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Abstract 

The need to achieve a sustainable process performance has become increasingly important in order 

to keep a competitive advantage in the global markets. Development of comprehensive and 

systematic methods to accomplish this goal is the subject of this work. To this end, a multi-level 

framework for techno-economic and environmental sustainability analysis through risk assessment 

is proposed for the early-stage design and screening of conceptual process alternatives. The 

alternatives within the design space are analyzed following the framework’s work-flow, which 

targets the following: (i) quantify the economic risk; (ii) perform the monetary valuation of 

environmental impact categories under uncertainty; (iii) quantify the potential environmental risk; 

(iv) measure the alternatives’ eco-efficiency identifying possible trade-offs; and, lastly (v) propose a 

joint risk assessment matrix for the quantitative and qualitative assessment of sustainability at the 

decision-support level. Through the application of appropriate methods in a hierarchical manner, 

this tool leads to the identification of the potentially best and more sustainable solutions. 
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Furthermore, the application of the framework is highlighted by screening two conceptual glycerol 

bioconversion routes to value-added chemicals namely 1,3-propanediol (1,3-PDO) and succinic 

acid.  

 

Keywords: conceptual process, techno-economic assessment, environmental assessment, uncertainty 

analysis, glycerol biorefinery 

 

1. Introduction 

Global concerns about climate change, energy security, exhaustion of fossil resources and its 

societal impacts, have become important for policy and decision-makers. These facts lead to new 

challenges for the (bio)chemical and processing industries, which motivate researchers to 

incorporate sustainability matters into the design of new chemical and biochemical processes. 

Therefore, the bio-based economy has been seen as a key approach that may meaningfully lead to 

long term sustainable development, where bio-based chemicals and fuels may play a relevant role 

that will potentially contribute to the replacement of oil-based resources [1]. Due to the 

multidimensional nature of sustainability, the design and analysis of sustainable biorefineries is 

built on multi-criteria and multi-objective decision making procedures, leading to complex 

problems. The complexities arise not only from the multi-evaluation techniques to be chosen, but 

also from the significant amount of input data required to perform the sustainability analysis, data 

which may originate from different sources, with different degrees of uncertainty [2], [3]. The 

comparison and screening of potential processes at the conceptual design phase of biorefineries is 

marked by assumptions, hypotheses and simplifications that need to be made in order to represent 

the complexity of the problem. Therefore, it implies that during the first stages of biorefinery design 

and development, since real data is often incomplete or not available, there are several alternative 

technologies, feedstocks and products, generating a great number of potential processing pathways. 



3 

 

Hence, there is a need for screening and gathering the most appropriate processing networks 

regarding economics, environmental constraints and overall sustainability. Consequently, 

uncertainty on the techno-economic parameters/criteria is expected, and needs to be appropriately 

dealt with [4]. 

Furthermore, uncertainty in environmental assessment originates from, among others, inaccurate 

measurements, lack of data and erroneous model assumptions (inaccurate or unreliable assumptions 

when the modeler has to make decisions under limited or no data availability) [5]. For the sake of 

simplicity, data uncertainty is divided into lack of data (data gaps or lack of representative data for 

the studied system) and data inaccuracy [6].  

There are several proposed approaches on how to deal with error propagation, such as, fuzzy logic 

[7], Gaussian formulas  [8], [9] and the Monte Carlo technique, as the most commonly used 

methods for propagation of parameter uncertainty [10]–[14]. 

Despite the considerable work being done on the development of initiatives to include propagation 

of uncertainty in environmental assessments [10], [15], the results are usually reported based on 

deterministic data [10], [16]. 

Regarding deterministic models, a good decision is based on the outcome on its own. However, in 

very few decision-making circumstances, perfect/complete information is available for the decision 

maker (i.e. all the needed data with sufficient accuracy is present). The majority of decisions are 

made in spite of uncertainty, where probability comes into the process as a representation of 

complete knowledge [17]. Hence, probability assessment stands out as quantification of uncertainty 

and as an important tool for both communicating uncertainty and managing it. 

Furthermore, under uncertainty conditions, the decision maker is concerned not only with the value 

of the outcome but also with the extent of risk that each decision carries. Quantified based on the 

uncertainty for which the probability distribution is known (or projected), risk is equal to the sum of 
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probabilities of outcome(s) (likelihood of occurrence) times the projected loss as a consequence of 

the outcome(s).  

Consequently, risk-based decision-making provides information in an organized structure about the 

possibility of one or more unwanted outcomes to occur and its potential economic loss. This 

information helps managers towards more informed and realistic choices regarding project 

feasibility.  

Examples of studies/methodologies used to compare alternatives based on predefined 

criteria/indicators and their integration are:  Azapagic et al. (2006) [18], where a methodology is 

presented to guide the user  through different design stages for the integration of technical, 

economic, environmental and social criteria; Sacramento-Rivero (2012) [19] propose a performance 

assessment methodology applicable to biorefineries where a sustainability scale is used based on an 

absolute reference, and normalized for sustainability indicators applicable to biorefineries; 

Martinez-Hernandez et al. (2013) [20] introduce a tool that result from the combination of the value 

analysis method for the evaluation of economic potential with environmental footprinting for 

impact analysis; Sacramento-Rivero et al. (2015) [21] illustrate the integration of sustainability 

indicators for the design of a potentially sustainable switchgrass biorefinery; and, Sanchez et al. 

(2014, 2016) [22], [23]  use a framework that aims at  the calculation of the overall impacts, for 

both economic and environmental domains and provide information that could be used to improve 

the sustainability of the processes under analysis. 

Another approach is to identify the optimal solution among different alternatives based on a given 

objective function. Authors in [24]–[26] present a literature review on programming techniques 

explored to identify the optimal alternative through single or multi-objective optimization. 

