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RESEARCH ARTICLE

Application of simulated lidar scanning patterns to
constrained Gaussian turbulence fields for load
validation
Nikolay Dimitrov and Anand Natarajan

Department of Wind Energy, Technical University of Denmark, Risoe campus, Roskilde, Denmark

ABSTRACT

We demonstrate a method for incorporating wind velocity measurements from multiple-point scanning lidars into three-
dimensional wind turbulence time series serving as input to wind turbine load simulations. Simulated lidar scanning
patterns are implemented by imposing constraints on randomly generated Gaussian turbulence fields in compliance with
the Mann model for neutral stability. The expected efficiency of various scanning patterns is estimated by means of the
explained variance associated with the constrained field. A numerical study is made using the HAWC2 aeroelastic software,
whereby the constrained turbulence wind time series serves as input to load simulations on a 10MW wind turbine model
using scanning patterns simulating different lidar technologies—pulsed lidar with one or multiple beams—and continuous-
wave lidars scanning in three different revolving patterns. Based on the results of this study, we assess the influence of the
proposed method on the statistical uncertainty in wind turbine extreme and fatigue loads. The main conclusion is that
introducing lidar measurements as turbulence constraints in load simulations may bring significant reduction in load and
energy production uncertainty, not accounting for any additional uncertainty from real measurements. The constrained
turbulence method is most efficient for prediction of energy production and loads governed by the turbulence intensity
and the thrust force, while for other load components such as tower base side-to-side moment, the achieved reduction in
uncertainty is minimal. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Mechanical loads on wind turbines are to a large extent driven by the variations in the stochastic wind turbulence field
interacting with the turbine rotor. Because of the large volumes and length scales involved and the complexity of the tur-
bulent flow, it is currently not possible to characterize the inflow in its entirety solely by measurements. Therefore, in nu-
merical load simulations, the turbulent wind is usually modelled as a random three-dimensional Gaussian field with spectral
properties defined by a turbulence model as e.g. the Kaimal spectrum used with the Veers method,1 or the Mann turbulence
model.2,3 For the purpose of load verification, the statistical properties (mean and variance) of the generated numerical wind
field are defined to match the statistical properties of time series obtained by measurements at one or few points in front of
the turbine rotor. Because of the stochastic nature of the problem, the instantaneous values of a generated wind field real-
ization will not match the true wind velocities experienced by the turbine. As a result, the outcome of a well-performed
numerical load analysis will match the measured load values on a statistical basis, but there still can be significant
realization-to-realization variation as a result of the uncertainty in the inflow. This uncertainty implies that a significantly
large number of observations and simulations are required for a successful load verification of wind turbine prototypes.

Recent developments in remote sensing technology have made it possible to measure wind velocities at multiple points
in a predefined pattern by means of multiple-beam lidars and scanning lidars. Although not being able to fully characterize
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turbulence, the multi-point measurement technology can provide significantly more information about the incoming wind
velocities as compared with measurements at a single point as provided by e.g. cup or sonic anemometers. However, it
needs to be shown that incorporating multi-point lidar measurements in load simulations will reduce the sample-to-sample
uncertainty of numerical load simulations with respect to observed wind turbine loads. Earlier studies considered some
aspects of the problem, e.g. Bierbooms and Cheng4 describe a stochastic gust model for load simulations which can be used
to generate constrained time series, and Nielsen et al.5 show a method for creating constrained turbulence fields to be used
in load simulations. These studies typically consider the constraints as a discrete event as e.g. coherent gust, leading to only
few constraints applied within a short time period. Bierbooms and Veldkamp6 and Kim et al.7 compare measured and
simulated loads using wind fields constrained at either one or two locations based on cup anemometer wind measurements.
In the present paper, we explore possible benefits to load prediction by a numerical study which assesses the effect of
including wind velocity time series measured by multi-point lidar in the turbulence field used for aeroelastic load simula-
tions. Constrained Gaussian turbulence fields are generated using simulated Lidar measurements, where each instantaneous
measured value is treated as a constraint. With the proposed approach, constraints can be applied over the entire volume of
a turbulence field used in an aeroelastic simulation, meaning that a significant part of the turbulence in the simulations will
be determined from measured values. This makes the method potentially useful for model validation tasks such as load and
power curve verification, as well as many other purposes where a reduced realization-to-realization uncertainty has an
importance. In the following sections, we describe the process of generating a constrained turbulence field and assess
the significance of using a constrained field on the load uncertainty.

2. GENERATING CONSTRAINED TURBULENCE FIELDS

2.1. Constrained Gaussian fields

The algorithm for applying constraints on a Gaussian field uses a source, unconstrained realization of the random field,
which is modified to satisfy all constraints by adding a so-called residual field, conditionally dependent on the constraints.
The residual field is defined by using its most likely values to interpolate between known points (e.g. constraints), a tech-
nique which is often referred to as simple kriging,8 linear regression9 or optimal linear estimation method.10 In the
succeeding texts, we give a short overview of the method, which is described in more details in Hoffman and Ribak11

and Nielsen et al.5

Consider a zero-mean, homogeneous and isotropic Gaussian random field g(r), r = {x, y, z}, which is defined by its
power spectrum Sr(k) and is subjected to a set of M constraints denoted byH ¼ hi rð Þ ri ¼ ci; i ¼ 1;…;Mj gf . A constraint
at a point ri is a function of g(ri), and in the present problem, this is simply the required value of the field at ri, i.e. hi(ri)≡
g(ri) = ci. In order to generate a random field realization g(r) which has a spectrum given by Sr(k) and satisfies the condi-
tions in H, two main steps are necessary: (i) generate a random, unconstrained realization g ̃ rð Þ and (ii) impose the con-
straints in H on g ̃ rð Þ to obtain g(r). The residual field representing the difference between the unconstrained and the
constrained fields, εg rð Þ ¼ g rð Þ � g̃ rð Þ, is also a random Gaussian field. At all constraint locations ri, i= 1…M, the values
of εg are known: εg rið Þ ¼ ci � g̃ rið Þ. For all other locations, the values of εg(r) are uncertain; their probability distribution is
conditional on the constraints H and is given by

