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Dynamic optimal foraging theory explains vertical  
migrations of Bigeye tuna

Uffe H. Thygesen,1,3 Lene Sommer,1 Karen Evans,2 and Toby A. Patterson2

1Center for Ocean Life, National Institute for Aquatic Resources, Technical University of Denmark, Lyngby, DK-2800, Denmark
2CSIRO Oceans and Atmosphere National Research Flagship, Castray Esplanade, Battery Point, TAS 7004, Australia

Abstract.   Bigeye tuna are known for remarkable daytime vertical migrations between 
deep water, where food is abundant but the water is cold, and the surface, where water 
is warm but food is relatively scarce. Here we investigate if these dive patterns can be 
explained by dynamic optimal foraging theory, where the tuna maximizes its energy harvest 
rate. We assume that foraging efficiency increases with body temperature, so that the 
vertical migrations are thermoregulatory. The tuna's state is characterized by its mean 
body temperature and depth, and we solve the optimization problem numerically using 
dynamic programming. With little calibration of model parameters, our results are con-
sistent with observed data on vertical movement: we find that small tuna should display 
constant-depth strategies while large tuna should display vertical migrations. The analysis 
supports the hypothesis that the tuna behaves such as to maximize its energy gains. The 
model therefore provides insight into the processes underlying observed behavioral patterns 
and allows generating predictions of foraging behavior in unobserved environments.

Key words:   bigeye tuna; dynamic programming; optimal foraging; vertical migrations.

Introduction

Knowledge of habitat usage of marine animals in terms 
of physiological constraints is of fundamental impor-
tance to understanding and predicting present and future 
distributions of these species. For tunas, physiological 
adaptation as a determinant of distribution has been the 
central focus of several studies, (e.g., Block 1991, Brill 
et al. 1994, Dickson and Graham 2004, Whitlock et al. 
2015). Typically, these studies have required basic data 
on how tunas distribute themselves with respect to tem-
perature and oxygen concentrations at depth (Brill et al. 
2005). However,few studies (Kirby et al. 2000, Whitlock 
et al. 2015) have formally considered tradeoffs between 
physiological constraints and foraging returns.

Vertical migrations between the ocean surface and 
deeper water layers have been observed in many pelagic 
fish (Klimley et  al. 2002, Dagorn et  al. 2006, Thums 
et  al. 2012, Nakamura et  al. 2015). For Bigeye tuna 
(Thunnus obesus), these vertical migrations are particu-
larly striking and well documented (Holland et al. 1992, 
Musyl et  al. 2003). Migration of pelagic food sources 
associated with the deep (or sound) scattering layer has 
been recognised (e.g., Pearcy and Laurs 1966). Studies 
using active acoustic telemetry with simultaneous echo-
sounder measurements of mesopleagic forage biomass 
have noted the associations of Bigeye tuna with the deep 
scattering layer (e.g., Josse et al. 1998). Over long periods, 

bigeye vertical movements conform to the pattern of 
night-time spent close to the surface and day-time resi-
dence between approximately 300–600  m (Musyl et  al. 
2003, Evans et  al. 2008, Schaefer and Fuller 2010). 
Daytime behavior typically displays so-called “u-shaped” 
patterns (Musyl et al. 2003), where periods at depth are 
punctuated by rapid surfacing ascents, followed by 
equally fast descents back into deep water. Deep resi-
dency is associated with a tolerance to prolonged expo-
sure to cold temperature water – Bigeye tuna regularly 
encounter ambient temperatures less than 10◦C and as 
cold as 3◦C (Swimmer et  al. 2004, Evans et  al. 2008). 
These adaptations for tolerance to cold, deep water has 
been suggested as a foraging strategy for avoiding overlap 
with other tunas with similar distribution such as yel-
lowfin (Thunnus albacares) and skipjack (Katsuwonis pela-
mis), which are typically restricted to shallower and 
warmer waters (Lowe et al. 2000, Brill et al. 2005).

While u-shaped behavior has received considerable 
attention in the literature, Bigeye tuna do exhibit a vari-
ety of vertical movement behaviors which tend to be 
related to associations with bathymetric features or 
floating objects (Schaefer and Fuller 2005). Although 
improvements in tagging technology allow ever smaller 
individuals to be studied, there are few data covering 
the whole size range of bigeye and the behavior of bigeye 
smaller than a fork length of 0.6 m is not well known.