Notwithstanding that many studies focused on the economic and environmental domains of 

sustainability, it should be noted that the majority of these studies measure sustainable performance 
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solely under deterministic conditions, where uncertainty and the associated risk a decision carries, is 

disregarded. Accordingly, as far as we are aware, no other studies have proposed a combined 

techno-economic and environmental risk quantification matrix for sustainability assessment and 

decision-making. Therefore, this work proposes a step-by-step framework whose purpose is to 

identify the best potential alternative(s) that would sustainably create value with the least potential 

risk of economic and environmental impact. This is achieved by systematically integrating 

uncertainty and sustainability analysis into a risk assessment framework. The framework aims to 

stablish a holistic view regarding the following: (i) estimation of  the deterministic economic and 

environmental metrics; (ii)  use of Monte Carlo technique for propagation of uncertainties to the 

environmental and economic indicators; (iii) quantification of  the economic risk; (iv) monetary 

valuation of environmental impact categories under uncertainty; (v) quantification of the potential 

environmental risk; (vi) use of the sustainability risk matrix as a visual tool for quantitative and 

qualitative analysis for decision-making. Moreover, performing qualitative analysis by making use 

of the sustainability risk assessment matrix (as a visual aid tool), is a valuable advantage/benefit of 

the framework which facilitates exchange of information among experts and non-experts. 

The remaining sections of this article are structured as follows: (i) the framework section introduces 

a step-by-step explanation (user guide) of how to use the quantification of risk as an integrating tool 

decision-making; then (ii) the framework is highlighted through its application to a relevant case 

study, the glycerol valorization to value added products namely 1,3-PDO and succinic acid; and 

finally, (iii) conclusions from the work are presented. 

 

2. Decision-support framework for techno-economic & environmental sustainability 

analysis by risk assessment for conceptual process evaluation 
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The proposed framework is based on the combination of two previously presented methodologies, 

where a methodology for environmental assessment under uncertainty was proposed [27] and an 

algorithm for the techno-economic assessment under uncertainty was presented [28]. These two 

methodologies are now combined, and the analysis is taken a step further by incorporating a 

quantitative and qualitative sustainability analysis by risk assessment. Therefore, the framework’s 

main goal is to systematically, at an early stage of process design, collect, evaluate and screen the 

alternatives within the design space, through a comprehensive sustainability analysis by risk 

assessment.   

As presented in Figure 1, the framework work-flow is composed of six steps: (1) problem 

definition; (2) data collection and management; (3A) deterministic techno-economic analysis; (3B) 

deterministic environmental analysis; (4) Monte Carlo technique for uncertainty analysis; (5) 

economic and environmental risk quantification; and, (6) risk assessment and decision-making.  

Step 1: Problem definition  

In this step, as shown in Figure 1, the user (decision-maker) has to define if the problem is to be 

solved through a process- or product-oriented approach.  

A product-oriented approach is recommended when, the aim is to produce a specific product (or a 

set of products) and the decision-maker wants to evaluate several paths for its production. This is 

the case of a retrofit problem, where one wants to change or adapt the existing plant in order to have 

more production routes and/or to have different sources of feedstock being converted in the plant. 

Whereas a process-oriented approach should be used when the user is aiming to evaluate a number 

of paths to synthetize a set of products from a certain (already selected) raw material and, therefore, 

the question is the selection of product portfolio. Then it would result in a completely new plant. 

Based on this, the system boundaries and the functional unit (FU) should be defined. Hence, the 
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framework application would assist the decision-maker to systematically draw the analysis 

boundaries and define the functional unit (FU). 

 

Step 2: Data collection & management 

The Step 2, as shown in Figure 1, targets to establish the design space from which the potential best 

alternative will be identified. Hence, all the data required for the subsequent steps is gathered into a 

multidimensional matrix (database) of process technologies, storing all the relevant data required to 

perform the subsequent steps, representing the alternatives within the boundaries. The database 

includes: (i) possible processing networks; (ii) the parameters needed to solve the generic block 

model equations (e.g. stoichiometry, conversion, mixing, product separation, waste separation) 

[29][30]; and, (iii) techno-economic data (such as prices of raw materials and products and capital 

and operating costs). The data needed can be obtained by literature review, from real plant data 

and/or process simulation. It is important to note that, when considering bioprocesses, it is usual the 

case that real data and literature data are unavailable or incomplete, and therefore data validation 

and/or consolidation together with process simulation is often required [27].  

Lastly, the generic block model equations (please see [29][30] for more details) are solved using a 

mathematical solver, where the processes are simulated in order to obtain the mass and energy 

balances, fulfilling fundamental data requirements for the next steps.  

Step 3A: Deterministic techno-economic analysis 

The techno-assessment under uncertainties workflow is composed of two sub-steps as shown in 

Figure 1.  

Step 3A.1: Economic model initialization  

To make an investment decision, the forecasted profit from an investment must be assessed relative 

to some quantitative profitability measurements with regards to the investment needed to generate 



8 

 

that profit. As discussed in earlier work [28], for the project evaluation, the economic model used is 

the discounted cash-flow rate of return (DCFROR) which considers the time value of money. By 

setting a target discount rate (aka internal rate of return), this model enables the calculation of the 

net present value (NPV), and the minimum selling price. Please see supplementary material, section 

B, for detailed information on the methodological assumptions, model equations and input 

parameters.  

 NPV is used to assess the economic viability of the projects within the design space, which is then 

used to comprehensively compare the process alternatives. This method is especially recommended 

when uncertainties are present and thus risk is a challenge [31]. The discount rate is usually set by 

the investors, and it reflects the minimum rate of return that the company has decided to accept for a 

new investment, which is in fact a way for the company to adjust to the built-in risk of a project.  