P
�
εg rð ÞjH� ¼ P εg rð Þ;H� �

P H½ � (1)

where P[.] is the multivariate normal (Gaussian) distribution. For the purpose of obtaining a realization of g(r), a suitable
choice for the uncertain points in εg(r) is their most likely values which are given by the ensemble mean of εg(r)|H:

εg rð Þ ¼ εg rð Þ� ��Hi ¼ ζ rð ÞΖ�1 H� gc̃ rð Þ� �
(2)

where h.i denotes ensemble averaging, ζ(r) = [hg(r)g(r1)i, hg(r)g(r2)i,…, hg(r)g(rM)i] is a vector of the cross-correlations
between the field and the constraints, and Ζ is the correlation matrix of the constraints set, Ζij = hg(ri)g(rj)i, i= 1…
M, j= 1…M. Here, H = [c1, c2,…, cM]

T is the vector with the specific constraint values, and g̃c rð Þ ¼ g̃ r ¼ r cið Þð Þ; i ¼
1…M are the values of the unconstrained realization corresponding to the constraints (i.e. at the same location and contem-
poraneous with the constraints). The variance of the residual field is independent of the constraint values and is given by

ε2g rð ÞjH
D E

¼ σ2 � ζ rð ÞΖ�1ζ rð ÞT (3)
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where σ2 is the variance of the unconstrained field. Any constrained realization can be written as a sum of the unconstrained
field g̃ rð Þ and the mean of the residual field εg rð Þ:

g rð Þ ¼ g̃ rð Þ þ ζ rð ÞΖ�1 H� g̃c rð Þ� �
(4)

Figure 1 shows an example with a one-dimensional, zero-mean and unit-variance Gaussian field g(t) on which a single
constraint g(t) = 3 is imposed at t= 600s. As a result of the imposed constraint, at the constraint location, the mean of the
field equals the constraint value, and the field variance is reduced to zero.

2.2. Turbulence boxes with constraints modelling lidar measurements

The wind inflow input to aeroelastic wind turbine load simulations is defined as a random, three-dimensional turbulence
field discretized on a rectangular grid referred to as a turbulence box (Figure 2). The longitudinal wind direction is coinci-
dent with the longest dimension of the turbulence box (here given as the x coordinate), while the y and z coordinates cover
the dimensions of the rotor plane. As the load simulations span over a fixed time period, the mapping between the time and
physical coordinates (metres) on the x-axis will depend on the specific average wind speed: The time step size is fixed,
while the step size in metres is proportional to the mean wind speed, e.g. for a wind field with a 10min duration and with
a mean wind speed of 10m/s, the length of the generated turbulence box will correspond to a physical dimension of
6000m. Along the axes parallel to the rotor plane, the size of the turbulence box normally is slightly larger than the rotor
diameter, e.g. 180m for a wind turbine with 178m rotor diameter. The properties of the turbulence box are based on a
spectral turbulence model, e.g. the Mann model, and the values are generated using Fourier simulation. In the present study,
we use turbulence boxes with a grid size of 8192 × 32 × 32 (x, y, z), which is adequate for a 10min wind simulation over a
large rotor.

At each grid location, the instantaneous wind velocity is regarded as a three-component vector [u, v,w], which quantifies
the wind velocity projection on the x, y and z axes respectively. The ratio of the standard deviation in the v and w compo-
nents to the u component is usually fixed by the Mann model parameters and is commonly assumed to be 0.8 and 0.5
respectively.

Figure 1. One-dimensional, zero-mean and unit-variance Gaussian field g(t) on which a single constraint g(t) = 3 is imposed at t = 600 s.
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The process of obtaining an accurate numerical representation of measured quantities such as wind velocities is associ-
ated with various uncertainties. Some examples of potential sources of uncertainty in the measurements from a nacelle-
mounted lidar are

• Lidars measure the wind speed along the line-of-sight, i.e. the direction in which the laser beam is pointing. This
direction is not necessarily coincident with the wind velocity coordinate system axes u, v or w. Under certain assump-
tions (e.g. homogeneous flow), these line-of-sight measurements can be projected on a three-axis coordinate system. In
the present paper, we consider mostly cases where we only apply constraints on the u component. This choice is made
in order to reduce the computation efforts. Including constraints on the v and w components is technically feasible but
requires several times longer computations. One of the study cases included in the present work assesses the effect of
constraining all turbulence components.

• The lidar measures a volume which spans several metres along the line of sight. As a result, the lidar measurements
represent spatially averaged samples of the wind speed,12 which in principle can be taken into account by applying
constraints on multiple points per lidar measurement. The size of the measurement volume and the maximum possible
measurement frequency depends on the lidar technology:13 Continuous-wave lidars normally can measure with very
high frequency, but the measurement volume increases with the focusing distance. For example, the probe length for
the ZephIR 300 commercial continuous-wave lidar is 0.07m at a 10m measurement distance, and 7m at a 100m
measurement distance.14 Pulsed lidars require more time between measurements, but several distance ranges can be
measured simultaneously, and the measurement volume does not change with distance.

• The evolution of turbulence from the location where it is measured to the rotor plane needs to be considered. A simple
approach is to use the ‘frozen turbulence’ hypothesis, assuming that the turbulence is advected towards the rotor with
the mean wind speed.

• Turbine motion causes a shift in the measured wind speed and the measurement location. In actual lidar measurements,
the turbine motion needs to be measured and accounted for.

• Lidar measurement point locations do not fit exactly on a rectangular measurement grid. The grid point where the
measurement is applied can be determined by e.g. nearest-neighbour interpolation.

