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Summary

X-ray imaging systems are increasingly used for quality and safety evaluation
both within food science and production. They offer non-invasive and non-
destructive penetration capabilities to image the inside of food.

This thesis presents applications of a novel grating-based X-ray imaging tech-
nique for quality and safety evaluation of food products. In this effort the fields
of statistics, image analysis and statistical learning are combined, to provide
analytical tools for determining the aforementioned food traits.

The work demonstrated includes a quantitative analysis of heat induced changes
in microstructure of meat products. A segmentation framework is presented,
from which geometrical parameters are assessed. The grating-based method
embraces the complicated microstructure of the meat products, allowing for
an analysis of the full three dimensional structure. The results illustrate that
the combination of grating-based X-ray imaging and advanced analysis provides
a valuable tool for microstructure analysis. Thus, the method can be considered
as an alternative to other existing imaging techniques.

Furthermore, the thesis presents the application of grating-based X-ray imag-
ing for novelty and defect detection in food. Compared to the complex three
dimensional analysis of microstructure, here two dimensional images are consid-
ered, making the method applicable for an industrial setting. The advantages
obtained by grating-based imaging are compared to conventional X-ray imaging,
for both foreign object and defect detection. The results further emphasize the
applicability of grating-based imaging for evaluation of food quality and food
safety.
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Resumé

Røntgensystemer bruges i stigende grad til kvalitets- og sikkerhedsvurdering,
begge inden for fødevarevidenskab og produktion. Røntgen tilbyder gennem-
strålings kapaciteter som er hverken invasive eller destruktive til at danne billeder
af fødevarers indre struktur.

Denne afhandling præsenterer anvendelser af en ny gitter-baseret røntgenmetode
til kvalitets- og sikkerhedsvurdering af fødevarer. Her kombineres metoder in-
den felterne af statistik, billedanalyse og statistisk læring. Målet er at udvikle
analytiske værktøjer til andvendelse i de førnævnte applikationer.

Det præsenterede arbejde i afhandlingen består af en kvantitativ analyse af
varmeinducerede ændringer i mikrostrukturen i kødprodukter. En segmenter-
ingsmetode præsenteres, hvorfra geometriske parametre vurderes. Den gitter-
baserede metode fanger den komplicerede mikrostruktur i kødprodukterne, der
giver mulighed for en analyse af den fulde tredimensionelle struktur. Resul-
taterne illustrerer, at kombinationen af gitter-baserede røntgenbilleder og avanceret
analyse er et værdifuldt redskab, og kan betragtes som et alternativ til andre
eksisterende billeddannelses metoder.

Yderligere demonstreres andvendelsen af gitter-baserede røntgenbilleder til de-
tektion af afvigelser og defekter i fødevarer. I stedet for den komplekse tredimen-
sionelle analyse af mikrostruktur, bruges her todimensionelle billeder, hvilket
gør metoden anvendelig til industriel brug. Fordelene opnået ved den gitter-
baserede metode sammenlignes med konventionel røntgen, for detektion af begge
fremmedlegemer og defekter. Resultaterne understreger yderligere anvendelighe-
den af metoden til vurdering af fødevarekvalitet og fødevaresikkerhed.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU). The work was
conducted at the Section of Image Analysis and Computer Graphics and the
Section of Statistics and Data Analysis. It was done in fulfilment of the require-
ments for obtaining a doctor of philosophy degree (Ph.D.) in applied mathemat-
ics with an emphasis on image- and data analysis.

Two-thirds of the project funding originated from a research project granted
by the Danish Council for Strategic Research: New X-ray imaging modalities
for safe and high quality food ’NEXIM’ (contract no. 11-116226), within the
Program Commission on Health, Food and Welfare. The remaining funding was
contributed by the ITMAN Graduate School program at DTU.

The thesis presents research focused on the application of grating-based X-ray
imaging combined with statistics, image analysis, and statistical learning for
evaluation of food quality and food safety. The first part of the thesis provides
a motivation and background for the research, followed by the theoretical back-
ground relevant to the thesis work. Hereafter, the major contributions of the
thesis work are presented and put into context to the methodologies presented.
Finally, four original manuscripts that were prepared during the course of the
Ph.D. study are included.

The project has been supervised by Professor Bjarne Kjær Ersbøll and co-
supervised by Professor Rasmus Larsen. The research has been conducted at
DTU, with collaborative work with Copenhagen University. Furthermore, the
external research was conducted at the Technische Universität München, hosted
by Professor Dr. Franz Pfeiffer at the Chair of Biomedical Physics.
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Introduction

1.1 Scope of the project

The work presented in this thesis is a project within the New X-ray imag-
ing modalities for safe and high quality food ’NEXIM’ project, granted by the
Danish Council for Strategic Research (contract no. 11-116226). The activities
within the project aim at developing a new X-ray imaging technique specifi-
cally towards food applications. In this regard, the focus is to identify the areas
within the Danish food industry with the highest technological and commercial
impact. There are three focus points within these activities; i) to improve the
detectability of low density foreign bodies, incidentally present in food products,
like pieces of paper, plastic, wood and insects, ii) to develop new modalities for
assessment of quality traits in food production like fatty acid composition, con-
nective tissue and tenderness development, and iii) develop a proof-of-principle
of a conveyor belt solution that could form the basis for real product develop-
ment. These strategies have set the scope of the work presented in this thesis.
The main focus is on developing advanced analysis techniques and combining
them with the novel X-ray technique, thus addressing the first two topics men-
tioned.

1.2 X-ray imaging of food

In recent years, consumer demand for high quality, safe and consistent food
products has been vastly growing [1, 2, 3]. Thus, it has become increasingly
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important to monitor food production in order to predict consumer perception
of the final product. Likewise, there is an increasing demand for healthier prod-
ucts without compromising the quality. Here, food engineering and design of
food functionality play an important role. These two subjects, food safety and
food quality, require the entire production chain to contribute to, and maintain,
the high standards to ensure a positive consumer perception. Thus, monitoring
the production is necessary to ensure such standards, enabling manufacturers to
compete on the competitive international market. Previous strategies towards
end-of-line production inspections are no longer adequate, and quality assurance
is now required throughout the production chain both as regulatory compliance
and to meet customer requirements [4]. In order to approach a zero-defect so-
lution, future technologies for assessment of food quality will need to focus on
better detection capabilities along with high sensitivity and specificity [5]. In
this effort, research within industry and academia has focused on developing
new and emerging technologies for the assessment of food quality and safety.

A number of emerging technologies exist for the purpose of non-destructive
analysis of food quality and safety [6, 7]. These include hyperspectral imaging
[8, 9, 10], nuclear magnetic resonance (NMR) spectroscopy and magnetic reso-
nance imaging (MRI) [11, 12, 13], thermal imaging [14, 15], ultrasound imaging
[16, 17], fluorescence imaging [18, 19, 20] and X-ray imaging [21, 22, 23, 24, 25,
26]. MRI and X-ray imaging provide penetration ability in a non-destructive
manner, which allows for inspection of the actual spatial 3D structure of a sam-
ple. MRI systems are quite expensive and therefore not well-suited for industrial
use for food manufacturing. In comparison, X-ray imaging systems are low-cost,
and commercial systems are widely available. FOSS (Hillerød, Denmark) have
developed an on-line dual-energy X-ray system (MeatMaster II), which measures
the fat content of meat products at production speed. It also serves as a foreign
object detector. Furthermore, an online X-ray system for meat trim analysis of
the fat and lean ratio, bone detection and batch control has been developed
by Marel (SensorX by Marel hf, Iceland). Additionally, there are commercially
available X-ray tabletop systems such as the SkyScan µCT from Bruker (Brus-
sels, Belgium).

X-ray imaging, first discovered by Wilhelm Röntgen [27], has found widespread
use in the medical field, airport security scanning and in-line quality control on
industrial production lines. Conventional X-ray systems typically consist of an
X-ray source and a detector, which measures how much the initial X-rays are
attenuated by an object. This is known as absorption X-ray imaging, and is
the most common imaging modality for X-ray setups. Absorption X-ray imag-
ing is well-suited for imaging materials with significant differences in density.
However, the imaging technique often lacks contrast in materials with subtle
differences in attenuation. These include soft tissues, hair, paper and plastics as
their densities are similar to that of water [7]. The use of X-ray imaging for food
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(a) Absorption. (b) Phase contrast. (c) Dark field.

Figure 1.1: Bacon slices imaged with GBI. The images were recorded at a lab-
oratory setup developed by Scherer et al. [51]. The phase-contrast
modality was integrated as described in the same paper.

production has therefore mainly been limited to i) predicting carcass composi-
tion [28, 29, 30, 31], ii) foreign object detection of hard materials such as metal,
bones and glass [23, 32, 33, 34] and iii) salt uptake in meat [35, 36, 37]. Low-
energy X-rays (or soft X-rays) have less penetrating power, and systems utilizing
them are more sensitive to subtle changes in densities. Soft X-ray imaging has
been applied for quality inspection of wheat [38, 39, 40] and detecting insects
in cereal grains [41]. Additionally, dual-energy X-ray techniques have also been
applied for food quality inspection [42, 43].

For imaging of food products, the ability to measure subtle differences in ma-
terials is important, as this can allow for distinguishing between e.g. i) meat
and connective tissue, ii) food products and soft plastics and iii) soft tissues and
water. A recent X-ray technique based on grating-interferometry has introduced
new imaging modalities capable of measuring the refraction and scattering of
X-rays [44, 45, 46]. The approach, known as grating-based imaging (GBI), re-
sults in three imaging modalities with pixel correspondence. These three modal-
ities are the conventional absorption X-ray imaging, phase-contrast imaging and
dark-field imaging. Figure 1.1 shows slices of bacon imaged with GBI, and the
different contrasts obtained by each modality. Enhanced contrast capabilities
of these modalities over typical absorption X-ray imaging has previously been
demonstrated [47, 48, 49, 50]. Jensen et al. [48] demonstrated how contrast be-
tween dermis and water was obtained by the phase-contrast modality, and in
Nielsen et al. [49] the detection capabilities of organic foreign bodies in food
products from the dark-field modality was demonstrated. Since the develop-
ment of GBI in the early 2000s, research efforts have focused on obtaining high
image quality for a number of applications such as imaging of breast cancer [52],
differentiation of kidney stone types [53], investigation for quality testing fea-



4 Introduction

sibility of porcine fat [48] and to improve diagnostic capabilities of pulmonary
diseases [54]. The majority of research activities has thus focused on medical
applications, and specifically on improving visual contrast for qualitative and
quantitative purposes. Du & Sun [22] illustrated the importance of statistical
learning techniques in computer vision for food, where topics such as segmen-
tation, feature selection and classification are emphasized. Thus, in order to
expedite the application of GBI towards food production, development of quan-
titative and automatic methods for quality and safety determination is equally
as essential as further development of the imaging technique itself. The purpose
of this thesis is to investigate and develop methods for this purpose, combin-
ing image analysis, statistics and statistical learning. The two main focus areas
will be i) developing methods for quality assessment of food based on three-
dimensional (3D) microstructure and ii) novelty and defect detection in food
products.

Figure 1.2: An absorption (A) and phase contrast (B) slice of a piece of beef in
oil with a plastic rod and water as references. The two dimensional
histogram is shown at the bottom. Reproduced from Nielsen et al.
[55].
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1.3 Motivating examples

1.3.1 Grating-based X-ray imaging of food

Previous studies have demonstrated the applicability of GBI for food products
to both determine food quality and for foreign object detection. Nielsen et al.
[55] demonstrated a grating-based X-ray tomography setup where pieces of meat
were imaged. The samples were a piece of pork backfat and a piece of beef muscle
tissue (Longissimus Dorsi). The absorption and phase-contrast modality gave
different contrasts, and a two dimensional histogram allowed for segmentation
utilizing the bivariate intensity information. Figure 1.2 shows the absorption
and phase-contrast modalities of the beef sample and corresponding bivariate
histogram. Nielsen et al. [49] also demonstrated the use of GBI radiography
for foreign object detection of organic material such as paper and insects. The
contrast obtained from the absorption modality and dark-field modality was
assessed using a measure of the contrast-to-noise ratio (CNR). Figure 1.3 shows
three foreign objects placed in minced meat. It is clear that the glass piece
(left) has higher visibility in the absorption image. On the contrary, the paper
(middle) and insect (right) are visible only in the dark-field modality. Kottler et
al. [56] applied GBI to store bought lasagne containing plastic tape and textile
fabric. The tape was visible in both the absorption modality and in dark field.
The fabric was however only visible in the dark-field image, due to the strong
scattering from the mesh of fibers. These studies underline the great potential
of GBI for food quality and food safety assessment. Detecting paper, plastic and
organic matters such as insects in food remains an unsolved major challenge [6].
Improving the detection of such light materials would add great benefit for food
manufacturers.

(a) Absorption modality. (b) Dark-field modality.

Figure 1.3: X-ray images of minced meat with three foreign bodies; glass (left),
4 layers of paper (middle) and a ladybug (right). Adapted from
Nielsen et al. [49].
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1.3.2 3D microstructure of food

Food microstructure analysis has been an important research field ever since
microscopes were first presented [57]. As new and sophisticated techniques for
micro-structural analysis are emerging, there has been an increasing interest
in the subject. Microstructural properties are found to be related to nutrition,
chemical and microbiological stability, texture and physical properties, transport
properties and product engineering [58]. Applications vary from characterizing
the stability and flow behaviour of food foams [59], measuring the rehydration
kinetics of freeze-dried carrots [60] and determining the effects of fat level on the
stability of meat emulsions [61]. Techniques for analyzing the microstructure of
food include electron microscopy [62, 63, 64], MRI [65, 66] and X-ray micro-
computed tomography (µCT) [25, 26]. X-ray µCT is a non-invasive and non-
destructive technique requiring no sample preparation. The three dimensional
data obtained from a µCT allows for internal examination of the structure of
food products at resolutions ranging from millimeters to micrometers [67]. Ad-
ditionally, food products can be imaged under normal conditions of temperature
and pressure. Schoeman et al. [26] provide a detailed review demonstrating the
ability of X-ray µCT as a non-destructive and non-invasive technique to inves-
tigate the 3D microstructure of a range of food products. As is highlighted in
the paper, the image contrast obtained with X-ray µCT is due to differences in
X-ray absorption caused by density and compositional variation in the sample.
Thus, materials with similar density are difficult to distinguish by conventional
X-ray µCT. This limits the application field of µCT to investigating the internal
structure of products with significantly different attenuation properties.

To demonstrate the applicability of combining GBI imaging and advanced anal-
ysis methods for food quality assessment, µCT data obtained from a synchrotron
source is analyzed. The main applications will be investigating thermally induced
changes of microstructure in meat based products. The products are composed
of elements with similar attenuation properties, and therefore the GBI technique
is suitable for this purpose. Multivariate segmentation techniques will be con-
sidered to fully utilize the multimodal nature of the data. For engineering food
functionality, product characterization and quality determination, the geomet-
rical properties of food structure are needed. Therefore a geometrical parameter
analysis will be performed to determine microstructural changes caused by heat-
ing of the samples. These include mass-, volume-, and area-related properties
such as size, shape, surface area, porosity, density and volume [68].
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1.3.3 Novelty and defect detection

X-ray systems have widely been used for detection of defects and contaminants
in food products since the 1970s [69]. Applications range from bone detection
in meat, poultry and fish [70, 33, 34], foreign object detection in dry foods [32]
and defects in fruits [23, 71, 72]. Most applications focus on relatively homoge-
neous food products with varying thickness, and simple or adaptive thresholding
techniques are commonly used for segmentation purposes. Some of the more ad-
vanced analyses performed include extensive feature selection and classification
[72, 33]. For foreign object detection, it is important to note the type of for-
eign objects typically detected by conventional X-ray systems. These include
hard and sharp objects such as metals, glass and bones that can pose hazard to
the consumer if ingested. Other foreign objects may however also cause concern.
Insects such as the housefly and cockroaches, can for instance be vectors of food-
borne pathogens such as salmonella [73] and E. coli [74]. Additionally, foreign
objects that do not typically pose a threat to the average consumer can pose a
high risk to infants, elderly and physically or mentally challenged. Foreign ob-
ject contamination incidences can cause great economic consequences for food
manufacturers involving production downtime and large scale product recall,
which can affect the consumer perception of the brand. There are also regula-
tory requirements by which food manufactures are obligated to use inspection
technology available to ensure food safety, and they can be found liable for in-
juries or illnesses caused by their products if they fail to comply [23]. Therefore
a balance between development of the X-ray technique itself and use of analysis
methods is sought. Developing tailored methods for defect and contamination
detection from X-ray images can prove costly and time consuming. Additionally,
the price of an X-ray machine typically increases with its sophistication. Obtain-
ing high-quality images can demand long acquisition times which may not be
feasible for most on-line applications. Therefore, simple and generic algorithms
are typically desired, to provide high capacity and robust solutions.

The work in this thesis contributes to the field of food monitoring, in terms
of novelty and defect detection, by presenting applications of GBI by two cases.
The first is focused on increasing the detectability of low-density foreign objects
in food such as light plastics and insects, and performing a quantitative analysis
to determine the gain from using the multimodal nature of the GBI method.
Secondly, defect detection will be considered. As an example, defect detection of
meat, poultry, cheese and fish can be concerned with detecting abnormal regions
and shapes of the food products. The detection of defects will be demonstrated
by the development of a computer-aided diagnosis (CAD) scheme for detecting
pulmonary diseases in lungs. The scheme is designed to detect anomalies and
defects, and can be adjusted to monitoring defects for food applications.
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1.4 Thesis objectives

The main objectives of the thesis forming the basis of the included contributions
are:

• To develop a generic multivariate segmentation tool taking spatial rela-
tions into account for multimodal X-ray tomography.

• To evaluate geometrical parameters for characterization of microstructure
in meat products and how cooking alters these parameters.

• To quantitatively determine the gain from using the multimodal nature of
GBI to detect low-density foreign objects in food products.

• To develop a defect detection scheme aimed to analyze products with
geometrical structure.

• To further establish the use of GBI for food research and food production
purposes, and also establish the use of automatic analysis techniques based
on the cross-disciplinary fields of image analysis, statistics and statistical
learning.

The objectives are accomplished through collaboration with other researchers
within the fields of food science and physics.

1.5 Thesis outline

The thesis consists of two parts, a review of relevant methodology used through-
out the thesis work and a summary of the scientific contributions.

Part I introduces and describes the relevant methodology used in the thesis
work. It covers grating-based X-ray imaging, and methods from statistics, im-
age analysis and statistical learning. The methods form the basis for the work
presented in the included papers.

Part II summarizes the main scientific contributions of the included manuscripts.
The papers are summarized into two groups; i) Quantitative analysis of mi-
crostructure for food quality evaluation and ii) novelty and defect detection. The
summaries provide a general motivation for the presented work, and overview
of the methods applied. The main results and contributions are also highlighted.
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Conclusions of the thesis, along with a future outlook, are given before the
included papers are appended.

Notation To aid the interpretation of abbreviations, a nomenclature is provided
in the preface. In Part I, common notation for the methodology discussed is
adopted from the literature, and referenced accordingly.
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Part I

Methodology





Chapter 2

Grating-based X-ray
imaging

This chapter provides a review of the grating-based X-ray imaging technique.
The purpose is to provide a high-level understanding of the basic concepts.
References will be given to more thorough reviews were applicable. In order
to better understand the concepts of grating-based X-ray imaging, the basic
concepts of X-ray imaging are first explained.

2.1 Basics of X-ray imaging

A conventional X-ray setup consists of an X-ray source and detector, where in
between the object of interest is placed. The common X-ray sources are X-ray
tubes and synchrotrons. For now the remaining concepts of X-ray imaging will
be described when an X-ray tube is used, and synchrotrons will be discussed
in more detail later. X-ray tubes consist of a filament-type cathode and metal
target called anode [75]. High-energy electrons are emitted from the cathode,
and when they strike the target anode material (typically tungsten) they are de-
celerated by the atoms of the anode which causes Bremsstrahlung radiation (or
breaking radiation). In this process X-ray photons are emitted. The two main
characteristics of X-rays are their energy and intensity. The number of electrons
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flowing per second from cathode to anode is determined by the current of the
tube, thus determining the intensity of the X-ray beam. The maximum energy
of the X-ray photons is determined by the voltage applied between cathode and
anode, hence determining the energy or penetration power of the X-rays in the
object to be imaged [75]. The focal spot of the tube is the region which the
X-rays are emitted from and has great significance for the characteristics of the
image produced [23]. A smaller focal spot allows for imaging of finer details in a
material. The X-rays emitted can roughly be categorized into hard X-rays and
soft X-rays. There is no formal distinction between the two, however soft X-ray
wavelengths are said to span typically from 10 nm to 0.6 nm and hard X-rays
from 0.6 nm to 0.01 nm. This range is also given as approximately 100 eV to
100 keV [76]. Hard X-rays have higher penetration power and are commonly
used to investigate high-density materials such as metals, glass and bones. Soft
X-rays on the other hand have low penetrating power and are more suitable for
low-density materials such as fruits, vegetables and seeds [75]. The voltage of
the X-ray tube, along with the filter used in the setup, determines the type of
X-rays emitted.

Apart from the conventional X-ray setup previously described, several variants
exist. These include dual- and multi-view X-ray imaging, dual- and multi-energy
X-ray radiography, synchrotron radiation imaging and computed tomography
(CT) X-ray imaging. Dual- and multi-view X-ray imaging obtains images from
different angles in order to increase the information available of the object being
imaged. Dual-energy X-ray imaging places two detectors in a stacked configura-
tion, where soft X-rays are absorbed by the first detector and the hard X-rays by
the second. The difference image then reveals information on low-density mate-
rials. Such systems are typically used for airport security scanning. Synchrotron
radiation and X-ray CT (specifically µCT) both play an extensive role in this
thesis and will therefore be described in more detail in Sections 2.1.2 and 2.1.3.

2.1.1 Attenuation mechanisms

Three interactions can occur when X-rays pass through matter. The X-rays can
be absorbed, scattered or transmitted unaffected, and the loss of intensity of the
X-rays is called attenuation. This loss in intensity depends on the composition
of the material that the X-rays pass through, namely the absorption coefficient
µ and the depth of penetration z (or thickness). The intensity of an X-ray beam
after it passes through a medium is modelled as

I = I0 exp (−µz), (2.1)

where I0 is the initial beam intensity. The linear absorption coefficient is wave-
length dependant, that is it depends on the photon energy of the X-ray beam. It
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also depends on the material density and the atomic numbers Z of the elements
composing the material. It is worth noting that soft tissues mainly consist of
materials with low Z numbers such as hydrogen, oxygen and carbon. The ab-
sorption coefficients of soft tissue can be very similar and therefore it is hard to
distinguish between them in absorption based X-ray imaging [77, 78].

Attenuation of X-rays mainly consists of three mechanisms; Rayleigh scatter
(or coherent scatter), Compton scatter and photoelectric absorption. Rayleigh
scattering is when the photons interact with matter and are re-emitted at the
same energy in a different direction. The scattering predominately occurs with
low energy radiation. The photoelectric absorption is when a photon is absorbed
by a bound or orbital electron. In the process, an electron is emitted leaving the
atom ionized. The probability of photoelectric absorption is higher for elec-
trons tightly bound in high Z materials as the binding energies are closer to
X-ray photon energies. Thus, electrons in the K shell (the closest shell to the
nucleus) are predominantly involved. Soft tissue does not have significant pho-
toelectric absorption, as opposed to denser matter such as calcium in bones.
Finally, Compton scattering is the main contribution to the scattering of X-
rays in a material. The scattering occurs when an X-ray photon collides with
the loosely bound electron on the valence shell of the atom, causing the inci-
dent photon and electron to scatter. Compton scattering further ionizes other
atoms. The scattering is proportional to the physical and electron density of the
material, and inversely proportional to the energy of the photon. Photoelectric
absorption is the dominating factor to attenuation at low energies for materials
with high atomic numbers. Compton scattering on the other hand is dominant
for high energies and low atomic numbers, and is the most significant source of
attenuation in soft tissue.

2.1.2 Synchrotron sources

Synchrotrons have driven X-ray imaging to an extreme, demonstrating new
modalities and imaging capabilities. They obtain both excellent signal-to-noise
ratio and high resolution capabilities, making them superior to laboratory X-
ray setups. Synchrotron radiation imaging is performed at large scale facilities,
where a highly coherent X-ray beam, both in terms of spatial coherence and
spectral width, can be obtained [77]. The X-rays in synchrotrons are produced
by accelerating electrons using magnetic fields in a circular accelerator. A fur-
ther magnetic field, e.g. an undulator, consisting of a periodic structure of dipole
magnets is used to force the electrons to oscillate and thereby to radiate energy.
The electrons emitted have several GeV in energy and emit a narrow beam of
polychromatic radiation consisting of soft UV light to hard X-rays. The required
wavelength for a particular experiment can be tuned by monochromator crys-
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tals [79]. The ability to use monochromatic radiation, that is the selection of
specific wavelengths of radiation, eliminates beam hardening effects [80]. Syn-
chrotron sources give high brilliance, which describes the brightness and the
angular opening of the beam. Brilliance considers the number of photons pro-
duced per second, the angular divergence of the photons, the cross-sectional
area of the beam and the photons falling within a bandwidth of 0.1% of the cen-
tral wavelength [81]. The high flux obtained at synchrotrons allows the use of
shorter exposure time. The small source size further allows for the depiction of
more details. Synchrotron sources are thus ideal for high resolution tomography,
where high contrast is obtained for small samples.

