

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 18, 2017

A heuristic and hybrid method for the tank allocation problem in maritime bulk
shipping

Vilhelmsen, Charlotte; Larsen, Jesper; Lusby, Richard Martin

Published in:
4 O R

Link to article, DOI:
10.1007/s10288-016-0319-x

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Vilhelmsen, C., Larsen, J., & Lusby, R. M. (2016). A heuristic and hybrid method for the tank allocation problem
in maritime bulk shipping. 4 O R, 14(4), 417–444. DOI: 10.1007/s10288-016-0319-x

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/83998787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10288-016-0319-x
http://orbit.dtu.dk/en/publications/a-heuristic-and-hybrid-method-for-the-tank-allocation-problem-in-maritime-bulk-shipping(2bab0519-2eb0-4fac-a1a3-538aa58bcf7e).html

A Heuristic and Hybrid Method for the Tank Allocation

Problem in Maritime Bulk Shipping

Charlotte Vilhelmsen Jesper Larsen Richard Lusby

Abstract

In bulk shipping, ships often have multiple tanks and carry multiple inhomogeneous products
at a time. When operating such ships it is therefore a major challenge to decide how to best
allocate cargoes to available tanks while taking into account tank capacity, safety restrictions,
ship stability and strength as well as other operational constraints. The problem of finding
a feasible solution to this tank allocation problem has been shown to be NP-Complete. We
approach the problem on a tactical level where requirements for computation time are strict
while solution quality is less important than simply finding a feasible solution. We have
developed a heuristic that can efficiently find feasible cargo allocations. Computational results
show that it can solve 99% of the considered instances within 0.4 seconds and all of them if
allowed longer time. We have also modified an optimality based method from the literature.
The heuristic is much faster than this modified method on the vast majority of considered
instances. However, the heuristic struggles on two instances which are relatively quickly
solved by the modified optimality based method. These two methods therefore complement
each other nicely and so, we have created a hybrid method that first runs the heuristic and if
the heuristic fails to solve the problem, then runs the modified optimality based method on
the parts of the problem that the heuristic did not solve. This hybrid method cuts between
90% and 94% of the average running times compared to the other methods and consistently
solves more instances than the other methods within any given time limit. In fact, this hybrid
method is fast enough to be used in a tactical setting.

1 Introduction

Every year 8.7 billion tons of goods or equivalently 80% of world trade by volume is carried by
ships (UNCTAD, 2012). This translates into well over a tonne of cargo for every single individual
on the planet, every single year, and the global economy therefore depends on the international
shipping industry’s efficiency and competitive freight rates. Hence, research to increase efficiency
within maritime transportation is important, and, taking the mere size of this huge industry into
consideration, even small improvements can have great impact.

In this paper we consider bulk shipping, both wet and dry. Many bulk ships have multiple
tanks and can thereby carry multiple inhomogeneous products at a time. Two examples of such
ships are oil product tankers and chemical tankers. A major challenge when operating such ships
is how to best allocate cargoes to available tanks while taking tank capacity, safety restrictions for
onboard cargoes, ship stability and strength as well as other operational constraints into account.
The complexity of the allocation problem varies with the number of tanks and the number and
type of different products transported simultaneously. A chemical tanker can for instance have
as many as 50 different tanks and hazmat (hazardous materials) regulations play a major role
when allocating the products to the different tanks. E.g. products in neighboring tanks must
be non-reactive and incompatible products must not succeed each other in a tank unless it is
cleaned (this can be costly). The regulations on product succession mean that we need to keep
track of previous tank allocations and that decisions at any voyage leg affect decisions at future
voyage legs complicating the problem even further. Often it is not allowed to move a cargo once
it has been allocated to tanks and then this interdependency between voyage legs becomes even
stronger. Taking stability, safety restrictions and other operational constraints into consideration
it can therefore be extremely difficult, if not impossible, to find a feasible allocation for a given set

1

of cargoes. In fact, Hvattum et al. (2009) show that the problem of finding a feasible solution is
NP-Complete.

The Tank Allocation Problem (TAP) as described above is an operational planning problem and
so, it is normally solved for a given route, i.e. after the fleet routes and schedules have been created.
However, separating these two planning problems means that we can potentially create routes and
schedules for which no feasible tank allocation exists. Therefore, for bulk fleets the tank allocation
aspect should be included in the routing and scheduling phase of planning. Tank cleaning costs
and other costs related to tank allocations are insignificant compared to the profits from carrying
cargoes. Hence, at the tactical planning level where routes and schedules are determined, we can
simplify the tank allocation aspect by ignoring the allocations costs and simply focus on finding a
feasible allocation. Note that this also means that we can refrain from keeping track of past cargo
allocations since we can just assume that all tanks are cleaned.

Within shipping and many other areas, routing and scheduling problems are often solved in
a way that requires assessment of numerous routes, as for instance in column generation and
local search based methods. For each considered route, the TAP must be solved to assess route
feasibility with respect to stowage. The solution time for the entire procedure will therefore only
be acceptable if the TAP can be solved efficiently. Furthermore, uncertainty plays a big part in
maritime optimization where planners face a constantly changing environment with large daily
variations in demand and many unforeseen events and so, it is often necessary to re-plan routes
and schedules continuously to accommodate new cargoes and changes to existing plans. In effect,
this means that the TAP must be solved repeatedly and that the requirements for computation
time are strict.

Bulk operators of large and even medium size can easily have fleets with more than 25 ships.
Since these ships carry multiple cargoes onboard simultaneously, the combinatorial puzzle associ-
ated with routing the ships is much larger than for ships sailing full shiploads, i.e. just one cargo
onboard at a time. Thereby, there can be easily be more than 200 routes to evaluate for each
ship and so, it is necessary to assess feasibility with respect to stowage for at least 25 · 200 = 5000
routes. If we allow a run time of up to just 0.25 seconds, assessing feasibility for these routes can
alone take 0.25 · 5000 = 1250 seconds, i.e. 21 minutes. Hence, if we want to develop a method that
is applicable to bulk operators of all sizes, the requirements for computation are quite strict.

Hvattum et al. (2009) find that constraint programming fails to solve the TAP mainly because
of the stability constraints. Instead they provide a mixed integer programming formulation for the
problem and use a commercial solver to solve it. However, their running times are much too long
to allow this method to be used in a tactical setting and they specifically advocate for development
of a heuristic method for determining feasibility of the TAP. In this paper, we update and modify
their method and this yields a significant improvement on running times. However, even with
this improvement running times are still a bit too long. Neo et al. (2006) solves the integrated
problem of routing a fleet of multi-compartment tankers with the tank allocation aspect included.
They present an integer programming model for this problem and use a commercial solver to solve
it. However, even for a small instance with just a single ship and only 10 potential cargoes, they
report running times above 18,000 seconds. The aim of our work is therefore to develop a heuristic
method that can facilitate the incorporation of the tank allocation aspect into the routing and
scheduling planning phase by efficiently finding feasible cargo allocations for given ship routes.

In this paper we explore the TAP from a tactical perspective where the main objective is to
quickly assess feasibility of a given ship route rather than finding an optimal tank allocation. Our
main contribution is a heuristic solution method for efficiently finding feasible cargo allocations.
Computational results show that it can solve 99% of the considered 486 instances within 0.4 seconds
and all of them if allowed longer running time. The heuristic does however struggle on two instances
causing an overall longer average running time than found with an optimality based method from
the literature. However, when running time is below 10 seconds, our heuristic clearly outperforms
the optimality based method by consistently solving more instances. Two further contributions of
this work are therefore the modification of this optimality based method and a hybrid method that
combines the developed heuristic with this modified method. Computational results show that on
the considered instances this hybrid method cuts between 90% and 94% of average running times
compared to the other methods and consistently solves more instances than the other methods
within any given time limit. The average running time for the hybrid method is just 0.027 seconds.

2

Hence, we have developed a solution method that is efficient enough to allow the inclusion of the
tank allocation aspect into the routing and scheduling phase.

The remainder of the paper is organized as follows. Section 2 gives an overview of existing liter-
ature related to the TAP while Section 3 provides a problem description as well as a mathematical
model for the problem. The devised heuristic is described in Section 4, while section 5 describes
the data used to evaluate its performance. In Section 6 we tune the heuristic and in Section 7
we compare it to an optimality based method and a modified version of this method. Further,
we explore the effect of combining our heuristic with the modified version of the optimality based
method. Finally, concluding remarks and suggestions for future work are discussed in Section 8.

2 Literature Review

A simple variant of the TAP is introduced in (Vouros et al., 1996). Here an expert system is
presented for the task of allocating cargoes to a ship for one port. Given the current configura-
tion, the aim is to find the best possible way to load a cargo onboard the ship adhering to ship
stability constraints and hazmat rules. The paper only describes the approach, neither testing nor
implementation details are presented.

Hvattum et al. (2009) first formally describe the variant of the TAP that we base our work
upon. They solve their mixed integer programming formulation with a commercial solver but
report running times that are far beyond what would be acceptable in a tactical setting. They also
try to solve the problem using constraint programming. However, their constraint solver failed to
find a feasible solution to even one of the instances. Therefore, they note in their conclusion that
a heuristic method for this problem is of interest.

