krajewski (1991) that adjusts radar 

estimates in time intervals based on prior knowledge of the accumulated radar and rain 

gauge volumes for the entire interval.  

 

A conservative measure has been added to the method to avoid excessive variations in 

the alpha value when there are only a few valid data pairs (both radar and rain gauge 

differs from zero) available, which is always the case at the beginning of an event. 

When actual valid data pairs account for less than half of the total number of data pairs, 

α is calculated as a weighted mean between the actual estimated α calculated from (4) 

and a default alpha value, as: 

 

 
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N

N

N
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where Nactual is the number of valid data pairs within the interval, αactual is the result of 

using (4) on the valid data pairs, αdefault is a default alpha value, and Ntotal is the total 

number of potentially valid data pairs, i.e. the number of gauges multiplied with Tad. 

αdefault could in principle be changed from event to event based on weather type but 

when using multiple gauges the parameter proved to be of minor importance and thus a 
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value of one was chosen, which corresponds to using the pre-processed radar data 

unadjusted.  

 

The following dynamic adjustment schemes are tested: 

 

 DAA(Tad): Dynamic Adjustment based solely on gauge A 

 DA4(Tad): Dynamic Adjustment based on all four gauges 

 DA3(Tad): Dynamic Adjustment based on all gauges but gauge A 

 

 , where Tad is varied between 5 and 30 minutes. 

 

4 VALIDATION USING MODELLED RUNOFF 
The runoff from an impermeable surface is the closest one can get to estimate how 

much rain is actually hitting the ground for areas of a size of hydrological interest. In 

the following modelled runoff from an urban catchment is compared with measured 

runoff by comparing water levels at a weir downstream the validation catchment, see 

Figure 4. By using a distributed model the radar’s ability to describe the spatial 

variability of the rainfall is included in the evaluation. 

 

 

 

Figure 4:  Flowchart of the method for validating by runoff. 
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4.1 The runoff model 

The runoff is simulated using the MOUSE (Model of Urban SEwers) software (DHI, 

2007). The hydrodynamic module of MOUSE uses a finite difference scheme to solve 

the full one-dimensional St.-Venant equations. The parameters of a MOUSE 

hydrodynamic model are physical attributes such as dimensions of pipes, basins and 

weirs, etc. This makes it possible to create a decent model without any calibration, if 

data of high quality describing the sewer system is available. As input to the 

hydrodynamic model a simple distributed time-area surface runoff model is used, which 

determines the runoff from each individual sub catchment from the concentration time, 

a time-area curve and the impervious area. For a rectangular catchment the time-area 

curve will be a straight line, which implies that the runoff at any point in time is 

calculated as the average rainfall for the time of concentration multiplied with the 

impervious area.  

 

 

Figure 5: Map showing the detailed grid of sub catchments in the validation catchment 

and the location of rain gauge A. The orange part drains directly to the validation weir 

(red triangle) and the rest can interact with the orange part in case of heavy backwater 

effects. The small round dots are manholes and the lines connecting manholes are 

pipes.  

 

 

A map of the validation catchment is shown in Figure 5. The catchment is highly 

impermeable (81%) which reduces the model uncertainties since the fast runoff from 

permeable surfaces is very difficult to model. It is assumed that there is no runoff from 

the permeable surfaces. This is a fair assumption for small events but it might lead to a 

slight underestimation of the runoff for large rain events since the permeable areas in 
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these cases might start to contribute with runoff due to saturation of the top soil. The 

impervious areas are mostly asphalt roads, roofs and parking lots. The boundary of the 

catchment is well defined by a railroad, a river and a cemetery working as efficient 

water divides. The total catchment size is 64 ha and the model’s mean sub-catchment 

size is less than 0.5 ha. The shapes and impermeable areas of the sub-catchments come 

from processed aerial photos and the description of the runoff system is based entirely 

on physical data from the municipality – no calibration has been done. The 

concentration time for each individual sub-catchment is set to 7 minutes. That this is not 

a very sensitive parameter can be seen in section 5.1. Included in the model are 266 sub-

catchments defined so that the surface subdivision matches the level of detail in the pipe 