2.1.3 Computed tomography

In order to quantitatively analyze the microstructure of food products, the in-
ternal three-dimensional information must first be obtained. Computed tomog-
raphy is a method for constructing a three dimensional (3D) image of a sample
by X-ray imaging. The procedure collects X-ray images taken at many different
viewing directions, and the 3D image is then reconstructed mathematically from
these images. In more detail, an ideal X-ray beam of a CT scanner consists of
parallel pencil-beams of X-rays which travel from the source, through a sample
and the attenuation is then analyzed by a detector. Either the X-ray source and
detector or the sample itself is then rotated, and a number of projections taken
at different angles [82]. The CT measurements thus consist of the sum of atten-
uation coefficients µi in every voxel that lies in the path of each pencil-beam of
the X-rays. The measured X-ray beam will have intensity I as given by

I = I0 exp

(
−z

n∑
i=1

µi

)
. (2.2)

Equation (2.2) is an approximation since low-energy X-rays are typically ab-
sorbed with polychromatic sources [82]. This is called beam hardening and can
be corrected for by either placing filters to remove the low-energy X-rays, or
as a post-processing step after data acquisition [83, 84, 85]. In order to recon-
struct the 3D image, filtered back-projection (FBP) is most commonly used.
The basis for tomographic reconstruction by FBP was first introduced by Jo-
hann Radon. FBP is a modified version of simple backprojection where the value
in the projection image is backprojected by setting the voxels of each individual
pencil-beam to the same value. The backprojected image is then the sum of all
the backprojected views. Figure 2.1b shows the result from simple backprojec-
tion reconstruction of the image in Figure 2.1a. The resulting reconstruction
becomes blurry and is in general not a good solution. In FBP the algorithm cor-
rects the blurring effect by first filtering each view before backprojecting. Given
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(a) Projection angles.

(b) Back projection.

(c) Filtered back
projection.

Figure 2.1: The reconstructed images of the multiple views in a) calculated by
b) back-projection and c) filtered-back projection.

an infinite number of views and infinite number of points the FBP method will
produce an ideal solution identical to the correct image. A FPB reconstruction
of the image in Figure 2.1a is shown in Figure 2.1c. In general a CT scanner
consists of a cone beam geometry, which requires the use of different filtering
operations during reconstruction. The parallel case presented here only applies
in first approximation at synchrotrons. For scenarios when the FBP is not ade-
quate, iterative reconstruction techniques can be alternatively used [86].

2.1.4 Noise sources and artifacts

Several random processes contribute to the noise of X-ray imaging. These in-
clude; i) the number of photons emitted from the X-ray source, ii) the number
of photons that pass unaffected through the material, iii) the number of photons
captured by the detector, iv) the number of X-ray photons converted to visible
light photons and v) the response of the imaging device. In general, the overall
noise is Poisson distributed. For X-ray imaging, noise is usually evaluated by
comparing the signal-to-noise ratio (SNR).

The quantum noise of the X-ray system is not the only contributor to decreased
image quality. Image artifacts are undesired image features that can occur in sev-
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eral ways. The most common include; i) motion artifacts which is when a sample
moves during the image acquisition, ii) ring artifacts in CT where miscallibra-
tion and defects in the detector are the culprit, iii) streak artifacts caused by
beam hardening, scatter, Poisson noise, motion and edge effects, and iv) partial
volume effects where voxels in a CT image consist of a combination of different
materials. The analysis methods applied to X-ray data need to consider these
effects in order to obtain a reliable result.

2.2 Grating interferometry

Grating-based imaging (GBI) is based on measuring three types of physical in-
teractions i) attenuation, ii) refraction and iii) scattering, obtained from the
absorption, phase-contrast and dark-field imaging modalities, respectively. Fig-
ure 2.2 shows the effect of an incoming Gaussian shaped beam profile (shown
in black) when samples with different physical properties are measured. The
colored profiles represent what the detector records when a sample is present.
The effect from an absorptive material is depicted in green, and illustrates an
attenuation of the beam, while in blue, the effect of a refractive material is seen
to cause a transverse shift in the position of the beam profile. Finally, in red,
the small-angle scattering from a material with ordered microstructure causes a
broadening of the beam profile. These three complementary interactions can be
measured, resulting in three imaging modalities with pixel or voxel correspon-
dence.

Figure 2.2: The incoming X-ray beam changes when a sample is present. The
effect on the beam from an absorptive material (green), a refractive
material (blue) and a material with a homogeneous distribution of
microstructures (red). Adopted from Nielsen [87].
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Figure 2.3: Grating-based X-ray imaging setup. The phase-grating G1 creates
an interference pattern that is analyzed by the detector through
the analyzer grating G2. If the X-ray source lacks spatial coherence,
the source grating G0 can be included. For a radiographic setup the
sample is simply placed before the phase-grating, if tomography is
required a rotating stage is mounted. Reproduced from Nielsen
[55].

The GBI setup is illustrated in Figure 2.3. In order to obtain the desired im-
age contrast a phase grating G1 is placed after the sample. The grating acts as
a phase mask, imprinting periodic phase modulations onto the incoming wave
field [88]. This phase modulation is transformed into an intensity modulation in
the plane of the analyzer grating G2 through the Talbot effect [89]. The Talbot
effect forms a linear periodic fringe pattern that is perpendicular to the setup
axis and parallel to the fringe lines of G1. Grating G2, placed immediately be-
fore the detector, has absorbing lines and the same orientation and periodicity
as the fringes created by G1. Either the G1 or G2 grating can then be stepped in
the xg direction, scanning the oscillation of the intensity signal I(m,n) for each
pixel (m,n). The sample can be mounted on a rotation stage for tomography
imaging. The grating interferometer can be used to measure all three afore-
mentioned effects. For refraction, this is done by measuring the slight angular
change of an incoming X-ray beam as it passes through a sample, which causes
a transverse displacement of the interference pattern produced by the grating
setup. For scattering the blurring of the interference pattern can be measured.
The details of the grating interferometer are thoroughly discussed in [90, 91, 92]
for synchrotron sources and in [45] for laboratory-based setups. For tomography,
the full complex refractive index can be reconstructed as shown in [93, 94], along
with performing dark-field tomography [44].
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2.2.1 Contrast mechanisms

As for visible light, matter can refract X-rays, and the description of attenu-
ation and refraction of X-rays can be combined through the complex index of
refraction as given in [81]

n = 1− δ + iβ, (2.3)

where the real part δ and the imaginary part β are related to the attenuation
length µ−1 and electron density ρe, respectively. For X-rays, both δ and β are
small quantities (< 10−5) and are given by

δ =
2πρaZr0

k2
(2.4)

β =
µ

2k
, (2.5)

where the atomic number density ρa and atomic number Z are related to the
electron density (ρe = ρaZ), r0 is the Thomson scattering length [81], and
k = 2π/λ is the X-ray wave number where λ is the wavelength. For low atomic
numbers, the phase shift of an X-ray beam is larger than the absorption effect,
indicating higher sensitivity to density variations [77].

The dark-field imaging modality introduced by Pfeiffer et al. [46] measures the
reduction in visibility of the interference pattern, and is described as a beam
spread caused by small angle scatter and multiple refraction [77]. Bech et al. [44]
demonstrated an imaging approach to measure the scattering by assuming that
the angular probability distribution A(θ) of the scattered intensity is Gaussian

A(θ) =
1

σ
√

2π
exp

(
− θ2

2σ2

)
, (2.6)

where µ and σ are the mean and standard deviation, respectively, and θ is the
scattering angle. The recorded intensity is the convolution Is = Ir⊗A(θ), where
the superscript s denotes the presence of a sample and r denotes the reference
without the sample.

2.2.2 Imaging modalities

The grating-interferometer creates an interference pattern which changes when
a sample is placed in the X-ray beam. As previously mentioned, this interference
pattern can be reconstructed from the images obtained by stepping either the G1
or G2 grating. A minimum of three equidistant transverse shifts of the grating
are required to extract the three imaging signals [77]. A reference scan where
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Figure 2.4: The absorption, change in phase and dark-field signal can be cal-
culated from the change in sinusoidal intensity profiles between the
reference (in blue) and when a sample is present (in red). Adapted
from Nielsen [87].

no sample is present is then compared with a sample scan and the attenuation,
refraction and scatter can be calculated. This is done by analyzing the oscillation
of the intensity I(m,n) for every pixel (m,n) written in a Fourier series [88]

I(m,n, xg) =
∑
i

ai(m,n) cos (ikxg + φi(m,n)) (2.7)

≈ a0(m,n) + a1(m,n) cos (kxg + φ1(m,n), (2.8)

where ai are the amplitude coefficients, φi are the corresponding phase coeffi-
cients, k = 2π/p2 and p2 is the period of grating G2. The higher order terms
are ignored for adequately large source sizes, as their contribution is less than
0.1% [77]. The normalized average transmission of the sample in each pixel is
then given by

T (m,n) =
as0(m,n)

ar0(m,n)
, (2.9)

corresponding to what is measured in a conventional absorption X-ray setup.
Pfeiffer et al. [45] show that by analyzing the lateral shift of the intensity mod-
ulation, the phase-contrast imaging modality can be obtained. This lateral shift
is the φ1(m,n) quantity in Equation 2.8. The relative phase shift is given as

φ1(m,n) = φs1(m,n)− φr1(m,n). (2.10)

The dark-field imaging modality measures the scattering power of the sample,
and information on the scattering is contained in the first Fourier component
of I(m,n, xg). In other words, the amplitude of the first Fourier component a1
decreases when X-rays are scattered or reflected through the sample [46]. This
is illustrated in Figure 2.4. In order to quantitatively describe the change in
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the oscillation amplitude when a sample is present, the normalized reference
oscillation amplitude is first defined by the ratio

V r(m,n) =
Irmax − Irmin
Irmax + Irmin

=
ar1(m,n)

ar0(m,n)
. (2.11)

The relative visibility decrease V when a sample is present is then defined as
the normalized visibility

V (m,n) =
V s(m,n)

V r(m,n)
=
ar0(m,n)as1(m,n)

as0(m,n)ar1(m,n)
. (2.12)

When a sample has negligible small angle X-ray scattering the visibility remains
unchanged and V (m,n) = 1. For strongly scattering samples, the visibility drops
resulting in V < 1 [46].

The phase-contrast and dark-field sensitivity is primarily defined by the pa-
rameters of the gratings, and only secondly by the X-ray beam properties. The
high quality of the beam at synchrotrons allows to use equipment that is very
sensitive to small changes [77]. X-ray tube sources have very different beam
properties, they are highly divergent allowing for large field of views at a short
distance. Coherence of a conventional X-ray tube is achieved by adding the
source grating G0 as previously mentioned.

Image acquisition is the first step to obtaining a meaningful representation of a
sample measured. In order to give a quantitative analysis of the sample charac-
teristics, image segmentation and classification become essential. The topics of
segmentation and classification will be discussed in the following chapter.



Chapter 3

Segmentation and
classification

This chapter presents the main topics within the fields of statistics, image anal-
ysis and statistical learning relevant to the work in this thesis. First, the basic
statistical methods used are presented. The methods are in large based upon
the normal distribution. Next, the topics of image segmentation will be intro-
duced, where the focus will be on models that include prior information of both
intensity and shape. Finally, methods of statistical learning for both classifi-
cation and interpretation of data are discussed. In addition to presenting the
relevant theory, this chapter will also focus on illustrating the importance of
model selection and evaluation of segmentation and classification results.

3.1 Statistical methods

Statistics form an important basis for other advanced methods within image
analysis and statistical learning. This section presents methods based on nor-
mal distributions, including the definition of a univariate and multivariate nor-
mal distribution, mixture of Gaussians modeling, and the Mahalanobis distance
measure.
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3.1.1 Normal distribution

The normal distribution, or Gaussian distribution, is commonly used in image
analysis. It is a parametric model which is represented by two parameters, the
mean µ and variance σ2. These parameters can be estimated from a given data
set X ∈ N (µ, σ2) as

µ =
1

n

∑
j

xj , (3.1)

and
σ2 =

1

n

∑
j

(xj − µ)2, (3.2)

where σ2 is a biased estimator of the sample variance. The unbiased estima-
tor normalizes by n − 1 instead of n. The probability density of the normal
distribution is given as

N (x | µ, σ2) =
1√
2πσ

exp

(
−1

2

(x− µ)2

σ2

)
. (3.3)

The multivariate Gaussian distribution X ∈ N (µ,Σ) is defined as

N (x | µ,Σ) =
1√

(2π)p|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3.4)

=
1

Z
exp

(
−1

2
log |Σ| − 1

2
(x− µ)TΣ−1(x− µ)

)
, (3.5)

where p is the number of dimensions, µ is the mean vector, Σ is the covariance
matrix, |Σ| is the determinant of Σ and Z is a normalization constant.

3.1.2 Gaussian mixture model

Often data is not well represented by a single distribution and instead consists of
multiple distributions. The Gaussian mixture model (GMM) incorporates this
by representing a mixture of K Gaussian distributions as

p(x) =

K∑
k=1

πkN (x | µk,Σk) (3.6)

=

K∑
k=1

1

Z
exp

(
log πk −

1

2
log |Σk| −

1

2
(x− µk)TΣ−1k (x− µk)

)
, (3.7)

where πk is the prior probability of each mixture.
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3.1.3 Maximum likelihood estimation

The maximum-likelihood estimation (MLE) is a method to estimate the param-
eters of a distribution for given data. The following review of MLE is based on
the notation as given by Hastie et al. [95]. A probability density function for
observations x from the distribution X can be specified as

xi ∼ gθ(x), (3.8)

where if X has a normal distribution, then θ is the parameters (µ, σ2) and
gθ = N (x | µ, σ2) as given in Equation (3.3). The likelihood function, or the
probability of the observed data for gθ, for data X is defined as

L(θ; X) =

N∏
i=1

gθ(xi), (3.9)

where N is the number of observations. The MLE chooses the value of the
parameters θ = θ̂ that maximizes the log-likelihood given as

`(θ,X) =

N∑
i=1

`(θ;xi), (3.10)

where `(θ;xi) = log gθ(xi) is the log-likelihood [95].

3.1.4 Expectation-Maximization

The Expectation-Maximization (EM) algorithm deals with fitting the param-
eters of a parametric model [96]. Given the observed data X, sampled from
a parametric distribution with unknown parameters θ, the latent variables Z
and a likelihood function L(θ; X,Z) = p(X,Z|θ), the EM algorithm calculates
the MLE of θ. Here, latent variables are not directly observed, but are rather
inferred from other variables that are observed.The EM algorithm is an iter-
ative method, alternating between two steps. First an expectation step (E) is
performed, which uses the current estimate of parameters θ to evaluate the ex-
pectation of the log-likelihood. A maximization step (M) follows, that computes
the parameters that maximize the expected log-likelihood found in the E step.
The two steps are briefly described as follows [95]:

Expectation step The E step calculates the expected value of the log-likelihood
function given the observed data X and current estimate of the parameters θk.
The expectation value is defined as

Q(θ|θk) = EZ|X,θkL(θ; X,Z). (3.11)
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Maximization step The M step calculates optimal values for θ given the
expectation value from the E step. The parameter estimates are defined by

θk+1 = arg max
θ

Q(θ|θk). (3.12)

The two steps are then repeated until convergence is obtained. The EM algo-
rithm does not guarantee a globally optimum solution, and rather converges to
a local optima [97]. In high-dimensional spaces there can be a number of local
optima, and therefore the performance of the EM algorithm can be poor. The
number of Gaussians to be fitted also greatly affects the result of the EM al-
gorithms. Gap statistics [98] can be used to estimate the number of Gaussians
in the given data, in hopes of obtaining a better performance from the EM
algorithm.

3.1.5 Mahalanobis distance

Given a data point x and normal distribution X ∈ Np(µ,Σ), the Mahalanobis
distance measures the distance between the two by taking into account the
correlations of the data. In other words, the Mahalanobis distance measures
how many standard deviations x is from the given distribution. It is defined as

D(x) =

√
(x− µ)TΣ−1(x− µ). (3.13)

The Mahalanobis distance corresponds to the Euclidean distance in a trans-
formed space. It is unit less and scale-invariant. Since the Mahalanobis distance
uses the inverse of the variance-covariance matrix, several computational prob-
lems can arise. Data containing a large number of variables that are correlated
can lead to a singular or nearly singular variance-covariance matrices which can-
not be inverted. Secondly, for p >> n problems, i.e. there are more variables
than observations, the calculation of the variance-covariance matrix also be-
comes problematic. For these cases the Mahalanobis distance can be calculated
using a subset of variables found with e.g. principal component analysis [99] (see
Section 3.3.5). The Mahalanobis distance can be used as a suitable metric for
outlier detection and as a distance classifier.
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3.2 Image segmentation

Image segmentation is concerned with the task of dividing an image into sep-
arate regions, and thereby representing meaningful segments of the image. In
the following sections, a selection of segmentation methods relevant to the work
in this thesis will be presented. This includes Bayesian classification, which is
related to the Markov random field (MRF) framework [100]. The MRF frame-
work is a state-of-the-art general probabilistic framework that can be used to
model a priori knowledge of the spatial context of an image. MRFs work well
for minimizing segmentation errors due to image noise and partial volume ef-
fects. For problems where the image to be segmented contains a well defined
structure, and given a set of annotated training shapes, an even stronger prior
can be included. This is achieved by for instance the active appearance model
(AAM) framework [101]. The AAM combines shape and texture into a single
model, and is ideal for segmenting known anatomical structures.

3.2.1 Bayesian classification

Bayesian statistics are well established for estimation and decision-making, and
form a basis for many advanced segmentation methods. They play a crucial role
towards formulating the MRF segmentation model. The reader is thus reminded
of the Bayesian modeling paradigm for the purpose of multivariate classification.

Given a data point x = (x1, ..., xn), where n is the number of variables, and
possible class labels π = (π1, ..., πm), where m is the number of possible classes,
the Bayes conditional probability model assigns probabilities P (πk | x) for each
of the k = 1, ...,m possible classes of π [102]. The posterior probability can be
calculated by using Bayes theorem

P (πk | x) =
P (x | πk)P (πk)

P (x)
, (3.14)

where P (πk) is the prior probability, P (x | πk) is the probability of x conditioned
on πk and P (x) is the weighted combination of P (x | πk) given as

P (x) =
∑
i=k

P (x | πi)P (πi). (3.15)

Assuming the probability follows a normal distribution N (µ,Σ), the posterior
probability is given by Equation 3.4 as

f(x | πk) =
1

√
2π

n√|Σk|
exp

(
−1

2
(x− µk)TΣ−1i (x− µk)

)
, k = 1, ...,m,

(3.16)
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The maximum a posteriori (MAP) solution is found by

f∗ = arg max
f∈F

P (f | x), (3.17)

where F is the set of all possible label combinations f∀k [100].

3.2.2 The Markov random field framework

X-ray imaging noise and artifacts can affect a final segmentation, and typically
pixel-wise classification is not sufficient to obtain a satisfactory result. Applying
a model capable of capturing contextual constraints can minimize these effects.
By doing so, a prior is incorporated which presumes homogeneity of regions,
i.e. intensity and texture. The Markov random field framework is a probabilistic
model which captures such contextual constraints. The Markov random field
framework is well described by Li in [100], and will briefly be touched upon
here. Before the MRF is defined, some concepts and notions are first given.

Random fields

An image can be defined as a set of regular sites S, where each site represents
a pixel for a two dimensional image or voxel for a three dimensional image.
This set of sites can be considered as a random field, where each site has a
stochastic variable associated with it. Sites are thus spatial positions (pixels or
voxels) S = {s1, ..., sn}, where n is the number of sites. Each site is assigned
a label l and the set of possible labels is denoted by L = {l1, ..., lm}, which
for segmentation purposes are categorized as discrete, and m is the number of
possible labels. The mapping from sites to labels f : S → L assigns a label
from the label set L to site i ∈ S. In other words, each site has an associated
stochastic variable fi, where the stochastic variables can take on a value within
the set of labels L, i.e. fi ∈ L.

Neighborhood structure

A neighborhood for each site i is defined as Ni, which consists of neighboring
sites. The collection of neighborhoods gives the neighborhood structure N . A
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Figure 3.1: The model for a random field on a 4-neighborhood regular lattice
grid.

formal definition of neighborhood structure N is given as

N = {Ni | ∀i ∈ S} (3.18)
i 6= Ni (3.19)

j ∈ Ni ⇔ i ∈ Nj . (3.20)

The definition states that a site cannot be a member of its own neighborhood
and that if site j is a neighbor to site i, then site i must be a neighbor to
site j. A first-order neighborhood system on a regular lattice is defined such
that the nearest neighbors of a site define its neighborhood (i.e. four nearest
neighbors on a regular 2D lattice and six nearest neighbors for a 3D lattice).
Figure 3.1 illustrates sites of a regular grid with a 4-neighborhood structure.
A subset of sites in S with neighborhood N is defined as a clique c, where a
single site is c = {i} and a pair of neighboring sites c = {i, j}. The set of single
sites is denoted C1 = {i | i ∈ S} and pair-sites C2 = {(i, j) | j ∈ Ni, i ∈ S}
(horizontal- or vertical neighbors). Finally, the entire collection of cliques for
{S,N} is C = C1 ∪ C2.

Markov random fields

Given the random field F with neighborhood structure N and label set L, the
Markov property states that the random field is a Markov random field if and
only if the following criterion are fulfilled

P (F = f) > 0 ∀f ∈ F (3.21)
P (fi|f{S\i}) = P (fi|fNi

), (3.22)
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where f{S\i} is the set of labels at the sites in S \ i and

fNi
= {fj | j ∈ Ni}, (3.23)

is the set of labels at the sites neighboring i. The Markov property thus states
that all information about what label to assign to site i is contained in the labels
of the neighbors to that site.

The Ising model

A special case of the MRF is the Ising model [103] which considers a binary
labeling problem L = {−1, 1}. The model is based on a 4-connectedness neigh-
borhood structure on a regular lattice. The probability distribution function for
the Ising model is given as

p(fi | fNi
) =

exp
(
αifi +

∑
j∈Ni

βijfifj

)
∑
fi∈L exp

(
αifi +

∑
j∈Ni

βijfifj

) , (3.24)

where αi is a constant for each site and βij is a smoothing parameter for each
neighborhood pair. The denominator of Equation (3.24) is a normalizing con-
stant that sums over all possible labels such that the combined probability is
equal to one.

The Gibbs model

The Gibbs random field (GRF) is equivalent to a MRF, but is better suited to
finding the maximum a posteriori probability. Instead of expressing distributions
on fields as the MRF does, GRFs model context by cliques and data terms
(encaptured by one-cliques) [104, 100]. A MRF is a GRF if and only if its
configuration follows a Gibbs distribution given by

P (f) =
1

Z
exp

(
−U(f)

T

)
, (3.25)

where U(f) is the energy function and T and Z are constants, where the latter
is defined as

Z =
∑
f∈F

exp

(
−U(f)

T

)
. (3.26)

The energy function U(f) is the sum of clique potentials Vc(f) over all possible
cliques C. The GRF is homogeneous if the clique potential is independent of the
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Figure 3.2: The Markov random field illustrated for site i. The cost of assigning
label f to site i is given by minimizing the energy of all possible
labeling configurations.

relative position of the clique c in S. Furthermore, the GRF is isotropic if Vc
is independent on the orientation of c. The energy function U(f) for the Ising
model is given as

U(f) = −

∑
i∈C1

αifi +
∑

(i,j)∈C2

βijfifj

 . (3.27)

The single-cite clique potential is thus Vi(fi) = −αifi for i ∈ C1 and the pair-site
potential is Vij(fi, fj) = −βijfifj for (i, j) ∈ C2. These relations are illustrated
in Figure 3.2. If labels fi and fj are the same, then a positive βij is added to
the energy function enforcing homogeneity, otherwise −βij is added.

In order to generalize to multilabel problems the Potts model is used [105, 106].
The model assumes i) a pixel-wise classification function, such as Bayesian clas-
sification, for the single-clique potentials and ii) the two-clique potentials are
determined as

Vij(fi, fj) = βij(1− δk(fi − fj)), (3.28)

where δk(fi − fj) is the Kronecker delta function

δk(fi − fj)) =

{
1 for fi − fj = 0

0 for fi − fj 6= 0,
(3.29)
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Figure 3.3: An example of a directed graph with source and sink vertices and
non-negative edge weights.

Graph cuts

Graph cuts is a framework by which discrete energy minimization problems
can be solved. Graph cuts use max-flow (min-cut) algorithms for this purpose,
and can for instance be used to solve binary MAP-MRF problems. A graph is
defined as a directed graph G = (V, E), where V is the set of vertices and E the
set of edges, with non-negative weights on each edge. The graph contains two
special vertices, the source s and sink t [107]. A graph is illustrated in Figure
3.3. The graph can be partitioned such that the vertices V are divided in two
sets S and T , where s ∈ S and t ∈ T . The cost of the cut is then the sum of
all the edge weights going from S to T [107]. Hence the cut with the minimal
cost is sought, which according to Ford and Fulkerson [108] is the equivalent
to finding the maximum flow of the graph. A binary MRF problem can be
formulated as a graph cut problem [107], where the minimal cut corresponds
to the minimal possible energy U(f), i.e. the MAP-MRF solution. The graph
cut method is guaranteed to find the global optimum solution [107]. Boykov et
al. [109] provide an efficient approximate solution using graph cuts for general
multilabel MRF problems.

α-expansion

A limitation of the graph cut method is that it only deals with binary label
problems. Boykov et al. [109] introduced a solution to this problem by fusion
moves, where two sets of labeling g = ∪gi and h = ∪hi are fused into the labels
k = ∪ki. One of the fusion moves introduced is α-expansion, where the labeling
is expanded on label α iteratively. That is, for all labels α ∈ L, the α value is
iteratively compared against all other labels L\α to solve the binary graph cut
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problem. Thus, for all sites i ∈ S labeled as fi 6= α a decision is made whether
it is changed to α or not.