The first description of the routing problem for multi-compartment tankers is given in Jetlund
and Karimi (2004). This paper presents the problem of optimising the route of a single multi-
compartment tanker as well as a fleet of ships. Although the paper presents the routing problem for
a multi-compartment tanker, the tank allocation component is omitted according to the authors
because it is not important when looking at the problem from a strategic setting. An integer
programming model for both a single ship and for a whole fleet is proposed and solved using a
commercial solver. Important problem characteristics such as cargo compatibility and ship stability
are not mentioned in this paper but are part of Neo et al. (2006). Here an integer programming
model is also the main contribution. Now the model includes the aforementioned constraints on
cargo compatibility and ship stability. It is solved using a commercial solver and exhibits very large
running times. For a single ship, 10 compartments and 10 potential cargoes, running times are
above 18,000 seconds. In the same line of research, Coccola and Mendez (2013) consider basically
the same integer programming model as in the previous papers. This approach does not take
ship stability and hazmat constraints into consideration. The paper contains the description of an
iterative heuristic aimed at situations where excessive running times prohibit optimisation for an
entire fleet. The problem is decomposed into single ship problems and cargo conflicts are resolved
solving a 2-ship problem in an iterative manner. Authors report a 40% improvement in profit over
the manual plan on a single instance and a “significant” improvement over “other” approaches.

Kobayashi and Kubo (2010) consider a tanker problem, though without hazmat and stability
constraints. They decompose the problem into a tank allocation problem and a routing prob-
lem. Both are modeled and solved as set partitioning problems, but for the routing problem the
number of columns necessitates column generation. Using column generation to solve the Linear
Programming (LP) relaxation, an integer solution is afterwards found by branch-and-bound. In
addition, Wu et al. (2011) describe a decision support system (DSS) that includes the relevant real
life constraints and a graphical user interface to deliver a real-life applicable DSS. The optimisa-
tion is based on a relatively simple heuristic but includes routing and allocation constraints in an
integrated fashion. The inclusion of hazmat constraints is, however, not obvious and the method
only works by inserting new cargoes to an existing schedule. Oh and Karimi (2008) also describe a
DSS. They assume ship stability can always be achieved by using ballast tanks. They optimise for
a fleet of multi-compartment tankers by decomposing the problem into a tank allocation problem
and a routing problem. A simple enumerative approach is used for generating routes for the set
partitioning problem. Cargo allocation is done using a heuristic which is not described in any

3

detail.
The above papers allow cargoes to be picked up or rejected, which implies profit maximisation

instead of a feasibility focus. In contrast, Schaus et al. (2012) assume a fixed route, just as (Hvattum
et al., 2009), and also focus on feasibility. They consider a set of cargoes to be allocated without
any notion of route and therefore loading and unloading along the route. The paper does not look
at ship stability but does incorporate hazmat constraints, compatibility with previous cargoes, and
the sealing on the tanker walls in a constraint programming approach.

In (Fagerholt and Christiansen, 2000) a tramp ship problem with adjustable compartments
is discussed. Here the cargo hold can be partitioned into smaller holds by inserting bulkheads
at a discrete number of positions. The problem is a combined routing and allocation problem
for a fleet of ships but ship stability and hazmat constraints are not considered. The solution
approach is based on an iterative heuristic using a priori generation and dynamic programming to
determine the optimal schedules. Each iteration uses a variant of the Traveling Salesman Problem
(incorporating allocation, time windows and precedence constraints) to construct ship routes.

Another important maritime stowage problem is the container stowage problem found in liner
shipping. The two problems share some of the same components such as ship stability and spatial
separation requirements for dangerous goods. Also, finding a feasible stowage plan is often more
important than finding an optimal one. However, there are important operational differences that
call for tailor made solution methods for each of these shipping segments. To mention a few, we
note that container stacking calls for efficient cargo handling to minimize container shifting when
loading and unloading and this is of course not an aspect in bulk shipping. On the other hand,
in the container stowage problem there is no need to consider individual tank constraints, such as
e.g. tank capacity and tank coating. For further information on the container stowage problem
and solution approaches see e.g. (Martin et al., 1988; Wilson and Roach, 2000).

Transportation in compartments also exists in road transport. Most applications come from dis-
tribution of petroleum products; other examples are waste collection and food. In road transport,
compartments can be fixed in size or flexible. In (Derigs et al., 2011) a survey and computational
comparison of current literature within road transport is presented. Interestingly, road transport
always assumes integrated optimization of routing and cargo allocation, and, in addition, the ma-
jority of developed approaches are based on heuristics or metaheuristics. Quite often when multiple
compartments are considered in the literature, the objective is to just deliver from a central depot
to e.g. petrol stations (Cornillier et al., 2009) and not to combine both pickup and delivery as we
do here. Furthermore, in these problems bulk ship constraints such as stability are not considered.

The segregated storage problem is another related compartment oriented storage optimization
problem. In this problem a silo with a number of compartments has to be filled with grain
and only one type of grain can go into each compartment. However, contrary to our problem,
identical “cargoes” can be mixed into the same compartment. In (Barbucha and Filipowicz, 1997)
the segregated storage problem and some variants of the basic problem are compared to storage
problems in transport in general but also in particular to maritime transportation. The complexity
of the different variants is described and a few numerical examples are given.

3 Problem Description

In this paper we consider the TAP as it is described in Hvattum et al. (2009). However, we
approach the problem on a tactical level where the focus is on feasibility rather than optimality.

For each instance, a fixed route is given for a ship with a number of tanks (or compartments).
Besides the capacity of a tank, also the material and the coating can have an impact on how it can be
used. A ship route is a collection of voyage nodes that each correspond to the loading or unloading
of a specific cargo. Note that both the heuristic and hybrid method described in Section 4 also work
in situations where multiple cargoes can be picked up and discharged in each port. The timing
aspect of the planning, i.e. time windows for loading/unloading and loading/unloading operating
time of the cargoes, can be disregarded since the problem here is to plan how to load/unload the
cargoes and not when to load/unload them. The when part is implicitly given by the predetermined
route, i.e. the order of loading and unloading of cargoes, any time window constraints and subject
to refinement from speed optimisation.

4

A set of cargoes that must be carried is also given. For each cargo, the volume and density is
given, and also its pickup and discharge ports. If it is allowed to move cargoes between tanks after
they have been loaded onboard the ship, the full route problem can be reduced to multiple instances
of the single instance tank allocation problem where the allocation problem is solved for a set of
cargoes on a single voyage leg. However, normally it is not allowed to move cargoes once they have
been allocated and certainly, it will always be undesirable to so, due to both time consumption
and possibly additional tank cleaning costs. Therefore, we assume that it is not allowed to move
cargoes once they have been allocated. When we define a problem instance, some cargoes may
already be onboard the ship at the beginning of the planning period and thereby occupy some of
the tanks.

The tactical version of the TAP can now formally be defined: Given a ship, a ship route and
a set of cargoes, find a feasible allocation of cargoes to tanks on the ship. A tank allocation is
constrained by a number of factors that can be divided into three main groups:

• Tank usage: Each cargo must be allocated to one or several tanks and the cargo volume
cannot exceed the total capacity of the allocated tank(s). A cargo can only go into a tank
if it is compatible with the coating. It is not allowed to mix different products in the same
tanks. Even if multiple cargoes consists of the same material, they cannot be mixed but must
remain in separate tanks. For liquid products, a minimum volume must be allocated to used
tanks in order to avoid excessive sloshing at sea, i.e excessive movement of the liquid product
within the tank (which is also undergoing motion). In case of excessive sloshing, the sloshing
induced impact load can interfer with the stability of the ship and cause critical damage to
the tank structure.

• Ship stability: Ship stability and strength must be maintained throughout the route.

• Hazmat rules: Due to hazmat rules, certain materials cannot be allocated to neighboring
tanks and certain materials cannot follow each other in a tank unless it is cleaned.

For completeness we here present the model derived and thoroughly described in Hvattum et al.
(2009), though with slightly modified notation. We have the following sets:

C Set of cargoes

T Set of tanks

CC
c Set of cargoes in conflict with cargo c

CT
t Set of cargoes compatible with tank t

TC
c Set of tanks compatible with cargo c

Tckt Set of tanks which cannot be used for cargo k if cargo c is in tank t

Nc Set of cargoes on board the ship immediately after adding cargo c

Pc Set of all cargoes that have been present on the ship before adding cargo c

Q Set of subsets; each subset corresponds to the cargoes present on the ship
at a time when the stability and strength restrictions apply.

S Set of stability and strength dimensions, e.g. trim and roll

For each cargo c, the cargo volume vc and the cargo density dc is given. The capacity of tank
t is denoted κt while the minimum volume in the tank when used is denoted bt. Furthermore, ms

t

denotes the moment arm for tank t with respect to stability or strength dimension s ∈ S while ms+

and ms− denote, respectively, the upper and lower limit on total moment for stability or strength
dimension s ∈ S.