Temperature is not the only physical process affecting 
bigeye. For instance, oxygen concentrations may influ-
ence the tuna directly or their prey and thereby contrib-
ute to this surfacing behavior (Dagorn et  al. 2000). 
Oxygen concentrations are likely to determine overall 
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depths rather than surfacing behavior per se. This has 
been hypothesized by comparing fish in the Eastern 
Pacific Ocean, which generally forage at 300–400  m 
during the day; whereas in the Western Pacific Ocean, 
day time depths are typically 500–600 m. In both regions, 
bigeye demonstrate vertical ascents (Evans et al. 2008). 
Therefore, u-shaped migrations are generally attributed 
to thermoregulation.

In common with other endothermic pelagic predators, 
it is thought that bigeye are attempting to maintain high 
muscle temperature and thus increased swimming speeds 
(Watanabe et al. 2015) by a combination of physiological 
and behavioral adaptations. Bigeye increase their rate 
of heat exchange rate during warming, while decreasing 
it during cooling. This is achieved by opening and closing 
of vascular counter-current heat exchangers. Heating 
excursions to the surface can therefore be made relatively 
short (Holland et al. 1992, Malte et al. 2007) while still 
resulting in average body temperature exceeding the 
average ambient temperature. The observed vertical 
behavior of Bigeye tuna can therefore be understood in 
terms of thermal thresholds dictating when the animal 
should stop feeding and travel to the surface to heat up, 
and conversely, when it is warm enough to descend on 
a foraging bout (Maury 2005). The underlying assump-
tion behind such a threshold model, as well as behind 
the thermoregulation hypothesis in general, is that such 
a behavior is advantageous in terms of achieving 
increased overall foraging efficiency. However, the 
assumption of optimality of this thermoregulation strat-
egy has not been tested.

In the absence of physiological constraints, optimal 
foraging theory suggests that bigeye should reside at 
depths where net energy intake is maximised, which 
during daytime is likely to be at the deep scattering layer 
(Josse et  al. 1998, Bertrand et  al. 2002). Being limited 
by their endothermic capacity, however, bigeye face a 
tradeoff between being present where prey is most abun-
dant, and being warm enough to function and capture 
prey effectively. The profitability of warming excursions 
from the food-abundant deep scattering layer to the 
surface hinges on a significant increase in efficiency while 
foraging, and the major cost for the bigeye associated 
with such excursions, is likely to be that of lost oppor-
tunity; time spent warming is time not spent foraging. 
While previous studies (Holland et al. 1992, Lowe et al. 
2000) have examined the physiological mechanics of the 
constraints, they have not attempted to examine if these 
tradeoffs can explain the striking changes in depth that 
bigeye exhibit. The framework of optimal foraging the-
ory (Stephens and Krebs 1987, Houston and McNamara 
1999, Clark and Mangel 2000) can identify behaviors 
which maximize overall foraging efficiency in situations 
where such tradeoffs are present. Although dynamic 
optimization models have been applied to explain tuna 
behavior near ocean fronts (Kirby et al. 2000), they have 
not been applied to the vertical migrations of Bigeye 
tuna feeding on deep scattering layers.

In this paper, our aim is to examine if the observed 
behavior of Bigeye tuna is quantitatively consistent with 
predictions from dynamic optimal foraging theory. We 
formulated a simple model of the energy gains of the 
fish, in which the instantaneous energy harvest rate 
depends not only on prey availability but also on body 
temperature. We make simplistic assumptions about the 
prey field, the temperature structure of the tuna and 
linkages between these and foraging success. We then 
pose an optimization model which identifies those 
behavioral strategies, i.e., those vertical movements, 
which result in the highest long-term energy harvest. We 
calibrate the model against a particular data set and 
compare the predicted behavioral patterns with those 
observed.

Data, Model and Analysis

Bigeye vertical movement data

Model predictions were qualitatively compared to 
data that were derived from archival tags implanted in 
the peritoneal cavity of juvenile bigeye in the northern 
Coral Sea in the western Pacific Ocean. See (Evans et al. 
2008) for full details of tagging procedures and data 
collected. We focus on one particular individual, tagged 
with tag 99-216, which was released on October 13, 1999, 
at 16.03S, 146.53E, and for which 205 d of data were 
obtained. This individual had a length to caudal fork of 
91  cm at the time of tagging. We base the model cali-
bration on this particular individual and the particular 
time window displayed in Fig. 1, chosen arbitrary among 
those individuals and time periods where behavior was 
consistent for consecutive days.