system model (302 manholes and 321 pipes). The exact same model is used for routing 

of both radar data and rain gauge data through the catchment model. The response time 

scale of the flow to the weir, i.e. the time scale at which the pattern of the time-averaged 

radar rainfall hyetograph is the most similar to the modelled runoff hydrograph (Morin 

et al., 2001), is approximately 25 minutes. That is, the time averaged rainfall is 

calculated for time t as the average of the previous Tc minutes of rainfall. The estimated 

response time is the Tc that makes the time averaged rainfall look the most like the 

modelled runoff in terms of shape and location of the peaks. For a rectangular 

catchment Tc correspond to the time of concentration.  

4.2  Applying radar data to the model 

The radar rainfall estimates are applied to the model by letting the values from each 

radar pixel be represented as a separate virtual rain gauge located in the centre of the 

pixel, so that the model is covered with a virtual grid of 294 virtual rain gauges with 

100 m in-between. By using a standard feature in MOUSE, each catchment is assigned 

the rainfall input from the gauge that is nearest to the centre of the catchment. This 

rather simple method of distributing the radar data is feasible due to the small size of the 

sub-catchments. If the sub-catchments had been much bigger than the radar pixels, it 

would have been necessary, in order to fully utilize the information in the radar data, to 

calculate the radar rainfall on each sub-catchment by averaging the data from several 

pixels depending on how big a percentage of the catchment area each pixel was 

covering.   

4.3 Measures of performance 

Root Mean Squared Error 

To assess the quality of a given rainfall input to the model, a measure of performance is 

defined as the Root Mean Squared Error (RMSE) between observed (O) and modelled 

(M) water levels at the weir downstream of the validation catchment: 

 

 
Nobs

MO
RMSE

Nobs

n nn 


 1

2)(
  (6) 

 

Nobs is the total number of data points used for the calculation. Only data points where 

the measured water level is above the lower detection limit of the level meter are 

included. This measure of performance is very sensitive to temporal differences which 

makes it suitable to evaluate the dynamics of the runoff.  
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Overflow volume 

The total overflow volume for each event is furthermore used as an indicator of the 

quality of the rainfall input. The total overflow volume does not take temporal 

differences into account but it does say something about the rainfall estimates´ ability to 

describe the periods with the highest intensities correctly, since these are the ones that 

cause overflows. Furthermore, overflow is of paramount importance when managing 

urban drainage systems and therefore this measure is interesting by itself.  

 A calibrated weir discharge coefficient was not available for the weir. Instead the 

standard overflow formulae for an orthogonal weir implemented in the hydrodynamic 

computations of MOUSE is used (DHI, 2007):   
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else 

0)( hQw     (8) 

 

Qw is the discharge over the weir, B is the crest width, g is the gravitational constant, Kc 

is the energy loss coefficient (0.5 for a sharp-edged outlet), h is the water level and hcrest 

is the level of the crest of the weir.  

 

In the following the exact same formula (equations 7+8) is used to compute the 

observed and the modelled overflow.  

 

There is a big difference in the amount of overflow from the events. To be able to 

compare model performance for different events, the overflow based on the modelled 

water level is divided with the overflow based on the measured water level to create the 

Relative Overflow Volume (ROV). That is, ROV equal to one is the best score. ROV is 

calculated as: 

 





h) observed(

h) modelled(

w

w

Q

Q
ROV    (9) 

 

Notice that the parameters from equation (7) will cancel each other out in the 

calculation of ROV (9). The parameters do, however, play an important role when the 

model calculates the water level at the weir, and the parameters are therefore still 

important. Overflow volume computations are rather uncertain when not based on a 

calibrated weir discharge coefficient and therefore too much emphasis should not be put 

on the ROV from individual events but rather on the distribution of the ROV from all 

events, which preferably should have a median close to one and a small spread.  
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5 RESULTS AND DISCUSSION 

5.1 Uncertainties 

Model errors and errors in the water level observations will affect both measures of 

performance defined above. Model and observation errors can affect both modelled and 

observed overflow in a systematic way that could change the conclusions based on 

ROV. If e.g. the observed overflow is positively biased then the optimal ROV is a value 

smaller than one.  