Anisotropic MRFs

MRFs can model either an isotropic smoothing constraint, such that all pair-
sites are assigned the same smoothing parameter βij , or the parameter can
vary depending on clique orientation, resulting in an anisotropic smoothing.
For the anisotropic case a method for determining the influence function on
β is required. Grau et al. [110] introduced the use of a structure tensor to
incorporate the local information about structure orientation and coherence
into the segmentation process, thus defining an anisotropic MRF. It is based on
the coherence-enhancing filtering of Weickert [111] and the nonlinear diffusion
filters by Perona and Malik [112]. Anisotropic diffusion was also introduced by
Black et al. [113]. In Grau et al. [110], the influence function is described such
that the neighborhood influence on the voxel classification is weighted by the
local structure characteristics at its location. The structure tensor for an m
dimensional image y is defined as

J(y, σ, ρ) := Kρ ∗ (∇(Kσ ∗ y)⊗∇(Kσ ∗ y)), (3.30)

where Kσ and Kρ are Gaussian kernels with standard deviations σ and ρ, and
⊗ is the tensor product. The matrix in Equation (3.30) is a symmetric positive
semidefinite matrix [111], where the eigenvalues provide a measure of the average
intensity variation in the eigenvector directions, and ρ is a scale parameter [110].
In other words, the eigenvalues µ1, ..., µm of the structure tensor matrix provide
information of the amount of anisotropy. A coherence function is defined in [111]
as

κ :=

m−1∑
i=1

m∑
j=i+1

(µi − µj)2, (3.31)

which tends to zero for structures that are isotropic and becomes large for differ-
ing eigenvalues. This information can be incorporated into the influence function
I(i, j) which modulates βij , thus relating it to the structure in the image. For
this purpose Grau et al. [110] propose a diffusion tensor D. The diffusion tensor
has the same eigenvectors as the structure tensor, and the eigenvalues of the
diffusion tensor are small constants except for the eigenvalue associated with
the main direction, depending on the coherence value κ in Equation (3.31). The
eigenvalues are calculated as

λm =

{
α, if κ = 0

α+ (1− α) exp
(
−Cκ

)
, otherwise

(3.32)

λi = 1− λm, i = 1...m− 1, (3.33)
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where C is a threshold parameter, and α is chosen such that eigenvalues will be
approximately equal where coherence is small (isotropic coherence tensor D),
and such that the coherence tensor D becomes directional where coherence is
great [110]. The influence function is then defined as

I(i, j) =
r̄ijNDr̄

T
ijN

|r̄ij |
, (3.34)

where r̄ijN is a normalizing vector joining i and j. The influence value approx-
imates an isotropic MRF where coherence is small, and is maximum when the
voxels i and j are aligned in the dominant structure orientation of i [110].

3.2.3 Active appearance models

An active appearance model (AAM) is a generative model which can represent
both shape and texture variability of a training set, where texture refers to the
intensity patterns of an image patch. AAMs have proven useful for segmenting a
variety of anatomical structures within medical image analysis [114]. In the work
of this thesis, images of objects with known structure are considered, and for this
type of data AAMs are applied for segmentation. AAMs were first introduced
by Cootes et al. in [115, 101], and the following section will follow the notation
given there.

AAM training

In order to construct the model, a training set consisting of images with manu-
ally placed landmark points is required, thus making the learning of the model
supervised. The landmarks are then aligned by Procrustes analysis [116, 117],
i.e. the points are scaled, rotated and translated such that they become su-
perimposed onto the same coordinate frame of reference. The statistical model
for both shape and texture is then generated by applying principal component
analysis (PCA), see Section 3.3.5, to the set of vectors that describe the shape
and texture separately. Using the shape model, described in [118], an example
of a shape can be approximated by

s = s̄ + Φsbs, (3.35)

where s̄ is the mean shape vector, Φs is a set of orthogonal modes of shape
variation from the PCA and bs is a vector of shape parameters [119]. For the
texture model, the training images are first warped, using a piecewise affine
transformation, such that the landmarks match the mean shape s̄. The intensity
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values of the patch, covered by the shape-normalized region, are then sampled.
PCA is again applied, and a linear model constructed as

t = t̄ + Φtbt, (3.36)

where t̄ is the mean intensity vector, Φt is a set of orthogonal modes of intensity
and bt is a set of intensity parameters. The shape and intensity model are
combined by concatenating the vectors bs and bt and applying once again a
PCA to obtain the appearance model given by

b =

(
Wsbs

bt

)
=

(
Φc,s

Φc,t

)
c = Φcc, (3.37)

where weights for each shape parameter are given by the diagonal of Ws to
compensate for difference in units between the shape and intensity model. The
weights are typically determined by the square root of the ratio between the
sums of the texture and shape eigenvalues [114]. From the combined appearance
model, shape and texture can be expressed as functions of c

x = x̄ + ΦsW
−1
s Φc,sc , t = t̄ + ΦtΦc,tc. (3.38)

AAM search

Given the appearance model, an unseen image can be interpreted and the mod-
eled object segmented. This is done iteratively by updating the model param-
eters and comparing the current model image tmodel and corresponding patch
from the unseen image timage. Ideally the procedure should find the ground truth
shape in the unseen image, given an accurate prior estimate of the position. The
iterative search can be summarized by the following steps:

1. Image texture timage and model texture tmodel are calculated.

2. The residual vector r(p) = δt(p) = timage(p)−tmodel(p) and current error
E = |r2| are evaluated.

3. Displacements p of landmarks that minimize the current error are found
by an optimization approach.

4. Steps 1 to 3 are repeated until convergence.

Several methods exist for predicting parameter updates, including linear regres-
sion [115] and a fixed Jacobian matrix estimate [101]. The implementation of
the Jacobian approach is simpler than the linear regression approach. It is also
faster to compute and more memory efficient [114]. Alternatives to AAM are
constrained local models [120], and Random forest regression voting [121, 122].
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3.2.4 Evaluation of segmentation results

For the purpose of quantitative analysis, the segmentation accuracy is critical.
In order to determine the accuracy, a ground truth is required. Such a ’golden
standard’ is hard to define and remains an unsolved problem. In medical im-
age analysis the ground truth is typically determined by manual segmentations
performed by experts. Several issues arise when a manual segmentation is used
as ground truth, including intra and inter-observer variability. Even though a
reliable manual segmentation is available, it is still questionable if the results
are accurate in relation to the object measured. Image noise and artifacts can
misguide a manual segmentation and partial volume effects are difficult to han-
dle. The precise interface boundary of two materials is difficult to determine
if the image resolution is not adequate. With these issues in mind, if a valid
ground truth is available, there are several ways to determine the accuracy of
the segmentation, some of which are discussed in the following sections.

Similarity coefficients

Given a ground truth segmentation Vref, several metrics exist to evaluate the
quality of the predicted segmentation, Vseg, including the Dice similarity coef-
ficient (DSC) [123], the Jaccard similarity coefficient (JSC) [124] and overlap
fraction (OF). The DSC measures the spatial overlap between two segmenta-
tions, the target regions Vref and Vseg, and is defined by

DSC = 2
|Vseg ∩ Vref|
|Vseg|+ |Vref|

, (3.39)

where ∩ is the intersection. JSC is defined as

JSC =
|Vseg ∩ Vref|
|Vseg ∪ Vref|

, (3.40)

where ∪ is the set union. The overlap fraction is finally defined as

OF =
|Vseg ∩ Vref|
|Vref|

. (3.41)

Confusion matrix

The DSC, JSC and OF measures can be used when the segmentation problem
is a binary one. For evaluation of segmentation including several classes other
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Table 3.1: A confusion matrix for linking true labels with predicted ones.

Predicted label
Label1 ... Labeln

Label1 M11 ... M1n

True label ... ... ... ...
Labeln Mn1 ... Mnn

evaluation methods need to be considered. On such method is calculating the
confusion matrix. The confusion matrix is also discussed in Section 3.3.6. The
matrix is a table that illustrates the performance of a segmentation by comparing
the actual class label of a pixel and the predicted one from the segmentation.
An example of a confusion matrix for an image with n labels is shown in Table
3.1 where Mij represents the number of pixels segmented as label number i and
actually belonging to the true label j.
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3.3 Statistical learning

Statistical learning has been used extensively for segmentation, feature selection
and classification for food product quality evaluation [22]. Bayesian theory for
instance provides a generic, mathematically rigorous probabilistic approach to
inference. This section will present the topics of statistical learning relevant for
the thesis work. These include novelty detection, model selection based on the
bias-variance trade-off, classification by support vector machines and dimension-
ality reduction by principal component analysis.

3.3.1 Novelty detection

In novelty detection (also known as anomaly- and outlier detection), the classi-
fication problem is to identify whether an observation is part of the data or is
in fact unknown. The aim is to assign an abnormal label to anomalies within
known normal observations. Novelty detection can thus be described as a one-
class classification problem. To determine whether new observations are truly
abnormal, some sort of distance measure is required along with a threshold for
decision making. Novelty detection is relevant for many applications, for instance
in medical image analysis where diseases need to be identified from image data
[125, 126, 127], foreign object detection in food products [128, 32] and video
surveillance for crowd analysis [129, 130, 131]. Typically in situations where
novelty detection is applied the normal observations are available and only a
few or none of the abnormal are. In a practical setting it is difficult to foresee all
possible types of anomalies and therefore the novelty detection scheme is well
suited. Pimentel et al. [132] describe a model of normality M(θ), where θ are
the parameters of the model. From the model, novelty scores z(θ) are calcu-
lated for unseen test data x, where large novelty scores correspond to increased
abnormality from the normal model. To determine whether the data truly is
abnormal (+) or normal (−) a threshold is determined z(x) = k such that

x =

{
+ if z(x) ≥ k
− if z(x) < k.

(3.42)

Therefore a decision boundary is determined by z(x) = k. The three main steps
to consider for novelty detection are the methods for modeling normality M(θ),
tuning of the model parameters θ, and choosing a threshold value k.
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Figure 3.4: Visualization of bias and variance.

3.3.2 The bias-variance tradeoff

Most classification problems require more complex models than the novelty de-
tection scheme previously presented. As model complexity increases, it is im-
portant to consider issues in regards to model over-fitting and under-fitting.
Given a training set of observations X = x1, ..., xn with associated real val-
ues Y = f(X) + ε, where ε ∈ N (0, σ2

ε ) is noise with zero mean and variance
σ2, a good learning model f̂(x) will have minimal mean squared error (MSE)
(Y − f̂(X))2 [95]. Since Y contains noise, no model will be perfect and this is
what is called the irreducible error σ2

ε . The expected prediction error of a model
can be decomposed into the irreducible error, bias and variance as given by [95]

E[(Y − f̂(X))2] = Bias[f̂(X)]2 + Var[f̂(X)] + σ2
ε , (3.43)

where Bias[f̂(x)] = E[f̂(x)] − f(x) and Var[f̂(x)] = E[(f̂(x) − E[f̂(x)])2]. The
expectation is estimated for different combinations of the training set. Bias de-
scribes the average error of the model while variance describes the variance in
the predictions of the model. In other words, bias indicates the average differ-
ence between the expected prediction of a model and the true values. Variance
on the other hand measures how much the predictions of observations vary from
the actual value. Models with low bias and high variance get a correct predic-
tion on average with high variability (over-fitting). Models with high bias and
low variance have low variability in the predictions but generally result in a
wrong prediction (under-fitting). This is illustrated in Figure 3.4. Model com-
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plexity greatly influences the so-called bias-variance tradeoff. As the complexity
increases, the variance tends to increase and bias tends to decrease. When model
complexity decreases the opposite behaviour occurs [95].

3.3.3 Model selection

In order to select an appropriate model the available data can be randomly split
into three parts; training set, validation set and test set. Typically, the training
set is the largest of the three and is used to train the model on a range of param-
eters. The prediction error of the models is then calculated using the validation
set and the best option selected. Finally, the test set is used to estimate how
well the resulting model works. This procedure is adequate for well-conditioned
problems where there are enough observations available. For datasets where the
number of samples are limited a common and simple approach for model se-
lection is k-fold cross-validation [133]. The cross-validation procedure splits the
data X randomly into k equal parts X1, X2, ..., Xk. The model is then trained
and tested k times; each time t ∈ {1, 2, ..., k} it is trained on the parts of X
excluding Xt and tested on Xt. The accuracy is then estimated as the over-
all number of correct classifications, divided by the number of observations in
the dataset [133]. The cross-validation method can be used to avoid over-fitting
data.

3.3.4 Support vector machines

Support vector machines (SVM) is a non-probabilistic binary classifier, and is
commonly used as a supervised learning model. When given a set of training
examples, where all observations are labelled one of two classes, SVM will as-
sign a label to new observations. SVMs are a generalization of linear decision
boundaries called optimal separating hyperplanes, and extends to cases where
classes are non-separable. The support vectors of SVM are a set of vectors in
the training data that are closest to the decision boundary [102]. An excellent
description of SVM is given by Hastie et al. [95] and the following review of SVM
will be based on their terminology and notation. The training data consists of n
observations x1, ..., xn with corresponding output values y1, ..., yn where xi ∈ Rp
and yi ∈ {−1, 1}. Given a hyperplane f(x) = xTβ+β0 = 0, where β is a weights
vector and β0 is the bias, a classification rule can be determined as

G(x) = sign[xTβ + β0]. (3.44)

For every training point xi, the function f(x) gives the signed difference from the
point to the hyperplane. When the classes are separable there exists a hyperplane
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Figure 3.5: Support vector classifier for an inseparable case. The margin is
denoted by the dotted line, the decision boundary by a solid line,
and the support vectors are labeled as ξ∗j .

which creates the largest margin between the training points for the two classes.
This is called the optimal separating hyperplane, where f(x) = xTβ + β0 with
yif(xi) > 0 ∀i. The optimization problem can be defined as

min
β,β0

||β|| subject to yi(xTi β + β0) ≥ 1, i = 1, ..., N, (3.45)

The margin of the hyperplane is M = 1/||β|| and can be maximized for separa-
ble data by Equation (3.45) which is a convex optimization problem.

For the case where the data is non-separable, SVM seeks to maximize the mar-
gin M by allowing for some points in the training set to be misclassified. Hence
slack variables ξ = (ξ1, .., ξN ) are introduced and the support vector classifier
becomes

min ||β|| subject to

{
yi(x

T
i β + β0) ≥ 1− ξi ∀i,

ξi ≥ 0,
∑
ξi ≤ constant.

(3.46)

That is to say, the margin of the support vector classifier is maximized by the
support vectors ξi where their total distance is determined by the constant.
Figure 3.5 illustrates the support vector classifier for the non-separable case.
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The solution can be found by Lagrangian optimization if rephrased as

min
β,β0

1

2
||β||2 + C

N∑
i=1

ξi (3.47)

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi ∀i, (3.48)

where C is a cost parameter that replaces the constant in Equation (3.46). If β̂
and β̂0 are the solutions then the decision function becomes

Ĝ(x) = sign[xT β̂ + β̂0]. (3.49)

Equation (3.46) describes a linear support vector classifier, which can be ex-
panded by enlarging the feature space through basis expansions. These include
polynomial- or spline expansions. Given the basis functions hm(x), m = 1, ...,M ,
the input features become h(xi) = (h1(x), ..., hM (xi)), i = 1, ..., N , and fitting
the SVM will result in a non-linear decision boundary in the original feature
space f̂(x) = h(x)T β̂ + β̂0. The tuning of parameter C becomes crucial in the
enlarged feature space, as too large a value can cause over-fitting, while a lower
value will result in a smoother decision boundary. C can be determined by for
instance cross-validation.

As for all learning techniques, SVMs both have several advantages and disad-
vantages. The kernel transformation allows for non-linear decision boundaries,
adapting the SVM to non-linearly separable data. The cost parameter and ker-
nel parameters of the SVM can be tuned to avoid over-fitting. Since SVMs are
defined by a convex optimization problem they can be easily trained, efficiently
calculated and give a unique solution. SVMs also scale well to high dimensional
data. SVMs are well-suited for small training sets, in contrary to random forests
[134] and deep neural network algorithms [135] that require larger training sets.
The tuning of several parameters for the kernel function of SVM can however
be difficult, and increases the complexity compared to the linear variety. The
extension of multiclass SVMs exists [136]. However, the conventional approach
to multiclass classification is building a ’one-against-all’ SVM for each class,
increasing the computational cost.

3.3.5 Principal component analysis

For high dimensional data, visualization and interpretation becomes difficult.
In order to obtain a meaningful representation of the data, a reduction of the
number of variables can be performed. This can be achieved by orthogonal
transformations, which convert a set of variables into a new space by linear
transformation, preserving a symmetric inner product. One such transform is
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Figure 3.6: The first two principal components of data X. The first principal
component direction maximizes the largest variance possible in the
data and the second principal component is orthogonal to the first.

principal component analysis (PCA) which converts a set of observations of
possibly correlated variables into a set of values of linearly uncorrelated variables
called principal components. The principal axis of the new coordinate system
thus maximizes the variance of the projected data. Each sequential axis is then
ordered in decreasing variance. Each principal component is a linear combination
of all of the initial variables. PCA is an unsupervised and exploratory method,
and can recover low-dimensional structure in high-dimensional spaces. Given an
N × p matrix X, the singular value decomposition (SVD) is given by [95]

X = UDVT , (3.50)

where U and V contain the p orthonormalized eigenvectors for the p largest
eigenvalues of XXT and XTX respectively [137]. The singular values of X are
the diagonal elements of D, which are the non-negative square roots of the
eigenvalues of XTX. The principal components of the centered matrix X can
be expressed by the SVD as

XTX = VD2VT . (3.51)

The principal component directions or loadings vj of X are thus the columns
of V and the principal components are expressed as zj = Xvj . Figure 3.6
shows the first two principal components for a multivariate normal distribution.
Variants of PCA are the sparse principal component analysis (SPCA) and kernel
PCA. Instead of each principal component being a linear combination of all
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Table 3.2: The confusion matrix relating true values to predicted ones.

Prediction condition
Positive Negative

True condition Positive TP FN
Negative FP TN

the variables, SPCA aims to drive some loadings to zero to provide a sparse
representation while still aiming for maximum variance. The sparse loading can
be obtained with lasso (L1) penalties and elastic net (L1 and L2) penalties
[95]. PCA is a linear transformation, however it can be done with a non-linear
mapping called kernel PCA. Kernel PCA first expands the variables by non-
linear transformations and applies PCA to the transformed feature space [95].

3.3.6 Evaluation of classification results

When a classification is performed, an evaluation of the results is essential. The
results from a binary classification are grouped into four decisions as seen in
Table 3.2, true positive (TP) (observations correctly classified as positive), true
negative (TN) (observations correctly classified as negative), false positive (FP)
(observations incorrectly classified as positive) and false negative (FN) (observa-
tions incorrectly classified as negative). For an ideal classifier all n observations
would be classified as true positives or true negatives. However, in most set-
tings some observations will be incorrectly classified and the classification rate
is defined as

CR = (TN + TP)/n = (TN + TP)/(N + P), (3.52)

where P and N are the number of actual positive and negative instances, respec-
tively. The threshold selected for determining whether an observation is positive
or negative greatly influences the performance of the classifier. The threshold
must therefore be carefully selected, making a trade-off between the acceptable
false positive rate and false negative rate. Depending on the application, it may
be more critical to minimize one than the other.

3.3.6.1 Sensitivity, specificity and accuracy

To further evaluate the classification results, several statistical measures are de-
fined. The true positive rate (TPR) (also known as sensitivity) is a measure
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Figure 3.7: Receiver operating characteristic for a random classifier. An ideal
classifier is illustrated be the point in the upper left corner.

of the proportion of positives (P) that are correctly classified, TPR=TP/P=
TP/(TP+FN). Similarly, the true negative rate (TNR) (also called specificity)
measures the proportion of negatives (N) correctly classified, TNR=TN/N=
TN/(TN+FP). The receiver operating characteristic (ROC) curve is a useful
tool to evaluate the effect of varying the threshold of the binary classifier. The
curve plots the TPR (sensitivity) as a function of the false positive rate (FPR)
(1-specificity) for a range of decision threshold values. The ROC for a random
classifier is shown in Figure 3.7. How well a classifier performs is either deter-
mined by the area under the curve (AUC) or the minimal distance to perfect
classification.

This concludes the methodological overview related to the work of this thesis.
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Summary of scientific
contributions





Chapter 4

Segmentation framework
for multimodal X-ray

images

This chapter presents a segmentation framework based on the methodology
discussed in Chapter 3. The framework was developed to segment µCT data
obtained from a synchrotron source. The framework presented in this chapter
was applied for the data analysis in Papers A and B.

The papers demonstrate the application of GBI µCT in order to determine heat
induced structural changes in meat products. Due to the brilliance and spatial
resolution obtained from synchrotron sources, high contrast of soft tissue is seen
[48, 138], making it possible to distinguish between the protein structure, gel
phase and connective tissue of the samples. Paper A presents a quantitative
analysis of meat emulsions before and after cooking, and how the use of differ-
ent fat types affects the emulsion stability in terms of structure homogeneity
and cooking loss. Paper B investigates the heat induced structural changes in
meat by the use of X-ray phase-contrast tomography. The paper analyzes the
decrease in muscle volume due to heat denaturation, along with the increase in
connective tissue volume and cooking loss. The papers serve as a technological
demonstrator, and illustrate how the GBI technology combined with advanced
segmentation methods can be used for novel analysis of food structures.
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Figure 4.1: Examples of blob like (left) and thin structures (right).

In order to achieve the quantitative results illustrated in both papers a seg-
mentation scheme was proposed that both takes into account the multimodal
and spatial nature of grating-based tomography. Despite the high brilliance of
the synchrotron source, the data acquisition is prone to noise and measurement
artifacts, similar to other X-ray measurements. Intensity gradients, streak- and
ring artifacts and partial volume effects are some of the more noticeable errors.
Thus, simple threshold segmentation does not suffice for reliable segmentation.
In addition to noise, the data is multimodal adding complexity to the segmen-
tation problem. For these reasons the MRF framework was utilized, in order to
incorporate a smoothing constraint for the segmentation problem. Additionally,
MRFs can be configured with isotropic or anisotropic smoothing, adding to the
flexibility of the segmentation procedure. The application of energy minimiza-
tion via graph cuts to µCT data has previously been demonstrated in a number
of papers [139, 80, 140, 110, 141].

4.1 Segmentation framework

For the purpose of segmenting the µCT data presented in this thesis, a segmen-
tation framework was developed based on the MRF framework. The tool was
written in Matlab R2014b in order to provide a low barrier of entry for users
with non-programming backgrounds. The tool provides means for segmenting
2D and 3D data. Estimation of the parameters for the Bayesian labeling prior
of the first-order MRF can either be determined by Expectation-Maximization
as described in Section 3.1.4, or by estimating them from manually selected re-
gions. When EM is chosen, the number of Gaussian distributions to be fitted is
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required as an input. In addition, the segmentation framework can both han-
dle univariate data as well as multimodal. For data containing thin structures
(such as connective tissue in muscles) the option for applying an anisotropic β
constant is provided by calculating the structure tensor as described in Section
3.2.2. This method for anisotropic smoothing was based on the work described
in Grau et al. [110]. In order to adapt to multimodal data, the structure tensor
is calculated as either i) a weighted average of the three separate tensors for all
modalities or ii) by applying PCA and using the obtained coefficients of the first
principal component as weights for the tensors. Furthermore, the segmentation
framework allows for multiclass labeling by α-expansion as described by Boykov
et al. [109]. Due to the large data volumes produced by synchrotron GBI, the
segmentation framework also provides a method for volume patch segmentation.
Finally, the segmentation results can be visualized both by a labelling map and
histogram analysis. The segmentation framework was presented at the 3rd An-
nual Conference of the COST Action [142].

To demonstrate the anisotropic smoothing of the segmentation framework two
examples are given, for the structures shown in Figure 4.1. Figure 4.2 shows the
result for the isotropic- and anisotropic smoothing constraint for both the blob
like and thin structures, for varying β’s. The blob like structures are fat glob-
ules and salt particles in meat emulsions, while the thin structures are histology
results of a tissue sample. Figure 4.3 illustrates the percent error for varying β’s
for the isotropic- and anisotropic segmentation of the same structures. Although
the anisotropic segmentation performs better on both types of structures, the
error difference is significantly smaller for blob like structures. This is important
to note when designing the segmentation procedure. GBI data is quite complex,
and if all the features of the framework are to be used (i.e. anisotropy, 3D, multi-
label and multimodal) the problem becomes computationally heavy. Therefore,
a tradeoff should be considered when deciding which features to include in the
segmentation pipeline.

Main results

The segmentation method was applied for data analysis in Papers A and B. Seg-
mentation accuracy was determined by constructing a confusion matrix based
on ground truth labels annotated by experts. In Paper A all three modalities
from GBI were included in the segmentation pipeline, and an isotropic smooth-
ing constraint chosen. The results are illustrated in Figure 4.4. Both the raw
and heated treated sample volumes were segmented which provided a label-
ing map for further quantification of microstructural properties. Apart from
increased segmentation accuracy compared to univariate MRF segmentation,
the multivariate segmentation method allowed for identification of new phases
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Figure 4.2: Comparison of isotropic- and anisotropic MRF segmentation for
blob like (top two rows) and thin structures (bottom two rows).
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(a) Blob like structures. (b) Thin structures.

Figure 4.3: Segmentation error (incorrectly classified pixels) as a function of β
for isotropic- and anisotropic MRF segmentation of blob like and
thin structures.

in the emulsion. In Paper B only the phase-contrast modality was included in
the segmentation stage, as the contrast in this modality was superior compared
to the absorption and dark-field modalities. The presence of the thin structures
of the connective tissue required an anisotropic smoothing constraint. This re-
sulted in a better segmentation of the connective tissue structures, allowing for
a quantitative evaluation of their volume increase due to heat treatment.

Main contributions

To summarize, the main contributions of the work include:

• Development of a segmentation framework based on the methodology
given in Chapter 3.

• Extension of the anisotropic smoothing procedure described in Grau et al.
[110] to multimodal data.

• Visualization of the segmentation results through histogram analysis.

