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Abstract The Walsh transform Q̂ of a quadratic function Q : Fpn → Fp satis-

fies |Q̂(b)| ∈ {0, pn+s
2 } for all b ∈ Fpn , where 0 ≤ s ≤ n−1 is an integer depend-

ing on Q. In this article, we study the following three classes of quadratic func-
tions of wide interest. The class C1 is defined for arbitrary n as C1 = {Q(x) =

Trn(
∑b(n−1)/2c
i=1 aix

2i+1) : ai ∈ F2}, and the larger class C2 is defined for even

n as C2 = {Q(x) = Trn(
∑(n/2)−1
i=1 aix

2i+1) + Trn/2(an/2x
2n/2+1) : ai ∈ F2}.

For an odd prime p, the subclass D of all p-ary quadratic functions is defined

as D = {Q(x) = Trn(
∑bn/2c
i=0 aix

pi+1) : ai ∈ Fp}. We determine the gener-
ating function for the distribution of the parameter s for C1, C2 and D. As a
consequence we completely describe the distribution of the nonlinearity for the
rotation symmetric quadratic Boolean functions, and in the case p > 2, the
distribution of the co-dimension for the rotation symmetric quadratic p-ary
functions, which have been attracting considerable attention recently. Our re-
sults also facilitate obtaining closed formulas for the number of such quadratic
functions with prescribed s for small values of s, and hence extend earlier re-
sults on this topic. We also present the complete weight distribution of the
subcodes of the second order Reed-Muller codes corresponding to C1 and C2
in terms of a generating function.
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1 Introduction

Let p be a prime and let f be a function from Fpn to Fp. Then we can write
f in polynomial form, for instance as the trace of a polynomial of degree
at most pn − 1. Clearly such a representation is not unique. Recall that the
algebraic degree of f is the largest p-ary weight of an exponent in a polynomial
representation of f . In this article we deal with functions Q from Fpn to Fp of
algebraic degree 2, which we call quadratic functions. The degree of a function
on Fpn will always refer to the polynomial degree, i.e. to the largest exponent
of its (unique) representation as a polynomial of degree at most pn − 1.

Omitting the linear and constant terms, a quadratic function Q from Fpn
to Fp, for a prime p, can be expressed in trace form as

Q(x) = Trn

bn/2c∑
i=0

aix
pi+1

 , ai ∈ Fpn , (1)

where Trn denotes the absolute trace from Fpn to Fp. When n is odd, this
representation is unique. For even n the coefficient an/2 is taken modulo the
additive subgroup G = {x ∈ Fpn : Trnn/2(x) = 0} of Fpn , where Trnn/2 denotes
the relative trace from Fpn to Fpn/2 . Furthermore, if p = 2, then a0 = 0, hence
i in the summation in (1) ranges over 1 ≤ i ≤ bn/2c, since a0x

2 is a linear
term.

The Walsh transform f̂ of a function f : Fpn → Fp is the function from
Fpn into the set of complex numbers defined as

f̂(b) =
∑
x∈Fpn

εf(x)−Trn(bx)p ,

where εp = e2πi/p is a complex p-th root of unity.

Quadratic functions belong to the class of plateaued functions, for which
for every b ∈ Fpn , the Walsh transform f̂(b) vanishes or has absolute value
p(n+s)/2 for some fixed integer 0 ≤ s ≤ n. Accordingly we call f s-plateaued.
Note that if p = 2, then εp = −1, and f̂(b) is an integer. Hence for any s-
plateaued function from F2n to F2, n and s must be of the same parity. Recall
that a 0-plateaued function from Fpn to Fp is called bent. Clearly a Boolean
bent function can exist only when n is even. When p is odd, a 1-plateaued
function is called semi-bent. A Boolean function f is called semi-bent, if f is
1 or 2-plateaued, depending on the parity of n.
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The nonlinearity Nf of a function f : Fpn → Fp is defined to be the smallest
Hamming distance of f to any affine function, i.e.

Nf = min
u∈Fpn ,v∈Fp

|{x ∈ Fpn : f(x) 6= Trn(ux) + v}| .

The nonlinearity of a Boolean function f can be expressed in terms of the
Walsh transform as

Nf = 2n−1 − 1

2
max
b∈F2n

|f̂(b)| . (2)

By Parseval’s identity we have
∑
b∈F2n

∣∣∣f̂(b)
∣∣∣2 = 22n for any Boolean function

f . As a consequence, Boolean bent functions are the Boolean functions at-
taining the highest possible nonlinearity. Since high nonlinearity is crucial for
cryptographic applications, Boolean bent functions are of particular interest.