Model formulation

Our model of a tuna and its energy harvest follows 
the state space approach to dynamic optimization 
(Houston and McNamara 1999, Clark and Mangel 
2000). The key relationships in the model components 
are depicted in Fig. 2.

The tuna is represented with two state variables, viz. 
its depth Z(t) and its body temperature, T(t), for each 
time t. Both time domain and state space are continuous. 
We ignore internal temperature differences and treat the 
bigeye as a body of uniform temperature. The basic 
model consists of two coupled ordinary differential equa-
tions governing the dynamics of these state variables:

Here, U(T) is swimming speed, which depends on the 
tuna's instantaneous body temperature T (Fig. 2, bottom 
left). We do not consider the problem of optimal choice 
of swimming speed. The pitch angle Φ(t) is the angle at 

(1)Ż(t)=U(T(t)) ⋅sinΦ(t)

(2)Ṫ(t)=h(Ta(Z(t))−T(t))
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time t between the tuna's velocity vector and horizontal, 
with Φ > 0 when the tuna descends. At each instant t, 
the tuna is free to choose its swimming direction Φ(t); 
our main contribution is to derive the optimal choice of 
Φ in each possible state of the bigeye and thus the opti-
mal vertical migrations. The heating rate h is assumed 
to depend only on the temperature difference Ta − T  
between ambient water and body (Fig. 2, bottom right). 
The ambient temperature Ta(z) depends on the depth 
(Fig. 2, top right).

We assume that the tuna behaves such as to maximize 
its average energy acquisition by feeding, the instanta-
neous rate Ė(t) of which is given by

Here, ρ(z) measures energy harvested per distance trav-
eled, and depends on instantaneous depth z  =  Z(t) 
(Fig. 2, top left). This form equates energy harvest with 
a weighted swept volume and therefore ignores the spe-
cifics of prey encounter and capture. The inclusion of the 
term  cos Φ(t) implies that the tuna does not feed while 
it is migrating vertically, so effectively forces the bigeye 
to choose between migrating vertically and harvesting at 
its current location. The specific choice of a cosine func-
tion is arbitrary, but implies technical simplification since 
it matches the sine function in (1); see Appendix S1.

Model components and parameterization

In the following we go through the details of the model 
components. Specific parameter values are given in 
Table 1 and are found by calibrating the model against 
observed behavior as in Fig. 1.

Temperature profile.—The (ambient) temperature profile 
of the water column follows the model given by Maury 
(2005), where the temperature Ta(z) at depth z is written

See Fig. 2, top right. Here, T0 is the surface temper-
ature, zclin controls the depth of the thermocline, ΔTclin 
governs the temperature drop over the thermocline, and 
p is the asymptotic temperature gradient −�Ta∕�z far 
below the thermocline. The dimensionless parameter λ 
controls the sharpness of the thermocline, i.e. large λ 
implies a sharp transition. These parameters are tuned 
by hand to match the calibration data included in Fig. 
2, top right, obtained from tag 99-216 (Evans et al. 2008) 
on a selected day, April 11, 2002.

Food distribution.—Several studies (e.g., Josse et  al. 
1998, Bertrand et al. 2002) have provided empirical evi-
dence for bigeye associating with the deep scattering lay-
er (DSL) during daytime. For simplicity and generality, 
we postulate a simple bell-shaped vertical distribution of 
food availability ρ(z):

See Fig. 2, top left. We assume a constant environ-
ment, i.e. ρ does not depend on time; this profile reflects 
daytime conditions. We define food availability as 
energy harvested per distance traveled, which combines 
prey density, energy contents of prey, detection distance, 

(3)Ė(t)=ρ(Z(t)) ⋅U(T(t)) ⋅cosΦ(t)

Ta(z)=T0−(p ⋅z+ΔTclin) ⋅
zλ

zλclin+zλ

ρ(z)=ρ0+(ρm−ρ0) exp

(

−
1

2

(z−zS)
2

σ2

)