If a cargo k has previously been allocated to some tank t, then any cargo c incompatible with
cargo k cannot be allocated to tank t before it has been cleaned. Cleaning can either be handled
directly by physically cleaning the tank (which is both time consuming and costly) or indirectly by
allocating a number of other cargoes that are compatible with cargo c to tank t before allocating
c to the tank. Parameter hckt denotes the minimum number of compatible cargoes that must be
allocated to tank t before cargo c can be allocated to tank t if a cargo k ∈ CC

c that is incompatible
with cargo c has previously been allocated to tank t.

5

There are three sets of decision variables. The first, xct, is a binary decision variable equal to 1
if cargo c is allocated to tank t. The second, yct, is a continuous variable indicating the volume of
cargo c in tank t. Finally, zct is a binary decision variable, which is equal to 1 if tank t is cleaned
just before adding cargo c. A feasible solution can now be defined by the following constraints:

yct ≤ κtxct, ∀c ∈ C, t ∈ TC
c , (1)

btxct ≤ yct, ∀c ∈ C, t ∈ TC
c , (2)∑

t∈TC
c

yct = vc, ∀c ∈ C, (3)

∑
k∈CT

t ∩Nc

xkt ≤ 1, ∀c ∈ C, t ∈ T, (4)

∑
k∈CC

c ∩Nc

∑
u∈Tckt

xku ≤ Mct(1 − xct), ∀c ∈ C, t ∈ TC
c , (5)

ms− ≤
∑
c∈R

∑
t∈TC

c

ms
tdcyct ≤ ms+, ∀R ∈ Q, s ∈ S, (6)

hckt(xct − zct)−
∑
j∈R

(xjt + hcktzjt)

≤ hckt(1− xkt), ∀c ∈ C, t ∈ TC
c , k ∈ Pc ∩ CC

c , R = Pc \ Pk \ {k}, (7)

xct ∈ {0, 1}, ∀c ∈ C, t ∈ TC
c , (8)

yct ≥ 0, ∀c ∈ C, t ∈ TC
c , (9)

zct ∈ {0, 1}, ∀c ∈ C, t ∈ TC
c . (10)

Due to our focus on feasibility, we have not presented an objective function. However, a possible
objective function could be the minimisation of tank cleaning or the maximisation of vacant tank
capacity in order to preserve flexibility to accommodate future cargoes or cargo changes.

Constraints (1) ensure that the capacity of each tank is not exceeded, and that only cargoes
allocated to a given tank can be put into that tank. Constraints (2) ensure that an occupied tank
is allotted a minimum content to avoid sloshing. In addition, constraints (3) and (4) make sure
that the entire cargo is placed on the ship and prohibit more than one cargo per tank at a time.
Constraints (5) make sure that the hazmat rules regarding what chemicals can be put next to each
other is maintained. Here, Mct is a large constant which can be set as maxk{Tckt}, c ∈ C, t ∈ TC

c .
Constraints (6) ensure that the ship remains sufficiently balanced with regards to roll, trim and
strength on all legs of the route. Note that these constraints are simplified versions of the actual
non-linear expressions. Hvattum et al. (2009) use this same simplification and argue that the loss
from it is small. Constraints (7) restrict a cargo c from going into a tank t if the previous cargo k
is incompatible with c. Exceptions to this are allowed if the tank is cleaned or hlkt other cargoes
occupy the tank in between k and c. Note that by ignoring the tank cleaning costs, we can actually
ignore these constraints and simply assume that all tanks are cleaned. However, we have included
them here for the sake of completeness. Finally, constraints (8), (9), and (10) formally define the
variables of the problem. In (Hvattum et al., 2009) a complexity analysis concludes that the TAP
is NP-Complete by showing that it is a generalisation of the segregated storage problem that has
been shown to be NP-Complete.

4 Solution Method

The aim of our work is to develop an efficient method for finding feasible cargo allocations in a very
short amount of time. Finding a good allocation is left for operational planning where the solution
process proposed by Hvattum et al. (2009) is sufficient with respect to time. Our search for a
feasible allocation assumes that initial crude feasibility tests have been performed, e.g. verifying
that total cargo volume during each voyage leg does not exceed ship capacity.

6

Since we focus on feasibility, we can disregard tank cleaning costs. This means that any two
cargoes can potentially follow each other in a tank as we can just pay the cost of cleaning. Thereby,
we no longer have to keep track of previous tank allocations. Furthermore, if the ship is at some
point empty during its route, we can split the problem into smaller subproblems since any voyage
leg prior to the ballast leg is independent of any voyage leg after the ballast leg.

Even though we disregard cleaning costs, the decisions at any voyage leg still affect decisions
at future voyage legs since we are not allowed to move a cargo once it has been allocated. Conse-
quently, allocating cargoes one by one as they are picked up along the route will be a bad idea. We
can easily end up allocating a cargo to tanks that are required for a feasible allocation of another
cargo picked up later. Our heuristic is therefore based on a priority ordering of cargoes that defines
the order in which they will be allocated one by one. Each time a cargo has been allocated, the
chosen tanks are made unavailable for all cargoes onboard with the considered cargo as well as
neighboring tanks if there are any conflicting cargoes. The priority ordering for all cargoes affected
by the chosen allocation is then updated before selecting the next cargo to allocate.

Ship stability at a voyage leg cannot be calculated before all cargoes onboard during the leg have
been allocated. Therefore, when allocating cargoes one by one, we initially only use an estimate
of ship stability based on allocated capacity rather than on the actual cargo amount allocated to
each tank. This means that we initially only reserve sufficient tank capacity for one cargo at a
time. If we manage to find sufficient capacity for all cargoes, we check if there exists a combination
of cargo amounts to tanks, which can secure ship stability during the entire route. This is done by
solving a simple LP problem where each cargo is predefined to be allocated to specific tanks, i.e.
solving (1), (2), (3), (6), and (9) with all x variables fixed. Note that ballast tanks can easily be
incorporated by including them in these LP problems.

Algorithm 1 provides an overview of our proposed tank allocation heuristic. It essentially con-
sists of three important components: cargo selection (see Algorithm 1, line 7), capacity reservation
(see Algorithm 1, line 14), and ship stability assessment (see Algorithm 1, line 18). While the
details of the LP problem used to assess ship stability have been explained above, the exact details
of the cargo selection and the capacity reservation routines have not. The quality of the heuristic
naturally depends on the quality of these two procedures, and we elaborate further on each of these
in Sections 4.1 and 4.2, respectively. To ensure the heuristic has a diversification strategy both
procedures are non-deterministic. A discussion on how randomness is included in each is therefore
also addressed in each of the relevant sections. Furthermore, within a given time limit, we allow
the heuristic to restart each time it fails to find a feasible allocation for a given subinstance (see
Algorithm 1, line 21), whether the infeasibility comes from some cargoes not being fully allocated
or from instability when determining cargo amounts. Restarting simply means that all cargoes
that have already been allocated, are removed from the ship again.

4.1 Cargo Selection

Cargoes are prioritised based on the ratio of the volume of each cargo and the amount of available
tank capacity for each cargo. A tank is available if it is both compatible and vacant, also with
respect to neighboring cargoes. Obviously, the closer to one this ratio gets, the more important
it is to allocate the cargo, since only few of the available tanks can be occupied by other cargoes
before it becomes impossible to allocate the given cargo. For a cargo i we denote this estimate
of importance by Ii. The fundamental idea of the cargo selection procedure is then to iteratively
select the cargo with the highest value of Ii. Note that if Ii > 1, it means that due to already
allocated cargoes, there is not enough available tank capacity left to allocate cargo i. In such cases
no feasible allocation of the unallocated cargoes exists, and we must therefore restart the heuristic.

An overview of our cargo selection procedure is given in Algorithm 2. Initially, all unallocated
cargoes are sorted in decreasing order of importance based on their respective Ii values, giving
a list of cargoes C. In a deterministic setting we would then simply return the first cargo in the
resulting list, C[0], as this would be, by definition, the most important cargo. However, to diversify
the results of Algorithm 1, we permit the cargo selection procedure to sometimes discard the most
important cargo and instead select a less important cargo. Diversification is triggered if the most
important cargo, cargo i, has an importance value, Ii, less than or equal to some prespecified
threshold I. The reason for this threshold approach is that a cargo i with high Ii will only be able

7

Algorithm 1: The Tank Allocation Heuristic

1 determine initial cargo priority ordering;
2 split problem to create list, Subs, of smaller subinstances;
3 while Subs 6= ∅ AND time limit not exceeded do
4 Sub← first subinstance in list Subs;
5 while no stable allocation found for Sub AND time limit not exceeded do
6 while cargoes in Sub remain to be allocated AND time limit not exceeded do
7 cargo i ← selectCargo();
8 if not enough available tank capacity to allocate cargo i then
9 if time limit not exceeded then

10 restart Sub;

11 else
12 stop;

13 else
14 selectTanks(cargo i);
15 update available tank capacity for affected cargoes;
16 update priority ordering of unallocated cargoes;

17 if all cargoes in Sub fully allocated then
18 solveLP();
19 if allocation is unstable then
20 if time limit not exceeded then
21 restart Sub;

22 else
23 stop;

24 else
25 remove Sub from Subs;

to spare few of its available tanks to other cargoes before it becomes impossible to allocate cargo i.
In these situations it will most often be best to allocate cargo i first and avoid diversification (see
Algorithm 2, line 4). If diversification is triggered, the most important cargo, cargo i, with Ii ≤ I
is selected with probability P (see Algorithm 2, lines 6-8), where rand(0, 1) denotes a random
number between 0 and 1.