 

Table 2 shows how sensitive the modelled and observed overflow volume is to 

parameter and observation uncertainties for event 9. Each parameter in the table is 

affected with a large, equally likely, change that could correspond to two times the 

standard deviation of the parameter uncertainty. The table shows that the roughness of 

the throttle pipe is the most sensitive parameter, while the roughness of the rest of the 

pipes in the system and the concentration time of the sub catchments is without 

importance. Even changing the weir formulae to a side weir does not have a big effect 

on the modelled overflow either, since the water that arrives at the CSO structure will 

go over the crest of the weir if the throttle pipe capacity is reached, and the parameters 

of the weir formulae will only have an impact on the water level at the weir while the 

overflow happens.  

 
Table 2: Effect of parameter and observation uncertainties on modelled and observed accumulated overflow 

volume for event 9. 

Parameter change Change in 

overflow volume 

Changing throttle pipe material from smooth to normal concreate 

(13% increase in Manning’s n) 

+29% 

Changing pipe material for all pipes in the model except for the 

throttle pipe from smooth to normal concreate  

-2% 

Increase all impervious areas with 5%  +15% 

Decrease time of concentration for sub-catchments with 30% +1% 

Change weir formula to side weir -2% 

Overflow observation error   

Change in calculated overflow volume due to bias in water level 

observations (2 cm). 

+20% 

 

Furthermore, the use of a simple Q/h relationship to calculate overflows can even in the 

case with an optimal Q/h relationship lead to event volume errors of 14% (Isel et al., 

2014). Short term errors in the water level observations might occur due to e.g. debris 

being stuck on the gauge for a while. This sort of error is impossible to detect with only 

one gauge and the frequency and magnitude of this sort of error is unknown. While the 

latter two errors are random, all errors in Table 2 are systematic. The random errors 

should even each other out when quantifying the performance over multiple events, and 

therefore the median is a more robust estimate than the extremes. Based on the data in 

Table 2 the total uncertainty of ROV is estimated by assuming that the errors are 

uncorrelated and normally distributed and by assuming that the changes in ROV caused 

by changing the various parameters are independent of each other. This enables for 
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calculating the total ROV uncertainty as the square root of the sum of squares of the 

data in the right column of Table 2, which leads to a total uncertainty of 40%.  The 40% 

is used as an indication of a 95% confidence interval for the ROV in the following, but 

keeping in mind the rough assumptions used to produce the number.  

 

The uncertainty of the RMSE has not been assessed explicitly. All the rainfall estimates 

are affected by the same model and observational errors and these will to a large extent 

determine the minimum possible level of the RMSE for the individual events, but the 

errors are not likely to change the relative performance of the individual rainfall 

estimates. This means that a low RMSE can be seen as an indication of a representative 

rainfall input to the model and it furthermore implies that it is not strictly required to 

know the uncertainty of the RMSE to interpret the results. This is, of course, not 

necessarily true for individual events, and therefore care should be taken in reading too 

much into single event RMSE.  

 

Since the model is distributed in space and uses the full dynamic wave equations for the 

hydraulic calculations, both modelled and actual runoff will to some extent be sensitive 

to most rainfall variations in both space and time. The validation method will, non the 

less, be less sensitive to temporal rainfall variations at time scales significantly smaller 

than the response time of the catchment (25 minutes). Therefore a smaller validation 

catchment should be used if the aim is to assess the quality of radar data on 10 minute 

time scale or less. In the same way the validation method is less sensitive to spatial 

variations in the rainfall when the spatial dimension goes below a certain limit. This 

limit is not easily quantified since it makes a difference in which direction the variation 

is: it makes a big difference on the runoff hydrograph if the variations are along the flow 

direction towards the weir and a smaller difference if the variations are perpendicular to 

this flow direction. These effects are artefacts of validating on catchment scale runoff. 