In order to generate the base case solutions (baseline) and to identify the first ranking of solutions, 

the DCFROR is initialized. To this end, the problem is formulated and solved by maximizing NPV 

for each of the processing networks using the nominal input parameters, such as prices of product(s) 

and raw material(s), capital and operating costs (data previously collected). 

Step 3A.2: Identification of input parameters with high impact on the model 

To identify which external input parameters have higher influence in the economic model selected, 

a deterministic sensitivity analysis is performed. Therefore, the NPV is re-calculated by changing 

one input parameter at a time over its expected range of variability. The sensitivity analysis will 

reflect how sensitive the model is to each parameter, providing an insight on the parameters degree 

of risk involved in foreseeing the economic performance of the project. Therefore, these parameters 

are studied further in order to analyze not only the degree of uncertainty that they carry into the 

model but also how to propagate it and then interpret the results. 
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Step 3B: Deterministic environmental analysis 

This step targets to assess the deterministic environmental impact of the processing networks within 

the design space by calculating their corresponding categories of impact (Sc), as discussed in in 

[27].  Important to note, is that the Sc are pre-determined by the selection of the Life Cycle Impact 

Assessment (LCIA) characterization method according to ISO 14040 standards. Thus, for each 

category, all substances contributing to it are converted and summed up (see Eq. 1), in order to be 

represented by one indicator.  

S𝑐 = ∑ CF𝑖,𝑐 × F𝑖𝑖  [32] [33]     (1) 

Where CFi,c and Fi, correspond to the science-based characterization factors for each category of 

impact and the flux for each component i in the system, respectively. 

Step 4: Monte Carlo technique  

This step of the framework aims to characterize and propagate the sources of uncertainty within the 

techno-economic and environmental analysis. To that purpose, the Monte Carlo technique has been 

applied. 

Step 4.1. Characterization of uncertainty  

As mentioned above, concerning the techno-economic assessment, the most relevant sources of 

uncertainties are identified by the sensitivity analysis performed in Step 3A.2. The identified 

sources of uncertainty are characterized by using appropriate statistical distribution functions.  

The distribution function portraying the behavior of the uncertainty sources can be obtained 

from (i) historical data if available (e.g. feedstock and product prices) and, when there is no 

data available, using (ii) expert review/literature survey assuming a uniform distribution 

[34]. The term expert review refers to information on typical ranges of variation that can be 
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used as first estimates, obtained from published sources and engineering textbooks such as 

Peters et al. (2003) [35] or Towler & Sinnott (2013) [36]. Therefore, we are able to evaluate 

the project’s performance under uncertainty where worst case scenarios are also depicted. 

However, the framework is systematic and flexible, and the input data, namely, uncertainty 

distributions, can be added or modified according to the updated information the user may 

have at his/her disposal. 

As an example, historical data on the raw materials and products market prices are collected and 

fitted through appropriate distribution functions after analyzing their behavior over the years.  

Regarding the environmental assessment, this work focuses on dealing with parameter uncertainty 

carried by the characterization factors (CF𝑖,𝑐) used in Step 3B for the calculation of impact 

categories. Even though providing significant information for relative comparisons, since CF𝑖,𝑐 are 

based on simplifications of more complex models, they are not fully trustworthy for absolute 

comparisons because they carry substantial uncertainty. Hence, for the characterisation of 

uncertainties in CF𝑖,𝑐, the expert review method was used, a commonly used approach for 

uncertainty analysis in engineering studies [34], [37]. Thus, three classes of uncertainties for CFs 

were defined: the class 1 uncertainty refers to 25% variation, the class 2 refers to 50% variation, 

and the class 3 refers to 75% variation around the reported (mean) values of CFs. The mean value 

of 𝐶𝐹𝑖,𝑐 is collected from available databases. Finally, it was assumed that the uncertainty in 𝐶𝐹𝑖,𝑐 

follows a uniform distribution, where the same procedure is performed for all input components in 

the system within the defined boundaries.  

Step 4.2. Latin Hypercube Sampling & Monte Carlo simulations 

The Latin Hypercube Sampling (LHS) is used to sample from the parameter space [37] defined in 

the previous step, where the user needs to, a priori, specify the total sample number, N. After the 
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sampling, one obtains a sampling matrix with N rows and p columns, where N is the total number of 

samples and p refers to the number of uncertain parameters for which the sampling is performed. 

After LHS, both economic and environmental model equations, respectively describing the 

calculation of NPV and 𝑆𝑐, are evaluated/solved using parameter values from the sampling matrix 

(usually called Monte Carlo simulations). Therefore, it leads to N solutions for each outcome, which 

lead to distributions of the model output values (i.e. NPV and 𝑆𝑐values) as a result of the 

propagation of the parameter uncertainties in the input. By incorporating a probabilistic 

interpretation, the distribution of the outputs will be analyzed by means of empirical cumulative 

distribution functions (ECDF) and used as input data in the next step. 

Step 5: Risk quantification 

As shown in Figure 1, this step is composed of the economic and environmental risk quantification.  

Step 5.1: Economic risk quantification 

Risk is estimated as the probability of occurrence of a certain event times the consequence of that 

same event to happen. In this work, the economic risk (Risk 𝑒𝑐𝑜𝑛) is quantified by the probability of 

failing to achieve the targeted NPV (‘being lower or equal to’) times the magnitude of the 

consequence of that happening (‘loss of profit’). Therefore, the economic risk is given by the 

probability of the project being non-profitable (NPV<0) times the loss of profit in the event of that 

happening (consequence).  The respective mathematical description is presented in Eq. 2. 

Risk 𝑒𝑐𝑜𝑛 =  ∑ Pi × Mi𝑖 =  ∑ P(NPV ≤ 0) × (𝑁𝑃𝑉𝑖)𝑖     Eq. 2  

where i is the occurrence of the undesirable event, 𝑃𝑖 is the probability of that event to occur and 𝑀𝑖 

is the magnitude of the consequence (loss of profit in MM$).. 