Fig. 1.  Example of time series obtained from archival tag on Bigeye tuna. Top panel: Depth. Middle panel: Ambient water 
temperature. Bottom panel: Body temperature. Data from tag 99-216 (Evans et al. 2008) in April, 2002.
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and capture success. We focus on relative energy harvest 
between different migration patterns and do not attempt 
to assign an absolute value to energy harvest, so we 
assume that the maximum availability equals ρm = 1 m−1. 
We set the depth of maximum food availability to 
zS = 450  m to match the prevalent position of the fish 
during dives; see Fig. 1. The width of the DSL is set to 
2σ = 50 m which matches the spread in dive depths as 
derived from tag data. Both the depth zS and the width 
2σ compare to typical features of DSL's. ρ0 is the relative 
food availability far from the DSL, assumed constant 
and equal to ρ0 = 0.4 ρm to ensure that staying at the 
surface is in fact an alternative to targeting the DSL.

Thermodynamics.—The thermodynamic model is a sim-
plification of (Brill et al. 1994), in that our model ignores 
temperature differences inside the body of the tuna and 
represents its thermal state with one body temperature 
T(t). The function h, appearing in (2) and determining 

the heating rate of the tuna, is depicted in Fig. 2, bottom 
right, and has the particular form:

where ΔT = Ta−T  is the difference from body temper-
ature to ambient water temperature. This form ignores 
internal heat production, as h(0)=0, and is a hyperbolic 
transition between two linear responses, characterized 
by a high heat exchange rate kh when heating and a low 
heat exchange rate kl when cooling. The tuna obtains 
this transition by mediating the efficiency of its vascular 
counter-current heat exchangers. The width of the tran-
sition zone is given by τ = 0.2◦C and is so small that the 
relationship appears almost piecewise linear.

The specific values of kh, kl and τ are given in Table 1. 
These parameters are set by calibrating cooling and heat-
ing profiles against data from tag 99-216 as in Fig. 1. 

h(ΔT)=
1

2

(

(kh+kl) ⋅ΔT+(kh −kl)

√

(ΔT)2+τ2

)

Fig. 2.  Key functional dependencies in model. Top left: Hypothesized distribution of available food in the water column, 
mimicking daytime conditions. Top right: Temperature profile of the water column. Included are data points obtained from tag 
99-216 on April 11, 2002. Bottom left: Hypothesized swimming speed as function of body temperature. Bottom right: Hypothesized 
heating rate as function of temperature difference. Solid: A bigeye of fork length 0.91 m. Dashed: A bigeye of fork length 0.5 m for 
which the cooling rate is identical to the heating rate.
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The time constant of cooling, 1∕kl = 100 min, is longer 
than the cooling times reported by Malte et al. (2007); 
the difference could possibly be explained by our model 
not including internal heat production which would slow 
down cooling. The time scale of heating, 1∕kh = 10 min, 
results in a ratio kh∕kl = 10 which is consistent with the 
findings of Malte et al. (2007).

For a smaller individual of fork length 0.5  m, we 
assume that the heating rate is unchanged (Malte et al. 
2007), but hypothesize that the counter-current heat 
exchange system has not yet developed. Therefore it has 
a cooling time which is identical to the heating time, i.e., 
an entirely linear response (Fig. 2, bottom right).

Note that the exchange rates k depend only on instan-
taneous temperatures, i.e. the fish is able to alter its k 
instantaneously in response to temperature changes. 
Although this is not strictly realistic, Holland et al. (1992) 
suggested that the response time of the fish was approx-
imately 45 s. As the sampling interval between data points 
used to inform the models was 4  min, there should be 
no need to include the response time of the fish.

Swimming speed.—We assume that swimming speed de-
pends only on fork length L and body temperature T. 
The exact functional form of this dependence is not well 
known, so we assume a simple form

Here Td = 11◦  C is the minimum body temperature 
required by the bigeye to maintain swimming. When 
T ≤ Td, we assume that the fish is stationary, U  =  0. 
Since this implies that the fish cannot move back to 
warmer waters layers, Td serves as a lower limit of the 
range of body temperatures and the optimal behavior 
will avoid reaching this limit. (See Fig. 2, bottom left.) 
At high temperatures, the swimming speed is uncon-
strained by body temperature and equals Um = 2 fork 
lengths per second. The parameter λ = 0.75◦C−1 controls 
the width of the temperature range where swimming 
speed is limited by body temperature.