5.2 Adjustment towards gauge A 

Since gauge A is situated centrally in the small validation catchment it is expected to 

represent the rainfall much better than the other gauges, and it is therefore treated 

separately in this article.  
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Figure 6:  (Upper figure) Event depth measured by gauge A or by radar for the pixel 

covering gauge A. (Lower figure) Modelled CSO dependent on which rainfall input is 

used as model input. This is plotted on top of the measured CSO (grey bars). 

 

Event CSO volumes and rainfall depths are shown in Figure 6 for selected rainfall 

products. The figure shows that the event depths as recorded by gauge A are very 

similar to those of ESAA for the radar pixel covering gauge A, which might not come as 

a surprise since the radar data in this case is adjusted towards the very same gauge on 

event basis. The lower panel in Figure 6 reveals, however, that ESAA for eight of the 

nine events leads to less overflow than gauge A, and for five of these events ESAA leads 

to less than one third of the volume of overflow found when using gauge A. The gauge 

data leads to a CSO volume closer to the observed for seven of the nine events which 

suggests that the gauge data is the most representative for the rainfall over the 

catchment of the two rainfall estimates. Since the event volumes for the two rainfall 

estimates are similar, the worse performance of the adjusted radar data must be due to 

either a poor representation by the radar of the spatial distribution of the rainfall or a 

poor representation of the dynamics of the rainfall.  
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Figure 7:   Box plot showing the relative overflow volume and the RMSE for water 

levels for the nine events. The plots show the minimum, the 1
st
 quartile, the median 

(thick line), the 3
rd

 quartile and the maximum values. Where the plot of Relative 

Overflow Volume goes below 0.1 is due to values of zero (No modelled overflow).The 

horizontal lines on the ROV plot marks one and the 40% confidence interval around 

one based on systematic errors only. 

 

Figure 7 shows descriptive statistics of the results from the CSO comparisons for all 

events and rainfall products. The lower panel in Figure 7 shows the RMSE between 

modelled and observed water levels. This performance measure also shows that gauge 
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A provides a better rainfall estimate than ESAA. When the radar is adjusted against 

gauge A on a much shorter time frame the results become much better, which can be 

seen in Figure 7 when looking at the performance of DAA(5). The median of the ROV 

for this rainfall estimate is close to one and it is closer to one than ESAA for all 

quantiles. Likewise the RMSE is lower for the 1
st
 to the 3

rd
 quantiles.  This shows that 

the poor performance of ESAA is not due to a poor spatial representation by the radar 

data, since this would be the same for DAA(5). This leaves a poor representation of the 

rainfall dynamics as the main cause of error. This notion is further supported by the 

performance of DAA as Tad grows from 5 towards 30 minutes. The RMSE steadily 

increases with the increase in Tad, while the median of the ROV falls out of the 

confidence interval as Tad goes from 10 to 20 minutes. For a Tad of 30 minutes, the DAA 

adjustment is not unambiguously better than ESAA since the RMSE for most of the 

quantiles is worse for the dynamically adjusted data, while the ROV continues to show 

better results for DAA.  

 

The DA methods aim to adjust the radar to better reflect the current conditions, such as 

e.g. changes in the drop size distribution, at any given point in time. The current 

conditions over the validation catchments might not be represented the best by the Tad 

previous minutes above gauge A, since these conditions might be moving away from 

the catchment with the speed of the rain cell. Therefore current conditions might be 

better represented by the previous Tad minutes above a larger area as sampled via the 

three distant rain gauges. The results for DA using only gauge A indicate that it is not a 

good idea to adjust radar data towards the nearest rain gauge only. 

5.3 Adjustment using multiple gauges 

From Figure 7 it can be seen that gauge A clearly outperforms the other point gauges in 

terms of RMSE. The median ROV for gauge C and D are within the confidence interval 

around ROV of one, which indicates that the statistical properties of the data from these 

gauges correspond to the rainfall over the validation catchment. The corresponding 

large spread of the ROV and the very high RMSE values show, however, that the same 

gauges are not very good at producing representative rainfall estimates for the 

catchment for the individual events. When a gauge is not present in a catchment a 

modeller would have to use data from the nearest gauge available or produce an 

interpolated rainfall estimate from several gauges. Therefore a traditional Inverse 

Distance (ID) rainfall estimate (Teegavarapu et Al, 2009) based on the three distant 

gauges (gauge B, C and D) has been included to be able to assess whether it is 

worthwhile to use rain gauge data to adjust radar data instead of just creating artificial 

rainfall data from the rain gauges. Figure 7 shows that the ID estimate gives a much 

better RMSE than the individual gauges situated outside the catchment while there is no 

clear improvement in the ROV. Generally the ID estimate performs better in terms of 

ROV than the static adjusted radar data. The comparison is less clear when looking at 

the RMSE since opposite conclusions can be drawn depending on which quantile is in 

focus. 