Recall that the rth order Reed-Muller code R(r, n) of length 2n is defined
as

R(r, n) = {(f(α1), f(α2), · · · , f(α2n)) | f ∈ Pr} ,

where Pr is the set of all polynomials from F2n to F2 (or from Fn2 to F2) of
algebraic degree at most r, and α1, α2, . . . , α2n are the elements of F2n (or Fn2 )
in some fixed order. The set of quadratic Boolean functions together with the
constant and affine functions form the second order Reed-Muller codes.

In this work we focus on the subclasses of the set of quadratic functions
given in Equation (1), obtained by restricting the coefficients to the prime
subfield. Namely, for p = 2 we consider C1 and the larger class C2 defined as

C1 =

Q(x) = Trn

b(n−1)/2c∑
i=1

aix
2i+1

 : ai ∈ F2, 1 ≤ i ≤
⌊
n− 1

2

⌋ , and

C2 =

Q(x) = Trn

(n/2)−1∑
i=1

aix
2i+1

+ Trn/2(an/2x
2n/2+1) :

ai ∈ F2, 1 ≤ i ≤ n/2

}
.

Note that C1 is defined for arbitrary n, while C2 is defined for even n only.
These two classes of Boolean functions have attracted significant attention in
the last decade, see the articles [5,6,9,11–13,15–17]. For p > 2 we put

D =

Q(x) = Trn

bn/2c∑
i=0

aix
pi+1

 : ai ∈ Fp

 .

The class D has also been studied previously, see [11,12,14–16].
The study of the Walsh spectrum of quadratic functions in C1 and D has

been initiated in [12], where the authors determine all n for which all such
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quadratic functions are semi-bent. This result was extended in [5] for C1. In
the articles [9,17] bent functions in C2 are constructed.

Enumeration of functions in C1, C2 and D for particular values of s has
been a challenging problem. In [17] the number of bent functions in C2 was
obtained for some special classes of n. Counting results on Boolean quadratic
functions in C1 with a large value of s have been obtained in the paper [6]. Far
reaching enumeration results for the sets C1 and D have been obtained in [11,
15,16] by the use of methods originally employed in the analysis of the linear
complexity of periodic sequences, such as the method in [7].

Let us denote the number of s-plateaued quadratic functions in C1 and

D by Nn(s) and N (p)
n (s), respectively. In [15], the number Nn(s) has been

determined for n = 2m, m ≥ 1, and all possible values of s, with combinatorial

methods. In [16], Nn(s) and N (p)
n (s) are described by the use of generating

polynomials Gn(z) and G(p)n (z), defined by

Gn(z) =

n∑
t=0

Nn(n− t)zt and G(p)n (z) =

n∑
t=0

N (p)
n (n− t)zt .

In the cases of odd n and n = 2m for an odd m, the polynomial Gn(z) is

determined as a product of polynomials, see [16]. Similarly G(p)n (z) is obtained
for n with gcd(n, p) = 1 in [4,16]. In particular, explicit formulas for the
number of bent functions in D and of semi-bent functions in C1 are given for
such n. For a result on the number of semi-bent functions in C2 we may refer
to the recent article [13]. The average behaviour of the Walsh transform for
many classes of functions in C1 and D is analysed in [11]. We remark that
unlike C2, the set C1 does not contain bent functions.

We note that the main results in [16] are obtained by using the discrete
Fourier transform. This method is only applicable when gcd(n, p) = 1. Hence
the study of the case gcd(n, p) > 1 necessitates different methods. Moreover the
discrete Fourier transform can not be used for the analysis of the the important
class C2. In order to obtain Gn(z) when n = 2m for odd m, a modification of
the method that was used to analyse linear complexity of sequences in [7]
was first employed in [16]. However the arguments in [16] heavily rely on the
property, specific to the case studied in that paper, that the multiplicity of 1
as a root of gcd(xn + 1, A(x)) is exactly 2, where A(x) is defined as in (3).

In this work we present the solution of the enumeration problem in full
generality. We first extend the above results to functions in C1 and C2 for
arbitrary n and all possible s, by determining,

(i) the generating polynomial Gn(z) for any (even) number n,
(ii) the generating polynomialHn(z) =

∑n
t=0Mn(n−t)zt concerning the num-

ber Mn(s) of s-plateaued functions in C2, for any even number n.