• Application of the segmentation scheme to GBI µCT data.

• Evaluation of the segmentation accuracy obtained.
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Figure 4.4: Comparison of phase-contrast threshold (top left) and isotropic
multimodal MRF segmentation (top right). The multivariate his-
togram is illustrated by the covariance ellipsoids of the segmented
phases (bottom).



Chapter 5

3D microstructural changes
in meat products

The discipline of food quality analysis is both broad and diverse. Topics range
from determining the effect of freezing beef [143, 144] to the relationships be-
tween fruit maturity, ripening and quality [145]. Recently, the role of microstruc-
ture in food quality has gained increased attention [58, 146]. Furthermore, X-ray
µCT has gained specific attention as a technique capable of imaging the inter-
nal microstructure in food [26]. This chapter presents the application of GBI
for quantitative analysis of the microstructure of meat products. The analysis is
performed to determine the effects of heat treatment, i.e. how it affects the sta-
bility and cooking loss of the product. This is the subject of both Papers A and
B. Both papers serve as a technological demonstrator for combining GBI with
advanced analysis methods, in order to obtain novel extraction of important
parameters of the cooking process.

5.1 Heat-induced microstructural changes in meat

Cooking of meat immediately influences changes in its microstructure, causing
extensive structural changes of the meat proteins [147]. Tornberg [148] discussed
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the structural changes on cooking in whole meat and comminuted meat prod-
ucts, and how the procedure alters the water-holding capacity and texture of
meat. As both directly influence the palatability and quality of the product,
determining the extent of their change is of great value. Damez & Clerjon [149]
provide an overview of techniques to quantify and predict meat and meat prod-
uct quality attributes using electromagnetic waves. These include microwaves,
magnetic resonance imaging (MRI), infrared and ultra-violet light and X-ray
interactions. Both MRI and X-ray provide sufficient penetration power allowing
for 3D imaging of the internal structures in a sample. The advances in X-ray
phase-contrast µCT imaging at synchrotron sources have allowed for investiga-
tion of fatty acid composition of the fat-fraction, and variations of density in
the meat fraction [48]. Inspired by these results, Papers A and B investigate the
heat-induced changes in whole meat and meat emulsions, determining quality
traits such as cooking-loss and percent object volumes. The measurements were
carried out using a grating interferometer at the TOMCAT beamline at the
Swiss Light Source. The X-ray µCT setup provides the means for re-measuring
the same sample, thus allowing for the samples to be measured both prior to
and after cooking.

5.2 3D microstructural parameters

The synchrotron data was segmented with the segmentation framework dis-
cussed in the previous chapter. From the acquired label maps, quantitative
parameters were extracted. An important measure is the percent object vol-
ume (POV). The POV quantifies the volumetric proportion of each element in
a segmented 3D volume. Given that a segmented volume has labels l ∈ L =
{L1, ...,Ln}, where n is the number of labels, the POV for label i is computed
as

POVi =
Vi
V
, (5.1)

where Vi is the volume consisting of labels i and V is the total volume. The
POV can be used to estimate for example the cooking loss.

For the emulsion analysis, labeling individual fat globules in the emulsion is the
basis for further quantification of their stability. Connected component labeling
is a common task in image analysis. Pixels belonging to the same component
in a binary image are labeled such that all pixels of that component have the
same label. Components can be wrongfully connected due to image noise and
digitization errors. A common approach to solving the problem is by using the
watershed algorithm [150] and morphological operations. Standard parameters
to quantitatively analyze three dimensional spatial structures include the vol-
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(a) Ψ = 0.99 (b) Ψ = 0.86 (c) Ψ = 0.70 (d) Ψ = 0.51

Figure 5.1: Objects of varying sphericity.

ume, surface area and mean width. These parameters are called Minkowski
functionals [151]. Due to the nature of X-ray imaging, the measurements of real
objects are digitized by the detector. For a 2D image this results in a pixel grid
and for a 3D image the data is digitized on a voxel grid. In order to assess quan-
titative parameters of the object imaged, an estimate of the digital geometry is
necessary [152]. These estimates should reflect the true quantitative properties
of the object. Legland et al. [151] proposed a reconstruction of binary structures
in 2D and 3D images as complexes of convex cells. Additionally, the computa-
tion of Minkowski measures as approximations based on the reconstructions was
described, along with an algorithmic implementation. In addition to the surface
area, volume and average structure thickness, the sphericity of the globules is
also of interest. Wadell defined sphericity Ψ as a measure of how round an object
is [153]. It is defined as

Ψ =
π1/3(6Vp)

2/3

Ap
, (5.2)

where Vp is the object volume and Ap is the surface area. A sphere has Ψ = 1 and
objects other than a sphere will have 0 < Ψ < 1. The sphericity of fat globules
in emulsions is an important measure, as it gives insight to the stability of
the emulsion structure [154]. Figure 5.1 shows several fat globules of differing
sphericity. Finally, a measure of the degree of anisotropy (DA) is commonly
calculated to describe the degree of 3D asymmetry in a structure [155, 156]. The
DA is a geometrical measure defined as the ratio of the maximal and minimal
radius of the mean intercept length (MIL) ellipsoid [156]. In 3D the MIL is
determined as the ratio between a test line sent through the 3D volume at a
given angle, and the number of times it passes an interface between structure
and empty space. The directional MIL is calculated as the average of all lines
for each angle. The MIL ellipsoid is then calculated by a least square fit of the
directional MIL to a directed ellipsoid [156].
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(a) Absorption modality. (b) Phase-contrast modality.

Figure 5.2: Partial slices of the cooked lard emulsion sample.

5.3 Quantitative analysis of meat emulsions

Due to health aspects, substitution of animal fat with vegetable oil has gener-
ated interest in the meat processing industry [157]. However, the higher mobility
of the oil compared to the solid animal fat provides a challenge. The coalescence
of oil droplets may lead to channel formation in the protein network, facilitat-
ing moisture transportation during heat treatment which can be observed as
increased cooking losses [154]. Paper A, titled ’Analysis of microstructure in
raw and heat treated meat emulsions from mulitmodal X-ray tomography’, in-
vestigates the heat-induced structural changes for meat emulsions, consisting
of different fat types. Fat globules act as fillers, reducing the porosity and in-
creasing the stability of the emulsion structure when cooked. Animal fat and
vegetable oil have different properties, which will affect the final quality of the
emulsion. To evaluate these effects, one sample was prepared with animal lard
while the other was prepared with sunflower oil. When the emulsions are cooked,
fat and moisture will be separated from the emulsion [148]. The aim is to min-
imize the cooking loss (i.e. amount of water, protein and fat expelled from the
emulsion), and obtain a stable protein structure [158]. The phase-contrast µCT
data obtained allowed for visualization of the microstructure of the emulsions
to estimate the cooking loss. Figure 5.2 shows a partial slice from the absorp-
tion and phase-contrast modalities for the cooked lard sample. The medium
gray intensity pockets seen in the phase-contrast modality are the expelled fluid
from the emulsion structure, i.e. the cooking loss. This phase is not seen in
the absorption modality. Figure 5.3 shows partial 3D visualization of the raw
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Figure 5.3: Partial visulization of the phase-contrast modality for both lard
(left) and sunflower oil (right) emulsion samples prior to cooking.

samples from the phase-contrast modality. It is apparent that the structure is
quite different in the two samples. In the lard sample the light gray area is the
protein structure, the dark gray blobs are pork fat globules and the white dots
are undissolved salt grains. In the sunflower sample the light gray blobs are pure
protein which has not been mixed with the rest of the emulsion. The sunflower
oil is not visible in the data, as the oil droplets are inseparable from the emulsion
mixture due to resolution limits, making the combined voxel intensity appear
darker.

Main results

The label maps obtained from segmentation are illustrated in Figure 5.4. From
the label maps, parameters such as cooking loss and stability of the protein
structure were determined. Additionally, a label map of the fat globules was
extracted, and a custom labeling method applied to identify each individual fat
globule. Parameters such as fat globule surface area, volume and sphericity were
calculated along with meat structure parameters including structure thickness
and degree of anisotropy. Additionally, the cooking loss was estimated in three
separate phases; i) the segregated fluid within the emulsion, ii) the expelled fluid
outside the emulsion and iii) the segregated fat located at the inner rim of the
container. These parameters gave insight to how cooking alters the emulsion
stability when using either animal or vegetable fat in the emulsion mixture.
The results obtained agreed with previous findings [159, 160, 161], which estab-
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(a) Raw sample. (b) Cooked sample.

Figure 5.4: A single slice from the lard sample label map volumes prior to and
after cooking.

lishes both the grating-based imaging technique and segmentation method as a
viable option for imaging the inner structure of meat emulsions. The technolog-
ical demonstration opens opportunities of utilizing GBI together with advanced
analysis tools to investigate a range of characteristics of emulsions such as lipid
type, salt content and protein substitutes. The 3D data analysis obtained can
replace 2D electron microscopy methods to provide a deeper understanding of
emulsion properties.

Main contributions

To summarize, the main contributions of the work include:

• Perform a quantitative analysis of the microstructure of meat emulsions
using GBI µCT and advanced data analysis.

• Development of a labeling scheme to identify individual fat globules.

• Relate quantitative geometrical properties to the heat-induced effects on
the microstructure of meat emulsions.

• Technological and practical demonstrator of the results achievable when
combining GBI with the proposed algorithms.
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5.4 Quantitative analysis of whole meat

In paper B, titled ’Novel X-ray phase-contrast tomography method for quanti-
tative studies of heat-induced structural changes in meat’, a piece of beef was
imaged by GBI µCT, both prior to and after cooking preparation. Figure 5.5
shows a partial slice from the absorption and phase-contrast modalities, where
the phase-contrast modality shows superior contrasts of the meat structure. The
muscle fibers are seen in light gray, the darker gray area is the connective tis-
sue and the black spots are intramuscular fat. The heat-induced difference in
microstructure of the sample was explored by first segmenting the data. As pre-
viously mentioned, the contrast in the phase-contrast image sufficed to segment
the different elements of the muscle, namely the muscle fibers, connective tissue,
intramuscular fat and surrounding water. By applying an anisotropic smoothing
constraint, the thin structures of the connective tissue were preserved, as seen
in Figure 5.6. The muscle fibers were segmented into two populations based on
the differences in electron densities. The outer part of the muscle fibers had a
lower electron density than the inner parts, and this difference was explained
by an increase in the water binding capacity of the muscle fibers exposed to the
surrounding buffer in the sample container. The percent object volumes for the
different structural components were determined from the label maps obtained.
Additionally, a histogram analysis gave insight to the density changes in the
different components.

Figure 5.5: Partial visulization of the absorption modality (left) and phase-
contrast modality (right) for a piece of beef after cooking.
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Main results

The main findings of the paper showed the increase in water content (i.e. cook-
ing loss) due to cooking. As illustrated in Figure 5.7, shrinkage of the muscle
fibers resulted in an increase in the electron density compared to the raw sam-
ple. In the cooked sample, the shrinkage has forced the water to be expelled
as cooking loss. The increase in the area of the connective tissue in the cooked
sample compared to the raw sample indicated partly solubilization, which was
further supported by the decrease in electron density of this component. This
demonstrates that the meat had undergone a relatively severe heat treatment
and reached a temperature above 80◦C, and started to gelatinize. The cooking
loss was determined to consist of two phases, where the phase closer to the
meat had higher protein content and most likely consisted of a gel formed by
expelled proteins. The results of the quantitative analysis agreed with previous
findings obtained by other imaging methods such as microscopy [162, 148] and
MRI [163]. The paper concluded that as the GBI technique transitions to in-
dustrial use, the method will be applicable to monitoring the processing steps
of meat production. The method may also be suitable for on-line selection of
raw materials, which is of great concern for manufacturers as consumers have
difficulty in evaluating meat quality [164]. Thus, any type of quality labeling
could help increase consumer satisfaction. For off-line use, the results of the pa-
per have proven the GBI technique to be well-suited for characterizing the effect
of different processing steps such as salting, drying, freezing and marinating.

(a) Raw sample. (b) Selected region of raw sample.

Figure 5.6: Label maps of beef prior to cooking.
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(a) Raw sample.

(b) Cooked sample.

Figure 5.7: Histogram analysis for the whole beef sample prior to and after
heat treatment.
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Main contributions

To summarize, the main contributions of the work include:

• Determining quantitative parameters describing cooking loss from the mi-
crostructure of meat using GBI µCT and advanced data analysis.

• Relate quantitative properties to the heat-induced effects on the microstruc-
ture of meat, and exploration of the underlying causes of cooking loss.

• Technological and practical demonstrator of the results achievable when
combining GBI with the proposed algorithms for characterizing the effect
of processing meat.



Chapter 6

Novelty and defect
detection

This chapter presents how the methodology discussed in Chapter 3 is combined
for novelty and defect detection applications. The methods presented here were
applied in the data analysis in Papers C and D.

In food manufacturing both the aspects of foreign object and defect detection
are immensely important, and development of new analysis techniques is in
high demand. As the GBI technique is still primarily seen in synchrotron and
laboratory-based settings, a gap between research and industrial use is evident.
In order to minimize this gap, Papers C and D focus on demonstrating how
GBI can be utilized for novelty and defect detection in food products. Paper
C presents image analysis and data analysis techniques to quantitatively assess
the gain of using multimodal X-ray imaging for foreign object detection in food.
In Paper D a similar approach is taken to assess abnormalities (i.e. defects) in
mouse lungs in-vivo. In both papers a model of normality is constructed and
new data evaluated based on a statistical approach.
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6.1 Novelty detection

Paper C, titled ’Novelty detection of foreign objects in food using multi-modal
X-ray imaging’, demonstrates a method for novelty detection of foreign objects
using grating-based X-ray imaging. The study is motivated by the fact that con-
ventional absorption X-ray systems are not sensitive to all foreign objects such
as paper, wood chips, light plastics and insects [6]. Experiments were conducted
where a selection of common foreign objects (ranging from insects to metals)
are placed in seven different food products. The food products were chosen to
represent a range of homogeneity in texture, with cheese being the most homo-
geneous and minced meat being the least. Figure 6.1 shows the dark-field image
and absorption image of minced meat with foreign objects present. All foreign
objects are distinguishable in the dark-field modality, whilst only some of them
can be seen in the absorption modality. Figure 6.2 shows a scatter plot of absorp-
tion intensity values versus dark-field intensity values for all food products and
foreign objects (the phase-contrast modality is not illustrated in the plot). The
distributions of the food products follow a multivariate Gaussian distribution.

For the novelty detection task, the classification problem models ’normal’ data
and then assigns either a ’normal’ or ’abnormal’ label to new data based on
a given criterion. By manual segmentation of the training data, the ’normal’
models of food products were trained using a portion of these pixels. The model
was based on a mixture of Gaussians, and the parameters were fitted using the
EM algorithm (see Section 3.1.4). For the more homogeneous food products, a
single Gaussian was fitted, while two or more were fitted for the more complex
food structures. In addition, texture features based on basic image features [165]
were calculated and five different food models then created; i) absorption model,
ii) phase-contrast model, iii) dark-field model, iv) multivariate intensity model
and v) multivariate intensity model including texture features. Given the food
models (or ’normal’ models) a threshold criterion θ of the Mahalanobis distance
measure was determined such that unseen pixel values x were assigned a normal
label (l = 1) or abnormal label (l = −1) according to

l =

{
1 if x ≥ θ
−1 otherwise.

(6.1)

Main results

Examining the ROC curves in Figure 6.3, for varying threshold values of the
Mahalanobis distance, reveals that the dark-field model has the minimum dis-
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(a) Color image of foreign objects in minced meat.

(b) Absorption modality. (c) Dark-field modality.

Figure 6.1: In a) foreign objects placed in minced meat imaged by GBI. The
dark-field image in c) shows higher contrast of foreign objects com-
pared to the absorption modality in b). The white bar represents
1 cm.

tance to perfect classification amongst the three GBI modalities. Further, the
model combining all three modalities and the texture features outperforms the
other four models. These ROC curves illustrate the results for sliced cheese only.
For five out of seven food products, the combined intensity and texture model
resulted in the minimum distance to perfect classification. The remaining two
models were minced meat and rye bread. Here, the multivariate intensity model
outperforms the model containing texture features. As minced meat and rye
bread both contain complex textures, it was concluded that a further analysis
of the texture features would be required before including them in the model.
The object based error rates were evaluated, where the ratio of detected objects
versus true number of objects was determined. This was done for several size
thresholds when eliminating small objects. By removing small objects, likely to
be caused by image noise and artifacts, the number of false positives rapidly de-
creased. The true positive rate for several of the food products also dropped as
the filtering size was increased. A tradeoff is therefore needed, and the balance
between detecting true positives and eliminating false positives should be con-
sidered. The paper concluded that the pixel-wise and the object based results
clearly illustrate the advantage of GBI for foreign object detection in food. The
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Figure 6.2: Scatterplot of pixel values from each of the food products along
with foreign bodies (FB).

most gain was obtained when detecting organic matter and plastics, as was pre-
viously shown by Nielsen et al. [49]. This is a significant improvement compared
to conventional X-ray systems, since the detection of paper, wood, hair, plastic
and insects still remains a challenge with currently available systems [6]. The
results demonstrated indicate the strong potential for dark-field X-ray imaging
as an alternative to currently available systems.

Main contributions

To summarize, the main contributions of the work include:

• Design of study to determine the feasibility of GBI for foreign object de-
tection in food.

• Evaluation of novelty detection methods to detect foreign objects from
GBI images.

• Comparison of univariate and multivariate models.

• Evaluation of the extent to which texture features can be used to obtain
higher model accuracy.
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Figure 6.3: Comparison of the receiver operating characteristic curves for dif-
ferent models constructed for sliced cheese.

6.2 Defect detection

Novelty detection in food products is not only concerned with finding foreign
objects, but also in detecting defects of the products themselves. These defects
include damaged tissue of meat and fish, textural defects in cheese and cellular
damage in fruits. Another aspect to defect detection in food products can be dis-
ease related. Until now, the contributions presented have described applications
for food quality and safety during and after processing. Food quality inspection
for meat, poultry and fish starts much earlier in the production chain, even be-
fore slaughtering. Phenotyping for animal breeding is a well established trade
[29, 166], where various techniques are used to estimate quality traits of animals
such as body composition. Animal welfare is also an important topic, where an-
imal breeders and slaughterhouses are under strict guidelines to secure animal
well-being [167, 168]. Paper D, titled ’Computer-aided diagnosis of pulmonary
diseases using x-ray darkfield radiography ’, demonstrates a method for in-vivo
defect analysis of animals. A custom preclinical small-animal X-ray dark-field
scanner was used to obtain images of mouse lungs [54]. The purpose was to eval-
uate the systems ability to detect the presences of pulmonary diseases, and to
determine to what extent they affect the lung tissue. The outcome of this study
is expected to influence future applications for monitoring defects during pro-
cessing, as well as animal well-being. Furthermore, monitoring temporal changes
during food processing could also benefit from the methods demonstrated in pa-
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Figure 6.4: Deviation maps for a control-, emphysema- and fibrosis lung. The
emphysema maps show the same lung at different stages of em-
physema. The color scale illustrates the magnitude of deviation.

per D.

Computer aided-diagnosis of lung diseases is a very active research field [169,
170, 171], where both radiography and tomography X-ray images of lungs are
analyzed. Radiography offers limited sensitivity, and typically low contrast of
lung tissue. Other drawbacks of lung radiography include difficulties of analysis
presented by overlapping structures in the chest such as the heart and clavicles.
These problems can be overcome by high-resolution CT [172, 173], providing
higher sensitivity at the cost of higher radiation exposure. The advances in
GBI have provided the means of measuring lungs by radiography with superior
contrast of the lung regions [174, 54]. However, quantitative analysis has been
performed by manual selection of regions of interest. Paper D demonstrates a
computer-aided diagnosis (CAD) scheme for the automatic segmentation of the
lung region from GBI. Additionally, quantitative analysis methods for detecting
pulmonary diseases from the lung regions are demonstrated.

The segmentation method used in the developed CAD scheme is based on AAM
(see Section 3.2.3), where the shape and texture of the lungs are combined in a
single statistical model. The model was trained on the dark-field images due to
superior contrast of the lungs in this modality. The lung segmentation obtained
from the AAM model was evaluated by determining the similarity coefficients
compared to ground truth annotations. Due to severe destruction of some of
the lungs, the dark-field images occasionally lacked data support to obtain an
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Figure 6.5: Deviation maps for a control-, emphysema- and fibrosis lung. The
emphysema maps show the same lung at different stages of em-
physema. The color scale illustrates the magnitude of deviation.

acceptable segmentation. Thus, another AAM was trained on the absorption
modality, and used for segmentation in these rare cases. From the AAM model,
a model of normality for healthy lungs was created by calculating the pixel-wise
mean and standard deviation for 15 healthy lungs warped into the mean shape.
Unseen lung images were then compared to determine the presence of pulmonary
disease, and to what extent they affected the lung tissue. This was done by
calculating the T -test statistic for each pixel, i.e. for each pixel the magnitude
of standard deviation from the healthy model was determined. Intensity and
shape features were then extracted, and a classification determined whether the
lung was healthy, emphysematous or fibrosis.

Main results

The CAD scheme provides i) a quantitative analysis on a pixelwise-basis to de-
termine regions affected by pulmonary disease and ii) a lung-based classification
of healthy, emphysema diseased and fibrosis diseased lungs. System performance
was assessed by i) determining the quality of the segmentations and ii) validating
emphysema and fibrosis recognition by a linear support vector machine using
leave-one-out cross-validation. A SVM was chosen, due to the limited amount
of observations and ease of training, and the linear kernel was chosen to avoid
over-fitting and limiting the effort of parameter tuning. Based on the combined
intensity and shape features the linear SVM classified all healthy lungs versus
diseased correctly, and obtained a 92.65% accuracy when classifying between
emphysema lungs and fibrosis. The data included in this study consisted of
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Figure 6.6: First three principal components of the shape parameters after
Procrustes alignment (excluding scaling).

cases of pulmonary diseases ranging from mild, moderate and severe. In cases
of mild and moderate fibrosis, conventional X-ray transmission images do not
provide a clear signal difference between healthy and fibrotic lung tissue [54],
and therefore the result of the CAD classification is of great significance. Figure
6.4 shows segmented lung regions and the corresponding deviation maps while
Figure 6.5 shows the deviation maps overlayed on the original dark-field images.
These deviation maps are considered as a visual aid for radiologists to assess
the severity of a pulmonary disease and to determine the regions in the lung
that are affected. The main findings of the paper show how progression in em-
physema is detected by the CAD scheme for a lung imaged at three separate
occasions. This is valuable information in a diagnostic setting, where the success
of a treatment could be directly assessed. Another important finding is that by
applying PCA to the shape of the lungs, the first PC reveals how the size of the
lung is the main contributor to the variation of the shape, see Figure 6.6. The
expansion of the emphysema lungs is quite apparent as is illustrated in Figure
6.7. Given a larger data set, future implementations will focus on replacing the
handcrafted features and classification steps with deep learning techniques such
as deep convolutional neural networks [175, 176].

The pixel-wise deviation maps illustrated here relate to the normal food models
proposed for foreign object detection. Thus, a threshold of the T -test statistic
can be determined to evaluate regions deviating severely from what is expected.
In this setting the scheme could be adjusted for on-line detection of defects in
food products.
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Figure 6.7: Bar plot illustrating the normalized first shape principal compo-
nent score for all lungs.

Main contributions

To summarize, the main contributions of the work include:

• Development of a computer-aided diagnosis scheme for dark-field images
of lungs to identify and assess pulmonary diseases.

• Demonstration of the complementary capabilities of GBI for segmentation
of lungs.

• Construction of a model of normality for healthy lungs, to which other
lungs are compared to determine both presence and severity of pulmonary
disease.

• Interpretation of disease progression for longitudinal studies.

• Analysis of variation in lung shape caused by emphysema.

• Extraction of relevant shape and intensity features for classification be-
tween healthy and diseased, and emphysema and fibrosis lungs.
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Conclusions

This thesis has presented the application of grating-based X-ray imaging for de-
termining food quality and food safety. For this purpose, relevant methodology
from image analysis, statistics and statistical learning has been described and
applied to specific problems relevant for food production and food science. Given
the multimodal nature of GBI, the data analysis in this thesis has investigated
methods accordingly. The problems addressed have been; i) the segmentation
of complex µCT data from synchrotron sources, ii) the quantitative analysis of
microstructure from synchrotron GBI µCT, iii) novelty detection of foreign ob-
jects in food, and finally iv) a defect detection scheme for detection of pulmonary
diseases in lungs.

For the purpose of quantitatively analyzing the microstructure of GBI µCT,
an extensive segmentation framework was developed. The framework combines
Bayesian labeling, where parameters are estimated by EM, and a flexible MRF
segmentation method. The segmentation framework can handle both univariate
and multivariate data, either 2D or 3D, and energy minimization is approx-
imated via graph cuts. The smoothing constraint can be chosen as isotropic
or anisotropic, depending on the structures present in the image. In addition
to segmented label maps for visualization and quantification, the segmentation
framework provides a histogram analysis for further evaluation and interpreta-
tion of the data.

The segmentation framework was applied to GBI µCT images of meat prod-
ucts. The purpose was to evaluate the stability and cooking-loss due to heat
treatment. The non-destructive and non-invasive nature of the GBI technique,
allowed for imaging of the same sample prior to and after cooking. The results
obtained from the quantitative analysis were comparable to existing analysis
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techniques, establishing the methods applicability for studies of 3D microstruc-
ture of meat products. This serves as a technological demonstrator of the fea-
sibility of the technique to monitor processing steps such as freezing, drying,
salting and marinating.