 

The conclusions are clear when comparing the ID with the dynamic adjustment methods 

based on the same three gauges as the ID estimate, since the radar data in this case 

performs the best for all quintiles for both ROV and RMSE when DA3 is based on 20 

minutes or less. Furthermore both gauge A and ID only lead to eight overflows while all 

the multi-gauge DA estimates yield overflows for all events. This shows that it is indeed 



 20 

worthwhile to combine radar and rain gauge data when estimating rainfall for ungauged 

locations. When comparing the results for DA3 and DA4 it seems that including gauge A 

into the multi-gauge adjustment scheme only has a minor impact on the performance, 

except for the maximum RMSE which is improved from the range 0.27-0.29 to 0.19-

0.24.  

 

It is worth noting that each of the gauges B, C and D perform poorly by themselves, 

which can be explained by the spatial variability of the rainfall. When the same gauges 

are used to estimate the radar to rainfall relationship, as it is done in DA3, the 

performance is much better. This shows that the spatial variability of the radar to 

rainfall relationship is smaller than the variability of the rainfall.   

 

Among all the rainfall estimates DA4(10) is the most robust in the sense that it provides 

the lowest spread in the ROV from the minimum to the maximum value, meanwhile 

having the lowest maximum RMSE  and the lowest median RMSE. If looking at any 

other quantile of the RMSE, however, gauge A performs the best. The gauge is situated 

within 300 m of the major part of the impervious area that drains towards the validation 

weir, and within such a short distance the spatial variability of even most convective 

rainfall is limited. Still the rain gauge completely failed to represent event 6 since the 

gauge data for this event did not lead to any modelled overflow. That this is not the case 

for DA4(10) illustrates the benefit of using multiple gauges for dynamically adjusting 

radar data, since a single mis-representative gauge in this case does not have a big effect 

on the final rainfall estimate.  

5.4 Importance of adjustment time scale 

All the static adjusted radar data result in significant underestimation of the overflow 

volumes. The typical (median) overflow volume when using ESAA is only 30 % of the 

measured volume. The third quantile of the ROV for CSA4 is actually above one, but as 

shown in Figure 6, the few large CSO’s when using CSA4 is a result of large 

overestimations of the total rainfall and thus not a result of a good description of the 

rain.  This shows that the radar data need to be adjusted on time scales shorter than the 

events used in the current study.  

 

For all the dynamic adjustment schemes the median ROV decreases as Tad increases, 

and the minimum ROV decreases rapidly when Tad becomes larger than 10 minutes. 

This indicates that the rainfall peaks are smoothened too much when the DA is based on 

intervals of 20 minutes or more. Since the three ESA methods are closely related to the 

three DA methods for long Tad, the performance of the DA methods are expected to 

converge towards the corresponding ESA values for increasing Tad.  

 

By comparing the performance of DA3 and DA4 it appears that the benefit of using four 

instead of three gauges decreases as Tad increases to 30 minutes. For a Tad of 5 minutes 

adding the forth gauge improves the RMSE for all quantiles, while for a Tad of 30 

minutes only the highest RMSE value is substantially improved and the 3
rd

 quantile 

even gets worse.  Depending on which quantile one is looking at the dynamic 

adjustment schemes with multiple gauges work best when Tad equals 20 minutes or less. 