• Applying constraints requires the use of a turbulence spectrum, from which to determine the cross-correlations. The
spectrum has either to be chosen arbitrarily, or some spectral parameter values can be fitted to measurements, with
a corresponding uncertainty associated with both choices.

Figure 2. Constraint patterns simulating lidar measurements: five-beam pulsed lidar pattern (top left: plane view, bottom left: 3-D
view); continuous-wave lidar scanning in a circular pattern (top right: plane view; bottom right: 3-D view).
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Considering the challenges listed in the preceding texts, we have decided to limit the scope of the present study so that a
greater emphasis can be given to the mathematical aspects of the method of creating constrained turbulence boxes. There-
fore, we consider an idealized case by assuming that the lidar measurement has been used to calculate a ‘known’ wind
speed in the longitudinal direction, at a point located on the rotor plane. Controlling the input in such a way means that
we can correctly assess the effectiveness of using constraints in reducing the statistical uncertainty in the randomly gener-
ated turbulence fields, because all other sources of uncertainty are removed.

In the succeeding texts, we show as an example two constraint patterns which mimic the measurement pattern of two
existing multiple-point scanning lidars:

• A multiple-beam pulsed lidar with five beams, with a centre beam pointing forward and four beams at 15° angles from
the centre beam. The five beams measure in sequential order. Each beam takes measurements at 10 ranges along the
line of sight with a frequency of 0.2Hz, which results in an overall measurement frequency for all beams of 1Hz. The
pattern is shown in Figure 2, top and bottom left. This pattern resembles the setup of the Avent 5-beam Demonstrator
lidar.15

• A continuous-wave lidar with a single, rotating beam with a 15° cone angle, rotating with an angular velocity of
2.3 rad/s and a measurement frequency of 11.72Hz. One revolution lasts 2.73 s and consists of 32 measurement
points. The sampling frequency is chosen in a way that the time step between two successive lidar samples equals
the step size in the turbulence box x-axis for a turbulence box with a total duration of 700 s. The resulting spiral-
shaped pattern is shown in Figure 2, top and bottom right. This scanning pattern is similar to the ZephIR300
commercial lidar.14,15

The mapping between the coordinates of the scanning points and the coordinates of the turbulence box grid is carried out
by nearest-neighbour interpolation. No turbulence evolution is assumed, and the wind field is assumed to translate towards
the rotor at the mean longitudinal wind speed. In the circular pattern described in the preceding texts, the measurement
point locations approximately correspond to a radial distance of 85% of the blade length measured from the hub for the
DTU 10MW reference wind turbine with 178.3m rotor diameter.16 For the pulsed-lidar pattern, the groups of points
corresponding to the multiple ranges from a single laser beam have a uniform spacing and span radial distances between
28 and 85% of the blade length.

The majority of equations and descriptions given in Sections 2.1 and 2.2 consider the case of constraining a single time
series component, e.g. the longitudinal turbulence component, u. In a case where additional velocity components need to be
constrained, some modifications to the assembled cross-correlation matrices and constraint equations are necessary. In
particular, constraining all three components of a turbulence field created using the Mann spectrum requires assembling
the following matrices:

ζ¼
ζuu ζuw 0
ζuw ζww 0
0 0 ζvv

" #
; Z¼

Zuu Zuw 0
ZT
uw Zww 0
0 0 Zvv

" #
; H� g̃c¼

Hu�g̃c;u
Hw�g̃c;w
Hv�g̃c;v

2
64

3
75 (5)

where ζmn, m, n= u, v,w are matrices containing the cross correlations between the field and the constraints corresponding
to the respective cross-spectral component. The dimension of ζmn is N×M, where N is the total number of points in the
field, and M is the number of constraints. Hm and g ̃c;m are respectively the constraints and the contemporaneous values
of the unconstrained field for velocity component m. Zmn is a matrix with cross correlations between constraints and has
a rank of M×M, and 0 is a zero-matrix with the same rank. The presence of the zero matrices is because the Mann model
lacks a definition of the uv and vw cross spectra. When constraining turbulence boxes in all three components, this can be
exploited by only constraining the u and w components simultaneously, which reduces the sizes of the matrices necessary
for the computations.

2.3. Spectral properties of turbulence

The statistical properties of the turbulence fields used in the present study are based on Mann’s uniform shear spectral
model.2,3 The Mann model uses an isotropic von Karman turbulence energy spectrum, which is modified to account for
the shear deformation and dissipation of the turbulence eddies caused by interaction with the ground surface. The model
has three parameters: Γ is a non-dimensional number parameterizing the eddy lifetime; L is a length scale describing the
size of the most energy-containing eddies; αϵ2/3 is a measure of the energy dissipation. The spectral properties are defined
in terms of a spectral velocity tensor, Φij(k),

17 which is a function of the three parameters, Γ, L and αϵ2/3, and the wave
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numbers in three dimensions, k= [k1, k2, k3]. The cross-spectra χij, i= 1… 3, j = 1… 3 are obtained by integrating the
spectral tensor over the wave numbers in transverse directions k2 and k3:

χij k1;Δy;Δz
� � ¼ ∫Φij kð Þ exp i k2Δy þ k3Δz

� �� �
dk⊥ (6)

where ∫dk⊥ ¼ ∫
∞

�∞dk2dk3, and Δy and Δz are spatial separations respectively along the horizontal and vertical axes y and z
which are perpendicular to the wind direction.