Step 5.2: Environmental risk quantification 
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In this study, the quantification of the environmental risk (Risk𝑒𝑛𝑣  ) of a certain alternative reflects 

the total amount that the decision-maker is willing to pay if the impact categories deviate from their 

deterministic value due to uncertainty on the CFs.  Therefore, the Risk𝑒𝑛𝑣 is given by the probability 

of the category Sc being higher than the deterministic value multiplied by the consequence of that 

event happening. The magnitude of the consequence is estimated based on the monetary difference 

between the deterministic values and the realization of the conservative sample values (class 3 

uncertainty, step 4.1) over the plant’s production lifetime.  

Graphically, the individual risk incurred for each one of the impact categories Sc corresponds to the 

shaded area in the cumulative distribution function presented in Figure 2. The mathematical 

formulation is given by Eq. 3. 

Risk𝑒𝑛𝑣 = ∑ (∑ 𝑃(𝑆𝑐 ≥ 𝐷𝑒𝑡𝑐) × |𝐷𝑒𝑡𝑐 − 𝑆𝑐| × 𝑤𝑐𝑐 ) = ∑ (∑ [∑ 𝑃(𝐶𝐹𝑖 ≥ 𝐷𝑒𝑡𝐶𝐹𝑖
) × |𝐷𝑒𝑡𝐶𝐹𝑖

− 𝐶𝐹𝑖|𝑖 × 𝑓𝑖] × 𝑤𝑐 𝑐 )𝑇  𝑇        

      Eq. 3  

Where, Sc correspond to the realization value of the category of impact c and Detc correspond to the 

deterministic value of the category of impact c (obtained previously in step 3B) and T reflects the 

production lifetime of the processing network under consideration. Lastly, 𝑤𝑐 represents the 

monetary valuation factors used to convert midpoint or endpoint categories into a normalized and 

weighted monetary unit.  

Monetary valuation for direct comparison is the practice of converting measures of impacts into 

monetary units and is used to attribute economic value to non-market goods (to which no market 

exists). Although advantages of such an approach have been being pointed out by several authors 

such as [38], and the technique is being applied in cost benefit analysis, up to now monetary 

valuation has not been widely applied in environmental assessments, or more specifically in Life 

Cycle Assessment (LCA). However, it presents great potential for interpretation purposes and 
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communication of environmental assessment results, due to the fact that decision-makers at the 

management level need a rough but clear presentation of results.  

A summary of existing approaches for monetary valuation, built-in methods and key features is 

described in [39]. In this work, the weighting factors methodology selected is one given by 

ECOVALUE08 [40], since our focus is on midpoint indicators and their well-defined cause-effect 

relationships between compound fluxes and the indicators to which they contribute to. Table 1 

shows the weighting factors provided by ECOVALUE08.  

 

Step 6: Risk assessment & decision-making 

The main goal of this step is to rank and identify the potentially best alternative(s) regarding 

economic and environmental aspects through risk assessment for sustainability analysis. Therefore, 

a joined risk interpretation matrix is set as visual aid to facilitate a quantitative and qualitative 

interpretation of the quantified risk for decision support at early stage design. To this end, both 

economic and environmental risk are normalized as follows.  

𝑅𝐸𝐶𝑛,𝑗 = 𝑅𝑖𝑠𝑘 𝑒𝑐𝑜𝑛−𝑛𝑜𝑟𝑚,𝑗 =   
𝑅𝑖𝑠𝑘 𝑒𝑐𝑜𝑛,𝑗

(∑ 𝑅𝑖𝑠𝑘 𝑒𝑐𝑜𝑛,𝑗𝑗 ) 𝐽⁄
   Eq. 3 

 

𝑅𝐸𝑁𝑛,𝑗 = 𝑅𝑖𝑠𝑘𝑒𝑛𝑣−𝑛𝑜𝑟𝑚,𝑗  =
𝑅𝑖𝑠𝑘 𝑒𝑛𝑣,𝑗

(∑ 𝑅𝑖𝑠𝑘 𝑒𝑛𝑣,𝑗𝑗 ) 𝐽⁄
    Eq. 4 

Where (∑ 𝑅𝑖𝑠𝑘 𝑒𝑐𝑜𝑛,𝑗𝑗 ) and (∑ 𝑅𝑖𝑠𝑘 𝑒𝑛𝑣,𝑗𝑗 ) represent the sum of economic or environmental risk over 

the number J of alternatives considered within the design space, respectively.  

Figure 3 presents the proposed qualitative matrix for decision-support, where, after normalization, 

the respective normalized risk position given by the pair (𝑅𝐸𝐶𝑛,𝑗, 𝑅𝐸𝑁𝑛,𝑗), is set up for each 

alternative. The vertical and horizontal axes display the range of normalized economic risk and 

environmental risk, respectively. Due to the normalization, the center of both axes corresponds to 1. 
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As proposed by [41], the distances of the products from the diagonal can be  translated into 

differences between the respective eco-efficiency performance.    

The visualization of results through the interpretation matrix provides not only a quick decision-

making tool to select the potentially most sustainable alternative within the design space, but also it 

is an easy way to communicate results in an easily understandable way. To this end, the matrix is 

divided into four boxes both for qualitative (‘which box does it fall in?’) and quantitative 

interpretation (‘higher or lower than 1?’).  Therefore, from the qualitative point of view, and in 

clockwise direction: ‘Drop’ indicates that the alternatives that fall into this box are not promising 

and therefore they are recommended to be given up; ‘Improve’ categorizes the alternatives which 

have low economic risk, however the environmental risk assessment reflects that the process needs 

to be improved in order to decrease its environmental burden; ‘Potential’ presents high prospective 

to be selected as best alternative since it has low economic risk and low environmental risk; and, 

finally, ‘Re-evaluate’ classifies the alternatives that have a potential low environmental risk, but the 

economic risk is significant. In the latter case, improvements in the process could not only improve 

the economics but also its environmental assessment.  