The applicability of the GBI technique for monitoring food products was further
evaluated by imaging common foreign objects typically found in food products.
A novelty detection scheme was developed, and a comparison of univariate versus
multivariate models was made. In addition, the gain of adding texture features
to the detection scheme was evaluated. Texture features proved beneficial when
imaging food products of homogeneous texture, while more complex food prod-
ucts require extensive tuning of the texture features. The main findings showed
significant increase in the detection accuracy of organic- and light foreign ob-
jects such as insects and light plastics using dark-field imaging. This is of great
relevance and importance for the food industry, as these objects still remain
challenging to detect with currently available techniques.

Finally, a scheme for defect detection was demonstrated. This was done by
the development of a CAD scheme to detect pulmonary diseases in lungs from
dark-field images. The scheme automatically segments lungs based on AAM,
which are then compared to a model of normality. The deviation maps created,
highlight regions affected by emphysema or fibrosis, and provide a valuable diag-
nostics tool to assist radiologists. This is specifically important since radiologists
are not trained to interpret dark-field images. Additionally, it was shown how
the development of emphysema is captured by the scheme. Finally, a concrete
classification of lungs as either healthy, emphysematous or fibrosis was demon-
strated. A combined model of intensity and texture features obtains a perfect
classification of healthy versus diseased lungs, even when the disease is present
in mild form. The scheme can easily be adjusted to detect defects on-line in food
products. This can be achieved by adding a classification step based on a simple
threshold of the pixel-wise deviation maps.

The objectives of this thesis have been met by combining topics within the
fields of image analysis, statistics and statistical learning. Its contribution has
been to evaluate and demonstrate the applicability of GBI imaging combined
with advanced analysis techniques for applications towards food. Four original
papers have been introduced and presented. The results highlight the feasibility
of GBI for determining food quality and food safety. The results presented in
this thesis will play an important role as the GBI technique matures towards
industrial applications. The technique is expected to have widespread impact
within the fields of food science and food production.
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Future outlook

The grating-based X-ray technique has emerged from synchrotron sources, and
been further developed as a suitable method for laboratory-setups. Efforts in
developing commercial GBI scanners have been made [177, 178, 54], and the
first commercially available phase-contrast µCT has been developed (SkyScan-
1294, Bruker 2016). Such systems will become valuable for the off-line study of
food products from a food science and food engineering perspective. The results
presented in this thesis already provide a valuable proof-of-principal of using
GBI for such applications.

For the GBI technique to become a feasible option for on-line inspection dur-
ing food manufacturing, the high through-put required needs to be considered.
The physical stepping of the gratings in GBI sets a restriction to the speed of
the data acquisition. This limits the technique in terms of feasibility towards
food manufacturing. However, recent efforts have proposed scanning methods
[179, 180], where the implementation would result in scanning times equivalent
to conventional X-ray systems. These results indicate that a conveyor belt solu-
tion can be practically implemented within the coming years. As GBI will evolve
towards an industrial solution, the work presented in this thesis will serve as an
important technological demonstrator for food manufacturing applications.
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This study presents a novel non-destructive X-ray technique for analyzing meat emulsions before and after heat
treatment. The method is based on X-ray grating-interferometry where three complementary imaging modali-
ties are obtained simultaneously measuring the absorption, refraction and scattering properties of the sample.
Enhanced contrast capabilities of this X-ray techniquemakes studies onmaterials with similar attenuation prop-
erties possible. The emulsion samples were imaged both in a raw and cooked state. Additionally, different fat
types were used in the emulsions in order to compare microstructural differences when either pork fat or sun-
flower oil was added. From the reconstructed tomograms the different constituents in the emulsions were seg-
mented using a multivariate segmentation method. From this, a quantitative analysis was performed between
the different samples, determining properties such as percent object volumes, porosity, average structure thick-
ness and cooking loss. The grating-basedX-ray technique andmultivariate segmentationmade the analysis of the
microstructure possible which further gives insight to how both heat treatment, and the use of different lipid
types, affect the final protein network quality.
Industrial relevance:Meat emulsions have previously been thoroughly studied, and the use of various fat substi-
tutes and protein stabilizers has been investigated. The grating-based multimodal X-ray tomography method
presented here is a feasiblemethod to investigate themicrostructural changes induced by heat treatment. It pro-
vides high-resolution three dimensional spatial information and in contrast to 2D imagingmethods, quantitative
parameters can be extracted by image analysis for the entire sample volume. Additionally, the non-destructive
method allows for imaging the same sample before and after cooking.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The most important functional characteristics in comminuted meat
products are the gel-forming abilities of the myofibrillar proteins.
During comminution, salt-soluble myofibrillar proteins are extracted
that, when heated, create a dense protein network referred to as gel
(Tornberg, 2005). Some of the solubilized proteins will emulsify the
added fat by forming an interfacial protein film around the fat globules,
which are further stabilized by the protein gel (Barbut, 1995; Wu,
Xiong, Chen, Tang, & Zhou, 2009). The fat globules act as fillers, reducing
the porosity and increasing the stability of the gel. Differences in the
physicochemical properties of saturated and unsaturated lipids, i.e.
emulsification properties and physical state, will affect the distribution
of fat and the influence on the gel stability and thereby the quality of
the final product. Due to health aspects, substitution of animal fat with
vegetable oil has generated interest in the meat processing industry

(Wood et al., 2004). The lower melting point of the vegetable oil facili-
tates an even distribution of small oil droplets in themeat batter leading
to formation of a homogeneous gel structure. However, the higher
mobility of the oil compared to the solid animal fat is a challenge. The
coalescence of oil droplets may lead to channel formation in the protein
network facilitating moisture transportation during heat treatment
which can be observed as increased cooking losses (Barbut, 1995).

Studies on the quality ofmeat emulsions rely on a variety ofmeasure-
ments. These include determination of pH values, cooking loss, color
composition, texture profiles, apparent viscosity, and emulsion stability
(Choi et al., 2009, 2010; Gordon & Barbut, 1991; Shao, Zou, Xu, Wu, &
Zhou, 2011). Current imaging techniques used to analyze the quality of
meat emulsions havemainly focused on twodimensionalmeasurements
from either scanning- and transmission electron microscopy (Álvarez
et al., 2012; Totosaus & Pérez-Chabela, 2009), light micrographs
(Álvarez & Barbut, 2013; Youssef & Barbut, 2009, 2010), or confocal
laser scanning microscopy (Sorapukdee, Kongtasorn, Benjakul, &
Visessanguan, 2012). Due to the similar attenuation properties of the
soft materials in meat emulsions, the use of X-ray microcomputed
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tomography (μCT) has been limited. In Santos-Garcés et al. (2012) a
feasibility study of X-ray μCT for microstructure analysis of fermented
sausages demonstrated that absorption tomography provided contrast
between meat, fat and air holes. Although this μCT analysis identified
fat particles and air holes, the technique was not accurate enough to
distinguish between pork lean and fat when these constituents were
emulsified. Novel X-ray techniques based on grating-interferometry pro-
vide new imaging modalities that can be obtained simultaneously with
absorption tomography (Bech et al., 2010). These modalities, phase con-
trast and dark-field imaging, measure the electron density and the diffu-
sion length of the sample. Enhanced contrast capabilities of this X-ray
technique makes studies on materials with similar attenuation proper-
ties, such as soft tissue, possible. Previous studies have demonstrated su-
perior contrast with X-ray phase-contrast CT compared to conventional
CT in a study of pork rind and fat (Jensen et al., 2011), and demonstrated
the potential for improved segmentation when using multivariate anal-
ysis by combining conventional CT with phase-contrast CT for bivariate
segmentation of a piece of pork back fat and a piece of beefmuscle tissue
(Nielsen et al., 2012).

In this paper, the novel X-ray technique is used to investigate the dif-
ferences in microstructures of meat emulsions in three dimensions.
Such analysis allows for determining structural parameters of the entire
sample instead of inferring frompartial information obtained by two di-
mensional imaging techniques. The information obtained from a three
dimensional analysis is believed to further increase the understanding
of emulsion microstructure. Additionally, the non-destructive tech-
nique offers the possibility to study the same sample in both raw and
cooked condition. The samples used were raw and heat treated meat
emulsions (10% protein, 25% fat, 60% moisture) prepared with either
pork fat (lard) or sunflower oil. Absorption, phase contrast and dark-
field tomograms were obtained at a synchrotron facility using a grating
interferometer. From the reconstructed tomograms the different
constituents in the emulsionswere segmented using amultivariate seg-
mentation method. A quantitative analysis was performed by measur-
ing geometrical parameters in order to determine the microstructural
differences of the emulsions when using lard or sunflower oil and also
the effect heat treatment has on the emulsion quality.

2. Materials and methods

2.1. X-ray modalities

In Fig. 1 the three types of physical interactions— absorption, refrac-
tion and scattering— obtained from the absorption, phase-contrast and
dark-field imaging modalities of grating-based interferometry are illus-
trated. The effect on an incoming Gaussian shaped beam profile (black)
is depicted when elements with different physical properties are mea-
sured. The profiles shown in color represent what is recorded when a
material is present. In green, the effect from an absorptive material is
shown to attenuate the beam,while in blue, the effect of a refractivema-
terial is seen to cause a transverse shift in the position of the beam pro-
file. Lastly, the small-angle scattering from a material with ordered
micro-structures causes the beam profile, here shown in red, to broad-
en. By separating the attenuation, transverse shift and broadening of
the beam, it is thus possible to measure three complementary imaging
modalities. For further details on the X-ray modalities, the reader is
referred to Bech, Jensen, et al. (2010) and Pfeiffer (2012).

2.2. Grating-based interferometry

Onemethod to separate the three X-ray interactions is grating-based
imaging (GBI), which relies on anX-ray interferometer consisting of pe-
riodic gratings for measurements. A schematic of a setup for GBI is
shown in Fig. 2. Grating G1 produces a periodic intensity modulation,
consisting of periodic fringes, transverse to the beam direction. The
change in position, mean value and amplitude of the periodic fringes

can be probed using a second grating, G2, by physically moving one of
the gratings in several steps, acquiring a projection image between
each movement of the grating. From the same series of scans, both the
absorption, refraction and small-angle scattering can be extracted
giving an inherent pixel correspondence. Tomograms are then created
for each modality using filtered back-projection. This results in absorp-
tion, phase-contrast and dark-field image volumes, measuring the at-
tenuation length, electron density and the linear diffusion coefficient
of the sample, respectively (Bech et al., 2010; Weitkamp, David,
Kottler, Bunk, & Pfeiffer, 2006). GBI using synchrotron sources was
first demonstrated in the beginning of the 2000s (David, Nohammer,
Solak, & Ziegler, 2002; Momose, 2003; Weitkamp et al., 2005), and
later adapted to laboratory-based setups (Pfeiffer, Weitkamp, Bunk, &
David, 2006). The method can be applied using polychromatic sources
but a certain degree of spatial coherence is needed. In a laboratory
setup, spatial coherence can be achieved either by using a microfocus
source or by using a third grating G0, which acts as an array of line
sources for use with source sizes up to a square millimeter.

2.3. Meat emulsion samples

The meat emulsions used in this study were prepared in batches of
1 kg in a food processor (CombiMax 600, Braun, Germany). Thawed
meat (480 g), potato starch (5 g), curing salt (NaCl with 0.6% nitrite)
(17 g) and crushed ice (248 g) were comminuted at highest speed for
2 min. The temperature at this point was 1 °C in all batters. After addi-
tion of 250 g of either hand chopped cubes of lard or sunflower oil the
batter was comminuted for 2 min. The temperature was measured
(approx. 12 °C), and comminuting was continued for 1 min. End

Fig. 1. The incoming X-ray beam changes when a sample is present. The effect on the
beam from an absorptive material is shown in green, a refractive material in blue and a
material with a homogeneous distribution of micro-structures in red.

Fig. 2. A schematic of a X-ray tomography setup using a grating interferometer.
Reprinted from Nielsen et al., 2012.
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temperature was 14 °C. A portion of both the animal fat and sunflower
oil batches was placed in sample containers. The samples were then
centrifuged at 5000 g for 10 min, and had the lid closed under the sur-
face of degassed PBS. The PBS-buffer was degassed to avoid bubble for-
mation during scanning. The samples were imaged in this raw state
prior to cooking. For the heating of the samples, a 200 mL glass of
water was heated in a microwave oven up to boiling point. The sample
in the container was then immediately placed in the water and left to
stand for 10 min for the sunflower oil sample and 15 min for the pork
fat sample. Both samples were then placed in a cold-water bath,
10 min for the sunflower oil sample and 15 min for the pork fat sample.
The cooked samples were then imaged again. The increased times for
the animal fat samplewas to ensure that the samplewas heated to a ho-
mogeneous temperature and likewise cooled to a stable cooling tem-
perature. No difference due to heating and cooling times was observed
in the data and therefore the shorter times for the sunflower oil sample
are not believed to have affected the final result.

2.4. Tomography measurements

Absorption, phase-contrast and dark-field μCT scans of both the raw
and cooked meat emulsions were obtained at the TOMCAT beamline at
the Swiss Light Source, Paul Scherrer Institut (PSI), Villigen, Switzerland.
The setup is described in detail in McDonald et al. (2009). For this study
the energy was set to 25 kV, and the third fractional Talbot distance
(Weitkamp et al., 2006) was used. The full volumes obtained were
1720 × 1720 × 513 voxels, with an effective voxel size at sample of
7.4 μm × 7.4 μm × 7.4 μm. The total scan time was between 80 and
90 min per sample. Differences in scan time were due to fluctuations
in motor movement times.

2.5. Image segmentation

Before quantitative parameters can be extracted it is necessary to
segment the data volumes. This is done by classifying each voxel to a
label l representing one of the elements present in the sample. These el-
ements consist of the sample container and constituents including
meat, fat, oil and salt. The set of possible labels for the classification
task is given as L = (l1,…,lk) . As the data obtained fromGBI ismultivar-
iate, each voxel vi can be represented by a vector of the three intensities
xi = (xi1, xi2, xi3) , i = 1,…,N where N is the number of voxels and (xi1,
xi2, xi3) represent the absorptive, refractive, and scatter intensities of
the i-th voxel, respectively. In order to determine the likelihood of
label lj, j = 1,…,k, for voxel vi and given xi, the data is modeled as amix-
ture of multivariate Gaussian distributions using an expectation-
maximization (EM) algorithm (Hastie, Tibshirani, & Friedman, 2009).
For each volume the number of known constituents is used as the num-
ber of Gaussians to fit, and the result obtained from the EM algorithm is
multivariate normal distributions describing the constituents. From the
distributions, the mean μj = (μj1, μj2, μj3) and covariance matrix Σj for
each constituent label lj is known and themaximum likelihood label es-
timate for each voxel vi can then be found for the label distribution that
maximizes

P xið jμ j;Σ jÞ ¼
1

2πð Þ3=2 Σ j

��� ���� �1=2 exp −1
2

xi−μ j

� �MΣ−1
j xi−μ j

� �� �
ð1Þ

where the exponential term is theMahalanobis distanceproviding a rel-
ative measure of the voxels distance to a given distribution.

In order to account for image noise and partial volume voxels the
spatial context of the data is modeled by a Markov random field
(MRF). Here, the data volume is considered as a random field defined
on a set of sites, S, where each site represents a voxel vi. Each site has
an associated stochastic variable, fi, where I∈S. The stochastic variables
can take on a value within the set of labels L, i.e. fi∈L. Subsequently

the neighborhood for each site i is defined as Ni, which consists of six
neighboring sites (voxels to the left, right, top, bottom, front and
back). The probability of site i having label fi is then given by

P f ið j f j; j∈ Snif gÞ ¼ P f ið j f N i
Þ ð2Þ

where S is the set of sites and fNi = fj, j∈Ni. Given the possible set of la-
bels L the smoothed labeling is found by minimizing the energy E(f) of
the labeling f

argmin
f

−
X
i∈S

D f ið Þ þ
X
i; j∈N i

V f i; f j
� �0

@
1
A ð3Þ

whereD(fi) is theprobability of label f to voxel site i given by Eq. (1), and
V(fi, fj) is the separation cost of f on the neighboring pixel sites i and j
given by

V f i; f j
� �

¼ −βij for f i ¼ f j
βij otherwise :

�
ð4Þ

Here β is a parameter denoting the amount of desired homogeneity
(smoothing). Hence the smoothness of the resulting segmentation can
be steered by altering β. Fig. 3 illustrates the neighborhood relation of
the MRF. To find the optimal segmentation solution the multi-labeling
problem is solved using graph cuts with alpha expansions as described
in Boykov, Veksler, and Zabih (2001).

2.6. Object labeling

In order to measure certain parameters for the segmented objects,
such as mean volume and mean surface area, a labeling scheme is re-
quired. A normal connected components labeling algorithm (Sedgewick,
1998) will label multiple objects as a single object even if only one
voxel connects them. Therefore a more sophisticated labeling scheme is
required to separate connectedobjects. A customregion-growing labeling
algorithm was developed for this purpose. The region-growing method
relies on the distance map of a binary volume of the objects in question.
The region is ‘eroded’ by eliminating all voxels that have a Euclidean dis-
tance smaller than a given threshold to the surrounding phase. The new
binary volume is then labeled with conventional connected components
labeling scheme. These labels are subsequently ‘flooded’ to previously
eroded voxels starting with the largest distance under the threshold and
iterating towards the edge between the object and surrounding phase.

Fig. 3. TheMarkov random field illustrated for voxel vi (only the left, right, top and bottom
neighbors are shown). The cost of assigning label f to voxel site i is given byminimizing the
energy of all possible labeling configurations.
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The flooding of voxel labels is done at random to avoid directional
artifacts.

2.7. Quantitative parameters

The following 3D geometric parameters for the constituents (fat,
protein network, salt, expressible fluid (jelly) and oil droplets) were
calculated using custom software written in Matlab: (i) the percent
object volume (POV), percentage of volume for each constituent
present in the sample volume; (ii) percent loss (PL), the percentage of
volume for expressible fluid and fat segregated from the protein
network; (iii) porosity (P), the fraction of the volume of pores (fat,
salt, expressible fluid and oil droplets) within the protein network;
(iv) scaled degree of anisotropy (DA), the degree of 3D asymmetry in
the emulsion structure; (v) structure thickness (ST), the average of
the local thickness of the protein network; (vi) mean volume (MV), a
measure of the average volume of fat and expressible fluid; (vii) mean

sphericity (SP) of the expressible fluid and fat globules, which is
found by

ψ ¼
π

1
3 6Vp

� �2
3

Ap
ð5Þ

where Vp is the volume of the particle and Ap is the surface area1.

3. Results and discussion

3.1. Tomography results

A partial transverse slice from each tomographic reconstruction
of the emulsion samples obtained at TOMCAT is shown in Fig. 4. A

1 The sphericity of a sphere is 1 and any particle which is not a sphere will have sphe-
ricity of less than 1.

Fig. 4. Partial transverse slices from each modality for the emulsion samples where the top row shows the raw lard sample, row two the cooked lard sample, row three shows the raw
sunflower oil sample and the bottom row shows the sunflower oil sample in cooked state. The left column shows the absorption modality, middle column shows the phase contrast mo-
dality and the right column shows the dark-field modality. Labels for the constituents are given in the phase contrast images: FG— fat globules; EF— expressible fluid; OD— oil droplet;
POM — mixture of protein, oil, starch and moisture; PM— mixture of protein, starch and moisture; SP— salt particle. The images have been contrast enhanced for clarity.
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screenshot from a 3D visualization of the phase contrast modality using
VolView can be seen in Fig. 5. Here, the pork fat is seen as darker glob-
ules in the lard emulsions and the slightly lighter regions in the emul-
sions with sunflower oil are pure protein that has not been mixed
with the rest of the emulsion. In both the absorption and phase contrast
slices the protein network has a darker intensity for the sunflower oil
emulsions than the emulsions mixed with pork lard. This is due to the
mixture of oil and meat, inseparable due to resolution limitations. It is
apparent that the phase contrastmodality results in thehighest contrast

between the different constituents, and the expressible fluid is only dis-
tinguishable in the phase contrast modality. Although the dark-field
modality seems mainly to consist of noise, further inspection shows
that high contrasts can be seen at edges were different constituents
meet. This ismost notable at the salt–protein interface. The salt particles
are completely dissolved after heat treatment. Additionally, expressible
fluid has formed in both emulsion samples during cooking and as a re-
sult of this the protein mixture has obtained a slightly higher intensity
in the phase contrast modality indicating an increased electron density.

Fig. 5. Partial 3D visualization of the phase contrast sample volumes with VolView.

Fig. 6. The result from the EM algorithm represented by the covariance matrices of the distributions.

92 H. Einarsdóttir et al. / Innovative Food Science and Emerging Technologies 24 (2014) 88–96



It is apparent that the different modalities obtained provide comple-
mentary information, givingmore detail of the sample imaged than pre-
viously possible with conventional X-ray absorption imaging.

3.2. Segmentation and object labeling

The mixture of Gaussians model obtained with the EM algorithm is
illustrated in Fig. 6, where all constituents excluding salt are shown.
The protein–oil mixture and oil phase have a higher variance in the
dark field modality than the other constituents. This imaging modality
can reveal information on features below the detector resolution
(Pfeiffer et al., 2008). Thus oil droplets smaller than the resolution of
the detector may be the cause for the high scattering in these two
phases. The most distinct separation of the constituents is seen in the
phase contrastmodality. The absorptionmodality also contributes valu-
able information for the segmentation step. Thus, by combining the
three modalities obtained in the X-ray grating interferometry tomogra-
phy, additional information is available for the segmentation allowing
for a better separation of the phases.

The segmentation results for each data volume can be seen in Fig. 7,
where the color labeling scheme is explained to the right. These
segmentation resultswere comparedwith annotations performedman-
ually by two experts on a single slice from the phase contrast volumes.
A confusion matrix is given in Table 1, giving the rate of correctly
classified voxels. The main error of the segmentation constitutes of
expressible fluid voxels incorrectly labeled as protein. However, the

expressible fluid is essentially protein that has solubilized, and therefore
it can be difficult to determine precisely which voxels belong to the
expressible fluid phase and which belong to protein. The bias of
the annotation therefore varies with the user annotating the data.
Additionally, most constituents interface with the protein network,
and partial volume voxels containing both protein and another constit-
uent are therefore the main cause for misclassification. Overall the
segmentation accuracy of the multivariate contextual method is
approximately 97%.

To highlight the importance of correct labeling of objects, before
performing a further quantitative analysis, the results from the custom
region growing method are compared with the standard connected
components method in Fig. 8. Here the labeled objects are the fat glob-
ules in the raw lard sample. The standard method results in a large por-
tion of the fat globules being labeled as a single object (represented in
gray). The region growing method better separates single fat globules,
giving a more realistic labeling result, and thereby also a more correct
result from the quantitative analysis. The custom algorithm was cali-
brated to minimize the amount of ‘over’ segmentation. To validate the
performance of the custom labeling algorithm, a ground truth was ob-
tained by randomly selecting 20 objects labeled by the manual method
and having two experts determine the number of globules it consisted
of using 3D slicer visualization software. The results of the custom label-
ing method was then compared to this ground truth, resulting in a
(94.85 ± 2.96) % labeling accuracy compared to the (8.42 ± 1.36) %
of the manual labeling algorithm.

Fig. 7. A slice from each of the segmented volumes. A) Raw lard sample, B) boiled lard sample, C) raw sunflower oil sample and D) boiled sunflower oil sample.

Table 1
Confusion matrix determined by the actual constituent labels and the predicted labels given in percentages (%). The ground truth labels are determined by two manual annotations, and
the results are given as the mean ± the standard deviation from these annotations.

Predicted class

Jelly Oil Fat Salt Protein

Actual class Jelly 93.35 ± 3.04 – 0.2 ± 0.14 – 6.40 ± 2.90
Oil – 96.4 ± 1.9 – – 3.6 ± 4.95
Fat 0.07 ± 0.05 – 98.9 ± 1.13 – 1.05 ± 1.06
Salt – – – 99.05 ± 0.64 0.95 ± 0.64
Protein 1.1 ± 0.42 0.2 ± 0.28 0.35 ± 0.50 0.1 ± 0.0 98.25 ± 0.35
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3.3. Quantitative analysis

Given the segmentations, a quantitative analysis of the emulsionmi-
crostructures was performed. Table 2 gives the percentage object vol-
umes (POVs) for the constituents of the samples. The raw protein
phase for the lard sample is found to be 73.9%, salt is 0.8% and fat
25.3%. When comparing the POV to the weighted ingredients (480 g
meat, 5 g starch, 1.7 g salt, 248 g ice, 250 g fat) it is noted that the com-
binedweight percentage of themeat, starch and ice amounts to 73.3% of
the 1 kg batch. Since these ingredients are all segmented as the single
protein mixture phase, the results fit well. The same goes for the sun-
flower oil sample. Here, the POV for the segmented protein and sun-
flower oil mixture was found at 98.3% and the POV for salt 1.7%, which
is precisely the weighted percentage of these ingredients for the sun-
flower oil batch. Although weighted percentages and volume percent-
ages are not the same measure, these results are reassuring. For the
lard sample, the protein mixture volume decreases by 14.5% due to
cooking loss after heat treatment. A smaller shrinkage is observed in
the emulsion preparedwith sunflower oil, and the protein network vol-
ume in this sample decreases by 11%. The cooking percent loss (PL) due
to heat treatment is two-fold. First, the loss of expressible fluid is deter-
mined as the expressible fluid segregated from the emulsion. Secondly,
the segregated fat located at the outer rim of the container is also con-
sidered as cooking loss. This combined cooking loss gives some insight
into the moisture reserving capability of the emulsion. The expressible
fluid cooking loss for the lard sample (7.4%) is slightly lower than for
the sunflower oil sample (8.3%), corresponding to the findings of
Barbut (1995). However, the POV of the entire expressible fluid

(including fluid trapped in the cooked emulsion) for the sunflower
oil sample (12.7%) is lower than for the lard sample (15.6%). These re-
sults agree with previous findings (Choi et al., 2009; Vural, Javidipour,
& Ozbas, 2004). The same results obtained for the lard sample have pre-
viously been shown in Miklos, Xu, and Lametsch (2011), where the
water separation was found to be 15.2% of the total sample weight
when lard was used. Additionally for the lard sample, 2.7% of the fat is
segregated from the emulsion, contributing to the overall cooking loss
of 10.1%.