The auto- and cross-correlation structure of the turbulence field in the u direction can be derived by inverse Fourier-
transforming the u� u cross spectrum χ11(k1,Δy,Δz):

Ruu Δx;Δy;Δz
� �

∝∫
∞

�∞χ11 k1;Δy;Δz
� �

eik1Δxdk1 (7)

The correlation quantities needed for constructing a constrained turbulence box, ζ(r) and Z, can be easily obtained by
evaluating Equation 7, where the distance between two points (i, j) is given as rij = {|xj� xi|, |yj� yi|, |zj� zi|}. Because
the average wind speed ū is defined to be homogeneous over the entire turbulence box, the distance along the wind di-
rection Δx can also be represented as a time separation, i.e. Δt = |ti� tj|, where ti = xi/ū. Because of the finite size of a
turbulence box, the integration limits in Equation 7 will in practice be finite and will reflect the range of wave numbers
which can exist within a turbulence box based on its size and length of the time step. The correlation matrix is dense,
and for large separations, the correlation values are small but not zero, especially at longer turbulence length scales.
Therefore, in order to obtain an accurate correlation matrix, it is important that the turbulence spectrum is evaluated
as accurately as possible and integrated over the correct frequency range. Figure 3 plots snapshots of the turbulence field
in the y� z plane taken at the same x coordinate for three different cases: (i) a reference random realization which serves
as a ‘target’, i.e. its values are considered as constraints when constructing a constrained realization, (ii) an uncon-
strained random realization and (iii) a constrained realization constructed by using the unconstrained realization (ii) as
a basis and selecting constraints from realization (i). An example time series with applied constraints is shown on
Figure 4, and Figure 5 shows the autocorrelation functions of the time series shown on Figure 4.At the locations in
the y� z plane where the constraints are applied, the constrained field corresponds closely to the target field and matches
the autocorrelation of the target field. The close resemblance is present at points close to the constraint locations; how-
ever, for locations far away from constraints (e.g. the corners of the turbulence box, Figure 3), the constrained field still
resembles the unconstrained source field.

2.4. Assessment of scanning pattern efficiency using a measure of explained variance

2.4.1. Explained variance in a constrained turbulence box
The variance of the residual field at a point ri = {xi, yi, zi}, as defined in Equation 3, is calculated as the difference

between two terms—the unconstrained field variance σ2 and the ‘explained variance’—which we denote as

σ2E rð Þ ¼ ζ rð ÞΖ�1ζ rð ÞT (8)

Figure 3. Snapshots of the instantaneous turbulence fields in a y–z plane comparing the field in a constrained turbulence box to the
reference field and to the unconstrained field used as a source for the constraint implementation. The dark points indicate the con-

straint locations in the y–z plane.
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In the preceding texts, the explained variance σ2E rð Þ is evaluated for the point ri = {xi, yi, zi} in the field (as shown earlier,
the x coordinate will also represent time as xi = tiū). For a field defined in a finite, a three-dimensional domain (e.g. a
turbulence box) with dimensions L1, L2, L3, the total explained variance can be calculated as the volume integral of the
explained variance over the domain:

σ2E ¼ 1
V
∫Vσ2E rð Þdr ¼ 1

V
∫
L1=2

�L1=2 ∫
L2=2

�L2=2 ∫
L3=2

�L3=2 σ
2
E x; y; zð Þ �dxdydz (9)

where V= L1L2L3 is the volume of the domain.
In the context of constrained random fields, the explained variance is a measure of the proportion of the variance in the

random field which is explained by the constraints imposed on it. Because the intended use of constraints in the current
study is for representing wind velocities measured by a lidar, the explained variance can be considered as the proportion
of the variance in the actually measured field which is transferred to the unconstrained field by imposing constraints. This
gives a possibility to assess different scanning patterns with respect to their efficiency in representing the measured turbu-
lence field.

Figure 4. Comparison of constrained and unconstrained time series at a point location where a constraint is applied once per second.
Constraint values are shown as blue circles.

Figure 5. Comparison of autocorrelation functions at a point in the x–y plane where a constraint is applied once per second.
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2.4.2. Weighting of the explained variance
The wind field in a turbulence box and the loads and energy production of the wind turbine are coupled through

the interaction with the aerodynamics of the blades and the control system of the turbine. Therefore, weighting the
explained variance with respect to its effects on the aerodynamic forces may result in better assessment of the efficiency
of lidar patterns for reducing statistical uncertainty. Here, we discuss two possible approaches which can be used in
combination.

The first suggested modification is the so-called ‘rotational sampling’, where the scanning speed is synchronized with the
rotor angular velocity, and the explained variance is weighted according to the distance between the constraints and the
actual position of the blades. Similar considerations have been used by e.g. Simley et al.,12where it is shown that rotational
sampling provides higher coherence between lidar measurements and the blade effective wind speeds. However, with the
present approach to load simulations, turbulence fields are generated independently of the simulation code, meaning that
the rotor angular velocity and position are not known at the time of turbulence box generation. This makes the implemen-
tation of true rotational sampling matched to actual blade positions infeasible. Instead, the following approximate procedure
is implemented: We assume that the turbulence box moves with a given average wind speed ū towards a hypothetical three-
bladed rotor with a radius R, hub located at coordinates (yhub, zhub) and where the rotor has a mean angular velocity ofω and
an initial azimuth φ. At any given moment t, the ‘blade-specific explained variance’ for a radial position r along the length
of one of the blades of the rotor can be estimated by interpolating over the explained variance for the y� z (rotor) plane
corresponding to t:

σ2E t; rð Þ ¼ σ2E x ¼ tu; y ¼ yhub þ rsin ωt þ φð Þ; z ¼ zhub þ r cos ωt þ φð Þð Þ (10)

Then an overall modified explained variance σ2R is found by integrating over the blade length and over time:

σ2R ¼ 1
T
� 1
R
∫
t

0 ∫
R

0 σ
2
E t; rð Þdtdr (11)

Because the motion of scanning patterns is not synchronized with the rotor speed, the result of Equation 11 will depend
on the initial conditions. To account for that, the rotationally sampled explained variance is calculated for a number of rotor

initial positions φ ranging from 0 to 2π, and the final result for σ2R is taken as the average from all initial positions.
Further modification of the explained variance is applied by weighting according to the aerodynamic force distribution

over the blade. The left plot in Figure 6 shows the local thrust coefficient as a function of radial distance from the hub
centre. Integrated over the blade length, the local thrust coefficient can be used to determine the overall thrust force T
per blade and approximate the blade root out of plane moment Mx:

T∝ ∫
R

0CT;L rð Þdr

Mx∝ ∫
R

0CT;L rð Þ�rdr
(12)

Figure 6. Left: local thrust coefficient as function of blade radial position at 9m/s average wind speed. Right: relative weight of
variance as function of distance from hub centre.
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where CT,L(r) is the local thrust coefficient at radial position r. Therefore, the integrand in the second line of Equation 12
can be considered as the contribution of the aerodynamic force at a given blade radial position to the root out of plane bend-
ing moment:

w rð Þ ¼ CT;L rð Þ�r (13)

The weighting function, normalized to have a unity mean, is shown on the right side of Figure 6. For any points falling

outside the rotor plane, w(r) is considered equal to 0. The weighted explained variance σ2W is calculated by multiplying w(r)
with σ2E t; rð Þ from Equation 11:

σ2W ¼ 1
T
� 1
R
∫
t

0 ∫
R

0w rð Þσ2E t; rð Þdtdr (14)

2.4.3. Explained variance of lidar scanning patterns
We select 12 example patterns which are applicable to the current lidar technology (Figure 7) and estimate the explained

variance achieved for different pattern sizes and scanning periods. For faster calculations, the estimation is carried out over
1/8 of the turbulence box length, i.e. 1024 points corresponding to 87.5 s. For the sake of obtaining a valid comparison in all
the studied cases, the number of constraints applied to a single turbulence box is kept as close to 1024 as possible. For pat-
terns where only one measurement is taken at a time (e.g. patterns resembling continuous-wave lidar scanning), this is
achieved with a sampling interval equal to the time step of the turbulence box which results in one measurement per time
step. For scanning patterns with multiple simultaneous measurements, the measurement interval is taken as the multiple of
the time step in the turbulence box which will result in a number of constraints as close to 1024 as possible.

The first four pattern examples mimic measurements with one or more simultaneously measuring beams pointing at a
fixed location forward and measuring at a single range. In order to keep the same total number of constraints, the sampling
frequency is lower for configurations with a larger number of simultaneously measuring beams. The fifth pattern example
resembles the scanning behaviour of a pulsed lidar with five beams, where each of the beams points in a fixed direction and
measures in 10 line-of-sight distance ranges simultaneously. The distance between any two measurement ranges is taken as

Figure 7. Various lidar scanning patterns assessed by the explained variance achieved when using the measurements as constraints.
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the distance which the mean wind field passes in 1 s. The measurements are taken with one beam at a time. The remaining
pattern examples assume that there are one or two beams which are in a continuous revolving motion and draw a circular
pattern (patterns 6 to 8), a combination of two circular patterns with non-coincident centres of rotation (pattern 9) resem-
bling the movement of a rotating spinner lidar,18 or a Lissajous curve (patterns 10 to 12).19 This continuous scanning
behaviour is characteristic for the continuous-wave lidar technology. For moving beams, the term ‘pattern period’ defines
the time needed for a beam to complete one full cycle of the pattern. Table I gives a more detailed overview of the scanning
patterns including the pattern parameters.

Using the expressions in Equations 8 and 9, the explained variance σ2E associated with each of the 12 patterns described
in Table I is calculated. For all patterns except pattern 1, nine pattern sizes are analysed ranging from 0.49 to 1 rotor diam-
eters in size increments of 5.6m (0.063 rotor diameters). For patterns 6 to 12, four analyses with different pattern periods
(1.37 to 10.9 s) are carried out at each pattern size. Identical calculations are also carried out for the rotationally sampled,

weighted explained variance σ2W as given by Equation 11. Figure 8 shows the maximum obtained values of explained
variance per pattern type for all pattern sizes and periods analysed. The results are normalized with respect to the actual

variance in the turbulence box, then σ2E ¼ 1 means that the entire variance in the domain is explained by the constraints,

while σ2E ¼ 0means none of the actual variance is explained. The results show that constraints based on fixed-point patterns
with nine or more points, as well as moving-scan patterns, are capable of achieving above 80% explained variance over a
reference period of 90 s. When considering a longer period of e.g. 700 s, the explained variance will increase further as there
will be some additional gains over the low-frequency part of the spectrum.

Rotational sampling of the explained variance gives more weight to points close to the centre of rotation, while the
weighting according to the relative bending moment has an opposite effect. The overall result is that the rotationally sam-

pled, weighted explained variance σ2W is slightly higher than the non-weighted σ2E, but the variation of explained variance
from pattern to pattern remains similar. The effect of weighting the explained variance is more pronounced on the optimal
pattern size which is shown on Figure 9. The optimal pattern size (i.e. the pattern size which results in the highest explained
variance) is slightly smaller for the weighted cases. For example, for the patterns following a Lissajous curve, the highest
weighted explained variance is achieved at approximately 0.81 rotor diameters compared with 0.88 rotor diameters for the
non-weighted case.

The performance of different patterns is influenced both by the pattern size and pattern period. For all pattern
types, the general tendency is that bigger pattern sizes result in more explained variance, while a pattern period of
about 5.5 s seems to be optimal. Figure 10 shows an example with the results as function of pattern size and period
for pattern 11.

Table I. Overview of the patterns used in the assessment of explained variance.