In order to analyze the products’ eco-efficiency, one starts by looking at the distances between the 

initial positions in the matrix and the diagonal line, the higher the distance to the diagonal line the 

lower the eco-efficiency. Furthermore, the ratio between the normalized environmental and 

economic risk (𝑅𝑗) is estimated for each one of the products as given in Eq. 5. If 𝑅𝑗 is higher than 1 

it means that the normalized environmental risk of the product is higher than the normalized 

economic risk. 

This ratio is used not only to analyze the systems’ eco-efficiency but it is also useful to update the 

products’ position in the matrix to an improved position, which has a balance between the 
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environmental and economic risk, i.e. it is located on the diagonal line. Thus, it allows a quick 

visualization of possible trade-offs when selecting a certain alternative. 

𝑅𝑗 =
𝑅𝐸𝑁𝑛,𝑗

𝑅𝐸𝐶𝑛,𝑗
       Eq. 5 

The improved position is given by the pair (𝑅𝐸𝐶′
𝑛,𝑗, 𝑅𝐸𝑁′

𝑛,𝑗) inspired by the procedure proposed in 

[41], which is based on the theorem of Pythagoras and on the cathetus theorem.  

Therefore, based on the sustainability analysis performed through the joined risk assessment, the 

user will be able to quickly assess which alternative stands out as potentially more sustainable, and 

also identify possible trade-offs.  

 

3. Case study results 

 
The increased environmental concerns and the consequent demand for less harmful transportation 

fuels have led to a growing interest in biofuels. Biodiesel, one promising alternative among the 

known renewable energy sources, has been receiving greater interest than before. Therefore, since 

its production capacity has increased over the last years, so did the amount of residues (crude 

glycerol and pies) generated during its manufacture.  

Since the crude glycerol is produced in stoichiometric proportions to biodiesel (10 kg biodiesel to 1 

kg of glycerol), the surplus of crude glycerol created in the biodiesel industry is leading to a drop in 

glycerol prices and, hence, the glycerol is now considered a waste instead of a coproduct [42]. 

Therefore, the growth of biorefineries based on the valorization of  glycerol is anticipated to help 

the biodiesel companies and their economy, by cutting costs related to the discharge of residues and 

increasing production of value-added chemicals, possibly acting as a driving force to increase 

global sustainability of the biodiesel industry  [43], [44]. 

Hence, the framework is applied in order to analyze and identify the most environmentally friendly 

designs under uncertainty among the proposed glycerol bioconversion schemes.  
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Step 1: Problem definition 

The framework is highlighted by the application to the glycerol valorization, where the aim is to 

identify the best alternative to add value to crude glycerol, by the production of succinic acid or 1,3-

propanediol as value-added products. Since the goal of the study is to identify the best potential 

product, the functional unit is the inflow of crude glycerol (1 kg of glycerol). The system 

boundaries are defined following a gate-to-gate approach as described in Figure 4, which includes 

the manufacturing process and the utilities scheme.  

 

Step 2: Data collection & Management 

 

As mentioned previously, all input data needed to perform the subsequent steps is collected and 

stored in a multidimensional matrix. The mass and energy balances were estimated based on the 

input data (please see Table A2, section 2, supplementary material) and following the generic block 

model equations (e.g. stoichiometry, conversion, mixing, product separation, waste separation) 

[29][30]. Additionally, the techno-economic data required for Steps 3A and 4, such as nominal 

market prices of products and raw material(s); and key assumptions for the economic model, are 

also collected and presented in Table 2 and 3. Regarding the data requirements of the environmental 

assessment, after selecting the LCIA methods, the characterization factors (CFs) are also collected 

and stored in the database. In this work the LCIA method selected is the ReCiPe method [45]. It is 

important to note that, having defined the LCIA method, the indicators and characterization factors 

are preselected and used in the subsequent steps. 

 

Step 3A: deterministic techno-economic analysis 

Step 3A.1: Economic model initialization 

To generate the base cases conditions and obtain the first ranking of solutions, the problem is solved 

maximizing the NPV of the processing networks within the design space. To this end, all the input 
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data required for the calculation of Eqs. 2 to 9 [28], such as input parameters, have already been 

collected (e.g. market prices of products and raw materials, see Table 3) or estimated (e.g. fixed and 

variable operating costs). The summary of key input assumptions used in the economic model is 

presented in Table 2.  

In this work, the fixed and variable operating costs are estimated based on the factorial 

methodology. Therefore, as starting point, the fixed capital investment (FCI) needs to be estimated.  

The capital investment was calculated based on dividing the processing routes/pathways into three 

sections as shown in Figure 5. The capital investment for the purification of crude glycerol was 

calculated on the basis of data available for a medium-sized biodiesel plant in Europe [50]. It has an 

input flowrate of 4200 ton glycerol/year (~525 kg/h), corresponding to 10% (w/w) of the total 

annual biodiesel production rate (37.85×106 L). A detailed equipment list and their cost can be 

found in supplementary material. For the remaining process sections, the FCI was estimated based 

on literature review of all products and scaled to the production rate set by the verified 

stoichiometry. The purchased equipment costs were then estimated based on the product specific 

references (base) and adapted to appropriate capacities (plant X), and the respective costs were 

updated to year 2014, as presented in Eq. 1. The factorial methodology, as presented in [35] is then 

applied based on the purchased equipment cost. Table 4 presents the data required for the 

application of the economic model and the nominal values obtained for NPV and MSP (for the 

model equations please see supplementary material, section A2, Eqs.1 to 8).  