Based on the segmented and labeled results, additional quantitative
parameters were extracted, given in Table 3. The porosity of the lard
sample is greater than for the sunflower oil sample due to the resolution
limitations. The large fat globules are detectable, however the oil drop-
lets are too small to be distinguished in the protein mixture. The poros-
ity due to expressible fluid can however be detected and therefore the
increase in porosity after heat treatment should preferably be consid-
ered. For the lard sample the porosity increases by 9.5% while only a
3.1% increase in porosity is observed for the sunflower oil sample. It is
worth noting that the use of sunflower oil resulted in a larger number
of expressible fluid populations. The mean volume of these populations
is however smaller than for the lard sample. The scaled degree of anisot-
ropy also reflects the homogeneity of the protein structure in the sun-
flower oil sample which has a greater 3D symmetry implying a more
heterogeneous and stable protein network. The relative structure thick-
ness of the protein network for both samples is found to decrease by ap-
proximately 21% due to heat treatment. Considering the pore structure
of the samples, the expressible fluid populationswithin the cooked sun-
flower oil sample have a smaller average volume and higher sphericity,
which contributes to the resulting homogeneity of the protein network.
An interesting result is that the number of fat globules doubles after
heat treatment, resulting in a decreased mean volume and surface
area for the globules. During heating, within a temperature range
of 43–70 °C, the fat within the protein encapsulated globules is in
an expanding liquid form while the thin shell surrounding is in a
semi-solid rigid state (Jones & Mandigo, 1982). The internal pressure
in the globules can therefore cause ruptures to the shell at weak points,
causing fat droplets to escape from the larger globules. These quantita-
tive parameters illustrate how the use of sunflower oil results in amore
stable and homogeneous protein network.

4. Conclusions

This paper has presented the use of a novel non-destructive X-ray
technique to measure the microstructure of meat emulsions and the ef-
fect heat treatment and different lipid types have on the protein network.
By utilizing the modalities obtained from the grating interferometer,

Fig. 8. Labeling results of fat globules fromA) the normal connected components algorithmand B) the custom region growing algorithmapplied to the segmented raw lard volume. Colors
represent the separate objects labeled by the algorithms.

Table 2
Percent object volumes (POVs) for the constituents in the raw and cooked samples ofmeat
emulsions containing either lard fat or sunflower oil. Cooking percent loss (PL) is given for
the expressible fluid and fat segregated from the cooked emulsion.

Parametera Lard raw Lard cooked Sunflower
oil raw

Sunflower
oil cooked

POVs
POV-meat matrix 73.9 59.4 98.1 87.1
POV-jelly – 15.6 – 12.7
POV-fat 25.3 25.0 – –

POV-salt 0.8 – 1.7 –

POV-oil droplets – – 0.2 0.2

Cooking loss
PL-jelly – 7.4b – 8.3b

PL-fat – 2.7c – –

a Percent object volumes: POV, percent object volume (%); PL, percent loss (%).
b Percent loss of expressible fluid segregated from the cooked emulsion.
c Percent loss of fat segregated from the cooked emulsion.
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complementary contrasts were obtained, making it possible to distin-
guish expressible fluid from the protein network in the emulsions. With-
out the three modalities obtained from the grating-based technique,
deriving microstructural parameters would not be feasible. The X-ray
technique is presently the only one allowing for all three modalities and
therefore shows great potential for imaging the microstructure of both
meat emulsions and other food related products.

For the analysis of the data, a segmentationmethod based on Gauss-
ian mixture models and MRF labeling with graph cuts was implement-
ed. Quantitative parameters that represent the emulsion structure were
then extracted. These parameters include the POVs of the different con-
stituents and the porosity, degree of anisotropy and average structure
thickness of the protein network. The results confirmed the difference
in homogeneity of the protein network, which had already been
inspected visually. As this study was limited to a single sample of each
emulsion typedue to limited beamtimeno attemptsweremade to com-
pare these findings with other quality parameters such as texture pro-
file measurements, color composition, sensory panel evaluation, and
apparent viscosity. Nevertheless, it has been shown that grating based
X-ray imaging combined with multivariate contextual segmentation is
a feasible method for the investigation of microstructural changes of
meat emulsions due to heat treatment, and can serve as a valuable
tool for further investigations.
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The objective of this studywas to evaluate the use of X-ray phase-contrast tomography combinedwith 3D image
segmentation to investigate the heat induced structural changes inmeat. The measurements were performed at
the Swiss synchrotron radiation light source using a grating interferometric setup. The non-destructive method
allowed the same sample to bemeasured before and after cooking. Heat denaturation resulted in a 36% decrease
in the volume of themuscle fibers, while solubilization of the connective tissues increased the volume from 8.4%
to 24.9%. The cooking loss was quantified and separated into a water phase and a gel phase formed by the sarco-
plasmic proteins in the exudate. The results show that X-ray phase contrast tomography offers unique possibil-
ities in studies both the meat structure and the different meat component such as water, fat, connective tissue
and myofibrils in a qualitative and quantitative manner without prior sample preparation as isolation of single
muscle components, calibration or histology.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Cooking of meat results in immediate and extensive structural
changes of themeat proteins. These conformational changes are caused
by the denaturation of the differentmeat proteins and include transver-
sal and longitudinal shrinkage of the muscle fibers, aggregation and
gel formation of the sarcoplasmic proteins and the shrinkage and
solubilization of the connective tissue (Tornberg, 2005). The structural
alterations are affected by heating time and temperature and are
determinant of the eating quality of the meat (Christensen, Bertram,
Aaslyng, & Christensen, 2011). The heat induced structural changes of
meat are conventionally studied bymicroscopy or indirect quantitative
methods as differential scanning calorimetry (DSC), turbidity measure-
ments or protein solubility.

During the last decades X-ray computed tomography (CT) has
generated interest as a valuable method in non-destructive three-
dimensional imaging of microstructure of meat (Frisullo, Marino,
Laverse, Albenzio, & Del Nobile, 2010; Furnols, Teran, & Gispert, 2009;
Hollo, Szucs, Tozser, Hollo, & Repa, 2007) and meat products (Frisullo,
Laverse, Marino, & Del Nobile, 2009; Santos-Garces et al., 2013). CT
has shown to be able to visualize the content and distribution of lean

meat, bones and fat, whereas detection of connective tissue is
challenged by similarities in attenuation of connective tissue and
muscle fibers. Recently, a novel grating based X-ray phase-contrast to-
mographic method with increased contrast has been demonstrated
(Bech et al., 2010; Weitkamp et al., 2005). Where the image contrast
formation in absorption tomography is based on differences in attenua-
tion of the X-rays, the phase-contrast modality uses the refraction of
X-rays caused by variation in electron densities for image genera-
tion, which results in improved contrast towards differences in
mass density in soft tissues and serves to overcome challenges
caused by similar attenuation properties of sample components.
The superior contrast for soft tissues provided by X-ray phase-
contrast CT compared to absorption CT has been demonstrated in a
study of pork fat and rind (Jensen et al., 2011). With the use of
phase-contrast even small density variations in the rind and variation
in the fatty acid composition within the fat fraction were detected
indicating the potential of the use of the phase-contrast modality
in structure studies of meat.

The objective of this studywas to evaluate the potential of the use of
X-ray phase-contrast tomography to study the heat induced changes in
the structure ofmeat. The non-destructive characteristics of themethod
allowed the same sample to be measured before and after heat treat-
ment. The measurements were performed at a synchrotron facility
with a grating interferometric setup. Advanced data segmentation
allowed quantitative parameters as changes in volume of myofibrils
and connective tissue, gel formation and cooking loss to be extracted
from the data.

Meat Science 100 (2015) 217–221

⁎ Corresponding author. Tel.: +45 35333263.
E-mail addresses: miklos@food.ku.dk (R. Miklos), schou@nbi.ku.dk (M.S. Nielsen),

hildr@dtu.dk (H. Einarsdóttir), robert@nbi.ku.dk (R. Feidenhans'l), rla@food.ku.dk
(R. Lametsch).

http://dx.doi.org/10.1016/j.meatsci.2014.10.009
0309-1740/© 2014 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Meat Science

j ourna l homepage: www.e lsev ie r .com/ locate /meatsc i



2. Materials and methods

2.1. Sample preparation

One piece of raw beef Semimembranosus bought in the local super-
market was cut to fit into a 1.5 mL sample tube (Ø = 10 mm). The
meat was placed with the fiber direction longitudinal to the tube.
When placed in the tube, the lid was closed under the surface of
degassed PBS buffer (0.01 M phosphate buffered saline, 0.138 M NaCl,
2.7 mM KCl, pH 7,4; Sigma-Aldrich) to avoid air bubble formation dur-
ing the measurements. After measurements of the raw sample the
exact same sample was heat treated by placing the sample tube in a
glass of hot water (95 °C) for 30 min. After heat treatment the sample
was cooled in tab water for 15 min and subsequently measured again.

2.2. X-ray tomography

Absorption and phase-contrast CT scans of the sample were obtain-
ed by use of a grating interferometer setup at the TOMCAT beam line,
Swiss Light Source (SLS) at the Paul Scherrer Institute (PSI). The tech-
nique has been explained previously elsewhere (Bech et al., 2010),
and the setup is described in detail in McDonald et al. (2009). Measure-
ments were made at a photon energy of 25 keV and the third Talbot
fractional distance was used (Weitkamp, David, Kottler, Bunk, &
Pfeiffer, 2006) with a grating period of the phase-grating, called G1, of
3.9 μmanda period of 2 μmof the analyzer grating, called G2. The height
of the grating lines was designed for photon energy of 25 keV. The sam-
ple was kept in a water bath during the measurements in order to re-
duce the difference in refractive index between the sample container
and its surroundings. The scan time was around 90 min per tomogram,
and three tomograms were conducted at three different heights in the
sample. The volume of the sample in each tomogram was 0.25 mL giv-
ing a full volume of around 0.75 mL imaged per sample. Each volume
consists of 1720 × 1720 × 513 voxels with an effective voxel size of
7.4 μm×7.4 μm×7.4 μm. Due to limited allocated time on the beamline
only one sample was measured.

2.3. Data processing

The X-ray tomograms were reconstructed at the TOMCAT beam line
using a local implementation of the filtered back-projection algorithm
for absorption and phase-contrast tomography as described in Pfeiffer,
Kottler, Bunk, and David (2007). The phase-contrast intensity values
were calibrated to absolute electron density values through a linear re-
gression using the sample container consisting of polyethylene and the
surrounding water as references. The spatial resolution in the phase
contrast images was estimated to be 23 μm by using the edge between
container and surrounding water as a reference.

2.4. Data segmentation

A two-step segmentation algorithm was implemented as described
in Grau, Downs, and Burgoyne (2006). The first step is to model the
data as a mixture of Gaussians using an expectation–maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977). This iterative process
finds themaximum likelihood of parameters where themodel depends
on unobserved latent variables. The spatial information of the data is
then incorporated into the segmentation process by modeling the data
as a Markov random field (MRF) (Li, 2003). It models the a priori prob-
ability of neighborhood dependencies, and the field can either be isotro-
pic or anisotropic. For the segmentation of connective tissue, the local
information of the structure orientation and coherence is extracted to
steer the smoothing (anisotropy) of the final segmentation. The MRF
smoothing parameter β was set to 0.7.

3. Results and discussion

Absorption and phase contrast images of transverse cut of the raw
and cooked beef sample are presented in Fig. 1. The grayscale images
are reconstructed from a single slice of the data sets. The dark ring sur-
rounding the samples is the sample tube. The absorption images
(Fig. 1A+B) appear noisy and hardly any contrast between the muscle
components is seen. In the absorption image of the raw meat (Fig. 1A)
only the intra muscular fat can be separated from the muscle structure.
In the cooked meat (Fig. 1B) the structure of themuscle fibers and con-
nective tissue is faintly observed. In comparison, superior contrast is
provided in the phase contrast images (Fig. 1C+D), where muscle
fibers, connective tissue, intra muscular fat and the surrounding water
phase appear clearly separated. In the phase contrast images intensity
differences reflect differences in electron density of the structural com-
ponents where the light intensity increases with increasing densities.
In the raw meat (Fig. 1C) the muscle fiber part of the muscle is repre-
sented by the gray areas, whereas the connective tissue, mainly the
perimysium, is the white areas. The small black spots are intramuscular
fat. Towards the edge of the samples darker gray areas are seen
representing a water phase. Due to changes in electron density of the
muscle components as a consequence of heating an intensity shift is
seen in the image of the cooked sample (Fig. 1, D) compared to the
raw sample. In the cooked sample muscle fibers have contracted and
thus increased in density, which is seen as thewhite areas: The connec-
tive tissue has decreased in density due to absorption of water and ap-
pears as light gray. The most remarkable changes in the structure are
the shrinkage of both the total sample volume and the individual fiber
bundles. In the cooked sample the fiber bundles appear clearly separat-
ed by the surrounding perimysium. The shrinkage of the myofibrils has
forcedwater to be expelled, which can be observed as an increase in the

A B

C D

Fig. 1. Transverse sample cut reconstructed from the absorption (A+B) and the phase
contrast (C+D) tomograms of raw (A+C) and cooked beef (B+D). In A+B the contrast
is formed by differences in absorption of the X-rays by the sample components. Only fat
(black) can be separated from the muscle (gray). In C+D the contrast is formed based
on differences in refraction of the X-rays caused by differences in the electron density of
the sample components. In C the components can be identified as: muscle (gray), fat
(black), connective tissue (white), water (dark gray). In D the components can be identi-
fied as muscle (white), connective tissue (light gray), water (dark gray) and fat (black).
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area of the water phase surrounding the meat. The area of the perimy-
sium is increased indicating partly solubilization.

From the 3D data sets the observed difference in microstructure can
be further explored by data segmentation of the full sample volumes.
Due to the limited contrast provided from the absorption tomograms,
the quantitative analysis were only performed on the phase contrast
data sets. A 3D visualization of the segmented X-ray phase contrast to-
mograms of the raw and cooked beef is presented in Fig. 2A+B. An ex-
ample of a segmented slice of the raw and cooked sample from the
phase contrast tomograms is presented in Fig. 3A+B respectively,
while the quantitative distribution of the structure components is pre-
sented in the corresponding histograms in Fig. 3C+D. From Fig. 3, A+C
it is seen that the main components water (blue), muscle fibers (red)
connective tissue (pink) and intra muscular fat (white) can be clearly
separated. The use of the two-step data segmentation procedure further
enabled segmentation of structural variations within these components,
even though that no clear peak separation is observed in the histograms
(Grau et al., 2006). In the raw sample (Fig. 3A) themusclefibers from the
inner and outer part of the sample can be separated into two populations
based on differences in the electron densities. The outer part of themus-
cle fibers has a lower electron density compared to the inner part
(Fig. 3C). This difference can be explained by an increase in the water
binding capacity in the meat exposed to the surrounding buffer that
had a relatively high pH (7.4) (Puolanne &Halonen, 2010). In the cooked
meat shrinkage of the muscle fibers resulted in an increase in the elec-
tron density (Fig. 3D) compared to the raw sample (Fig. 3C). No differ-
ence between the inner and outer part is observed in the cooked
sample as the shrinkage has forced the extra cellularwater to be expelled
as cooking loss. The connective tissue is segmented into two different
populations. As seen in Fig. 3A+C this is mainly based on local variation
in the electron densities of the perimysium in the junctions of the fiber
bundles. The increase in the area of the connective tissue in the cooked
sample compared to the raw sample indicating partly solubilization is
further supported by the decrease in electron density of this component.
This demonstrates that themeat has been undergoing a relatively severe
heat treatment and reached a temperature above 80 °C and has started
to gelatinize (Tornberg, 2005). In the water phase local variations in
the protein content, ascribed to expelled sarcoplasmic proteins, result
in two different populations that enable separation of the water phase
based on the protein content. However, a strict division in exudate
from the meat and the surrounding buffer is not possible. In Fig. 3
these water populations are designated as Water 1 andWater 2, where
Water 2has the highest protein content. In the raw sample the surround-
ing water phase is mainly constituted by buffer, but a small amount of
exudate are detected in the regions at the surface of the meat. In the
cooked sample the cooking loss results in an increase in the volume of
the water phase, where the Water 2 population most likely will consist
of a gel formed by expelled denatured sarcoplasmic proteins (Davey &
Gilbert, 1974; Tornberg, 2005).

The volume changes of the main components are summarized in
Table 1. In the table the volumes of the gel-like structure are included
in the water phase. The observed heat induced changes in the muscle
structure are similar to previously observations on the subject studied
by other imaging methods as microscopy (Bendall & Restall, 1983;
Tornberg, 2005) or MRI (Bouhrara et al., 2011). Compared to microsco-
py both MRI and X-ray tomography are non-destructive and three
dimensional methods. Whereas, X-ray phase contrast tomography pro-
vides information about the electron density MRI, which is based on
information about the proton density.

The superior contrast provided by phase contrast imaging compared
to standard X-ray absorption imaging has previously been demonstrat-
ed by Jensen et al. (2011) in porcine fat and rind. Together with the
present result for raw and cooked meat it is emphasized that the
phase contrast modality is advantageous in the use of X-ray tomogra-
phy for structure studies of meat as the small variation in the atomic
composition between the structural components is insufficient to pro-
vide an absorption based contrast between main components as con-
nective tissue and muscle fibers, while the variations in electron
densities result in a high contrast even between structural deviations
within the individual components, which demonstrates the potential
of the method. Besides a better understanding of the interactions be-
tween the denaturation of the muscle fibers and the connective tissue,
phase contrast X-ray tomography may be applied in studies of process-
ing steps as salting, marinating, freezing or heating, that will result in
changes in the electron density of themuscle fibers either caused by de-
naturation or affected water binding capacity. As indicated in the quan-
titative analysis of this study, increased water binding as a consequence
of increased pH and salt affected the electron densities sufficiently to be
detected.

In addition to monitoring of processing steps the non-destructive
characteristics also contribute to the potential in relation to on-line se-
lection of raw materials as fat, muscle and connective tissue can be
non-invasively detected and quantified. Quality deteriorations as soft
fat or PSE/DFD meat may be linked to variations in the electron density
and used asmarker in specifications for rejection or selection of rawma-
terials for a specific production.

4. Conclusion

Phase contrast tomography offers unique possibilities to study struc-
tural changes of meat caused by cooking. The non-destructive charac-
teristics of the method enabled studies to be made on the exact same
sample before and after heat treatment. The high contrast in the data
set made it possible to both visualize and quantify structural variation
within the individual meat components. Even though the method
might have an on-line potential, the relatively long measuring time
currently limits the method to experimental purposes.

Fig. 2. 3D visualization of segmented X-ray phase contrast tomograms of raw (A) and cooked beef (B). Muscle tissue is shown in red, connective tissue in white, intramuscular fat in gray
and the water phase is shown in blue.

219R. Miklos et al. / Meat Science 100 (2015) 217–221



Acknowledgments

The authors gratefully acknowledge the experimental work by
Torsten Lauridsen, Rasmus Laurberg Hansen and Karin E. Ibsen on
obtaining the sample data set. H.E., M.S.N. and R.M. acknowledge finan-
cial support through the NEXIM research project funded by the Danish
Council for Strategic Research (contract no. 11-116226) within the
Program Commission on Health, Food and Welfare.

References

Bech, M., Jensen, T. H., Bunk, O., Donath, T., David, C., Weitkamp, T., Le Duc, G., Bravin, A.,
Cloetens, P., & Pfeiffer, F. (2010). Advanced contrast modalities for X-ray radiology:
Phase-contrast and dark-field imaging using a grating interferometer. Zeitschrift für
Medizinische Physik, 20, 7–16.

Bendall, J. R., & Restall, D. J. (1983). The cooking of single myofibers, small myofiber bun-
dles and muscle strips from beef M-Psoas and M-Sternomandibularis muscles at
varying heating rates and temperatures. Meat Science, 8, 93–117.

Bouhrara, M., Clerjon, S., Damez, J. L., Chevarin, C., Portanguen, S., Kondjoyan, A., & Bonny,
J. -M. (2011). Dynamic MRI and thermal simulation to interpret deformation and
water transfer in meat during heating. Journal of Agricultural and Food Chemistry,
59, 1229–1235.

Christensen, L., Bertram, H. C., Aaslyng, M. D., & Christensen, M. (2011). Protein denatur-
ation and water–protein interactions as affected by low temperature long time treat-
ment of porcine Longissimus dorsi. Meat Science, 88, 718–722.

Davey, C. L., & Gilbert, K. V. (1974). Temperature-dependent cooking toughness in beef.
Journal of the Science of Food and Agriculture, 25, 931–938.

Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algotrithm. Journal of the Royal Statistical Society. Series B (Methodo-
logical), 1–38.

Frisullo, P., Laverse, J., Marino, R., & Del Nobile, M. A. (2009). X-ray computed tomography
to study processed meat microstructure. Journal of Food Engineering, 94, 283–289.

Frisullo, P., Marino, R., Laverse, J., Albenzio, M., & Del Nobile, M. A. (2010). Assessment of
intramuscular fat level and distribution in beef muscles using X-ray microcomputed
tomography. Meat Science, 85, 250–255.

Furnols, M. F. I., Teran, M. F., & Gispert, M. (2009). Estimation of lean meat content in pig
carcasses using X-ray computed tomography and PLS regression. Chemometrics and
Intelligent Laboratory Systems, 98, 31–37.

Grau, V., Downs, J. C., & Burgoyne, C. F. (2006). Segmentation of trabeculated structures
using an anisotropic Markov random field: Application to the study of the optic
nerve head in glaucoma. Medical Imaging, IEEE Transactions on, 25(3), 245–255.

Hollo, G., Szucs, E., Tozser, J., Hollo, I., & Repa, I. (2007). Application of X-ray computer to-
mography (CT) in cattle production. Asian-Australasian Journal of Animal Sciences, 20,
1901–1908.

Jensen, T. H., Bottiger, A., Bech, M., Zanette, I., Weitkamp, T., Rutishauser, S., David, C.,
Reznikova, E., Mohr, J., Christensen, L. B., Olsen, E. V., Feidenhans'l, R., & Pfeiffer, F.

Fig. 3. Segmentation of beef sample in raw and cooked state. A+B: Examples of segmented slices from the datasets obtained from the raw and the cooked sample respectively. Muscle
tissue is shown in red (1) or brown (2), connective tissue in light pink (1) or pink (2), water in blue (1) or light blue (2) and intramuscular fat inwhite. C+D: Histograms of the structure
components generated from the full 3D data sets.

Table 1
Partial object volumes (POV) for the soft materials in the raw and cooked beef sample.

Component Raw Cooked

POV
Water 4.87 19.54
Muscle fibers 86.18 54.96
Connective tissue 8.41 24.89
Intramuscular fat 0.54 0.61

220 R. Miklos et al. / Meat Science 100 (2015) 217–221



(2011). X-ray phase-contrast tomography of porcine fat and rind. Meat Science, 88,
379–383.

Li, S. Z. (2003). Modelling image analysis problems using Markow random fields.
Handbook of Statistics (S0073–6333), 21(13), 473–513.

McDonald, S. A., Marone, F., Hintermuller, C., Mikuljan, G., David, C., Pfeiffer, F., &
Stampanoni, M. (2009). Advanced phase-contrast imaging using a grating interfer-
ometer. Journal of Synchrotron Radiation, 16, 562–572.

Pfeiffer, F., Kottler, C., Bunk, O., & David, C. (2007). Hard X-ray phase tomography with
low-brilliance sources. Physical Review Letters, 98, 108105.

Puolanne, E., & Halonen, M. (2010). Theoretical aspects of water-holding in meat. Meat
Science, 86, 151–165.

Santos-Garces, E., Laverse, J., Gou, P., Fulladosa, E., Frisullo, P., & Del Nobile, M. A. (2013).
Feasibility of X-ray microcomputed tomography for microstructure analysis and its

relationship with hardness in non-acid lean fermented sausages. Meat Science, 93,
639–644.

Tornberg, E. (2005). Effects of heat on meat proteins—Implications on structure and
quality of meat products. Meat Science, 70, 493–508.

Weitkamp, T., David, C., Kottler, C., Bunk, O., & Pfeiffer, F. (2006). Tomography with
grating interferometers at low-brilliance sources. International Society for Optics and
Photonics, 6.

Weitkamp, T., Diaz, A., David, C., Pfeiffer, F., Stampanoni, M., Cloetens, P., & Ziegler, E.
(2005). X-ray phase imaging with a grating interferometer. Optics Express, 13,
6296–6304.

221R. Miklos et al. / Meat Science 100 (2015) 217–221



Novelty detection of foreign
objects in food using multi-modal
X-ray imaging

Published in Food Control, February 2016.