Pattern
number Description

Points
per sample

Sampling
frequency [Hz]

Pattern
periods [s]

Pattern sizes in
rotor diameters

Total
constraints

1 Single point at hub location 1 11.7 — — 1024
2 Four points on the vertices of a square

and a central point
5 2.34 — 0.49 to 1 1020

3 Nine points arranged on the vertices,
mid-sides and the centre of a square

9 1.3 — 0.49 to 1 1017

4 13 points arranged in a square pattern 13 0.9 — 0.49 to 1 1014
5 Five beams with the same configuration as

in pattern 2, scanning in 10 ranges each,
one beam at a time

10 1.17 — 0.49 to 1 1020

6 Single-beam scanning a circular pattern 1 11.7 1.37 to 10.9 0.49 to 1 1024
7 One beam scanning a circular pattern and

a stationary forward-pointing beam
2 5.85 1.37 to 10.9 0.49 to 1 1024

8 Two concentric circles, rotation is in the
same direction.

2 5.85 1.37 to 10.9 0.49 to 1 1024

9 A single beam following the path drawn
by the combination of two eccentric
circular patterns with different rotation periods

2 11.7 1.37 to 10.9 0.49 to 1 1024

10 Lissajous figure with parameters a = 2 and b = 1 1 11.7 1.37 to 10.9 0.49 to 1 1024
11 Lissajous figure with parameters a = 3 and b = 2 1 11.7 1.37 to 10.9 0.49 to 1 1024
12 Lissajous figure with parameters a = 4 and b = 3 1 11.7 1.37 to 10.9 0.49 to 1 1024
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Figure 9. Optimal pattern sizes relative to the entire domain size, where the domain size approximately equals the wind turbine rotor
diameter. For any pattern type, the optimal size is determined as the size which results in the largest explained varianceμσ2E

and regard-
less of pattern period.

Figure 8. Maximum achieved values for the total explained variance μσ2E
and the rotationally sampled, weighted explained variance σW

2

as a function of pattern type. For each pattern type, the value shown is the highest value of the total explained variance achieved over all
pattern periods and sizes.

Figure 10. Explained variance as function of pattern size and period, for a single beam scanning a Lissajous figure (Pattern 11).
Left: non-weighted explained variance (μσ2E

). Right: explained variance (σW
2 ), rotationally sampled and weighted according to the

aerodynamic force distribution over the blade.
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3. CONSTRAINED TURBULENCE FIELD AND LOAD UNCERTAINTY

In the previous section, we demonstrated a method for constructing constrained turbulence fields and showed how this
method can be used to incorporate lidar measurement data in the turbulence boxes used for wind turbine load simulations.
In the following, we present a numerical study assessing the possible effect of incorporating lidar measurement data on load
uncertainty.

3.1. Load simulations

For the purpose of the study, we carry out dynamic load simulations using the aeroelastic code Hawc2.20 The wind turbine
used the DTU 10MW reference wind turbine as an example.16 The simulation conditions are based on the normal produc-
tion load case DLC1.1 and external condition class IEC 1A as defined by the IEC61400-1, ed.3 standard.21 For each study
case, we carry out 18 simulations per mean wind speed, for mean wind speeds between 4 and 25m/s in 1m/s bins, resulting
in 396 simulations in each studied constrained simulation. The relatively large number of seeds per wind speed (for com-
parison, the IEC 61400-1 requires 15 seeds per wind speed) gives better possibilities for evaluating the statistical variation
in the loads. Each simulation in a study case uses a unique turbulence field defined by specifying different start seed number
for the computer’s random number generator. We make use of two sets of turbulence seeds, which we denote as A= [a1, a2,
…, a396] and B= [b1, b2,…, b396]. A total of 12 simulation sets are defined corresponding to 12 study cases:

1. A ‘target’ reference case with simulations using unconstrained turbulence boxes from the turbulence seed set A.
2. A baseline case with simulations using unconstrained turbulence boxes from set B.
3. to 9) Constrained cases where point values from turbulence set A are incorporated as constraints to the source

turbulence box set B. The constraints from set A are defined at locations corresponding to different lidar patterns
as follows, with pattern numbers corresponding to the ones shown on Figure 7:

4. Pattern 1: Single forward-pointing beam, with a scanning frequency of 1Hz, which is approximately the 6P
frequency at rated speed of the turbine (700 constraints per turbulence box). The resulting turbulence fields are
denoted as set C.

5. Pattern 2: Five-beam pattern with a maximum distance between the points 0.7 rotor diameters, scanning frequency
of 1Hz (3500 constraints per turbulence box). Denoted as set D.

6. Pattern 5: Pattern with five beams measuring in sequential order, each beam measuring simultaneously at 10 differ-
ent ranges along the line of sight. Pattern size is 0.87 rotor diameters, and the scanning frequency is 0.2Hz per beam,
i.e. 1Hz overall (8080 constraints per turbulence box). Denoted as set E.

7. Pattern 6: Circular pattern with a pattern diameter equal to 0.7 rotor diameters, a scanning frequency of 11.7Hz and
rotation period of 2.73 s (8192 constraints per turbulence box). Denoted as set F.

8. Pattern 11: Pattern following a Lissajous curve with parameters (3,2), a pattern size equal to 0.87 rotor diameters, a
scanning frequency of 11.7Hz and a rotation period of 5.46 s (8192 constraints per turbulence box). Denoted as set
G.

9. Pattern 9: Double co-rotating pattern with a size equal to 0.87 rotor diameters, a scanning frequency of 11.7Hz and a
rotation period of 5.46 s (8192 constraints per turbulence box). Denoted as set H.

10. to 12): Using the same pattern characteristics as case H, several perturbations are applied in order to test the sensi-
tivity of the results to changes in inputs:

11. Pattern 9, both u and v components constrained: The same pattern characteristics as set H; however, both the u and v
components in the turbulence box are constrained. Denoted as set H1.

12. Pattern 9, with u, v and w constrained: Same pattern as set H, with all three turbulence components constrained.
Denoted as set H2.

13. Pattern 9, doubled amount of constraints: Same pattern as set H, however, with double frequency (23.4Hz) which
results in twice the amount of constraints as in case H. Denoted as set H3.