This implies that the method is not suitable for creating nowcasts, since it is not 

reasonable to assume that the adjustment factor is constant in the forecast period. Just 

how rapid the factor can change is demonstrated in the next section.  
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5.5 Focus event 

The evening event on the 23
rd

 of August (Event No. 9) was a series of showers and it 

lasted in all about 7 hours. During that time there where two short periods with 

overflow, lasting for 30 minutes and 23 minutes, respectively, leading to a total CSO 

volume of 658 m
3
. The recorded event depth is almost exactly the same for gauge A or 

for ESAA and DA4(10) adjusted radar data, see Figure 6, whereas there are big 

differences in the modelled CSO. Gauge A and DA4(10) lead to a CSO estimate in the 

right order of magnitude but ESAA leads to almost no CSO at all. The reason for this 

can be seen in Figure 8. The ESAA adjusted radar data leads to an overestimation of the 

water level for the first part of the event, meaning that the radar data have overestimated 

the rainfall, while the rainfall is underestimated in the rest of the event. A higher static 

adjustment factor could not have improved the picture, since the first part is too high 

already. DA4(10) seems to result in a good description of the runoff. The DA4(10) 

adjustment factor varies with a factor of more than 6 during the event, see Figure 9, 

making it possible for the radar data to emulate both peaks and lows better. 

 

 

Figure 8:  Measured (grey line) and modelled water level at the downstream weir. The 

horizontal dotted line represents the level of the weir, and the horizontal grey curve 

segment represents the lower range of the level gauge signal.  
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Figure 9:  Adjustment factors for Event 9 and the intensities measured by gauge A. 

 

6 CONCLUSIONS 
In this study, static and dynamic methods for adjusting X-band radar data based on rain 

gauges are tested for their ability to produce accurate rainfall estimates to a distributed 

urban runoff model used to model combined sewer overflows. The methods are all 

linear and constant in space (the value of the adjustment factor is independent of the 

location). The static methods apply an adjustment factor to the radar rainfall estimates 

that is constant for an entire event, while the dynamic adjustment methods recalculate 

the adjustment factor for each minute based on the prior Tad minutes of radar and rain 

gauge data pairs. The static methods are attempted favoured by allowing them to be 

based on all data from an event – knowledge that is not available in real time. The 

primary validation of the rainfall estimates is performed by comparing modelled and 

measured water levels at a combined sewer overflow (CSO) structure located in a 64 ha 

catchment with approximately 25 minutes concentration time. The model is constructed 

purely from physical data without any calibration to avoid favouring the type of rainfall 

estimate used for the calibration. Data from one rain gauge placed in the centre of the 

catchment and 3 gauges situated outside the catchment are used for the assessments. 

Only rain events that lead to significant overflow volumes are included.  

The following conclusions can be drawn from the current study: 

 Radar rainfall estimates can be used as basis for successful urban runoff 

modelling required that the radar data are dynamically adjusted against rain 

gauge observations. The adjustment method works well with only 3 or 4 gauges. 

The dynamically adjusted radar data performed indisputably better than the three 

distant gauges, situated 2 – 3 km from the catchment, no matter if these were 

used individually or all together for estimating areal rainfall using the inverse 

distance interpolation method. 

 The adjustment works best when based on the past 10 – 20 minutes of rainfall 

data only. If longer time periods are used, the dynamics of the rainfall will not 
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be adequately described by the rainfall estimate which results in e.g. lower 

modelled CSO volumes. The short time frame implies that the dynamic 

adjustment scheme is not suitable for producing nowcasts/forecasts.  

 The rain gauge within the validation catchment provided the best rainfall 

product if disregarding the single event where data from this rain gauge did not 

lead to a modelled CSO at all. This shows that it is still worthwhile to set up rain 

gauges in areas of special interest.  

 

Even in cities that are well equipped with rain gauges, the majority of the areas will not 

be within 300 m of a rain gauge. For these areas the current study indicate that radar 

rainfall estimates can be improved to the point where they can be used for quantitative 

CSO modelling by dynamically adjusting the radar data against rain gauges, when the 

adjustment period is as short as 10 to 20 minutes.   
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Appendix: Rain gauge and weir water level data 
The rain gauge data are aggregated to 5 minute averages for better readability. The data 

for the rain gauge situated within the catchment (gauge A) is plotted in the same figure 

as the observed weir water level.  
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