Finally we adapt our method to the considerably more complicated case of
functions in D, and determine

(iii) the generating polynomial G(p)n (z) for any number n, gcd(n, p) > 1.
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We therefore completely describe the distribution of the parameter s in the
set C2, and in the sets C1 and D in all remaining cases. This also yields the
distribution of the nonlinearity in C1 and C2 in full generality. In particular,
one can obtain the number of bent functions in the sets C2 and D, or the
number of semi-bent functions in C1, C2 and D for arbitrary integers n.

Remark 1 The classes C1, C2 and D have additional properties that we ex-
plain below. A Boolean function f , defined over F2n is idempotent if it satisfies
f(x2) = f(x) for all x ∈ F2n . The set of idempotent quadratic functions co-
incides with C1 when n is odd, and it coincides with C2 when n is even. For
an odd prime p, one can similarly define a p-potent function as a function f
from Fpn to Fp that satisfies f(xp) = f(x) for all x ∈ Fpn . As one would ex-
pect, the set of p-potent quadratic functions coincides with D. It is observed in
[3] that there is a nonlinearity preserving one-to-one correspondence between
the set of idempotent quadratic functions from F2n to F2 and the set of ro-
tation symmetric quadratic functions from Fn2 to F2. (Note that only even n
is considered in [3], but the same applies to the case of odd n.) Following the
arguments of [3], one can show that this property extends to any prime p ≥ 2
and hence there is a one-to-one correspondence between the set D and the
set of rotation symmetric quadratic functions from Fnp to Fp, which preserves
the parameter s. Hence many results on idempotent and p-potent quadratic
functions also yield results on rotation symmetric quadratic functions, which
add to the interest in the classes C1, C2 and D.

Having obtained the distribution of s in C1, C2, D, we are able to give the distri-
bution of the nonlinearity of rotation symmetric quadratic functions from Fn2
to F2, and the distribution of the co-dimension of rotation symmetric quadratic
functions from Fnp to Fp, for odd p. We also analyse the subcodes of the sec-
ond order Reed-Muller code obtained from C1 and C2, and present the weight
distribution for both subcodes of R(2, n).

2 Preliminaries

In this section we summarize basic tools that we use to obtain our results. We
essentially follow the notation of [15,16]. For technical reasons we include the
0-function, for which all coefficients ai are zero, in all sets C1, C2 and D. Being
constant, the zero function is n-plateaued.

Let Q(x) be in C1, i.e. Q(x) = Trn(
∑b(n−1)/2c
i=1 aix

2i+1), ai ∈ F2. We asso-
ciate to Q, the polynomial

A(x) =

b(n−1)/2c∑
i=1

(aix
i + aix

n−i) (3)

of degree at most n − 1. For even n we consider Q(x) ∈ C2, i.e. Q(x) =

Trn(
∑(n/2)−1
i=1 aix

2i+1)+Trn/2(an/2x
2n/2+1), ai ∈ F2, and the associated poly-
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nomial

A(x) =

(n/2)−1∑
i=1

(aix
i + aix

n−i) + an/2x
n/2

of degree at most n− 1.
When p is odd and n is arbitrary we consider Q(x) ∈ D, i.e. the quadratic

function of the form Q(x) = Trn(
∑bn/2c
i=0 aix

pi+1), ai ∈ Fp, and the associated
polynomial

A(x) =

bn/2c∑
i=0

(aix
i + aix

n−i)

of degree at most n. With the standard Welch squaring method of the Walsh
transform, one can easily see that in all three cases, the quadratic function Q
is s-plateaued if and only if

s = deg
(

gcd(xn − 1, A(x))
)
,

see also [8,12,14,17]. We observe thatA(x) = xdh(x), where d is a non-negative
integer and h is a self-reciprocal polynomial of degree n− 2d. Note that d is a
positive integer in the case p = 2. When Q(x) ∈ C1 or Q(x) ∈ C2, and hence Q
is a Boolean function, the polynomial gcd(xn + 1, A(x)) is also self-reciprocal,
and A(x) can be written as