14. Pattern 9, half the amount of constraints: Same pattern as set H, however, with half the frequency (5.85Hz) which
results in half the amount of constraints as in case H. Denoted as set H4.

The choice of two of the constraint patterns (cases E and F) is a result of the two patterns actually being considered or
already implemented by lidar manufacturers.14,15 The other cases are chosen to represent one pattern from each of the
pattern families considered in Section 2.4. The perturbation cases are intended as an assessment to whether the currently
chosen modelling approach is detailed enough. For instance, the recovery of all three wind field components from line-
of-sight lidar measurements may be a significant challenge. It is therefore important to assess to what extent all three com-
ponents are necessary, and whether using only the longitudinal component can be sufficient for load validation purposes.

The turbulence length scale affects the correlation length and thus the distance around a constraint location where the
field is affected by the constraint. Considering this, the setup described in the preceding texts was used in two separate sets
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of simulations, one using a Mann turbulence model with length scale parameter of L= 29.4m, and another with L= 72m.
The former value is recommended in the IEC61400-1 standard, while the latter is chosen based on studies describing
the typical values of L under neutrally unstable atmospheric conditions in flat terrains.22

3.2. Uncertainty analysis

We assess the realization-to-realization uncertainty in the load simulations by calculating the ratios between the quantity of
interest (energy production, extreme loads or damage-equivalent fatigue loads) observed in the reference load case (set A)
to the quantity observed in the simulations from the remaining cases. One ratio is calculated for each turbulence seed num-
ber, leading to uncertainty variables defined as e.g.

XB ið Þ ¼ F bið Þ
F aið Þ (15)

where i is the seed number, F(.) is a function of the load time series (e.g. maximum load, damage-equivalent fatigue load,
DEL, or energy production), ai and bi are the turbulence seeds from sets A and B respectively, and XB is a variable char-
acterizing the uncertainty in simulations with turbulence set B with respect to the reference simulation set A. The assess-
ment of the uncertainty is then based on the statistics (mean and variance) of the uncertainty variables defined in the
preceding texts. Table II lists the standard deviations of the uncertainty variables with respect to the energy production,
where the energy production is defined as the integral of the electrical power over one simulation period (10min). Only
wind speeds from 4 to 14m/s are considered because for wind speeds above the turbine’s rated speed (11.4m/s for steady,
non-turbulent wind), the uncertainty in the energy production tends to zero. Figure 11 shows an example of the empirically
determined probability density functions of the power production uncertainty for turbulence length scale L= 72. In general,
smaller standard deviation of the uncertainty results in a narrower distribution and a more pronounced peak in the proba-
bility density function, as seen e.g. cases E, G and H in Figure 11.

Table III lists the sample standard deviations of the uncertainty variables regarding the extremes of six load channels,
and the same result is shown graphically on Figure 12. Table IV compares the uncertainty in damage-equivalent fatigue

Table II. Standard deviations of uncertainty variables regarding energy production estimated from simulations, normalized with
respect to the standard deviation for unconstrained turbulence boxes.

L Std XBð Þ
Std XBð Þ

Std XCð Þ
Std XBð Þ

Std XDð Þ
Std XBð Þ

Std XEð Þ
Std XBð Þ

Std XFð Þ
Std XBð Þ

Std XGð Þ
Std XBð Þ

Std XHð Þ
Std XBð Þ

Units m % % % % % % %

Energy produced 29.4 100 76 32 23 97 20 12
72 100 93 25 22 76 16 10

Figure 11. Observed probability densities of the ratios representing the realization-to-realization uncertainty in energy production.
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loads for the same channels, using S�N curve slopes of m= 12 for blade loads and m = 4 for all remaining components.
These results are also shown on Figure 13. For all variables, the mean values were very close to 1; therefore, the mean
values are not reported further. For the sake of comparison, all uncertainties from the simulations with constrained turbu-
lence boxes (cases C to H) are normalized with the baseline uncertainty from unconstrained turbulence simulations (XB).

Table IV. Standard deviations of uncertainty variables regarding damage-equivalent fatigue loads observed in simulations.

Channel L Std XBð Þ
Std XBð Þ

Std XCð Þ
Std XBð Þ

Std XDð Þ
Std XBð Þ

Std XEð Þ
Std XBð Þ

Std XFð Þ
Std XBð Þ

Std XGð Þ
Std XBð Þ

Std XHð Þ
Std XBð Þ

Units m % % % % % % %

Tower F-A 29.4 100 63 56 53 87 40 39
Tower S2S 29.4 100 96 87 84 99 84
Yaw 29.4 100 41 35 33 79 26 23
Shaft 29.4 100 75 47 40 68 28 26
Blade F 29.4 100 75 55 51 83 44 41
Blade E 29.4 100 75 54 46 149 45 40
Tower F-A 72 100 57 42 42 62 30 29
Tower S2S 72 100 86 81 80 89 80 81
Yaw 72 100 43 26 25 53 18 17
Shaft 72 100 74 34 27 54 22 20
Blade F 72 100 77 47 44 64 35 34
Blade E 72 100 136 37 34 48 32 30

Table III. Standard deviations of uncertainty variables regarding absolute extreme values observed in simulations, normalized with
respect to the standard deviation for unconstrained turbulence boxes.