The optimization problem

We assume that the tuna chooses its trajectory, i.e., 
the pitch angle Φ(t) as a function of time t, in order to 
maximize the total harvested energy E(t1)−E(t0) over a 
long time interval [t0, t1]. The terminal time t1 can for 
example be thought of as the time of sunset when bigeye 
have been observed to switch from deeper daytime 
depths to shallower nighttime depths (e.g., Evans et al. 
2008). This optimal energy harvest will depend on the 
initial time t = t0 and the initial state z = Z(0), T = T(0), 
and can hence be written V(z, T, t). It follows from the 
theory of dynamic optimization (Bertsekas 2005) that 
this so-called value function V satisfies the Hamilton–
Jacobi–Bellman equation

In common with ecological literature on dynamic 
programming (Houston and McNamara 1999, Clark 
and Mangel 2000), we denote this value function as the 
“fitness function.” This should not be taken too literally, 
but the underlying argument is that energy harvested 
may ultimately be invested in reproduction, and the 
nomenclature also highlights that the animal behaves 
such as to maximize fitness, which in this particular sit-
uation amounts to forage as efficiently as possible. We 
focus on the long-term situation, where the fitness func-
tion can be written

Here, γ is the long-term average rate of energy acqui-
sition, while V0(Z, T) is a correction to the average energy 
harvest γ ⋅ (t1 − t0) depending on the current state. We 
solve the Hamilton–Jacobi–Bellman equation numeri-
cally to find V0 and γ. From the solution, we can construct 
the optimal pitch angle Φ as a function of depth Z and 
temperature T, which allows us to solve the differential 
Eqs (1) and (2), numerically and thus obtain trajectories 
of depth and body temperature. See Appendix S1 for 
further details on the analytical and numerical steps 
involved in this.U=Um ⋅L ⋅ (1−exp (−λ(T−Td)) when T≥Td

(4)
𝜕V

𝜕t
+sup

ϕ

[

𝜕V

𝜕z
Ż+

𝜕V

𝜕T
Ṫ+ Ė

]

=0

V(Z,T,t0)=V0(Z,T)+γ ⋅ (t1 − t0)

Table  1.   Model parameters, calibrated against tag 99-216 
(Evans et al. 2008).

Symbol Parameter
Default 
value Unit

T
0

Surface temperature 28 ◦C
z

clin
Depth of thermocline 160 m

ΔT
clin

Temperature drop over 
thermocline

8 ◦C

p Temperature gradient below 
thermocline

0.02 ◦C/m

λ Sharpness of thermocline 5 −−
z

S
Depth of peak food density 450 m

σ Thickness of food layer 25 m
ρ

m
Peak food abundance in the deep 

scattering layer
1 m

−1

ρ
0

Food abundance far from the 
deep scattering layer

0.4 m
−1

L Fork length 0.91 m
k

l
Heat exchange rate while cooling 0.01 min

−1

k
h

Heat exchange rate while heating 0.1 min
−1

τ Range of transition between k
l
 

and k
h

0.2 ◦C

U
m

Maximum swimming speed in 
fork lengths

2 s
−1

T
d

Temperature below which the fish 
stalls

11 ◦C

λ Sensitivity of speed to 
temperature

0.75 ◦

C
−1
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Results

Periodic optimal trajectories

We now consider the particular set of parameters in 
Table 1, which was obtained by calibrating the model 
against data from tag 99-216. The resulting optimal tra-
jectories are periodic, where a cycle consists of heating 
at the surface, diving to the DSL, feeding while cooling, 
and then resurfacing to heat again in a new cycle (Fig. 3, 
right).

For these parameters, a long-term average rate of energy 
harvest of γ = 1.64 s−1 is calculated. To interpret this 
result, a theoretical upper bound of Um ⋅L ⋅ρm = 1.82 s−1 
would be obtained if  the tuna was able to feed contin-
uously at the deep scattering layer at its maximum swim-
ming speed, i.e. unconstrained by temperature. The 
predicted overall feeding rate achieved by the optimal 
behavioral strategy is therefore 90% of the theoretical 
upper bound.