Novelty detection of foreign objects in food using multi-modal X-ray
imaging

Hildur Einarsd�ottir a, *, Monica Jane Emerson a, Line Harder Clemmensen a, Kai Scherer b,
Konstantin Willer b, Martin Bech b, c, Rasmus Larsen a, Bjarne Kjær Ersbøll a,
Franz Pfeiffer b, d

a Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, Building 324, 2800 Kgs. Lyngby,
Denmark
b Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universit€at München, James-Franck-Straße 1, 85748
Garching, Germany
c Department for Medical Radiation Physics, Lund University, 22185 Lund, Sweden
d Institut für Diagnostische und Interventionelle Radiologie, Klinikum Rechts der Isar, Technische Universit€at München, 81675 München, Germany

a r t i c l e i n f o

Article history:
Received 11 July 2015
Received in revised form
30 January 2016
Accepted 15 February 2016
Available online 18 February 2016

Keywords:
X-ray radiography
Dark-field imaging
Phase-contrast imaging
Foreign object detection
Novelty detection
Texture analysis

a b s t r a c t

In this paper we demonstrate a method for novelty detection of foreign objects in food products using
grating-based multimodal X-ray imaging. With this imaging technique three modalities are available
with pixel correspondence, enhancing organic materials such as wood chips, insects and soft plastics not
detectable by conventional X-ray absorption radiography. We conduct experiments, where several food
products are imaged with common foreign objects typically found in the food processing industry. To
evaluate the benefit from using this multi-contrast X-ray technique over conventional X-ray absorption
imaging, a novelty detection scheme based on well known image- and statistical analysis techniques is
proposed. The results show that the presented method gives superior recognition results and highlights
the advantage of grating-based imaging.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

X-rays are increasingly used in the food production industry for
quality control inspection (Haff & Toyofuku, 2008; Kwon, Lee, &
Kim, 2008; Mery et al., 2011; Zwiggelaar, Bull, Mooney, &
Czarnes, 1997). They provide a non-destructive method to quanti-
tatively measure food quality traits and detect foreign objects.
Foreign objects can be introduced to food products for instance
from rawmaterials or due to malfunctioning of the production line.
The detection of foreign objects is not only important in regards to
consumer satisfaction, it is also required by regulations to secure
consumer safety. In a recent survey of Japanese consumer com-
plaints on contaminants in food, it was revealed that the most

challenging foreign materials, which still cannot be adequately
detected by conventional X-ray systems, are paper, wood chips,
plastic, cartilage and insects (Takashi, 2009). Table 1 shows the
contaminants most frequently complained about, and the difficulty
level of detecting them using conventional X-ray techniques.
Several hazardous contaminants such as blade chips, bones and
glass fragments are classified at difficulty level medium, high-
lighting the need for a more effective detection method.

Recent advances in X-ray imaging have introduced new imaging
modalities such as phase contrast and dark field contrast, obtain-
able by grating-based interferometry (Bech et al., 2010a; Pfeiffer,
Weitkamp, Bunk, & David, 2006; Pfeiffer et al., 2008). These mo-
dalities have shown to produce enhanced contrast capabilities over
the typical absorption X-ray modality (Bech et al., 2010b; Jensen
et al., 2011; Pfeiffer et al., 2007). The grating-based approach al-
lows for obtaining three imaging modalities simultaneously, with
pixel correspondence. The modalities consist of conventional ab-
sorption X-ray, phase contrast imaging and dark-field imaging. A
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recent study (Nielsen, Lauridsen, Christensen, & Feidenhans'l,
2013) presented a novel approach for visual detection of organic
foreign bodies such as paper and insects in food products using X-
ray dark-field imaging. Here, the dark-field modality gave larger
contrast-to-noise ratios than absorption radiography for organic
foreign objects.

In this paper we build upon these results and provide an
extensive and thorough analysis of the novelty detection capabil-
ities of the higher contrast obtained from grating-based X-ray im-
aging. The purpose of the study is to compare the detection rates
between the multimodal X-ray data and conventional absorption
X-ray. Additionally, a comparison of detection rates when using
only intensity based information versus including texture features
is conducted. A novelty detection scheme is developed based on
image- and statistical analysis techniques. The algorithm first
computes texture features of the imagemodalities. Next, a model of
each food product is created by fitting a Gaussian Mixture Model
(GMM) to either the image intensities alone or by including the
texture features. Images with foreign bodies are then evaluated by
calculating the Mahalanobis distance to the food models for all
image pixels. Optimal thresholds for detecting foreign objects are
then chosen to minimize false positives and maximize the true
positive rate. To determine the gain of using grating-based imaging
over conventional absorption radiography, the detection results of
bothmethods are compared by the rates of detected foreign objects
versus false positives. This is done both pixel-wise and on an object
count bases. To test the novelty detection capabilities of the algo-
rithmwe investigate a wide range of foreign bodies of varying sizes
in seven different food products. The chosen foreign bodies include
objects typically found in the food processing industry that have
proven problematic to detect using conventional X-ray techniques.

2. Materials and methods

2.1. Grating-based X-ray imaging

The grating-based interferometer is described in detail in
Pfeiffer et al. (2006), (2008). The imaging modalities obtained by
grating-based imaging (GBI) consist of three types of physical in-
teractions e attenuation, refraction and scattering. These modal-
ities are refered to as absorption, phase contrast and dark-field
imaging, respectively. The setup for GBI is shown in Fig.1. The phase
grating produces a periodic intensity modulation consisting of
periodic fringes transverse to the beam direction. The change in
position, mean value and amplitude of the periodic fringes can be

probed using the analyzer grating by moving the source grating in
steps through the period in the patternwhile recording an image at
each step. From this series of scans, the absorption, refraction and
small-angle scattering can be recorded by a detector using the same
exposures, giving an inherent pixel correspondence.

2.2. Data set

The data set used for training and testing the detection algo-
rithm in this study consists of images of seven different food
products (minced meat, steak, turkey schnitzel, salami slices, sliced
cheese, wheat bread and rye bread). These products were chosen
based on their range in texture homogeneity. The foreign objects
used were chosen based on a survey conducted with industrial
collaborators within the research project. Table 2 shows the list of
foreign objects, along with their density and size. Fig. 2 shows the
foreign objects in the three different size groups. In the experiment,
a total of 7 food products where imaged with 8 different foreign
object materials. Each image contains all the foreign objects from a
single size group, giving in total 7 � 3 X-ray exposures, each
exposure consisting of the three image modalities.

Projection images were obtained at a laboratory GBI setup
located at the Chair of Biomedical Physics at the Technische Uni-
versit€at München. The effective energy used was 25 keV, with 9
steps of the phase grating and integration time of 2 s. From the raw
data, the three imaging modalities were obtained by sine fitting as
described in Bech et al. (2010c). The setup is described in detail in
Scherer et al. (2014). The obtained image resolution is 800 � 800
pixels.

2.3. Detection algorithm

For a novelty detection task, the classification problem is con-
cerned with identifying whether a pattern is part of the data or is in
fact unknown. In other words it is sought to assign an ‘abnormal’
label to foreign objects within known ‘normal’ food products.
Therefore, novelty detection only needs the known class for
training purposes and usually a distance measure and a threshold
for decision making. Both intensity and texture features are

Table 1
Japanese survey results for consumer contaminant complaints (Takashi, 2009) and
the level of difficulty of detection with absorption X-ray techniques.

Contaminant Percentage (%) Difficulty of detection by X-ray

Insects 24.5 Difficult
Bone (calcified only) 15.2 Medium
Unclear 14.1 N/A
Metal piece 7.3 Easy
Hairs 6.6 Difficult
Needles, wires etc. 6.5 Easy
Plastic and rubber 5.3 Medium
Glass fragments 3.9 Medium
Stone and sand 3.0 Easy
Paper, threads etc. 2.1 Difficult
Vinyl 2.0 Difficult
Fly 1.8 Difficult
Wood chips 1.5 Difficult
Blade chips 1.2 Medium
Staples 1.0 Easy
Rat excrement 0.9 Difficult

Fig. 1. A schematic of a X-ray radiography setup using a grating interferometer.

Table 2
Foreign objects used to test the detection algorithm. Both the approximate density
and thickness of each object is given.

Type Density (g/cm2) Thickness (mm)

Size 1 Size 2 Size 3

Glass 2.62 5 3 2
Metal 3.82 to 7.82 2 1 0.5
Wood 0.63 6 4 2
Insects 0.12 to 0.47 5 3 2
Hard plastic 0.66 6 3 2
Soft plastic 0.30 5 3 2
Rubber 1.21 4 3 2
Stones 2.23 to 2.50 6 4 3
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considered for the detection algorithm, and the extraction of these
along with threshold selection is briefly discussed in the following
sections.

2.3.1. Basic image features
Image texture can contain as important information as the im-

age intensity, and one way of analyzing the image texture is by
using Basic Image Features (BIFs). In Crosier and Griffin (2010) BIFs
are described as a filter-response space of a set of seven Gaussian
derivative filters. These responses describe distinct types of local
image structure at a given scale, such as flatness, slopes and blob-
like features. Two parameters can be optimized using this
method, one is the sensitivity to flatness h, and the other de-
termines the scale of the Gaussian filters, s.

2.3.2. Gaussian mixture models
Away to incorporate both the intensity and texture features into

a single model is to fit a multivariate statistical model, and one such
model is the multivariate Gaussian. Given data x ¼ (x1,…,xk) of di-
mensions k, the multivariate Gaussian fx is described in terms of the
means. m ¼ (m1,…,mk) and covariance matrix S of the data as

Fðxjm;SÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞkjSj

q exp
�
� 1
2
ðx� mÞuS�1ðx� mÞ

�
(1)

¼ 1
Z
exp

�
� 1
2
logjSj � 1

2
ðx� mÞuS�1ðx� mÞ

�
; (2)

where jSj is the determinant of S. Homogeneous food products can
be represented by a single multivariate Gaussian distribution.
However, the more complex the food matrix, the worse this
assumption holds. Food products such as ryebread will contain an
extensive amount of texture, especially when containing seeds and
other additives. Thus the Gaussian mixturemodel (GMM) is used to
model these more complex food products. The mixture distribution
of L Gaussians is given as

pðxÞ ¼
XL
l¼1

plFðxjml;SlÞ (3)

¼
XL
l¼1

1
Z
exp

�
logpl �

1
2
logjSlj �

1
2
ðx� mlÞTS�1

l ðx� mlÞ
�
; (4)

where pl is the prior probability of each mixture. The mixture
model can be estimated using the Expectation-Maximization (EM)
algorithm, which is an iterative method for finding the maximum a
posteriori estimates of parameters in the mixture model

(Dempster, Laird, & Rubin, 1977).

2.3.3. Mahalanobis distance maps
Given a multivariate Gaussian, the pixel-wise Mahalanobis

distance can be calculated. The Mahalanobis distance is a unitless
measure introduced in Mahalanobis (1936). It is a descriptive sta-
tistic giving the relative distance measure of a data point's residual
from a common point. It is similar to the Euclidean distance,
differing in that it takes into account the correlations of the data set
and is scale-invariant. The Mahalanobis distance is given by

D2 ¼ ðx� mÞuS�1ðx� mÞ: (5)

Given an image and GMM, we can calculate the Mahalnobis dis-
tance for each image pixel i to each Gaussian in the GMM. The
Mahalanobis distance map will show regions of deviation from the
food model in greater intensity, highlighting areas of potential
foreign objects.

2.3.4. Threshold selection
For the one class classifier a threshold value qmust be chosen to

determine if an image pixel belongs to the target class, food, or is in
fact a foreign object. For each pixel i, if the Mahalanobis distance D2

is smaller than q, it is classified as the target class, and as a foreign
object otherwise. A foreign object pixel is represented as positive,
and the false positive versus the true positive rate is sensitive to the
threshold value, and must therefore be carefully chosen. The aim is
to eliminate false positives whilst maintaining a high true positive
rate. The threshold can thus be chosen by evaluating the cost
impact of discarding food products falsely determined to contain
foreign objects versus retaining products that do contain foreign
objects.

2.3.5. Algorithm
An overview of the proposed novelty detection algorithm is

summarized in the following steps:
Training step.

1. Calculate BIFs for food product at a chosen scale, s, and with
given flatness parameter, h,

2. Calculate GMM with chosen number of Gaussians.
3. Determine threshold value for classification.

Testing step.

1. X-ray images acquired for new data.
2. Calculate BIFs with same scale and flatness parameter as used

for training.
3. Calculate Mahalanobis distance of each pixel.

Fig. 2. Foreign objects used in the experiments. The objects consist of eight different materials in three size groups.
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4. Apply threshold and filter detected objects of size smaller than a
given limit.

3. Results and discussion

Fig. 3 shows an example of images obtained of minced meat,
where all three modalities are shown along with their intensity
histograms. The modalities capture different details of the minced
meat, where absorption shows shadowing due to X-ray attenua-
tion, and phase contrast and dark field enhance the edge details.
Fig. 4 shows the X-ray images captured of turkey, with foreign
objects from size group 1 present. Additionally, normalized gray
profiles at the 250th row of each image is shown to illustrate the
contrast differences obtained. An example of images obtained of all
food products with foreign objects from size group 2 is given in
Fig. 5. It is clearly visible that different contrast is obtained in the
three imaging modalities.

3.1. Contrast-to-noise ratios

As an initial comparison of detection results from the three
different X-ray modalities, the Contrast-to-Noise Ratio (CNR) was
calculated for each foreign object. This contrast measure is defined
in Song et al. (2004) and is given by

CNR ¼ jmFB � mMj
.�

wFBs
2
FB þwMs2M

�1=2
; (6)

where m denotes the mean value and s2 is the variance of the
foreign object (FB) pixels and food matrix (M) pixels in the images.
The area covered by the foreign objects and foodmatrix differ in the
images, therefore the variances are weighted with the factor w
which is given by the ratio of the number of pixels of the foreign
object or foodmatrix, relative to the total number of the two. A high
CNR value represents a high contrast compared to noise, whereas a
low value means there is no significant contrast.

The resulting CNRs are given in Table 3, where the average CNR

value for each foreign object is given across all food products. The
CNR for glass, metal and stone are significantly higher in the ab-
sorption modality compared to the other two. However, for the
organic foreign objects, the dark-field modality gives a higher CNR.
It is worth noting that the lowest CNR is obtained for rubber
making it the most difficult to detect in any of the modalities. The
CNR value for phase contrast is quite low as it is not a suitable
metric for the modality. Post-processing the images by integration
should enhance the CNR values.

3.2. Model comparison

Next, the comparison of constructed food models is made, and
to simplify the task, a single Gaussianwas fitted to each of the seven
food products. This was done either by a) fitting a univariate
Gaussian to each of the image modalities (in total three different
models), b) a three-dimensional Gaussian fitted to all image mo-
dalities, or c) a 66-dimensional Gaussian fitted to the image mo-
dalities and texture features (BIF features from 7 filters at three
scales are calculated for each image modality, giving in total 63
texture features). In total 5 models where constructed containing
features as given in Table 4.

Fig. 6 shows receiver operating characteristic (ROC) curves for
the five models for both sliced cheese and rye bread. Here, all
foreign objects have been included. The curves show the fraction of
true positive pixels (foreign object pixels) out of the actual positives
(true positive rate¼ TPR) versus the fraction of false positives pixels
(food product pixels) out of total actual negatives (false positive
rate ¼ FPR), at various threshold settings of q. For perfect classifi-
cation, the curve should yield a point in the upper left corner at
coordinate (0,1) of the ROC space, representing no false negatives or
false positives. A random classifier would give a diagonal line from
the bottom left to the top right corners. The marker on each curve
represents the minimum distance to perfect classification. The ROC
curves reveal that the detection rate of the phase contrast model is
lowest in both food products. However, a significant gain is present
when comparing the dark-field and absorption models. The

Fig. 3. All three imaging modalities shown for minced meat along with intensity histograms. From left to right: Absorption, phase contrast and dark-field. The white bar represents
0.5 cm.
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multivariate models also result in a higher TPR, while adding the
texture features gives overall a slight advantage. Table 5 gives the

minimum distance to perfect classification for all models and all
food products. For all products, except rye bread and minced meat,

Fig. 4. Normalized gray profile at 250th row of image modalities. From left to right: Absorption, phase contrast and dark-field. The white bar represents 1 cm.

Fig. 5. Images obtained for all food products with foreign objects from size group 2 present. Top: Absorption modality; Middle: Phase contrast modality; Bottom: Dark-field
modality. The white bar represents 1 cm.

Table 3
Contrast-to-noise ratios of foreign bodies, compared between imaging modalities.

Glass Rubber Metal Stone Hard plastic Soft plastic Insect Wood

Absorption 39.94 13.38 62.65 64.27 10.12 4.24 5.85 6.02
Phase contrast 4.52 1.60 8.39 4.76 1.45 1.46 1.43 7.01
Dark-field 10.67 11.44 22.39 39.29 17.76 25.91 19.58 49.88
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the best classification is obtained from the model combining both
the multivariate intensity and texture features. For the other two
products the models containing only intensity features outperform
the model including texture features. Of all the products, rye bread
and minced meat are the least homogeneous, and these results
highlight the sensitivity to the chosen BIF parameters. An optimi-
zation of these parameters should be further explored to gain
better classification when including these features in non-
homogeneous food models.

Table 6 further illustrates the model comparison results,
showing the true positive (TP) count, false positive (FP) count, true
negative (TN) count and false negative (FN) count for all image

pixels. The sensitivity (TPR ¼ TP/(TP þ FN)), specificity (SPC ¼ TN/
(FP þ TN)) and accuracy (ACC ¼ (TP þ TN)/(TP þ FP þ TN þ FN)), is
also given. In all cases the sensitivity, specificity and accuracy is
lowest for model 1 (absorption alone), giving at average
TPR ¼ 65.5%, SPC ¼ 83.6% and ACC ¼ 81.7%. For model 4 (multi-
variate intensity) the averages are TPR ¼ 87.4%, SPC ¼ 93.8% and
ACC ¼ 93.0%, and likewise for model 5 (combined intensity and
texture features) the averages are TPR ¼ 88.9%, SPC ¼ 92.7% and

ACC ¼ 92.3%. A slightly higher sensitivity is obtained when adding
texture features, however at the cost of the specificity and accuracy
of the classification.

3.3. Object based error rates

For food production purposes, a certain minimum size is typi-
cally required for foreign object detection, and objects smaller than
this minimum can safely be disregarded. These smaller objects can
be excluded by filtering the detected objects in the image by size.
This will decrease the number of false positives, and a trade-off
between detecting true foreign objects and eliminating false

Table 4
The different features incorporated in the five food models.

Absorption Phase contrast Dark field Texture features

Model 1 �
Model 2 �
Model 3 �
Model 4 � � �
Model 5 � � � �

Fig. 6. Receiver operating characteristic (ROC) curves for different models constructed.

Table 5
Minimum distance from ROC curve to ideal classification for the different food models.

Cheese Salami Turkey Rye bread Wheat bread Minced meat Steak

Model 1 0.18 0.34 0.57 0.40 0.28 0.51 0.37
Model 2 0.26 0.42 0.37 0.53 0.51 0.54 0.36
Model 3 0.13 0.14 0.13 0.33 0.33 0.21 0.07
Model 4 0.06 0.11 0.11 0.21 0.24 0.17 0.08
Model 5 0.06 0.08 0.07 0.22 0.22 0.20 0.07
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positives can be made. This was explored by filtering the thresh-
olded results from model 5 (combined multivariate intensity and
texture). Fig. 7a shows the true positive rate based on an object
count as a function of filtering size and Fig. 7b shows the number of
false positives detected. As the filtering size is increased the num-
ber of false positives rapidly decreases. However, the TPR also de-
creases for rye bread minced meat, steak and turkey. It should also
be noted that food products containing more texture (rye bread,
wheat bread and minced meat) maintain a high number of false
positives despite the filtering operation.

To further investigate the effect of filtering by size, the per-
centage of area detected per foreign object was calculated. This was
done by first applying the optimal filter size for each food product
in order to minimize the number of false positives obtained. These
results are given in Table 7. All foreign objects are detected
excluding the rubber piece (size 3) in minced meat and rye bread,
the insect (size 1) and hard plastic (size 2) in the rye bread and
wood piece (size 3) in the minced meat. As previously stated, these
food products contain the most texture, and are therefore more
sensitive to the BIF parameters chosen. A reasonable amount of the

Table 6
Comparison of pixel-wise classification results between different feature sets.

Food product Model TP FP TN FN Sensitivity Specificity Accuracy

Cheese Model l 7062 3260 30,620 1260 84.9% 90.4% 89.3%
Model 4 7832 534 33,346 514 93.8% 98.4% 97.5%
Model 5 8004 1387 32,495 330 96.0% 95.9% 95.9%

Salami Model l 5008 5716 33,877 2292 68.6% 85.6% 82.9%
Model 4 6515 1795 37,831 752 89.7% 95.5% 94.6%
Model 5 6850 2231 37,353 459 93.7% 94.4% 94.3%

Rye bread Model l 1762 7365 40,456 1102 61.5% 84.6% 83.3%
Model 4 2312 4506 43,342 527 81.4% 90.6% 90.1%
Model 5 2270 4127 43,698 591 79.3% 91.4% 90.7%

Wheat bread Model 1 6720 4595 29,833 2194 75.4% 86.7% 84.3%
Model 4 7017 4279 30,149 1897 78.7% 87.6% 85.8%
Model 5 7245 3483 30,944 1669 81.3% 89.9% 88.1%

Minced meat Model 1 1880 9299 32,385 1544 54.9% 77.7% 76.0%
Model 4 2890 3488 38,227 502 85.2% 91.6% 91.2%
Model 5 2874 5400 36,288 546 84.0% 87.0% 86.8%

Steak Model l 2788 6756 36,678 1454 65.7% 84.4% 82.8%
Model 4 3941 1365 42,080 290 93.1% 96.9% 96.5%
Model 5 3986 2181 41,264 245 94.2% 95.0% 94.9%

Turkey Model l 1796 9593 30,424 1998 47.3% 76.0% 73.5%
Model 4 3417 1592 38,424 378 90.0% 96.0% 95.5%
Model 5 3555 1734 38,282 240 93.7% 95.7% 95.5%

Fig. 7. True positive rates and false positive rates as a function of filter sizes for excluding detected objects under a certain limit.
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area of each foreign object is detected in most cases, despite the
filtering of small detected regions. Therefore a compromise can be
made, and for production purposes these parameters should be
carefully chosen.

Both pixel-wise and object based results indicate a clear
advantage when exploiting the mulitmodal capabilities of the
grating-based X-ray technique over conventional absorption X-ray.
A superior detection of organic matter was demonstrated, and
applying multivariate methods for the novelty detection task gave
higher detection rates in general. Texture analysis further increased
the detection rates for food products which are homogeneous in
texture. An optimization of BIF parameters is however needed and
should be carefully explored for final algorithm implementations.
The sensitive balance between detecting true positives and elimi-
nating false positives should also be considered when designing a
novelty detection algorithm, as excluding detected objects below a
given size can significantly decrease the number of false positive at
the cost of true positive detection rates.

To make the grating-based X-ray technique a feasible option for
in-line product quality inspection, some obstacles need to be
overcome. The technique currently only allows for a limited field-of
view, due to productionmethods available for the gratings required
in the setup. Additionally, scanning methods for conveyor belt so-
lutions need to be further developed, as this is a key element in
increasing image acquisition speeds. Here several attempts have
been made (Kottler, Pfeiffer, Bunk, Grünzweig, & David, 2007;
Momose, Yashiro, Maikusa, & Takeda, 2009; Momose, 2014),
where instead of stepping the gratings the object of interest is
moved through an interferometer fringe pattern. These methods
could possibly be implemented as a conveyor belt solution,
providing high-speed imaging capabilities. Further limitations that
need to be overcome are the limits to the energy of the X-ray source
that can be used, as higher energy levels will allow for penetrating
thicker food products.

4. Conclusions

In this paper the gain of using a grating-based X-ray technique
over conventional X-ray imaging for foreign object detection was
investigated. A novelty detection algorithm was developed to
compare the X-ray imaging modality detection results and also to
determine the gain of applying multivariate and texture analysis.

The results give a clear indication of superior detection results from
the grating-based method, and especially show promising detec-
tion results of organic materials.
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Abstract
In this work we develop a computer-aided diagnosis (CAD) scheme for 
classification of pulmonary disease for grating-based x-ray radiography. 
In addition to conventional transmission radiography, the grating-based 
technique provides a dark-field imaging modality, which utilizes the 
scattering properties of the x-rays. This modality has shown great potential 
for diagnosing early stage emphysema and fibrosis in mouse lungs in vivo. 
The CAD scheme is developed to assist radiologists and other medical 
experts to develop new diagnostic methods when evaluating grating-based 
images. The scheme consists of three stages: (i) automatic lung segmentation; 
(ii) feature extraction from lung shape and dark-field image intensities; (iii) 
classification between healthy, emphysema and fibrosis lungs. A study of 102 
mice was conducted with 34 healthy, 52 emphysema and 16 fibrosis subjects. 
Each image was manually annotated to build an experimental dataset. 
System performance was assessed by: (i) determining the quality of the 
segmentations; (ii) validating emphysema and fibrosis recognition by a linear 
support vector machine using leave-one-out cross-validation. In terms of 
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segmentation quality, we obtained an overlap percentage (Ω) 92.63  ±  3.65%, 
Dice Similarity Coefficient (DSC) 89.74  ±  8.84% and Jaccard Similarity 
Coefficient 82.39  ±  12.62%. For classification, the accuracy, sensitivity and 
specificity of diseased lung recognition was 100%. Classification between 
emphysema and fibrosis resulted in an accuracy of 93%, whilst the sensitivity 
was 94% and specificity 88%. In addition to the automatic classification of 
lungs, deviation maps created by the CAD scheme provide a visual aid for 
medical experts to further assess the severity of pulmonary disease in the lung, 
and highlights regions affected.

Keywords: X-ray radiography, dark-field imaging, lung segmentation,  
active appearance model, pulmonary disease, Grating based interferometry

(Some figures may appear in colour only in the online journal)

1. Introduction

Pulmonary diseases are one of the leading causes of death worldwide, and are characterized 
by structural abnormalities of the lung. Between the most frequent disorders are pulmonary 
emphysema and fibrosis. A common approach to diagnose these disorders is chest radiogra-
phy (Sutinen et al 1965, Pratt 1987). However, this technique offers only a limited sensitivity, 
and the poor contrast of lung tissue makes it difficult to diagnose mild to moderate cases. 
In case of an unclear diagnosis the patient is forwarded to high resolution CT (Thurlbeck 
and Müller 1994), which offers substantially enhanced sensitivity at the disadvantage of a 
very high radiation exposure dose, which limits especially frequent follow-up examinations. 
Typically, for both cases, a computer-aided diagnostic (CAD) approach is designed to assist 
radiologists to assess the severity of the disease. Different features can be extracted from 
the acquired data, and both intensity values of the lung regions and shape features can be 
analyzed. In Coppini et al (2013) a CAD scheme to detect emphysema was developed based 
on shape features extracted from chest radiography. Similarly, a CAD scheme for detecting 
pneumoconiosis from chest radiography based on intensity features was demonstrated in Yu 
et al (2011).