A(x) = xdf(x)g(x) ,

where f is a self-reciprocal divisor of xn+1 of degree s, and g is a self-reciprocal
polynomial with degree smaller than n− s, satisfying gcd(g, (xn + 1)/f) = 1.
When p is odd, then xn− 1 = (x− 1)ψ(x), where ψ(x) = 1 + x+ · · ·+ xn−1 ∈
Fp[x] is self-reciprocal. Hence gcd(xn − 1, A(x)) = (x− 1)εf(x), ε ∈ {0, 1}, for
a self-reciprocal divisor f of xn − 1. Thus A(x) can be written as

A(x) = xd(x− 1)εf(x)g(x) ,

where g satisfies gcd(g, (xn − 1)/((x− 1)εf)) = 1.
Obviously the factorization of xn+1 and ψ(x) into self-reciprocal factors plays
an important role. In accordance with [15,16], for a prime power q, we call a
self-reciprocal polynomial f ∈ Fq[x] prime self-reciprocal if

(i) f is irreducible over Fq, or
(ii) f = ugg∗, where g is irreducible over Fq, the polynomial g∗ 6= g is the

reciprocal of g and u ∈ F∗q is a constant.

To analyse the factorization of xn + 1 and (xn − 1)/(x − 1) into prime self-
reciprocal polynomials, we recall the canonical factorization of xn − 1 into
irreducible polynomials. Since xn− 1 = (xm− 1)p

v

if n = mpv, gcd(m, p) = 1,
we can assume that n and p are relatively prime. Let α be a primitive nth root
of unity in an extension field of Fp, and let Cj = {jpk mod n : k ∈ N} be the
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cyclotomic coset of j modulo n (relative to powers of p). Then xn − 1 ∈ Fp[x]
can be factorized into irreducible polynomials as

xn − 1 =

h∏
t=1

ft(x) with ft(x) =
∏
i∈Cjt

(x− αi),

where Cj1 , . . . , Cjh are the distinct cyclotomic cosets modulo n.
It is observed in [15,16] that, when p is odd, an irreducible factor ft(x) =∏
i∈Cjt

(x− αi) of xn − 1, different from x− 1, is self-reciprocal if and only if

Cjt contains with i, its additive inverse −i modulo n. Otherwise there exists a
cyclotomic coset C−jt , which consists of the additive inverses of the elements
of Cjt , and the polynomial f∗t (x) =

∏
i∈C−jt

(x − αi), which is the reciprocal

of ft. In this case ftf
∗
t is a prime self-reciprocal divisor of xn − 1.

Most of our results are expressed in terms of the degrees of the prime self-
reciprocal factors of xn − 1. We remark that by Lemma 2 in [15], the car-
dinalities of the cyclotomic cosets modulo n, and the degrees of the prime
self-reciprocal divisors of xn − 1 can be obtained directly from the factoriza-
tion of n.

As explained above our aim is to determine the generating polynomials

Gn(z) and Hn(z) for even n, and G(p)n (z) for n = pvm, v > 0. This enables us
to solve the problem of enumerating quadratic functions in the sets C1, C2 and
D with prescribed s. We adapt the number theoretical approach used in [16,
Section V], by which the generating polynomial Gn(z) is obtained to yield the
number of s-plateaued quadratic functions in C1 for the two cases; odd n and
n = 2m, where m is odd. We start by giving some definitions and lemmas.

For a (self-reciprocal) polynomial f ∈ Fp[x] we define

C(f) := {g ∈ Fp[x] | g is self-reciprocal, deg(g) is even, and deg(g) < deg(f)} ,
K(f) := {g ∈ C(f) | gcd(g(x), f(x)) = 1} , and

φp(f) := |K(f)| .

Let f be a monic self-reciprocal polynomial in Fp[x] with even degree. Let
f = re11 · · · r

ek
k be the factorization of f into distinct monic self-reciprocal

polynomials all of even degree, i.e. either r1 = (x+ 1)2 and rj , 2 ≤ j ≤ k, are
prime self-reciprocal polynomials, or rj is prime self-reciprocal for all 1 ≤ j ≤
k. Then we define the (following variant of the Möbius) function µp as

µp(f) :=

{
(−1)k if e1 = · · · = ek = 1,
0 otherwise.

As for the classical Möbius function on the set of positive integers, we have∑
d|f

µp(d) =

{
1 if f = 1,
0 otherwise,

where the summation is over all monic self-reciprocal divisors d of f of even
degree.
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Remark 2 Compare µp with the ”Möbius function” used in [16], which is de-
fined on the set of all self-reciprocal polynomials. Here considering the Möbius
function on the set of self-reciprocal polynomials of even degree, where the
set of the prime elements is the union of {(x + 1)2} and the set of prime
self-reciprocal polynomials of even degree, proved to be advantageous and has

facilitated obtaining Gn(z), Hn(z) and G(p)n (z) in full generality.