Preliminary tests showed that the deterministic cargo selection performed best, and so we
ensure that this approach is followed before adding any randomness (see Algorithm 2, line 4). In
other words, the first run of the heuristic only uses the deterministic selection procedure, while the
randomised approach is permitted upon restarting the heuristic. Parameters I and P are tuned in
Section 6.

Algorithm 2: Cargo Selection - function selectCargo()

1 C ← list of all unallocated cargoes sorted in order of decreasing importance;
2 cargo i ← C[0];
3 if Ii > I or we did not restart then
4 return cargo i;

5 else
6 while C contains at least 2 cargoes and rand(0, 1) > P do
7 erase C[0] from C;
8 return C[0];

8

4.2 Reserving Sufficient Capacity

To ensure that the allocation of a cargo to tanks is as stable as possible, we propose to iteratively
consider tanks that a consistent with a so-called Stability Dimension Group (SDG). Such tanks
have moment arms in the opposite direction of the ships current stability and strength estimates.
For example, if the current condition of the ship is that its stability and strength measures are
positive for roll, negative for trim and negative for strength, we would only consider available
tanks with a negative moment arm for roll and a positive moment arm for both trim and strength.
If no such tanks are available, we first look for tanks that fulfill two out of these three moment
characteristics, and continue to lower our requirements until available tanks are found. Based on
the current condition of the ship, we can determine the correct SDG to consider. Given roll, trim
and strength, there are 27 SDGs in total. It can happen that multiple SDGs are eligible if one of
the stability and strength measures is currently neutral or if a preferred SDG does not contain any
available tanks. Such ties are broken arbitrarily. Once a tank has been selected, we can determine
if further capacity is required to fully allocate the cargo. If so, the stability and strength measures
are updated, and we determine a new SDG of eligible tanks to choose from.

In principle each cargo does not by itself have to be allocated in a stable manner since cargoes
can outbalance each other. However, many cargoes are at some point onboard the ship alone
(“alone-cargoes”) and must therefore be allocated in a stable manner. Thereby, any cargo that is
at some point onboard the ship with only an alone-cargo, must also be allocated in a somewhat
stable manner. This reasoning can continue, thus motivating the search for stable allocations for
each individual cargo. Furthermore, allocating each cargo in a stable manner yields robust plans
since the stability of the ship does not rely on cargoes to outbalance each other. Hence, any cargo
can in principle be removed from the route without causing instability.

For cargoes not in conflict with other cargoes, a clever allocation mainly relates to capacity
utilisation of the chosen tanks. However, for cargoes in conflict with other cargoes, it is equally
important to confine the cargo to smaller groups of tanks as opposed to being scattered all over
the ship. Unnecessarily scattering the placement of a cargo will potentially hinder the allocation
of its conflicting cargoes. Finding a feasible allocation for all cargoes relies on a clever allocation
of each individual cargo as the cargoes are in effect competing for the same tanks. We therefore
define two cargo types:

A cargo i is a conflict cargo if there is at least one other cargo j that is in conflict with cargo
i and where cargo j has not yet been allocated.

A cargo i is a non-conflict cargo if it is not in conflict with any other cargoes or if all conflicting
cargoes have already been allocated.

Algorithm 3 gives the outline of the tank selection procedure when reserving capacity for a
generic cargo i. To diversify its result, we permit a cargo to be reallocated up to L times, and
simply return the best allocation. Randomness is introduced by only accepting a tank with a
certain probability. To keep the parameter list as short as possible we reuse the probability P
from Algorithm 2. For conflict cargoes, we again need to ensure that we choose tanks in small
groups rather than tanks scattered all over the ship. Therefore, for conflict cargoes an additional
parameter, ∆P , is used to iteratively increment the tank acceptance probability each time a tank
has been discarded. All discarded tanks are stored in case we run out of available tanks and must
return to these.

When determining a cargo’s tank allocation, we first determine the required SDG, based on
an estimate of the ship’s current condition, and then retrieve a corresponding sorted list of tanks.
Using a cargo specific capacity utilisation threshold, we then ensure that no tank from this list
is selected if the capacity utilisation of the resulting allocation is less than this threshold (see
Algorithm 3, line 18). A cargo specific threshold is used as cargoes onboard during crowded voyage
legs must utilise capacity better than cargoes only onboard during less crowded legs. We therefore
determine the minimal capacity utilisation of each voyage leg by dividing total onboard cargo
volume by ship capacity. For each cargo, we consider all voyage legs that the cargo is onboard the
ship during, and the maximal of the minimal capacity utilisations corresponding to these specific
voyage legs, is then the capacity utilisation threshold for this particular cargo. We denote the

9

capacity utilisation threshold for cargo i by Ui. To better preserve flexibility for accommodating
future cargoes, we can simply exchange this cargo specific threshold by a sufficiently high uniform
threshold. Such an approach will utilise ship capacity better. However, it will increase running
time of the heuristic and since we only care about feasibility, we use cargo specific thresholds.
Naturally, we might have to lower this threshold gradually if no tanks remain that fulfill the
utilisation requirement. In cases where multiple SDGs are applicable, we only lower the utilisation
threshold if none of the SDGs contain an eligible tank. For conflict cargoes, choosing groups of
tanks is important and as soon as we start discarding tanks in the otherwise location based ordered
tank list, we are in effect choosing tanks that are scattered. Therefore, gradually decreasing the
capacity utilisation requirement with only small decrements does not seem a good idea for conflict
cargoes. As soon as we discard a tank due to capacity utilisation, to avoid discarding many tanks,
we should instead lower this requirement almost to a point that it becomes obsolete. For non-
conflict cargoes this, however, is not necessary. Therefore, we use separate parameters for the two
cargo groups for the incremental lowering of the capacity utilisation threshold when we run out
of tanks. For non-conflict cargoes and conflict cargoes we respectively denote these ∆UNC and
∆UC and tune them in Section 6. Note that in Algorithm 3 ∆Ui is either equal to ∆UC or ∆UNC

depending on whether cargo i is a conflict cargo or not.
As indicated in Algorithm 3, when allocating a non-conflict cargo, we focus on capacity utilisa-

tion and simply sort the compatible and vacant tanks within each SDG by size in decreasing order.
When allocating a conflict cargo we instead sort the compatible and vacant tanks within each
SDG by decreasing tank ID number. The unique ID number of a tank is a very crude reflection
of the location of the tank on the ship. Some random tank in one end of the ship is assigned ID
number one. Moving along the ship, the next tank is assigned ID number two and so forth until all
tanks have been assigned a unique number. Note that assigning these ID numbers is a very simple
and hence generic process that can be used for any configuration of tanks. The simplicity of the
process also means that the ID numbers are indeed only a very crude reflection of the location of
the tanks onboard the ship. However, sorting the tanks by ID number means that we will choose
tanks grouped together although we might use several groups of tanks in different locations of the
ship to secure stability and strength of the ship. In Figure 1 we give a small example of which
IDs nine tanks onboard a small ship might be assigned. Note that using these IDs as a crude
estimate of neighboring tanks and groupings, our heuristic will correctly assume that tanks 1 and
3 are neighbors to tank 2 but it will have no idea that tank 5 is also a neighbor to tank 2. This
sort of ship specific information could obviously be used to improve the tank sorting function.
However, since the tanks are sorted within each specific SDG, the tank sorting function does not
reflect neighboring tanks across different SDGs. Thereby, the effect of improving the tank sorting
function might be limited and furthermore it would sacrifice simplicity and make the heuristic
much less generic than when we do not use the actual layout of the considered ship. Therefore, we
have chosen to use this crude estimate.

Figure 1: Example of tank IDs to reflect ship layout

Preliminary tests showed that for conflict cargoes it is best to use the deterministic tank se-
lection procedure prior to restarting and the randomised approach afterwards. Therefore, we use
this approach. This confirms that the deterministic approach best enforces the group wise se-
lection criteria. For non-conflict cargoes, however, we always use the randomised approach (see
Algorithm 3, line 21). Each restart requires all allocated cargoes to be reallocated, and this is
more time consuming than just restarting for a single cargo. Therefore, iteratively allocating the
cargoes and then restarting the whole process in case of infeasibility is not an attractive approach.
Instead, each time we allocate a cargo, we iteratively reallocate it until the quality of the alloca-
tion is sufficient. To ensure this process is fast, we use a very crude estimate of quality by simply
requiring the capacity utilisation of an allocation for cargo i to be at least as high as the capacity

10

utilisation of the most crowded voyage leg, that cargo i is onboard during, i.e. at least as high as
Ui (see Algorithm 3, line 42).