Recent advances in x-ray techniques have introduced new imaging modalities such as 
phase-contrast and dark field, obtainable by grating-based interferometry (Pfeiffer et al 2006, 
Pfeiffer et al 2008). These modalities allow for visualizing the refraction and scattering prop-
erties of the x-rays, in addition to the conventional attenuation-based x-ray imaging. Dark-
field imaging has shown promising results in visualizing the respiratory system of a mouse  
in vivo (Bech et al 2013, Yaroshenko et al 2014a) and further to diagnose pulmonary emphy-
sema in ex vivo murine lungs (Schleede et al 2012, Yaroshenko et al 2013). A prototype in vivo 
small-animal scanner was developed based on grating interferometery (Tapfer et al 2012), 
which makes it possible to acquire dark field radiographies of mice in vivo. The dark-field 
contrast reveals the information about tissue air interfaces of the lung. Recently, a study has 
been reported that first showed that dark field lead to a better diagnostic value for the diagnosis 
of pulmonary emphysema in living mice (Meinel et al 2014). The conventional x-ray trans-
mission images revealed only slight indirect signs of pulmonary disease, while the dark-field 
images clearly showed a significant difference between healthy and emphysematous lungs. 
A further study (Hellbach et al 2015) demonstrated that by visual assessment of dark-field 
radiographs, different stages of emphysema can be determined. Early stages of the disorder 
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were not visible on conventional transmission images, whilst mild to moderate stages could 
easily be distinguished in the dark-field images.

In this paper, we further build upon these results and develop a CAD scheme to analyze 
the images obtained from the small-animal scanner. The purpose of this scheme is to assist 
radiologist to interpret the new imaging modality, as they have limited diagnostic training and 
experience with dark-field images. The scheme consists of three main steps: (i) Lung segmen-
tation; (ii) feature extraction; (iii) classification. The lung segmentation is based on an active 
appearance model (Cootes and Taylor 2001), and models for both the absorption and dark-
field data are created. From the segmented lung regions, a model of a healthy lung is created. 
This is done by calculating the pixel-wise mean and standard deviation of 15 control lungs. 
For all subsequent lungs, a deviation map is created to determine regions affected by pulmo-
nary disease. For the feature extraction step, both intensity and shape features are consid-
ered. Classification results, based on the two features sets both independently and combined, 
are presented. The final classification is then performed by a linear support vector machine 
(SVM) (Cortes and Vapnik 1995) and is twofold. First a classification between ‘healthy ver-
sus diseased’ is made, and if classified as non-healthy, a classification of ‘emphysema versus 
fibrosis’ is made. The results of the developed CAD scheme are demonstrated on a dataset of 
102 lung images, consisting of 34 healthy lungs, 52 emphysematous and 16 fibrosis.

2. Materials and methods

2.1. Grating-based imaging

The grating-based interferometer is described in detail in Pfeiffer et al (2006) and Pfeiffer 
(2008). The imaging modalities obtained with a grating interferometer consist of three types 
of physical interactions—attenuation, refraction and scattering. The imaging modalities are 
refered to as absorption, phase contrast and dark-field imaging. The setup for grating-based 
imaging (GBI) is shown in figure 1. The phase grating produces a periodic intensity modula-
tion consisting of periodic fringes transverse to the beam direction. The change in position, 
mean value and amplitude of the periodic fringes can be probed using an analyzer grating by 
moving one of the gratings in steps through the period in the pattern while recording an image 
at each step. The source grating may be added to obtain coherent virtual line sources from 
standard x-ray generators with source sizes of more than a square millimeter (Pfeiffer et al 
2006). From this series of scans, the absorption, refraction and small-angle scattering can be 
recorded by a detector using the same exposures, giving an inherent pixel correspondence. For 
this study, only the absorption and dark-field modalities are used.

2.2. Dataset

Animal experiments were performed with permission of the responsible Institutional Animal 
Care and Use Committee. Either emphysema or fibrosis was induced in female mice and com-
pared to control subjects. Emphysema was induced using elastase and the protocol is described 
in Meinel et al (2014). For fibrosis, the mice received orotracheally 3.0 units/kg body weight 
of bleomycin dissolved in 80 μl sterile phosphate-buffered saline (PBS). The control animals 
received 80 μl sterile PBS. The fibrosis animals were imaged 14 d after instillation and sacri-
ficed shortly after. For this purpose the lungs were fixated in 4% paraformaldehyde. During imag-
ing the mice were anesthetized using intra- peritoneal injection of medetomidine (500 μg kg−1),  
midazolam (5 mg kg−1), and fentanyl (50 μg kg−1) (Meinel et al 2014). The successful 
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induction of emphysema and fibrosis in mice was confirmed by (quantitative) histology. To 
assess the severity of emphysema and fibrosis the histological sections were analyzed using a 
light microscope equipped with a computer-assisted stereologic toolbox. For emphysema the 
mean chord length (mean alveoli size) and for fibrosis the mean tissue percentage (amount of 
solid tissue) were quantified. Further details on the emphysema quantification can be found 
in Meinel et al (2014).

A total of 102 radiographs where obtained from two separate groups of mice in vivo using 
a prototype small-animal x-ray dark-field scanner as described in Meinel et al (2014) using the 
same image protocol. The radiographs consist of absorption and dark-field images from each 
scan, with pixel correspondence between the modalities, resulting in a total of 204 images. 
Three groups were included in the dataset: control (34), emphysema (52) and fibrosis (16). 
The images of emphysema mice where part of a longitudinal study, and therefore the same 
mice were measured several times during a period of 21 d. For the acquisition of the dark-field 
images, five images for different source grating positions were acquired with an exposure time 
of 3.3 s per image, resulting in a total acquisition time of approximately 17 s. The total acqui-
sition dose for a dark-field projection image is approximately 1.8 mGy. The dose estimation 
method is described in Meinel et al (2014).

2.3. CAD scheme for classification of pulmonary disease

The CAD scheme for classifying pulmonary disease consists of the following phases:

1. Lung segmentation.
2. Feature extraction (both shape and intensity).
3. Classification between healthy, emphysematous and fibrosis lungs.

Each step will be described in detail in the following sections.

2.3.1. Lung segmentation. The aim of the segmentation process is to extract the lung regions 
for further feature extraction. For this task, the well established active appearance model 
(AAM) algorithm is utilized (Cootes and Taylor 2001). The algorithm is an efficient optimiza-
tion approach that matches shape and texture simultaneously. It consists of a two-step process, 
training and segmentation, which are briefly summarized by the following steps:

Training

Step 1: Key landmark points are manually placed on the training images.
Step 2: The manually annotated images are aligned by scaling, rotating and translating.

Figure 1. A schematic of a x-ray radiography setup using a grating interferometer.
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Step 3: A statistical model of shape and texture variation is generated by applying principal 
component analysis (PCA).

Segmentation

Step 1. A rough approximate starting position is found at which the mean shape is centered.
Step 2. For each landmark, a region of the image is examined to find the best nearby match.
Step 3. The model parameters are updated to best fit the new found points.
Step 4. Steps 2 and 3 are repeated until convergence.

An AAM implementation presented in Hansen et al (2011) was adapted for the lung seg-
mentation task. A training set of 30 lung images are first manually annotated with 52 land-
marks consisting of 38 around the contour of the lung, 7 landmarks placed at the upper part of 
the diaphragm and 7 landmarks at the position of the heart. To initialize the starting position of 
the AAM for new lung images, a center point of the lung is found. This is done by determining 
the widest part of the lung in the dark-field image from the row sum profile, and the location 
of the spine in the absorption image, determined by the column sum profile. This is illustrated 
in figure 2, where these two points are determined in figure 2(a) and the mean lung shape is 
then positioned as in figure 2(b).

2.3.2. Feature extraction. Pulmonary disease both causes a change in shape and texture of the 
lung, and typical x-ray characteristic signs are over-expanded lungs, a flattened diaphragm and 
increased retrosternal airspace (Torres and Moayedi 2007). With dark-field imaging, x-rays 
are scattered on the interface between air and tissue in the lung (alveoli) and any changes in 
the airspace structure are therefore visible (Yaroshenko et al 2014b). Additionally, the lung 
shape is clearly visible in the dark-field modality and can also be analyzed. Both intensity and 
shape features of the lung are therefore considered important.

2.3.2.1.  Intensity features. To extract the intensity features, first a healthy model is created based 
on a set of 15 control lungs. For this case 15 healthy lung images were selected and segmented 
by the AAM. The segmented lungs are then aligned by Procrustes superimposition, which trans-
lates, rotates and uniformly scales the lungs to minimize any shape difference between them. By 
an affine transformation, the texture of the lungs is then warped to this aligned shape to obtain 
a pixel-wise correspondence between the intensities. The statistics of the healthy lungs are then 
calculated, by determining the pixel-wise mean μij and standard deviation sij for every pixel ij 
amongst the N  =  15 healthy subjects. The pixel-wise mean and standard deviation are given by
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Given the statistics of the healthy model, deviation maps are created for all other lungs by 
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The deviation maps highlight the regions of abnormal intensity and can visually aid a radiol-
ogist in the diagnosis of pulmonary disease. In order to use the deviation maps for classifica-
tion purposes further feature extraction is required. The following deviation map histogram 
features are thus extracted: Mean value, M1; standard deviation, M2; skew, M3; kurtosis, 
M4; median value, M5; median absolute deviation, MAD1; mean absolute deviation, MAD2; 
entropy, EP; and maximum intensity value of the histogram, M6. These features are calcu-
lated as follows:

M i h i ,1 ( )∑= ⋅ (4)

M i M h i ,2 1
2( ) ( )∑= − ⋅ (5)

M
M

i M h i
1

,3
2
3 1

3( ) ( )∑= − ⋅ (6)

M
M

i M h i
1

3,4
2
4 1

4( ) ( )∑= − ⋅ − (7)

Figure 2. To obtain a starting position for the AAM, the minimum values of the row 
sum from darkfield and column sum from absorption are found, representing the 
approximate location of the center of the lung. (a) Row sum of the dark-field and column 
sum of the absorption image (arbitrary units). (b) Initial starting position for AAM.
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M h imedian  ,5 ( )= (8)

(( ( ) ( )))= −h i h iMAD median median  ,1 (9)

(( ( ) ))= −h i MMAD mean ,2 1 (10)

h i h iEP log ,( ) ( )∑= − ⋅ (11)

where h(i) denotes the histogram of the intensity i.

2.3.2.2. Shape features. To determine the main type of variation present in the shape profiles 
of the lungs, a principal component analysis (PCA) of the segmented shapes is performed 
(Jolliffe 2002). PCA is a statistical method that by orthogonal transformation converts a set 
of observations of possibly correlated variables into a set of values of linearly uncorrelated 
variables called principal components. In other words, the original data is rotated such that a 
new coordinate system is obtained where the coordinate axes (principal axes) maximizes the 
variance of the projected data. The first axis explains most of the variation in the data, and the 
variation explained decreases with each sequential axis. Each component is a linear combina-
tion of all initial features (landmarks) and therefore investigating the first principal component 
can shed light on the shape variation present in the lung dataset.

Additional lung features are derived directly from each segmented lung region and include 
the height, width and area of the lung. The top margin T, bottom margin B, left margin L, 
and right margin R are thus determined. The shape features extracted then consist of: Lung 
height, H  =  T–B; lung width, W  =  L–R; lung area, A, which is the number of pixels in the lung 
region; first shape principal component score, PC1; and the area of severe deviation (over 2 
standard deviations), As.

2.3.3. Lung classification. For the classification task, a simple linear support vector machine 
(SVM) is implemented (Cortes and Vapnik 1995). The lung classification is performed in two 
steps, first a classification between control lungs versus rest is made and thereafter a classifi-
cation between emphysema and fibrosis lungs is made. A leave-one-out cross-validation was 
used to optimize the cost function parameter and to validate the SVM results.

3. Results

3.1. Lung segmentation

Figure 3 shows the segmentation results for four separate lung images, where the lung regions 
are successfully located in all images. Visually, the quality of the segmentations is acceptable, 
and all 102 lungs were successfully segmented. Only the severe cases of fibrosis required the 
use of the absorption AAM to obtain a reasonable segmentation, while the dark-field AAM 
gave good results for the remaining lungs.

A quantitative assessment was performed, comparing the segmentation results to manu-
ally placed landmarks. The performance was evaluated using the Dice Similarity Coefficient, 
Jaccard Similarity Coefficient and overlap percentage by leave-one-out cross-validation. The 
Dice coefficient is a statistic for comparing the similarity of two samples, the Jaccard coef-
ficient is used for comparing the similarity and diversity of a sample set and the overlap per-
centage measures the overlap between two sets. Figure 4 shows these results, where boxplots 
of the coefficients for both the absorption and dark-field AAM model are given. The boxplots 
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depict the results through their quartiles where the central mark is the median and the edges 
of the box are the 25th and 75th percentiles, with whiskers indicating the variability outside 
the upper and lower quartiles. Outliers are then plotted as individual points. It is apparent that 
the dark-field model gives a better performance for the control and emphysema groups. Here 
the scores are quite high for all three measures. For severe cases of fibrosis, the dark-field 
lung signal can be negligible, and therefore data support for the AAM is not sufficient for a 
successful segmentation. For these cases it was necessary to segment using the absorption 
images, where the rib cage is always visible giving the AAM full data support. The segmenta-
tion results for the control and emphysema groups are not as good when using the absorption 
model. Therefore a strategy of trying both models individually for each lung and manually 
selecting the better result was employed.

3.2. Deviation maps

Figure 5 shows the healthy lung atlas consisting of the pixel-wise mean and standard devia-
tion maps, given by equations (1) and (2) respectively. The images are shown in color to bet-
ter enhance the maps. Regions near the edges of the lungs show higher deviation, especially 
around the heart and diaphragm regions. This is caused by a large variability in size and posi-
tion of the organs.

Figure 3. Examples of lung field segmentation results using the AAM algorithm.
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A sample of the segmented texture images and deviation maps found by eqaution (3) is 
shown in figure 6. The dark-field texture is warped to the mean shape in order to make a 
direct comparison of lung regions possible. Each pixel location in the texture image therefore 
corresponds between all lungs. A control lung, fibrosis lung and emphysema lung is given as 
an example, where the emphysema lung is shown at day 7, 12 and 14 after instillation. The 
dark-field signal decreases for the emphysema lung across days, and the deviation map clearly 
enhances the regions affected. The control lung barely differs from the healthy lung model, 
and therefore shows low deviation in all regions. The fibrosis lung is severely damaged, caus-
ing high deviation from the healthy model in most regions. Table 1 gives the average deviation 

Figure 4. Boxplot of the Dice, overlap and Jaccard scores for the segmented lungs, 
given both for the absorption- and dark-field AAMs.

Figure 5. The healthy lung model consists of the pixel-wise mean and standard 
deviation values for the dark-field control lung images.
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values μd for these lungs, along with the area of severe deviation (above 2σ), As. It is worth 
noting that all intensity features used for later classification are extracted from these warped 
deviation maps.

The warped dark-field images and deviation maps indicate which lungs are affected by 
either emphysema or fibrosis. For medical diagnostic purposes however it is necessary to 
warp the texture back to the original lung image. Figure 7 shows the original dark-field images 
of the same lungs as in figure 6, where the deviation maps have been warped to the original 
shape. These maps can then assist the qualitative diagnostics of the lung images.

3.3. Shape statistics

The first three principal components (PCs) for the shape profiles are shown in figure 8. They 
illustrate the mean shape  ±3σ of the PCs. The first PC mainly constitutes the variation in lung 
size, while the second PC is concerned with the positioning and slant of the bottom region 
of the lung. Finally, a variation in the width of the lung is seen in the third PC. The first PC 
constitutes 57.5% of the variance of the shape profiles, and is used as a shape feature for the 
classification step. Figure 9 shows the normalized first principal component score for the lung 
shapes. All control lungs except for one result in a negative score, while most emphysema 
lungs give a positive score. There is not a clear distinction for the fibrosis lungs, which indi-
cates the need for other discriminative features.

Figure 6. Deviation maps shown for a control-, emphysema- and fibrosis mouse. The 
emphysema maps show the same mouse at different stages of emphysema. The color 
scale illustrates the magnitude of deviation.

Table 1. Average deviation values, μd, and the area of severe deviation, As   >   2σ, given 
for five sample lungs.

Control
Emphysema 
day 7

Emphysema 
day 12

Emphysema 
day 14

Fibrosis  
day 7

μd 0.1  ±  0.46 0.90  ±  0.84 1.16  ±  0.99 1.63  ±  1.16 3.55  ±  1.80
As 0.00% 10.82% 19.11% 31.59% 78.08%
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3.4. Feature significance

To determine the feature significance and gain of evaluating the deviation maps rather than the 
dark-field images, we test the null-hypothesis that both healthy and non-healthy mice belong 
to the same population, that is for each parameter i that the means are equal, μ1i   =  μ2i. Table 2 
shows the p-values for parameters found by evaluating the dark-field images directly and the 
deviation maps. It is obvious that evaluating the deviation maps results in significantly lower 
p-values in most cases, and therefore the intensity features are extracted from the deviation 
maps rather than the dark-field images.

3.5. Classification results

The classification results from the SVM, determined using leave-one-out cross-validation 
(Kohavi 1995), are given in tables 3 and 4. Different feature sets are compared, where shape 
and intensity features are used either separately or combined. Table 3 gives the results when 
classifying healthy versus non-healthy lungs, where healthy control lungs are depicted as neg-
atives (N) and non-healthy as positives (P). A slightly better result is obtained using intensity 

Figure 7. Deviations maps overlayed on top of the original dark-field images. The 
color scale illustrates the magnitude of deviation.

Figure 8. First three principal components of the shape parameters after Procrustes 
alignment (excluding scaling). The first principal component is mainly concerned with 
the size of the lung and constitutes 57.5% of the variance of the shape profiles.
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based features over shape features. The combined model however outperforms the other two, 
resulting in perfect classification. When classifying between emphysema and fibrosis lungs, 
the intensity features also result in a better classification than the shape features alone, see 

Figure 9. Bar plot illustrating the normalized first principal component score for all 
lungs.

Table 2. P-values for the different intensity features extracted for both the original 
dark-field images and deviation maps.

Parameter Dark-field Deviation map

Mean, M1 <0.0001 <0.0001
Standard deviation, M2 0.0748 <0.0001
Skewness, M3 <0.0001 <0.0001
Kurtosis, M4 0.4249 0.0778
Median, M5 <0.0001 <0.0001
Maximum intensity, M6 <0.0001 <0.0001
MAD (median), MAD1 0.3597 <0.0001
MAD (mean), MAD2 0.0807 <0.0001

Table 3. Comparison of classification results between different feature sets. Diseased 
lungs are given as true positives (TP) and healthy lungs are given as true negatives (TN).

Features for 
SVM

Number  
of features TP TN FP FN Sensitivity Specificity Accuracy

Shapea 5 64 (68) 33 (34) 1 4 94.12% 97.06% 95.10%
Intensityb 9 65 (68) 34 (34) 0 3 95.59% 100.00% 97.06%
Intensity and 
shape

14 68 (68) 34 (34) 0 0 100.00% 100.00% 100.00%

a Shape features: Area, A; width of lung, W; height of lung, H; area of severe deviation (over 2 standard deviations), 
As; and first shape principal component score, PC1.
b Intensity features: Mean value, M1; standard deviation, M2; skew, M3; kurtosis, M4; median value, M5; median abso-
lute deviation, MAD1; mean absolute deviation, MAD2; entropy, EP; and maximum intensity value of histogram, M6.
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table 4. The performance increases when combining the two sets, however it does not result 
in perfect classification as for the healthy versus non-healthy case. The misclassification of 
emphysema and fibrosis are shown in figure 10. The fibrosis cases classified as emphysema 
are both relatively healthy, however they show a very prominent heart shadow in the left lung. 
Both mice (D and E) display this behavior and therefore the misclassification seems to be 
systematic. Only mild emphysema is seen in the misclassified emphysema mice, and mouse 
C also has a large heart shadow as the fibrosis cases. It is assumed that the amount of shadow-
ing from the heart heavily depends on the exact positioning of the mouse in the scanner, and 
therefore calls for an accurate placement to achieve repeatability in the resulting dark-field 
images. Finally, figure 11 shows examples of correctly classified lungs from all three groups.

4. Discussion

A CAD scheme for diagnosing emphysema and fibrosis from grating-based x-ray radiographs 
has been described. It consists of three stages: (i) automatic lung segmentation using an active 
appearance model; (ii) extraction of both intensity and shape features of the segmented lung; 
(iii) classification of healthy, emphysema or fibrosis lung based on a linear support vector 
machine.

The active appearance model successfully segmented all 102 lung images, either by using 
the data given in the dark-field image or the data from the absorption image. The segmenta-
tions based on the dark-field images gave more accurate segmentations compared to ground 
truth determined by an expert. However, data support for severely damaged lungs was insuf-
ficient. In these few cases the absorption AAM gave full data support, where the lung regions 
were segmented by fitting the rib cage visible in the images. For further implementation of the 
CAD scheme, an AAM combining the absorption- and dark-field data simultaneously should 
be considered.

From the segmented lung fields, relevant features were extracted combining shape and 
intensity information of the lung. A principal component analysis of the shape profiles illus-
trated a large variation in size between healthy and diseased lungs, which significantly con-
tributes to correct classification of the lung in question. Additionally, intensity features based 
on deviation maps from healthy lung statistics were extracted, as these gave lower p-values 
than features extracted directly from the dark-field images.

Linear support vector machines were trained and validated using leave-one-out cross- 
validation, to classify two separate cases: (i) classification of healthy against diseased 
lungs; (ii) classification between emphysema and fibrosis lungs. Different feature sets were 

Table 4. Comparison of classification results between different feature sets. Emphysema 
lungs are given as true positives (TP) and fibrosis lungs are given as true negatives (TN).

Features  
for SVM

Number  
of features TP TN FP FN Sensitivity Specificity Accuracy

Shapea 5 45 (52) 13 (16) 3 7 86.54% 81.25% 85.29%
Intensityb 9 47 (52) 12 (16) 4 5 90.38% 75.00% 86.76%
Intensity and 
shape

14 49 (52) 14 (16) 2 3 94.23% 87.50% 92.65%

a Shape features: Area, A; width of lung, W; height of lung, H; area of severe deviation (over 2 standard deviations), 
As; and first shape principal component score, PC1.
b Intensity features: Mean value, M1; standard deviation, M2; skew, M3; kurtosis, M4; median value, M5; median abso-
lute deviation, MAD1; mean absolute deviation, MAD2; entropy, EP; and maximum intensity value of histogram, M6.
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compared, either using intensity or shape features individually or combining the two feature 
sets. For both classification tasks, the intensity features gave better classification results than 
using shape features alone. Combining the two sets gave superior results for classification 
task (i), resulting in no misclassification of the 102 images. For classification task (ii), 3 out 
of 52 emphysema and 2 out of 16 fibrosis lungs where misclassified when using the combined 
feature set.

The analysis revealed a tendency for the emphysema lungs to expand with progressing 
disorder, whereas the fibrosis lungs tend not to change shape. This feature plays a large role 
in the classification of healthy versus emphysema versus fibrosis lungs. It should however be 

Figure 10. Incorrect classification results from SVM. A to C show emphysema lungs 
classified as fibrosis. D and E show fibrosis lungs classified as emphysema.

Figure 11. A sample of correct classifications determined by SVM. Top row: correct 
control classifications; middle row: correct emphysema classifications; bottom row: 
correct fibrosis classifications.
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noted that emphysema and fibrosis can coexist and a strategy to classify these cases should 
be investigated.

Future development of the CAD scheme will involve a classification scheme capable of 
determining the severity of pulmonary disease. In order to do so, a scheme for rating lung 
images according to severity is required, and suggested subgroups would be: healthy, mild, 
moderate and severe. This grouping has previously been demonstrated in Hellbach et al (2015).

The developed CAD scheme is intended to assist new diagnostic techniques for pulmonary 
disease using x-ray dark-field imaging. At this stage only mouse trials have been performed, 
however the CAD scheme has been developed such that it can easily be adapted to other sub-
jects, such as pigs, and in the future, human trials. The training of the AAM model requires 
only minimal input from the user, where the landmarks are manually annotated on training 
images. Other adjustments include performing a new principal component analysis of the 
shape profiles and re-training the linear SVM. In general it can be expected that the human 
lung will display similar behavior as observed in mice, that is to say that a healthy lung will 
give a very strong dark field signal and a reduction of scattering is expected for emphysema-
tous lungs. It remains still an open question whether the ribs (and also other tissue such as 
e.g. fat layer) in humans will be visible also in the dark-field projections. This would clearly 
complicate the model. However, it can be expected that the same features for intensity and 
shape can also be used to stage emphysema and fibrosis in humans.

In order to create a generic solution valid across different setups the following must be 
considered. The dark-field signal of the lung strongly depends on the setup parameters like the 
grating periods, distances between the gratings, etc. Consequently, to account for the signal 
variations at different setups it is necessary to implement a scaling factor, as a function of the 
setup parameters. Theoretical work for the scaling of the dark-field signal has been reported by 
Yashiro et al (2010), Lynch et al (2011) and Strobl (2014). Therefore, a more complex model 
would be necessary to take the dark-field signal scaling into account. However, to ensure the 
correct normalization it would be necessary to measure a phantom with a structure similar to 
the lung in all setups and verify the correct scaling factor. This is left for future work.
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