CostX
2014 = [Costbase × (

CapacityX

Capacitybase
)

𝑛

] ×
CEPCI2014

CEPCIbase
   Eq.1  

Where CostX
2014

 represents the purchased cost for plant X calculated from the Costbase of a similar 

plant with similar functionality; CEPCI2014 and CEPCIbase represent the Chemical Engineering’s 
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Plant Cost Index (see Supplementary material, Figure A1) for 2014 and for the year base (reference 

year for each case), respectively. 

Studies on glycerol conversion have been reported along the years such as [51]–[55], among others. 

Vlysidis et al. [52] analyzed the coproduction of succinic acid for the glycerol valorization; where 

the total production cost (TPC) obtained is approximately 4.37 M$/y, updated for the capacity 

difference, the use of the same inlet of crude glycerol as raw material and updating it with the 

euro/dollar exchange rate from mid-2014 (reference year as shown in Table 2). As presented in 

Table 4, the TPC obtained in this work for the production of succinic acid is approximately 3.86 

M$/y, being within a range of variation of less than 12% from the TPC reported in Vlysidis et al. 

[52]. Moreover, the TPC for 1,3-PDO obtained in this work is within 15% of variation from the 

reported value of TPC of 1,3-PDO presented in Posada et al. [55] (3.49 M$/y), which, for the sake 

of comparison, has also been updated accordingly. It is important to note that, considering that the 

above are deterministic assessments at early stage design, differences are expected not only due to 

different methodological choices but also due to shortcomings related to the possible lack of 

awareness of market fluctuations and technical variabilities.  

Step 3A.2: Identification of input parameters with high impact on the model 

The investment and cash-flows are firstly calculated for the baseline conditions, and then the NPV 

is re-estimated by changing one variable at a time over the expected range of variability of key 

economic factors (see Table 5). This will express how sensitive the DCFR model is, to variations in 

the input information. From Figure 5, it was concluded that (i) external input parameters such as 

feedstock price, product price, sales volume and fixed capital investment have a relatively high 

impact on the projected economic performance; and, (ii) the discount rate also has a significant 
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impact on the economic model. Thus, in this study the above-mentioned sources of uncertainty are 

taken into account and analyzed further.  

 

Step 4: Monte Carlo technique 

Step 4.1: characterization of sources of uncertainty 

As mentioned earlier in Step 3A.2, the external sources of uncertainty identified by the sensitivity 

analysis are now characterized using appropriate statistical distribution functions.  

Therefore, for further analysis, the scenario to be analyzed was set-up based on (i) historical data on 

the raw materials and products market prices described through appropriate probability distribution 

functions; (ii) considering variability of the fixed capital investment over its typical range of 

variation; and, (iii) considering the variation of the sales volume by allowing it to vary in its 

probable range. Concerning the uncertainty in the LCIA, as discussed above the CF𝑖,𝑐were identified 

as carrying substantial uncertainty. The input uncertainty domain is defined by the expert review 

method and assuming a uniform distribution as mentioned above (description of step 4.1).  

 

Step 4.2: LHS & Monte Carlo simulations 

Through Latin hypercube sampling with correlation structure/control [34], [37] 500 future scenarios 

(realizations of uncertainty) were generated for each of the input parameters from the input 

uncertainty domain.  

Therefore, the output of this step is composed by two NxM matrices, corresponding to input 

uncertainty identified in the techno-economic assessment and in the LCIA, where N represents the 

number of samples obtained with LHS and M represents the uncertain parameters.  

In order to identify the optimal processing networks, the optimization problem was formulated and 

solved, which led to 500 optimal solutions (Monte Carlo simulations) that are mapped and 
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statistically analyzed. The frequency of selection of succinic acid and 1,3-propanediol are 0.84 and 

0.16, respectively (also presented in Table 8).  

Step 5: Risk quantification 

Step 5.1: Economic risk quantification 

In this study, as mentioned earlier, the economic risk is quantified by following Eq. 2.  

As identified in step 3A.2, the discount rate is an important source of uncertainty mostly set by 

management choices. In this case study, the project to be selected represents the implementation of 

a new technology, and therefore the project discount rate (IRR) is adjusted to offset risk and attract 

investors. It is, therefore, considered to be somewhere between medium to high, and so the 

minimum acceptable rate of return is set to be 24%. Thus, to represent the effect of the company 

choices with respect to the level of IRR used, the NPV is estimated considering both IRR of 10% 

and 24% [35].  In Figure 5, two curves are depicted in red and blue, representing NPV obtained at 

10% and 24% internal rate of return respectively, where the calculation of risk is equivalent to the 

shaded area in the cumulative distribution function for NPV as shown in Figure 5. A summary of 

the  economic risk results is presented in Table 4.  

 

Table 6 presents a summary of results and Figure 5 graphically presents the results obtained for the 

products under consideration, where we analyze the probability of NPV being lower than zero times 

the consequence of that event occurring. In other words, the economic risk will reflect the 

probability of the biorefinery concept under study to be non-profitable (non-viable) which 

corresponds to a NPV lower than zero. To this end, the crude glycerol valorization through the 

production of succinic acid is potentially the best investment alternative since it has a lower risk of 

being non-profitable than 1,3-PDO, representing a potential profit loss of 41 and 63 M$ at a 

discount rate of 10%, respectively. Although the lower capital investment required leads to a 
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quantified economic risk of 20 M$, selling the purified glycerol as the only product (“do nothing” 

alternative) presents a probability of NPV being lower than zero of 1, and, therefore, is non-

profitable for the full realization of uncertainty. Also, it is important to note that, due to the fact that 

the market for refined/pharmaceutical grade of glycerol is nearly saturated, it is faced with global 

oversupply, and therefore there is a limited demand for purified glycerol [59], [60]. This fact was 

not taken into account in the estimation of risk for the “do nothing alternative”, it was then 

considered that all crude glycerol available is refined and sold. However, as above discussed, the 

goal of the framework’s application to the case study is from a process point of view; it then assists 

a chemical company in further developing projects and performing feasibility assessments. 