Since the tank selection procedure for conflict cargoes is deterministic before restarting, there
is no point in reallocating conflict cargoes before restarting. After restarting, conflict cargoes are
reallocated, just as non-conflict cargoes always are. However, preliminary tests also show that after
restarting it can be beneficial to allow the first iteration of the reallocation procedure for conflict
cargoes to follow the deterministic tank selection procedure. Therefore, we only perform the first
iteration of the reallocation procedure for conflict cargoes, i.e. the deterministic one, if a randomly
generated number between 0 and 1, rand(0, 1), is less than P .

5 Data

In (Hvattum et al., 2009), an instance generator is developed to create a varied set of realistic and
feasible TAP instances based on two real tank ships. The instance generator is used to generate 720
data instances and we base our computational study on these instances. Here, we briefly describe
the main features of the data instances, while a thorough description of the instance generator can
be found in (Hvattum et al., 2009).

There are two tank ships of different size and configuration. The smaller ship has 24 tanks and
can carry up to 10,000m3 while the larger ship has 38 tanks and a capacity of 45,000m3. There are
two types of tanks, namely stainless steel tanks and tanks with a zinc silicate coating. The data
instances only contain data for stability and strength restrictions with respect to roll. This means
that, although our heuristic is generic enough to handle several stability and strength dimensions,
we will here only consider the roll dimension and therefore only have three stability and strength
dimension groups, containing, respectively, tanks with negative, neutral and positive moment arm
for roll. There are three categories for cargoes:

1. cargoes that can go into any tank and do not conflict with any other cargoes

2. cargoes that can go into any tank but which conflict with all category 3 cargoes

3. cargoes that can only go into tanks with zinc silicate coating and which conflict with all other
cargoes in category 2 and 3

Cargoes that are in conflict with each other cannot simultaneously occupy tanks that share a side,
i.e tanks that are neighbors.

In each data instance the first ten generated cargoes are defined to be locked, i.e. they are
already allocated and cannot be moved. They simply act as the history of the ship and cause
some tanks to be occupied when planning starts. Hvattum et al. (2009) generate instances with,
respectively, 20, 30 and 40 cargoes where the first ten are locked cargoes. To create a varied set of
instances, they use three additional parameters:

D denoting the probability distributions for the category of each load. They allow four settings
for this parameter and label them D1(0.6, 0.4, 0.0), D2(0.5, 0.4, 0.1), D3(0.4, 0.4, 0.2) and
D4(0.3, 0.4, 0.3). Here D1 refers to the case where 60% of the cargoes are expected to come
from category 1, 40% from category 2 while no cargoes are expected from category 3.

F denoting the minimum/maximum capacity utilisation of the ship before loading/unloading.
This parameter is allowed three settings which are labeled F1(0.65, 0.35), F2(0.75, 0.25) and
F3(0.85, 0.15). Here F1 refers to the case where the ship will visit pickup locations until the
the total load exceeds 65% of ship capacity and then start to visit discharge locations until
the total load becomes less than 35% whereafter the ship will again visit pickup locations.

V denoting the distribution of load volumes. This parameter is allowed three settings labeled
V 3(1000− 5000m3), V 6(3000− 9000m3) and V 12(8000− 16, 000m3). Here V 1 denotes the
case where cargo sizes follow a uniform distribution over the interval 1000 to 5000m3.

Combining ship type, number of cargoes and the above three parameters while ruling out
unrealistic combinations, Hvattum et al. (2009) obtain 144 parameter setting groups. For each of

11

these 144 groups, they randomly generate five feasible instances yielding a total of 720 instances
for which the existence of feasible solutions is verified. We let TAP T24C20D3F1V3 01 denote the
first generated instance for the 24 tanks ship with 20 cargoes (including ten locked cargoes) and
with parameters D, F and V set to, respectively, 3, 1 and 3.

5.1 Instability for locked cargoes

Since solving any one of the above 720 TAP instances only entails finding a feasible allocation for
the unlocked cargoes, the feature in the instance generator that verifies the existence of a feasible
solution, does not check the allocation of the locked part of the instance. This unfortunately means
that for quite a few of the 720 instances, the ship is at some point unstable during the locked part of
the ship route. Solving the problem with a mixed integer programming formulation and CPLEX,
as done in (Hvattum et al., 2009), this instability is not a problem since the entire solution space
is explored, including solutions where one cargo can be allocated solely to one end of the ship in
order to outbalance a locked cargo placed in the opposite end of the ship. However, since our
heuristic tries to allocate each individual cargo in a stable manner, it will not perform well on
instances with built-in instabilities, i.e. instances where the locked part contains cargoes or groups
of cargoes that are placed in an unstable manner. Note that even though the heuristic seeks stable
allocations for each cargo, it can allocate cargoes in an unstable manner and thereby explore the
entire solution space. However, the chances of the heuristic finding such extreme solutions where
individual cargoes are allocated solely to one end of the ship are slim. Thereby, we are penalised
for an instability created before the ship was even handed over to us. If our heuristic were used
continuously, then all cargoes previously allocated, i.e. locked cargoes, would also be allocated in
a somewhat stable manner and then this would not be a problem. Therefore, a computational
study using these instances can, in this respect, be expected to yield a conservative estimate of
the success rate of our heuristic. In order to get a feel for the effect of excluding such built-in
instabilities, we consider three distinct sets of data instances during our computational study:

Set720 Contains all 720 instances

Set648 Contains the 648 instances that are stable when the ship is “handed over” to us, i.e. just
before picking up cargo number 11

Set486 Contains the 486 instances that are stable during the entire locked part of the last subin-
stance before the ship is “handed over” to us, i.e. during the first subinstance that we have
to solve. Note that we do not require the ship to be stable during the entire locked part of
the route as we do not care about what happens before the first subinstance that we have
to solve. I.e. if the ship is unstable and then becomes empty before allocating other locked
cargoes that we have to take into account, then we do not care about the instability

To properly understand the reason for including Set486, consider the example illustrated in Table 1.
Here, ‘Action’ refers to the port action taken at a particular point in time and time progresses
as we move to the right in Table 1. ‘Onboard’ refers to the cargoes onboard immediately after
this action while ‘Roll’ refers to the roll measure of the ship immediately after the action. We let
−K and K denote, respectively, the lower and upper threshold for stability in the roll dimension.
For port actions, ‘9+’ and ‘9-’ refer to the actions of respectively loading and discharging cargo
number 9, and similarly for higher numbers. We assume that the ship becomes empty just before
loading cargo 9 whereafter cargo 9, 10, 11, and 12 are all picked up and then again discharged
in the same order as they were picked up. This means that the first subinstance that we have
to solve, contains the locked cargoes, cargoes 9 and 10, and the two unlocked cargoes, cargoes 11
and 12, whereby we can confine our example to include just the small part of the ship route given
in Table 1. Now assume that cargo 9 is allocated in an unstable manner and that cargo 10 is
allocated in a similarly unstable manner but that these two cargoes outbalance each other so that
the ship is stable when it is handed over to us, i.e. just before picking up cargo 11. So, assume
that the allocation of cargo 9 creates a roll measure of −K − 1 and that the allocation of cargo
10 creates a roll measure of K + 1. The roll measure will then be 0 when the ship is handed over
to us. Then our heuristic will try to allocate cargoes 11 and 12 in a stable manner and we can,
for argument’s sake, assume that the effect of their allocations on the roll measure is zero. After

12

the pickup of cargoes 11 and 12, we will discharge cargo 9 and thereby obtain a roll measure of
K + 1 > K. This means that even though the ship was stable when handed over to us, and we
managed to allocate both cargo 11 and 12 in a fully stable manner, we ended up with an unstable
ship. Theoretically, the heuristic could find a feasible solution to this problem. However, since
the heuristic seeks to allocate each individual cargo in as stable a manner as possible, chances are
that it will not find a feasible solution. Thereby, we are penalised for an instability created before
the ship was even handed over to us. Assuming that the heuristic was used continuously, such
instabilities would never occur and generally, we do not anticipate such instabilities in real life.
Therefore, we find it reasonable to include Set486 in our computational study. Note however that
even when confining our computational study to the 486 instances, there can still be instances that
will affect the success rate of our heuristic in a negative manner compared to if our heuristic had
been used continuously. Assume for example that we extend the subinstance in the example from
above to include the locked cargo 8 and that cargo 8 and 9 are now both allocated in a manner
that affects the roll measure with − 1

2K, i.e. after picking up cargo 9, the ship will have a roll
measure of −K which just leaves the ship stable. Adding cargo 10 we obtain a roll measure of 1
which is again stable. Adding cargoes 11 and 12 maintains the roll measure at 1. However, once
we discharge cargoes 8 and 9, we obtain a roll measure of K+ 1 and thereby an unstable ship even
though the locked part contained no instabilities and we managed to allocate the unlocked cargoes
in a fully stable manner. However, since such instances are per definition feasible and we do not
want to exclude too many instances, we limit our computational study to the three sets above and
simply note that the success rate of our heuristic on these sets can be expected to be a conservative
estimate of the success rate that could be achieved if the heuristic was used continuously.