The next lemma is Lemma 8 in [16], except that the condition on a self-
reciprocal polynomial ”not to be divisible by x+1” is replaced by the condition
that it is of ”even degree”. The proof is similar to the one in [16] with this
slight modification and hence we omit it.

Lemma 1 [16, Lemma 8] Let f ∈ Fp[x] be a monic self-reciprocal polynomial
whose degree is a positive even integer. Then∑

d|f

φp(d) = p
deg(f)

2 − 1 ,

where the sum runs over all monic self-reciprocal divisors d of f of even degree.

The next lemma is again similar to Lemma 9 in [16], except that polynomials
involved are of even degree. We give the proof for the convenience of the reader.

Lemma 2 [16, Lemma 9] Let f, f1, f2 ∈ Fp[x] be monic self-reciprocal poly-
nomials whose degrees are positive even integers.

(i) We have

φp(f) =
∑
d|f

µp(d)p
deg(f)−deg(d)

2 ,

where the sum runs over all monic self-reciprocal divisors d of f of even
degree.

(ii) If f = f1f2 such that gcd(f1, f2) = 1, then

φp(f) = φp(f1)φp(f2) .

Proof. Taking the summation over all monic self-reciprocal divisors d of f of
even degree, by Lemma 1 we get∑

d|f

µp(d)
(
p

deg(f)−deg(d)
2 − 1

)
=
∑
d|f

µp

(
f

d

)(
p

deg(d)
2 − 1

)
=
∑
d|f

µp

(
f

d

)∑
d1|d

φp(d1) =
∑
d1|f

φp(d1)
∑
g| f

d1

µp(g) = φp(f) ,

where in the last step we use the fact that the inner sum is 1 for d1 = f and
0 otherwise. With

φp(f) =
∑
d|f

µp(d)
(
p

deg(f)−deg(d)
2 − 1

)
=
∑
d|f

µp(d)p
deg(f)−deg(d)

2 −
∑
d|f

µp(d) =
∑
d|f

µp(d)p
deg(f)−deg(d)

2 ,



Title Suppressed Due to Excessive Length 9

we finish the proof for (i).
If gcd(f1, f2) = 1, then µp(f1f2) = µp(f1)µp(f2). Taking the summation over
all monic self-reciprocal divisors di of fi with deg(di) is even, i = 1, 2, we then
have

φp(f1)φp(f2) =
∑
d1|f1

µp(d1)p
deg(f1)−deg(d1)

2

∑
d2|f2

µp(d2)p
deg(f2)−deg(d2)

2

=
∑
d1|f1
d2|f2

µp(d1d2)p
deg(f1f2)−deg(d1d2)

2 =
∑
d|f

µp(d)p
deg(f)−deg(d)

2 ,

which shows (ii). �

For an integer t, we define Nn(f ; t) by

Nn(f ; t) =


1 if t = 0∑
d|f,deg(d)=t φp(d) if t > 0 is even

0 otherwise,
(4)

where the above sum runs over all monic self-reciprocal divisors d of f of
degree t. Then we define the generating function Gn(f ; z) for the distribution
of the values Nn(f ; t) by

Gn(f ; z) =
∑
Nn(f ; t)zt .

We note that Gn(f ; z) is a polynomial by definition of Nn(f ; t).
The next lemma and its proof resemble Lemma 10 in [16] for p = 2.

Lemma 3 [16, Lemma 10] Let f = f1f2 for two self-reciprocal polynomials
f1, f2 of even degree. If gcd(f1, f2) = 1, then

Gn(f ; z) = Gn(f1; z)Gn(f2; z) .

Proof. We have to show that for each t ≥ 0,

Nn(f ; t) =
∑

0≤t1≤t

Nn(f1; t1)Nn(f2; t− t1) .