Therefore, the application of the framework to this case study enables the project developers to 

identify the best potential alternative in the design space to sustainably add value to the glycerol 

side-stream. 

Step 5.2: Environmental risk quantification 

The environmental risk was quantified following Eq. 3, and using the monetary valuation factors in 

Table 1, where the built-in risk of each category Risk𝑒𝑛𝑣,𝑐  is given by the probability of the category 

Sc being higher than the deterministic value multiplied by the consequence of that event happening. 

The empirical cumulative distribution function (ECDF) obtained as output of Step 4.2, and built 

based on the realization of conservative sample values (class 3 uncertainty, step 4.1), is used in 

order to read the cumulative probability needed for the estimation of risk for each category Sc.. 

Then, the consequence is calculated based on the monetary difference between the deterministic 

values of each category and the realization of the conservative sample values over the plant’s 

production lifetime.  

In this case study, the plant lifetime is taken to be consistent with the economic assumption lifetime 

of 30 years (Table 2). However, since the first three years correspond to the plant construction (no 
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production), 27 years is the entire period where the plant is operating and thus this is the time over 

which the environmental risk is quantified. The quantified environmental risk of 1,3-PDO and 

succinic acid is 47.7 and 53.9 M$/lifetime, respectively (shown also in Table 5). Therefore, based 

only on environmental risk and performance one can see that the production of 1,3-PDO stands out 

as being slightly better than the production of succinic acid.  

 

Step 6: Combined risk assessment & decision-making 

In order to assess the alternatives within the design space and identify the potentially best 

alternative, the proposed combined risk assessment matrix is used for decision-support.   

The position of both products in the matrix (𝑅𝐸𝐶𝑛,𝑗, 𝑅𝐸𝑁𝑛,𝑗) is obtained by using the Eqs. 3 and 4; 

the results are summarized and presented in Table 5 and shown in Figure 6.  

In this case study as shown in Figure 6, we can see that the production of 1,3-propanediol is located 

in the ‘Re-evaluate’ box and the succinic acid production is located in the ‘Improve’ box. It is then 

clear that the potentially best alternative to be chosen for further investigation is the succinic acid 

production. However, the process needs to be improved in order to decrease its environmental 

burden and hence decrease its potential environmental risk. This is also highlighted by the succinic 

acid alternative’s R factor (see Table 5), which being higher than 1 shows that the normalized 

environmental risk has a greater impact that the normalized economic risk.  

  

Figure 7 shows in detail the slight difference on the eco-efficiency of succinic acid over 1,3-PDO, 

where succinic acid presents itself more advantageously since the environmental benefit given by 

1,3-PDO is evaluated not to be worth its additional economic risk.  

Moreover, the 𝑅𝑗 and the improved positions (𝑅𝐸𝐶′
𝑛,𝑗, 𝑅𝐸𝑁′

𝑛,𝑗) were estimated and shown in Table 

5. The improved positions (𝑅𝐸𝐶′
𝑛,𝑗, 𝑅𝐸𝑁′

𝑛,𝑗) represented in Figure 8, aim at establishing a balance 
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between the economic and environmental risk, and therefore following the approach presented in 

the framework description, they are set upon the diagonal line. Finally, after analyzing the risk 

contributions of both products, one can deduce that choosing succinic acid is a safer choice, which 

potentially leads to a more sustainable solution for the glycerol valorization. This is also supported 

by existing commercial production plants such as: Reverdia producing 10 kton/y of Biosuccinium 

from renewable carbon sources (fermentable sugars) in Italy, since 2012 [61]; Succinity, a joint 

venture between Corbion Purac and BASF built in 2013, also having a 10kton/y working plant in 

Spain since 2013; and, Myriant and Bioamber, with the same range of installed capacities, operating 

in Canada and North America, respectively [62]. Succinic acid (and its salts) has been projected to 

be one of the future platform chemicals obtainable from renewable resources and has noteworthy 

potential as building block; for the production of biopolymers [63], to be used in food, 

pharmaceutical and cosmetic activities as well as its transformation into solvents and other existing 

petro-based chemicals [64]. 

 

 

Furthermore, it is important to note that, the uncertainty analysis and risk assessment results 

presented here depend on the framing of the problem which includes (i) sources of uncertainty 

identified, (ii) the uncertainty ranges defined (based on historical price range, internal company 

experiences, process expert/engineering insights, textbooks, etc). Therefore these results should be 

interpreted within that framing. However since the methodology is flexible, the uncertainty and risk 

analysis can be iterated as the user has more refined/updated information on sources/magnitude of 

uncertainties in the project development. 

 

4. Conclusions:  
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A flexible and systematic framework for sustainability analysis incorporating techno-economic and 

environmental risk assessment is proposed as a decision-support tool to help rank the alternatives 

within the design space and identify the best potential conceptual process. To  this end, the 

framework leads the user to actively: (i) identify techno-economic sources of uncertainty and, 

through uncertainty propagation, (ii) quantify the economic risk; (iii) perform the monetary 

valuation of environmental impact categories under uncertainty; (iv) quantify the potential 

environmental risk; (v) measure the alternatives’ eco-efficiency identifying possible trade-offs; and, 

lastly (vi) use a sustainability risk assessment matrix for quantitative and qualitative assessment at 

the decision-support level also enabling information transfer to non-experts. The benefit given by 

the combined risk assessment matrix is a quick graphic analysis of all products within the design 

space, therefore after estimating the normalized position the user is able to visually identify the 

optimal solution. 