Channel L Std XBð Þ
Std XBð Þ

Std XCð Þ
Std XBð Þ

Std XDð Þ
Std XBð Þ

Std XEð Þ
Std XBð Þ

Std XFð Þ
Std XBð Þ

Std XGð Þ
Std XBð Þ

Std XHð Þ
Std XBð Þ

Units m % % % % % % %

Tower F-A 29.4 100 85 80 76 95 64 58
Tower S2S 29.4 100 99 93 89 100 87 83
Yaw 29.4 100 77 61 59 69 46 46
Shaft 29.4 100 88 54 41 92 39 29
Blade F 29.4 100 87 71 70 93 63 56
Blade E 29.4 100 87 75 68 101 64 61
Tower F-A 72 100 97 69 71 78 58 56
Tower S2S 72 100 88 80 79 86 77 73
Yaw 72 100 70 50 47 52 35 35
Shaft 72 100 100 42 34 70 33 26
Blade F 72 100 97 63 57 70 50 45
Blade E 72 100 105 63 58 61 53 52

Figure 12. Observed standard deviations of the ratios representing the realization-to-realization uncertainty in extreme loads over
mean wind speeds from 4 to 25m/s.
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The load channels considered are (i) tower base fore-aft moment (denoted ‘Tower F-A’ in the tables), (ii) tower base side-
to-side moment (denoted Tower S2S), (iii) the yaw moment at tower top (denoted Yaw), (iv) main shaft torsion (denoted
Shaft), (v) blade root flap-wise moment (denoted ‘Blade F’) and (vi) blade root edge-wise moment (denoted Blade E).

Table V lists the results from the perturbation cases H1 to H4, with the results from their baseline case H used as
reference. Only a few of the results are selected which are indicative of the overall trends in the data.

3.3. Discussion of results

The outcomes from the load analysis indicate that applying constraints to turbulence boxes based on simulated lidar wind
velocity measurements results in turbulence fields which have stronger similarities to the target fields, which can potentially
reduce the load simulation uncertainty. Significant reduction in statistical uncertainty (reduction of standard deviation by a
factor between 2 and 5) was observed for wind driven turbine responses such as the energy production as well as the
majority of the load components, while non-wind-driven responses such as the tower base side-to-side moment were
practically unaffected. The factor of reduction in uncertainty with different scanning patterns tends to be bigger for fatigue
damage equivalent loads than for extremes. The overall uncertainty is slightly bigger for a turbulence length scale of L= 72
compared with L= 29.4; however, in the constrained cases, this is compensated by a larger reduction in uncertainty. The
larger reduction in uncertainty for L= 72 can be explained by the larger correlation length, which results in a stronger in-
fluence of the constraints on the resultant turbulence field. In all comparisons, the moving-beam scanning patterns showed
the smallest uncertainty, with the exception of the circular scanning pattern. This is contrary to the findings in Kragh
et al.,18 where a circular scanning pattern showed a superior performance in determining yaw error in comparison to a
2-D scanning pattern similar to the double co-rotating pattern used in the present study. This shows that for different pur-
poses, i.e. yaw error estimation versus load validation, the optimal scanning patterns may be different. Furthermore, the
performance of the circular pattern seems to be inferior to the performance of other patterns with similar or even lower
explained variance (e.g. the five-beam pattern). Our conclusion is that the explained variance is not the only factor which
determines the uncertainty associated with the different scanning patterns—other factors may include the behaviour of the

Figure 13. Observed standard deviations of the ratios representing the realization-to-realization uncertainty in damage-equivalent fa-
tigue loads over mean wind speeds from 4 to 25m/s.

Table V. Standard deviations of uncertainty variables for simulation cases.

Channel L Std XHð Þ
Std XHð Þ

Std XH1ð Þ
Std XHð Þ

Std XH2ð Þ
Std XHð Þ

Std XH3ð Þ
Std XHð Þ

Std XH4ð Þ
Std XHð Þ

Units m % % % % %

Energy produced 29.4 100 102 100 73 163
Shaft, extreme 29.4 100 87 87 75 132
Blade F, extreme 29.4 100 91 91 96 105
Shaft, DEL 29.4 100 94 91 78 119
Blade F, DEL 29.4 100 95 93 95 111
Energy produced 72 100 97 87 563 157
Shaft, extreme 72 100 77 70 172 131
Blade F, extreme 72 100 92 89 115 117
Shaft, DEL 72 100 92 85 216 119
Blade F, DEL 72 100 89 85 180 111
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control system, as well as the filtering effect of the rotor where only certain frequencies in the incoming wind affect the
different components. The results from the perturbation cases showed that some reduction in the uncertainty can be
achieved by constraining all three turbulence components or by increasing the number of constraints in the longitudinal
direction. However, considering the already low uncertainty achieved with the baseline double-rotating pattern, these
improvements are only marginal. In most cases, constraining the longitudinal component of turbulence in 8–10 thousand
points for a 10min simulation should be sufficient.

The results shown in the present study represent what can be considered a best-case scenario, because they do not take
into account the relation between a lidar measurement taken in real-world conditions at an arbitrary distance from the rotor
and the actual u component of the wind speed at the rotor plane. Thus, when applying the same method to field measure-
ments for a load verification purpose, it can be expected that the overall load uncertainty will be higher as a result of other
contributing factors such as the uncertainty in lidar measurements, but also possibly terrain properties, wind climate, load
measurement system, etc.

4. CONCLUSIONS

In the present paper, we demonstrated a method for incorporating wind measurements from multiple-point scanning lidars
into the turbulence fields serving as input to wind turbine load simulations. A numerical study showed the application of the
constrained turbulence method to load simulations on a 10MW wind turbine model using six example lidar patterns. The
results from the load calculation study showed that including lidar measurements as constraints in the turbulence field can
potentially reduce the statistical uncertainty in the loads and the power production. The reduction in load uncertainty can be
expected for load components which are typically affected by turbulence such as blade flapwise moments, tower fore-aft
moment, yaw moment, etc. The turbulence length scale was shown to have an influence on uncertainty, with larger length
scales leading to larger reductions in uncertainty as a result of increased correlation length. Constraining the longitudinal
turbulence component was found to be sufficient for most purposes as the reduction in uncertainty by constraining the other
two components was marginal. The overall achieved reduction in uncertainty did not fully correlate with the proportion of
the variance explained by the different scanning patterns, showing that the optimal solution for a scanning pattern is
governed by a combination of several factors.
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