The fitness function V0(z, T) is shown in Fig. 3 (left). 
Recall that it is optimal for the tuna to move vertically 
towards regions with higher fitness. When the tuna is 
warm, the optimal behavioral choice is therefore to dive 
to the depth where food is most available and thus start 
foraging. Conversely, for a cold tuna, the fitness is higher 
at the surface than at depth, and the optimal choice is 
to ascend to the surface. It is this difference that causes 
the optimal trajectories to be oscillatory, as seen in Fig. 
3 (right). This “quiver” plot displays the flow field in 
state space that an optimal tuna follows. Included is one 
optimal trajectory, where the tuna initially is at the sur-
face in thermal equilibrium, then dives and initiates 
foraging. Note that the state of the bigeye then very 
quickly approaches a limit cycle.

The predicted optimal trajectories are seen as time 
series in Fig. 4, left. Included is also actual time series 

obtained from tag 99-216 on April 11, 2002. Qualitatively, 
there is a high degree of agreement between model pre-
dictions and observations in terms of temperature 
thresholds, and consequently also in terms of depth 
range and duration of the cycle.

Some detailed features in the data are not reproduced 
by the model. Most notably, at the start of this window 
of the time series, the sun rises and light penetrates grad-
ually down the water column, while the deep scattering 
layer migrates down, causing the tuna to also descend 
gradually. A similar phenomenon can perhaps explain 
the slightly shallower dive at the end of the window, at 
dusk. These features are not included in the model, 
which assumes a stationary environment. In addition, 
the model does not predict the exact timing of the sur-
facing events, but rather a thermal range: When the tuna 
cools to the lower limit of this ranges, this initiates the 
surfacing. We see that this thermal range is predicted 
quite accurately.

Size-induced changes in behavior

Examining the effect of the fork length on predicted 
dynamics, we assumed that smaller bigeye are unable to 
control their heat exchange rates and therefore has a 
linear thermodynamic response (Fig. 2, bottom right). 
Further, smaller bigeye swim slower since swimming 
speed scales with body length. Thus foraging at depth 
is less profitable for smaller bigeye, and at some critical 
length vertical migrations are inferior to staying at the 
surface. Fig. 4, left panels, include optimal trajectories 
for a bigeye of fork length 0.5  m (dashed lines). The 
surface strategy adopted by this fish yields a feeding rate 
which is 40% of the theoretical upper bound. The tran-
sition between u-shaped behavior and surface dwelling 
was predicted to occur near a fork length of 0.55  m. 

Fig. 3.  Left panel: Fitness landscape on state space: Contour plot of the fitness function V
0
(z, T) for reference parameters. 

Right panel: Phase portrait of the optimal dynamics. Included is one optimal trajectory starting in thermal equilibrium at the 
surface.
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Since the model is calibrated only against larger bigeyes, 
this value is unlikely to be very accurately determined.

Discussion

With little calibration, our optimization model yields 
predictions that are consistent with observed patterns of 
daytime behavior in bigeye. Large individuals are pre-
dicted to feed in the deep scattering layer but feeding is 
punctuated with warming ascents. Periods, thermal 
ranges, and depth ranges of the resulting pattern are 
consistent with observations.

For smaller tuna (<0.55 m) the model predicts a ver-
tical distribution constrained to warmer surface waters. 
This difference in predicted behavior between small and 
large bigeye is due to different swimming speeds, cooling 
rates, and our assumption that small bigeye cannot ther-
moregulate as efficiently. The diving behavior of small 
bigeye is poorly known and the smallest individual in 

the data base for this study had a fork length of 77 cm 
(Evans et al. 2008). While it is thought that small bigeye 
are more associated with surface depths, and indeed are 
caught by purse seine fisheries when in mixed surface 
schools with skipjack and yellowfin, it is not know at 
which size the transition from near continuous surface 
orientated behavior to the u-shaped diving occurs. A 
further complication is that this transition will also be 
affected by the temperature profile and the vertical dis-
tribution of prey at the given location. Recent develop-
ments in tags allow smaller individuals to be tagged, and 
it must be anticipated that further data on smaller Bigeye 
tuna will be available, allowing this question to be 
elucidated.

Most importantly, the predicted behavioral choices 
largely agree with observed behavior; this emergent 
behavior does not follow directly from model calibration 
but testifies that the model captures essential tradeoffs 
faced by the bigeye, despite model simplicity. We discuss 
the most important simplifying assumptions below.