Enterprises are under increasing pressure to assess/ evaluate environmental, social, and economic 

impacts of the projects they evaluate. Thus, the proposed framework provides a meaningful 

measure of sustainability, being a useful and flexible way for companies to evaluate their 

processes/products from a quantitative and qualitative stand-point. In this way, the proposed 

methodology is providing the user with a useful and flexible tool for the decision-making support at 

the conceptual phase, which allows a quick assessment of results to facilitate decisions concerning 

which products to select or reject for further process development efforts.  
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Figure 1: Schematic representation of the framework for sustainability risk assessment at the early-stage of conceptual design and analysis. 
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Figure 2: General representation of the cumulative distribution function for environmental categories of impact Sc, where Det 

corresponds to the deterministic value of the impact categories. 

 

 

 

 

 

Figure 3: Sustainability risk assessment and interpretation matrix. 
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Figure 4: System boundaries to be included in the economic and environmental assessment. 

 

 

 

 

 

Figure 5: Sensitivity analysis of NPV to variations in key economic parameters. 
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Figure 6: Cumulative distribution function for the succinic acid and 1,3-PDO production from glycerol. The highlighted area 

represents the risk of the project being non-profitable. Red represents NPV obtained for IRR@10%. Blue represents NPV obtained 

for IRR@24%. 

 

 

 

 

Figure 7: Sustainability risk assessment matrix, where 13PDO and HSuc represent the product positions. 
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Figure 8: Detail of risk matrix to assess the alternatives’ eco-efficiency. 

 

 

 

 

Figure 9: Sustainability risk assessment matrix, where 1,3-PDO, HSuc and 1,3-PDO’, HSuc’ represent the original and improved  

positions for both products, respectively. 
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Table 1: Midpoint weighting factors given by ECOVALUE08 [39], [40]. Values adjusted for inflation, $2014. 

Global warming [$/kg CO2 eq.] 0.33 

Acidification [$/kg SO2 eq.] 5.06 

Eutrophication [$/kg PO4 eq.] 36.8 

Photochemical oxidation formation [$/kg C2H4 eq.] 6.74 

Human toxicity [$/kg 1,4DB eq.] 2.03 

 

 

Table 2 – Summary of the assumptions used for the discounted cash-flow rate of return [35], [46]. 

Parameter Assumption 

Plant life (years) 30 

Discount Rate (mar) 10% 

Depreciation Period (Years)  5 

Equity 40% 

Loan Interest 8% 

Loan Term (Years) 10 

Construction Period (Years) 3 

% Spent in Year -2 8% 

% Spent in Year -1 60% 

% Spent in Year 0 32% 

Start-up Time (Years) 0.50 

Product production/Feedstock use (% of 

Normal) 
50% 

Variable Costs (% of Normal) 75% 

Fixed Cost (% of Normal) 100% 

Income Tax Rate 35% 

Cost Year for Analysis 2014 
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Table 3: Average prices and respective standard deviations 

Products, Chemicals & Solvents Mean 

($/kg) 
Std.  Ref. 

Crude glycerol (60 % w/w) 0.42 0.048 [47] 

Succinic acid (HSuc) 2.79 0.23 [48] 

1,3-Propanediol (1,3-PDO) 2.02 0.35 [48] [49] 

 

 

 

Table 4: Estimation of the purchased capital cost to be used for the factorial methodology (updated to 2014 prices by using the 

appropriate CEPCI); and the remaining needed parameters for NPV and MSP calculation [28]. 

products 
Production 

rate (ton/y) 

Purchased 

capital cost, 

E’ 

(MM$)  

Fixed capital 

investment, FCI 

(MM$) 

Total product 

cost without 

depreciation, 

TPC 

(MM$/y) 

Utilities 

(MM$/y) 

Sales 

(MM$/y) 

Averag

e  

Price 

($/kg) 

NPV 

(MM$) 

MSP 

($/kg) 

Succinic 

acid 
2464 5.079 23.914 3.863 0.289 6.87 

2.79 
-3.3 

2.98 

1,3 PDO 2312 14.092  21.28 3.940 0.899 4.66 
2.02 

-6.7 
2.43 

 

Table 5 – Key economic factors under variability for sensitivity analysis of the DCFR model. 

 Data Sources 
Lower limit 

(% of the baseline) 

Upper limit 

(% of the baseline) 

Product price [36] -20% +20% 

Feedstock price [36] -10% +30% 

Fixed Capital Investment [56] -20% +50% 

Discount rate [36], [57] [this work] 8% 24% 

Income tax rate  [58] -20% +20% 

Sales Volume [35] -20% +20% 
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Table 6 – Summary of results for the calculation of economic risk for succinic acid and 1,3-PDO. 

 Succinic Acid 1,3-PDO 

Frequency of selection 420/500 80/500 

Pr (NPV≤0) @IRR10% 0.7857 0.8625 

Pr (NPV≤0)  @IRR24% 0.9119 0.95 

Risk  @IRR10% (M$) 41.22 62.68 

Risk @IRR24%  (M$) 48.40 65.24 

 

Table 5: Summary results for the joint risk assessment, 

 Succinic Acid 1,3-PDO 

Risk𝑒𝑛𝑣 (M$/lifetime) 53.85 47.66 

(𝑅𝐸𝐶𝑛,𝑗, 𝑅𝐸𝑁𝑛,𝑗) (0.80; 1.1) (1,21; 0.88) 

R 1.39 0.73 

(𝑅𝐸𝐶′
𝑛,𝑗, 𝑅𝐸𝑁′

𝑛,𝑗) (0.83; 1.13) (1,24; 0.91) 

 