6 Tuning

Our heuristic has the following parameters, that must be tuned:

• P : probability of accepting a chosen cargo or tank or using the deterministic tank allocation
for conflict cargoes

• I: threshold value for cargo importance that eliminates randomness in the cargo selection
procedure

• ∆UNC and ∆UC : reduction parameter for non-conflict and conflict cargoes respectively.
Used to iteratively lower the capacity utilisation threshold

• ∆P : increment parameter used to iteratively increase the probability of accepting a chosen
tank for conflict cargoes

• L: number of times the heuristic is allowed to randomly reallocate a cargo

As discussed in Section 5, results from running our heuristic on the reduced data set Set486
yields the most realistic estimate of its performance compared to data sets Set720 and Set648
containing built-in instabilities. Therefore, during tuning we only consider the instances in Set486.
For the larger ship with 38 tanks, this set only contains 134 instances and these are again spread
over a wide variety of instance types with varying cargo count, cargo sizes etc. As mentioned in
Section 5, only five instances of each type are generated and with the removal of instances with
built-in instabilities, this number is significantly lower for most instance types. Thereby, it will
be difficult to extract only a subset of instances for tuning while at the same time retaining a
diverse and representative sample of instances. Therefore, we have chosen to tune on all instances
in Set486; however, this will bias our conclusions slightly when performing the computational study
on this data set in Section 7.

We tune two versions of the heuristic: One for the smaller ship with 24 tanks (denoted T24)
and one for the larger ship with 38 tanks (denoted T38). During development of the heuristic and
preliminary testing, we obtained qualified estimates for the initial parameter test value ranges.
Within the initial interval for each parameter we chose three test values. With six parameters, each
allowed three different values, we obtained 36 = 729 parameter scenarios. Due to the randomness
of the heuristic, we ran each scenario five times on each data instance in Set486 and evaluated

13

the average performance of each parameter scenario. This resulted in a total of 5 · 729 = 3645
scenarios to be run on 486 instances. Since the heuristic is developed to efficiently solve numerous
subproblems in a tactical setting, we allowed a maximum run time of 0.2 seconds. On average, each
scenario runs through all 352 data instances for T24 in 3.3 seconds and 1.5 seconds for all 134 data
instances for T38. Therefore, choosing the parameter setting with the best average performance
from each of the six initial lists of test values for each ship took a total of (3.3+1.5) ·3645 = 17, 496
seconds, i.e. under 5 hours. The best choice of each parameter value allowed us to further reduce
the initial test value ranges and repeat the process iteratively until the optimal parameter values
were determined after three iterations. I.e. assuming that the initial test values for a parameter
were {0.4, 0.6, 0.8} and we concluded that 0.6 was the best of these, then in the next iteration we
narrowed the range and instead tested {0.5, 0.6, 0.7}. A few times the parameter setting with best
average performance was on the boundary of the test value range and so we re-expanded before
again zooming in on the optimal parameter setting.

We encountered ties between multiple parameter scenarios several times during the tuning pro-
cess. Since the average running time did not vary much between the different parameter scenarios,
we broke ties by selecting the scenario with the most stable performance using the standard devi-
ation of the solve count for the five sample runs as a measure of stability. The initial test values
as well as the final chosen parameter settings are shown in Table 2 for both T24 and T38.
From the optimal parameter settings in Table 2, we note that P is between 50% and 60% meaning
that the heuristic relies on a great deal of randomisation. Finally, we note that using the worst
setting from the above test ranges resulted in a success rate that was only 1% lower than when
using the optimal parameter setting. Therefore, the heuristic is quite robust to parameter changes.

7 Computational Results

In this section we evaluate the performance of our heuristic. We compare our results to the ones
obtained in (Hvattum et al., 2009) from using an optimal method and to results from both updating
and modifying their method. We also combine our heuristic with the both updated and modified
version of the optimal method and evaluate the performance of this hybrid method.

7.1 Results from optimal method by Hvattum et al. (2009)

First, we briefly summarise the findings Hvattum et al. (2009) obtained solving their mixed integer
program directly with CPLEX v.11 on an Intel 2.66GHz processor. In Table 3 we summarise their
results for three different objective functions. The first objective function is to simply minimize 0,
i.e. focus on feasibility, the second seeks to minimise tank cleaning while the last one maximises
average capacity of vacant tanks during the ship’s route. They allowed a maximum run time of 600
seconds to solve each instance in Set720. To capture the variance in running times, Table 3 shows
the number of instances for which a feasible solution is found within a given time limit stated in
the top row as well as the average running time given in the last column.

On average, the method that focuses on feasibility, i.e. objective (1), is fastest. However,
allowing running times of 10 seconds or more, the two other objective functions result in a greater
number of feasible solutions. For all three methods, the average running time is too long for a
method that is to be used to solve a subproblem numerous times in e.g. column generation or local
search.

In order to enable a fair comparison with the results from our heuristic, we ran their algorithm
with the three different objectives on the same machine used for our heuristic results and also
used the newer version 12.4 of CPLEX, that we use for solving the small LPs when determining
the cargo amount to put into each tank. Table 4 therefore gives the same numbers as Table 3,
however, for a 4.0GB RAM PC with Intel Core2 Duo, 2.4 GHz processor. Since this updated
version is faster than the original version, we have added a column with the smaller time limit of
0.1 second and a column with time limit 250 seconds.

From Table 4 we see that the updated version of the algorithm is both faster and better than
the old one, as it is now able to solve all instances when using objective (1) or (2). These two
methods actually solve all instances within 250 seconds while using objective (3) fails to solve all

14

instances within the time limit of 600 seconds. On average, the no objective method is still fastest.
However, now the two other objective functions do not yield better results after 10 seconds as they
did before. Instead, using no objective is now best on all accounts regardless of the time limit.
Therefore, when comparing with our heuristic, we use the no objective method and denote this
updated optimality based method by ‘UpdOpt’. We also run this version of the algorithm on the
two sets Set648 and Set486 to enable comparison with our heuristic on these sets. The results from
these runs are presented in Table 5 where the time limit has been reduced from 600 to 250 seconds
due to the speed up of the algorithm.
From Tables 4 and 5 we note that removing instances with built-in instabilities significantly reduces
problem complexity and thereby running times. However, if our method is to apply to bulk
operators of all sizes, the running time of the algorithm is still too long for the method to be
applicable as a subproblem solver in a column generation or local search based framework.

7.2 Modifying the optimality based method from Hvattum et al. (2009)

As already mentioned, when the focus is as here on feasibility rather than optimality, there is
no longer any need to include the cost of tank cleaning nor the constraints for cleaning as we
can simply assume that tanks are cleaned if necessary, regardless of cost. Removing the cleaning
constraints (7) from the model (1)-(10) means that we can further remove the binary cleaning
variables, zct, to further reduce the model size and thereby also the running times. However, for
some reason this observation is neither mentioned nor explored by Hvattum et al. (2009). Instead,
we have modified their algorithm by removing all cleaning variables and constraints and denote
this updated and modified optimality based method by ‘ModOpt’. Table 6 shows the improved
results from running this version of the algorithm on the three data sets.

From Table 6 we see that removing all variables and constraints related to cleaning, reduced
the running times by 5-25%. Even so, these running times are still a bit too long for our purpose.

7.3 Results from the developed heuristic

Now we are ready to present the results from the heuristic described in Section 4. As mentioned in
Section 7.1, all heuristic tests have been run on a 4.0GB RAM PC with Intel Core2 Duo, 2.4 GHz
processor. In Table 7 we show the summarised results from running the heuristic once on each of
the three different data sets using the optimal parameter setting derived in Section 6. Note that for
completeness we here include tests on the data sets Set720 and Set648 even though we know that
the heuristic will not perform well on these due to the built-in instabilities in these data instances.
Even though the heuristic is developed to quickly assess feasibility and that it has therefore been
tuned with a time limit of only 0.2 seconds, we here allow a time usage of 250 seconds to be able
to compare with the results from Hvattum et al. (2009). Later, we will lower this time limit and
run multiple tests to investigate the stability of the heuristic.

From Table 7 we see that the heuristic is able to solve all instances in Set486 and solves 99% of
the instances within 1 second. In fact, 99% of the instances are solved already within 0.4 seconds.
As expected, the heuristic performs worse on Set648 and Set720. The average running time on
these sets are relatively high and the instances with built-in instabilities obviously play a major
role here as any unsolved instance causes a time usage of 250 seconds whereby the average solve
time is significantly higher than without these instances. Comparing our results with the ones in
Tables 4 and 5, we see that our average running times are longer than the ones from the UpdOpt
and ModOpt methods. However, these averages are, as just mentioned, highly affected by just a
few difficult instances. Looking instead at the distribution of time usage, we see that our heuristic
performs much better than both the UpdOpt method and the ModOpt method when running time
is limited. In fact, the time limit has to be at least 10 seconds for the UpdOpt method and the
ModOpt method to match or outperform our heuristic.