Time horizons and stationarity

Here, we have assumed a stationary environment; in 
effect an infinitely long day. It is interesting to consider 
the effects of including a repeating sequence of night, 
dawn, day, and dusk. Such a model would include diel 
changes in light levels and thus visual ranges, which trig-
ger a diel migration of the deep scattering layer, where 
zooplankton and forage fish (e.g., myctophids) migrate 
to surface waters at night and to deeper waters at night, 
driven by predator avoidance. (See Mangel and Clark 
1988 for an example involving zooplankton, and 
Sainmont et  al. 2013 for a framing as a game between 
predators and prey.) At night, food abundance would be 
highest in the optimal thermal habitat, and the tradeoffs 
which constrain the vertical movements during the day-
time would disappear, resulting in an obvious surface 
behavior during the night without behavioral thermoreg-
ulation. Meanwhile, the daytime results would be mostly 
unchanged from the present study, although one would 
expect slight deviations from the stationary strategies at 
dawn and dusk. For example the bigeye could potentially 
prolong the last dive undertaken during the day, knowing 
that night is approaching and therefore it would not 
obtain full advantage from a heating excursion.

U-shaped behavior is not ubiquitous

In reality, bigeye do not always undertake the u-shaped 
vertical movements considered in this model but demon-
strate variable vertical behavior (e.g., Schaefer and Fuller 
2002, Musyl et  al. 2003, Evans et  al. 2008). Bigeye are 
known to associate with seamounts or floating objects 
(Robert et  al. 2014) for extended periods, and during 
these associations they tend to remain more surface ori-
entated, even if the precise reasons for this behavior is 
unknown and debated (Fréon and Dagorn 2000).

Fig. 4.  Time series of depth (upper panel) and body 
temperature (lower panel). Predictions from the optimization 
model for an individual of fork length 0.91 m (solid) and 0.5 m 
(dashed). Included is also observed time series (dotted) from the 
individual tagged with tag 99-216 on April 11, 2002 (Evans et al. 
2008).
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Additionally, it is possible that particular feeding 
bouts could be so successful that the tuna cannot feed 
any further. This could negate its need to continue feed-
ing in what is an otherwise physiologically stressful envi-
ronment at depth, and instead cause the tuna to stay in 
warm surface waters to accelerate digestion. Studies 
which correlate fine scale movement behavior and feed-
ing activity are unavailable for bigeye, but do exist for 
other species including juvenile bluefin tuna where a 
post-prandial digestion signal can be discerned from 
archival tags (Bestley et  al. 2010, Clark et  al. 2010, 
Whitlock et al. 2013). The development of endothermic 
capacity in the vascular physiology of bigeye is consid-
ered intermediate between yellowfin tunas and the blue-
fin species, and they do not appear to display a visceral 
warming signal like bluefin (see Malte et al. 2007, for a 
comprehensive discussion of the differences between 
bigeye and other tuna species).

Swimming energetics and heat losses

The energetic model here is simplistic in that it includes 
only feeding uptake and excludes both heat loss and 
swimming energetics. Constructing a full energy budget 
would be challenging because it would require absolute 
estimates of contributions to the energy budget, not just 
relative ones. i.e., how many joules are gained from feed-
ing, how much is lost due to swimming, how much is lost 
due to cooling? However, obtaining such data would be 
difficult and would require strong assumptions about the 
proportion of particular prey in each feed and its energetic 
value. Moreover, even if sufficient data were available, 
we might only be able to reach the obvious conclusion 
that migrations would only be optimal if sufficient food 
is present at depth. We note that heat losses and swim-
ming energetics may be important terms in the energy 
budget of the tuna, and therefore important to include 
when scaling up the results to energetics of the population, 
even if this study has demonstrated that the model can 
be calibrated to match data without these terms.