For t = 0, t > deg(f) and t odd this is trivial. Assume that 1 ≤ t ≤ deg(f) is
even. Taking into account that φp(1) = 0, by Lemma 2(ii), and the definition
of Nn(f ; t) we obtain∑

0≤t1≤t

Nn(f1; t1)Nn(f2; t− t1) = Nn(f1; 0)Nn(f2; t) +Nn(f1; t)Nn(f2; 0)

+
∑

1<t1<t−1
even

∑
d1|f1

deg(d1)=t1

φp(d1)
∑
d2|f2

deg(d2)=t−t1

φp(d2)

= Nn(f2; t) +Nn(f1; t) +
∑

1<t1<t−1
even

∑
d1|f1;deg(d1)=t1

d2|f2;deg(d2)=t−t1

φp(d1d2)

= Nn(f2; t) +Nn(f1; t) +
∑
d|f

deg(d)=t

φp(d)−
∑
d1|f1

deg(d1)=t

φp(d1)−
∑
d2|f2

deg(d2)=t

φp(d2)

= Nn(f ; t).
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�

Lemma 4 Let r be a prime self-reciprocal polynomial of even degree. Then

Gn(rk; z) = 1 +

k∑
j=1

(p
deg(rj)

2 − p
deg(rj)−deg(r)

2 )zjdeg(r).

For an even integer k we have

Gn((x+ 1)k; z) = Gn((x− 1)k; z) = 1 +

k
2∑
j=1

pj−1(p− 1)z2j .

Proof. If r is a prime self-reciprocal polynomial of even degree, then

Gn(rk; z) =
∑
t: even

Nn(rk; t)zt = 1 +
∑

t: even, t>0

 ∑
d|rk; deg(d)=t

φp(d)

 zt

= 1 +

k∑
j=1

φp(r
j)zjdeg(r) = 1 +

k∑
j=1

∑
d|rj

µp(d)p
deg(rj)−deg(d)

2

 zjdeg(r)

= 1 +

k∑
j=1

(
p

deg(rj)
2 − p

deg(rj)−deg(r)
2

)
zjdeg(r).

The expression for Gn(((x− 1)2)k/2; z) follows as a special case, and Gn(((x+
1)2)k/2; z) is determined in the same way since the sum in (4) is over self-
reciprocal polynomials d of even degree dividing f , and N (f ; t) = 0 for odd t.
�

3 Distribution of the nonlinearity in C1 and C2

Our aim in this section is to determine both Gn(z) and Hn(z) for all (even) in-
tegers n. By Remark 1, this does not only enable us to completely describe the
distribution of the nonlinearity for the set of idempotent quadratic Boolean
functions, but also for the set of rotation symmetric quadratic Boolean func-
tions.

We first express our counting functions Nn(s) and Mn(s) in terms of
N (f ; t).

Proposition 1 Let n be even and let Nn(s) and Mn(s) be the number of
s-plateaued quadratic functions in C1 and C2, respectively. Then

Nn(s) = Nn
(
xn + 1

(x+ 1)2
;n− s

)
and Mn(s) = Nn(xn + 1;n− s) .



Title Suppressed Due to Excessive Length 11

Proof. The statement is clear when n − s is zero or odd. Suppose n − s > 0
is even. First we consider quadratic functions Q ∈ C1. For the corresponding
associate polynomial A(x) we have gcd(A(x), xn+ 1) = (x+ 1)2f1(x) for some
self-reciprocal divisor f1 of (xn + 1)/(x2 + 1) of degree s− 2, i.e.

A(x) = xc(x+ 1)2f1(x)g(x)

for an integer c ≥ 1 and a self-reciprocal polynomial g of even degree less than
n− s, which is relatively prime to d(x) = xn+1

(x+1)2f1(x)
. In other words, g is any

of the φ2(d) polynomials in K(d). To determine the number Nn(s) we consider
all divisors (x+1)2f1(x) of xn+1 of degree s, or equivalently, all divisors d(x)
of (xn + 1)/(x2 + 1) of degree n− s. Hence we obtain Nn(s) as

Nn(s) =
∑

d| xn+1

(x+1)2
and deg(d)=n−s

φ2(d) .

If Q ∈ C2, then the associated polynomial A(x) satisfies gcd(A(x), xn + 1) =
f1(x), where f1 is a self-reciprocal polynomial of degree s, i.e.

A(x) = xcf1(x)g(x)

for an integer c ≥ 1 and a self-reciprocal polynomial g of even degree less than
n− s with gcd (g, (xn + 1)/f1(x)) = 1. Therefore g ∈ K(d). As a consequence,
the number of s-plateaued quadratic functions in C2 is

Mn(s) =
∑

d|(xn+1) and deg(d)=n−s

φ2(d) ,

which finishes the proof. �

The following is the main theorem of this section.