To get an idea of which instance groups are complicated, Table 8 shows more detailed infor-
mation on the heuristic results for Set486. Looking just at the average running time can be very
misleading since a single instance with a long running time will have a huge impact on the aver-

15

age running time. Therefore, when determining which instance groups are complicated it is more
accurate to consider the distribution of running times and consider for which groups the majority
of the instances are solved quickly. To assist in the understanding of Table 8, for each instance
group we put a ‘-’ in entries where all instances in the group have already been solved at a lower
time limit. Thereby, an easy rule of thumb becomes: the more ‘-’ entries in a row, the easier the
instance group corresponding to this row was to solve.

From Table 8 we first note that, rather surprisingly, the cargo count does not give any indication
of problem complexity for our heuristic. Instead, we can use the probability distribution for the
cargo categories as a clear guide to problem complexity. This makes sense, since the higher the
value of D, the more category 3 cargoes there are, and hence, the more conflicts there are, resulting
in unutilised neighboring capacity. With regards to the minimum/maximum capacity utilisation,
i.e. the F parameter, we see no pattern with respect to complexity. This actually makes sense,
since a lower value for F means that the ship is not very crowded, i.e. requirements for capacity
utilisation are low, but on the other hand the ship is rarely emptied completely and so we cannot
decompose into smaller and easier subproblems. There is a weak trend suggesting that instances for
the T38 ship are more difficult than instances for the T24 ship. However, a much more important
factor is the cargo sizes. The smaller they are, the more cargoes will be on board simultaneously,
and hence, the more complex the combinatorial puzzle will be.

We also note from analysing the unsolved instances, that the majority of these derive from an
inability to reserve sufficient capacity for each cargo as opposed to ensuring ship stability. In fact,
instability issues account for less than 1% of the unsolved instances, suggesting that the procedure
for creating stable allocations when selecting tanks, works very well. Since this method is generic
enough to handle instances with more than one stability dimension, i.e. consider other dimensions
than roll, this also suggests that the heuristic will work well on instances with other stability
dimensions included.

Allowing long enough running times, the heuristic can solve all instances in Set486. However,
the heuristic is neither developed for nor tuned to long running times. Therefore, we want to get
an idea of the randomness of the heuristic performance with smaller time limits. To explore this,
we have run the heuristic five times on Set486 with a time limit of 0.2 seconds. In Table 9 we
report the minimum, average and maximum number of solved instances over the five runs. We
also state the standard deviation of the number of solved instances. Note though, that without
knowing the true probability distribution, this is a sample deviation assuming equal probability
for all outcomes. Therefore, this number is most likely higher than the actual standard deviation
where outliers would contribute with less weight. Even so, we note from Table 9 that overall
performance of the heuristic is quite stable.

7.4 Devising a hybrid solution method

So far we have improved the method from Hvattum et al. (2009) and created a heuristic solution
method and presented results for both these methods. When comparing these results we see that
the heuristic is much faster than the ModOpt method on the majority of instances. However,
the heuristic struggles with just a few instances which results in an overall average running time
slightly higher than that of the ModOpt method. In Table 10 we compare these two methods for
running times below 5 seconds.

From Table 10 it is clear that the heuristic is much faster than the ModOpt method on the
vast majority of instances. A thorough analysis of the results from these two methods shows that
they complement each other quite nicely as the two instances that cause the heuristic trouble are
relatively easily solved by the ModOpt method while this instead struggles on lots of instances
that are easily solved by the heuristic. This suggests combining the two methods to obtain an even
faster method. Since the heuristic is much faster than the ModOpt method on most instances,
we combine the two methods by first running the heuristic for a short amount of time and if no
feasible solution is found, we run the ModOpt method. However, as described in Section 4, the
heuristic splits each problem into smaller subinstances and iteratively tries to solve each of these.
This means that even if the heuristic failed to find a feasible solution for a given problem instance,
it is possible that it managed to find feasible solutions to one or more of the smaller subinstances.
We can utilise this fact to enhance the hybrid method even further. Therefore, we combine the

16

two methods by first running the heuristic for a short amount of time and if no feasible solution is
found, we run the ModOpt method, however, only on those subinstances that the heuristic failed
to solve. Since we only apply the ModOpt method to smaller subinstances, the computation times
will obviously be much shorter than what we saw for the full instances. Table 11 shows the results
from running this hybrid method on the three data sets with a heuristic time limit of 0.2 seconds
as the heuristic is tuned for.

Just as we found from the heuristic test results, Table 11 confirms that the removal of instances
with built-in instabilities significantly reduces the average running time. In fact, going from Set720
to Set648 causes a 66% reduction in average running time, while going from Set648 to Set486 yields
a 78% reduction. Furthermore, we note from Table 11 that Set720 requires a time limit of 250
seconds to solve all instances while Set648 requires 100 seconds and, finally, all instances in Set486
can be solved within only 10 seconds. A closer look at our results shows that these numbers
are in fact 185 seconds, 21 seconds and 3 seconds, respectively. We note that with an average
running time of just 0.027 second, this hybrid method is certainly efficient enough to be used as a
subproblem solver. In the next section we compare this hybrid method to the previously presented
methods.

7.5 Comparing algorithms

In order to ease comparison between the different methods, we have gathered the summarised
results for Set486 in Table 12.

By construction, the heuristic and the hybrid method will perform similarly for the first 0.2
seconds. Thereafter, the hybrid method will utilise CPLEX to solve the remaining instances
causing a 94% reduction in the average running time compared to the heuristic that struggles
with two instances which have a huge impact on the average time. Note that if the heuristic
had been used continuously so that all locked cargoes were also placed in a stable manner, the
heuristic performance would most likely improve. Even so, the heuristic clearly outperforms the
two optimality based methods as long as running time is below 10 seconds. After 10 seconds the
two optimality based methods are better at solving the last two instances that cause the heuristic
trouble. Thereby, their average running times are better than that for the heuristic. Since the
hybrid method combines the best of the heuristic and the optimality based methods, it outperforms
them all. In fact, no matter the allowed time limit, no other method solves more instances than
the hybrid method and its average running time is as much as 93% lower than the updated version
of the method originally presented by Hvattum et al. (2009) and 90% lower than our modified
version of this method.

8 Concluding Remarks

In this paper we have considered the Tank Allocation Problem in bulk shipping from a tactical
perspective where the main objective is to quickly assess feasibility of a given ship route rather
than finding an optimal tank allocation. We have developed a heuristic for efficiently solving this
problem and computational results show that it can solve 99% of the considered feasible instances
within 0.4 seconds and all of them if allowed longer time. We have also modified an optimality
based method presented in Hvattum et al. (2009) and thereby improved their results. The heuristic
struggles on two instances causing an overall longer average running time than found with this
modified optimality based method. Looking instead at the distribution of time usage, we see that
when running time is below 10 seconds, our heuristic clearly outperforms the modified optimality
based method by consistently solving more instances. This observation motivated the construction
of a hybrid method that first runs the heuristic for 0.2 seconds and if no feasible solution is found,
then runs the modified optimality based method on the parts of the instance that the heuristic
has not solved. Computational results shows that on the considered instances the hybrid method
cuts between 90% and 94% of average running times compared to the three other methods and
consistently solves more instances than the other methods within any given time limit. In fact, the
average running time for the hybrid method is just 0.027 seconds which is fast enough to facilitate
the inclusion of the tank allocation aspect into the routing and scheduling phase.

17

Since the shipping industry operates in a both dynamic and stochastic environment, it is also
worth mentioning that, as discussed in Section 4.2, our heuristic can be expected to generate
solutions that are generally more robust to changes than solutions from the method by Hvattum
et al. (2009). This robustness is derived from the fact that the heuristic seeks to allocate each
individual cargo in a stable manner whereby the stability of the ship does not rely on cargoes to
outbalance each other and hence any cargo can in principle be removed from the route without
causing instability for the remaining route.

It should also be mentioned that the heuristic described here is flexible enough to incorporate
operational considerations such as ballast tanks and moving cargoes between tanks after allocation
(i.e. solving the allocation problem for a single set of cargoes on a leg). Finally, it would be
interesting to extend our heuristic to allow flexible cargo sizes since this is often used when shipping
liquid products. Likewise, it would be interesting to explore the effect of integrating our hybrid
method as a subproblem solution method in a procedure for solving the full routing and scheduling
problem with the tank allocation aspect included. Both these extensions are left as promising ideas
for further research.

Conflict of Interest

The authors declare that they have no conflict of interest.

Acknowledgements

The research presented in this paper has been partly funded by The Danish Maritime Fund and
we gratefully acknowledge their financial support. This research has also been partially supported
by the European Union Seventh Framework Programme (FP7-PEOPLE-2009-IRSES) under grant
agreement number 246647 and from the New Zealand Government as part of the OptALI project.

References

D. Barbucha and W. Filipowicz. Segregated storage problem in maritime transportation. In IFAC
Transportation Systems, pages 557 – 561, 1997.

M.E. Coccola and C.A. Mendez. Logistics management in maritime transporation systems. Chem-
ical Engineering Transactions, 32:1291 – 1296, 2013.

F. Cornillier, G. Laporte, F.F. Boctor, and J. Renaud. The petrol station replenishment problem
with time windows. Computers & Operations Research, 36:919 – 935, 2009.