Un modelled physiological constraints:  
oxygen concentration

Ambient oxygen concentrations are known to impact 
cardiac performance in tunas, even if empirical data on 
oxygen tolerances of bigeye, and physiological response 
to hypoxia, are few (Bushnell et al. 1990, Brill 1994). While 
oxygen concentration generally decreases with depth, big-
eye have been found to spend time in water with oxygen 
levels down to 1 mL O2/L (Musyl et al. 2003, Evans et al. 
2008), and bigeye are not likely to experience limiting 
oxygen concentrations in their diving range (Gunn et al. 
1999, Musyl et al. 2003) outside the eastern Pacific Ocean, 
where the oxygen minimum zone is shallower than in 
other parts of the Pacific Ocean. Therefore we did not 
include oxygen requirements and availability in our model 
even if including this element could expand the range of 

applicability of our model. Although both temperature 
and oxygen divide the water column into a more suitable 
surface habitat and a less suitable deep habitat, the 
dynamic responses and the associated costs differ, and 
further studies are required to investigate the extra eco-
logical insight that could be gained by such a model.

Deep scattering layer characteristics

The depth of the deep scattering layer varies depend-
ing on local conditions (Powell and Ohman 2015) and 
season (Wang et  al. 2014). The distribution of food 
resources over the water column, and in particular the 
food availability in the deep scattering layer relative to 
the surface, will vary in reality and was simply postulated 
here. During initial experiments with the model, varying 
the parameters describing the food distribution, we 
found that the optimal bigeye consistently targets the 
depth of maximum food availability during dives, when-
ever the optimal behavior is u-shaped, and that the width 
of the DSL has little impact. In principle, characteristics 
of the back-scattering signals may provide empirical 
support for this, and overlap between bigeye and DSL 
has been observed (Josse et al. 1998). However, quanti-
tative data associated with the expansive habitats which 
bigeye occupy are lacking.

Fixed depth/temperature relationship

Similarly, the depth/temperature relationship consid-
ered here, while derived from data collected by from a 
tagged bigeye, does not consider the range of conditions 
that bigeye encounter. It is possible that changes to the 
surface temperature or mixed-layer depth could induce 
changes in vertical behavior. A sensitivity study of the 
model could ascertain how much difference this makes.

Variability between individuals

Besides environmental variability, also individual 
characteristics influence the tunas ability to forage at 
depth. Here, we only investigated the effect of swimming 
speed as controlled by individual size, but variability in 
all parameters must be expected even between individ-
uals of the same size. It is not clear to what degree 
variability in vertical movements is derived from differ-
ence between individuals, and how much is derived from 
differences between habitats characteristics. Further 
studies involving sensitivity analysis as well as calibra-
tion against different data sets could illuminate this.

Comparisons with observations

Our comparisons to observations in this study have been 
limited to a small snapshot of bigeye diving behavior. While 
this is a restricted and informal test of the model, our aims 
were simply to examine the general dynamics of the model 
system, given our assumptions about physiology, habitat, 
and objectives of bigeye. Our modeling was successful in 
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replicating empirical observations of daytime vertical 
movement behavior of bigeye. Further work is required to 
examine how the model performs when different individ-
uals are exposed to similar ocean regimes, or the same 
individual is exposed to different ocean regimes. To this 
end, it would be better to estimate model parameters from 
data, rather than assume them or calibrate them by hand. 
Such models could be specified in a hierarchical fashion 
(e.g., see Gelman et al. 2014, for a general text), with dis-
tributions on model parameters accounting for variation 
between individuals. However, it remains unclear how to 
best estimate parameters in dynamic optimal foraging 
models, utilizing data sets obtained with modern animal 
tagging technology. Doing so is a large research enterprise 
well beyond the scope of the current paper, but a highly 
interesting direction for future developments.

Conclusion

This paper has presented a dynamic optimal foraging 
model of Bigeye tuna that successfully reproduces 
observed behavior. Dynamic programming was used to 
derive optimal vertical strategies given models of tem-
perature at depth, the location of the deep scattering 
layer, and size-dependent swimming efficiency and ther-
modynamics. This has allowed a qualitative evaluation 
of the tradeoffs made by foraging bigeye and how these 
are influenced by size. The model predicts that smaller 
fish adopt surface-oriented strategies while larger fish 
initiate behavioral endothermy through spike warming 
ascents. We have discussed how our model could be 
extended and further compared with data. Two recent 
reviews have highlighted the need for further understand-
ing of tuna behavior for management (Evans et al. 2015, 
Young et al. 2015). Developments built upon the approach 
considered here should facilitate the construction of more 
biologically realistic process models of tuna behavior and 
movement, and ultimately may aid in prediction of tuna 
behavior in changing ocean environments.
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