U. Derigs, J. Gottlieb, J. Kalkoff, M. Piesche, F. Rothlauf, and U. Vogel. Vehicle routing with
compartments: applications, modelling and heuristics. OR Spectrum, 33:885 – 914, 2011.

K. Fagerholt and M. Christiansen. A combined ship scheduling and allocation problem. Journal
of the Operational Research Society, 51:834 – 842, 2000.

L.M. Hvattum, K. Fagerholt, and V.A. Armentano. Tank allocation problems in maritime bulk
shipping. Computers & Operations Research, 36(11):3051–3060, 2009.

A.S. Jetlund and I.A. Karimi. Improving the logistics of multi-compartment chemical tankers.
Computers and Chemical Engineering, 28:1267 – 1283, 2004.

K. Kobayashi and M. Kubo. Optimization of oil tanker schedules by decomposition, column gener-
ation, and time-space network techniques. Japan Journal of Industrial and Applied Mathematics,
27(1):161–173, 2010.

G.L. Martin, S.U. Randhawa, and E.D. McDowell. Computerized container-ship load planning: A
methodology and evaluation. Computers & Industrial Engineering, 14(4):429–440, 1988.

K.-H. Neo, H.-C. Oh, and I.A. Karimi. Routing and cargo allocation planning of a parcel tanker.
In 16th European Symposium on Computer Aided Process Engineering and 9th International
Symposium on Process Systems Engineering, pages 1985 – 1990, 2006.

18

H.-C. Oh and I.A. Karimi. Routing and scheduling of parcel tankers: a novel solution approach.
In A. Bruzzone, F. Longo, Y. Merkuriev, G. Mirabello, and M.A. Piera, editors, The 11th
International Workshop on Harbor Maritime Multimodal Logistics Modeling and Simulation,
pages 98 – 103, September 2008.

P. Schaus, J.-C. Regin, R. Van Schaeren, W. Dullaert, and B. Raa. Cardinality reasoning for
bin-packing constraint: Application to a tank allocation problem. In M. Milano, editor, Con-
straint Programming 2012, volume 7514 of Lecture Notes in Computer Science, pages 815 – 822.
Springer, 2012.

UNCTAD. Review of maritime transport 2012. http://unctad.org/en/PublicationsLibrary/
rmt2012_en.pdf, November 2012.

G.A. Vouros, T. Panayiotopoulos, and C.D. Spyropoulos. A framework for developing expert
loading system for product carriers. Expert Systems With Applications, 10(1):113 – 126, 1996.

I.D Wilson and P.A Roach. Container stowage planning: a methodology for generating comput-
erised solutions. Journal of the Operational Research Society, 51(11):1248–1255, 2000.

X. Wu, H.-C. Oh, I.A. Karimi, M. Goh, and R. de Souza. Tops: Advanced decision support system
for port and maritime chemical logistics. The Asian Journal of Shipping and Logistics, 27(1):
143 – 156, 2011.

19

Algorithm 3: Capacity Reservation - function selectTanks(cargo i)

1 if cargo i is non-conflict OR we have restarted then
2 if cargo i is non-conflict OR rand(0, 1) < P then
3 count← 0;

4 else
5 count← 1 (i.e. skip deterministic iteration);

6 else
7 count← L (i.e. don’t reallocate);

8 while count ≤ L do
9 create size/ID sorted list of compatible and vacant tanks for each SDG;

10 u← Ui;
11 stability estimate e← 0;
12 clear allocation and discarded tank list from last iteration;
13 p← P ;
14 while further capacity required do
15 G← selectSDG(e);
16 tank t ← first tank in sorted tank list of G;
17 while tank t 6= NULL do
18 if capacity utilisation ≥ u then
19 remove tank t from list of tanks from G;
20 if not using discarded tanks AND (cargo i is non-conflict OR (using

reallocation AND count > 0)) then
21 num← rand(0, 1);

22 else
23 num← 0;

24 if num < p then
25 allocate cargo i to tank t;
26 update e using capacity of tank t;
27 tank t ← NULL;

28 else
29 add tank t to size/ID sorted list of discarded tanks for G;
30 tank t ← next tank in sorted tank list of G;
31 if cargo i is conflict cargo then
32 p← p+ ∆P ;

33 else
34 tank t ← next tank in sorted tank list of G;

35 if no tank was found AND no other SDGs are applicable then
36 if tanks remain that are not discarded then
37 u← u−∆Ui;

38 else
39 from discarded tanks, create size/ID sorted tank list for each SDG;
40 u← Ui;

41 if using reallocation then
42 if capacity utilisation ≥ Ui then
43 exit reallocation loop;

44 else
45 update best allocation found so far;

46 count+ +;

47 if using reallocation AND reallocated as many times as allowed then
48 use best allocation found;

20

Table 1: Small example to illustrate reason for considering Set486

Action 9+ 10+ 11+ 12+ 9- 10- 11- 12-

Onboard 9 9,10 9,10,11 9,10,11,12 10,11,12 11,12 12 -

Roll −K − 1 0 0 0 K + 1 0 0 0

Table 2: Tuning results

T24 T38
Initial test values Optimal value Optimal value

P {0.4, 0.6, 0.8} 0.50 0.60
I {0.4, 0.6, 0.8} 0.70 0.60
∆UNC {0.05, 0.25, 0.45} 0.10 0.60
∆UC {0.3, 0.5, 0.7} 0.45 0.45
∆P {0.05, 0.25, 0.45} 0.05 0.15
L {20, 40, 60} 50 35

Table 3: Results from Hvattum et al. (2009)

Objective Data set ≤ 1 ≤ 10 ≤ 100 ≤ 600 Av. secs

(1) feasibility Set720 609 662 680 683 2.5
(2) min tank cleaning Set720 555 677 707 716 4.1
(3) max av. vacant cap. Set720 546 672 711 717 5.1

Table 4: Results from updated version of optimal method from Hvattum et al. (2009)

Objective Data set ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 ≤ 600 Av. secs

(1) feasibility Set720 298 659 715 719 720 720 0.767
(2) min tank cleaning Set720 205 557 694 719 720 720 1.822
(3) max av. vacant cap. Set720 23 525 690 715 717 717 4.912

Table 5: Results from UpdOpt method

Objective Data Set ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

(1) feasibility Set648 240 598 644 648 648 0.463
(1) feasibility Set486 196 463 483 486 486 0.374

21

Table 6: Results from ModOpt method

Objective Data Set ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

(1) feasibility Set720 310 665 716 719 720 0.726
(1) feasibility Set648 293 605 645 648 648 0.402
(1) feasibility Set486 263 467 483 486 486 0.282

Table 7: Results from a single run of the heuristic

Data Set ≤ 0.01 ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

Set720 289 671 702 712 715 715 1.889
Set648 366 623 637 641 644 644 1.776
Set486 290 475 482 484 485 486 0.426

Table 8: Detailed results from heuristic on Set486

Subset #INST ≤ 0.01 ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

TAP 486 290 475 482 484 485 486 0.426
C20 161 153 160 161 - - - 0.012
C30 168 95 164 165 166 167 168 1.191
C40 157 42 151 156 157 - - 0.031
D1 114 64 113 114 - - - 0.011
D2 116 74 115 116 - - - 0.013
D3 124 76 119 123 124 - - 0.060
D4 132 76 128 129 130 131 132 1.490
F1 136 79 132 135 136 - - 0.050
F2 165 94 160 163 164 164 165 1.005
F3 185 117 183 184 184 185 - 0.185

T24/V3 172 149 169 171 172 - - 0.024
T24/V6 180 63 180 - - - - 0.012
T38/V6 41 24 33 38 39 40 41 4.867
T38/V12 93 54 93 - - - - 0.012

Table 9: Analysis of heuristic performance over five runs with time limit 0.2 seconds

Data Set Minimum Average Maximum Std.Dev.

Set486 478 480 481 1.1

22

Table 10: Comparing the ModOpt method with the heuristic on Set486 with time limit 5 seconds

Algorithm ≤ 0.01 ≤ 0.025 ≤ 0.05 ≤ 0.1 ≤ 0.5 ≤ 1 ≤ 5 Av. secs

ModOpt 0 0 107 263 447 467 482 0.229
Heuristic 290 463 471 475 481 482 484 0.048

Table 11: Results from hybrid method

Data Set ≤ 0.01 ≤ 0.1 ≤ 1 ≤ 10 ≤ 100 ≤ 250 Av. secs

Set720 376 671 701 718 719 720 0.367
Set648 283 616 633 647 648 648 0.123
Set486 295 479 483 486 486 486 0.027

Table 12: Comparing the different algorithms on Set486 with time limit 250 seconds

Algorithm ≤ 0.01 ≤ 0.05 ≤ 0.1 ≤ 1 ≤ 5 ≤ 10 ≤ 100 ≤ 250 Av. secs

UpdOpt 0 87 196 463 481 483 486 486 0.374
ModOpt 0 107 263 467 482 483 486 486 0.282
Heuristic 290 471 475 482 484 484 485 486 0.426
Hybrid 295 475 479 483 486 486 486 486 0.027

23