Theorem 1 Let n = 2vm, m odd, v > 0, and let xn+1 = (x+1)2
v

r2
v

1 · · · r2
v

k ,
where r1, . . . , rk are prime self-reciprocal polynomials of even degree. We set

Gi(z) := 1 +

2v∑
j=1

(
2

j deg(ri)

2 − 2
(j−1) deg(ri)

2

)
zj deg(ri) .

Then the generating polynomial Gn(z) =
∑n
t=0Nn(n− t)zt is given by

Gn(z) =

1 +

2v−1−1∑
j=1

2j−1z2j

 k∏
i=1

Gi(z) ,

and the generating polynomial Hn(z) =
∑n
t=0Mn(n− t)zt is given by

Hn(z) =

1 +

2v−1∑
j=1

2j−1z2j

 k∏
i=1

Gi(z) .
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Proof. By Proposition 1 and Lemma 3 we have

Gn(z) = Gn(
xn + 1

x2 + 1
; z) = Gn((x+ 1)2(2

v−1−1); z)

k∏
i=1

Gn(r2
v

i ; z) ,

and

Hn(z) = Gn(xn + 1; z) = Gn((x+ 1)2(2
v−1); z)

k∏
i=1

Gn(r2
v

i ; z) .

For a prime self-reciprocal polynomial r of even degree, Lemma 4 for p = 2
gives

Gn(r2
v

; z) = 1 +

2v∑
j=1

(2
jdeg(r)

2 − 2
(j−1)deg(r)

2 )zjdeg(r), and

Gn((x+ 1)2e; z) = 1 +

e∑
j=1

2j−1z2j .

Combining those formulas yields the assertion. �

Remark 3 Putting v = 1 and m > 1 in Theorem 1, one obtains Gn(z) in
Theorem 5(ii) of [16]. Note that the Theorem 5(ii) in [16] contains an additional
factor 2, since a quadratic function there may also have a linear term. Similarly
the expression for Gn(z) with m = 1 gives Theorem 6 in [15].

As a corollary of Theorem 1 we obtain the number Mn(0) of bent functions
in the set C2 as the coefficient of zn in Hn(z) for arbitrary (even) integers n.
This complements the results of [9,17], where Mn(0) has been presented for
the special cases n = 2vpr, where p is a prime such that the order of 2 modulo
p is p− 1 or (p− 1)/2.

Corollary 1 Let n = 2vm, m odd, v > 0, and let xn+1 = (x+1)2
v

r2
v

1 . . . r2
v

k ,
where r1, · · · , rk are prime self-reciprocal polynomials of even degree. Then the
number of bent functions in C2 is

Mn(0) = 22
v−1

k∏
i=1

(
2

2v deg(ri)

2 − 2
(2v−1) deg(ri)

2

)
,

which is also the number of rotation symmetric quadratic bent functions in n
variables.

Similarly one may obtain Mn(s) and Nn(s) for other small values of s. The
number of semi-bent function in C1 for even n, and in C2 is presented in the
next corollary. Note that the number of semi-bent functions in C1 when n is
odd is given in [16, Corollary 7].
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Corollary 2 Let n = 2vm, m odd, v > 0, and let xn+1 = (x+1)2
v

r2
v

1 . . . r2
v

k ,
where r1, · · · , rk are prime self-reciprocal polynomials of even degree. The num-
ber of semi-bent functions in C1 is

Nn(2) = 22
v−1−2

k∏
i=1

(
2

2v deg(ri)

2 − 2
(2v−1) deg(ri)

2

)
.

The number of semi-bent functions in C2 is

- Mn(2) = Nn(2) if 3 does not divide n,

- Mn(2) = Nn(2) + 22
v−1−122

v−2∏k
ri 6=x2+x+1

(
2

2v deg(ri)

2 − 2
(2v−1) deg(ri)

2

)
if

3 divides n.

Proof. The corollary follows from Theorem 1 with the observation that x2+x+1
divides xn − 1 if and only if 3 divides n. �

Remark 4 In [13, Theorem 12], for n ≡ 0 mod 3 an expression for the number
K of semi-bent functions in C2 \C1 is given, which involves a Möbius function
on the set of monic self-reciprocal polynomials. Our formula

K = 22
v−1−122

v−2
k∏

ri 6=x2+x+1

(
2

2v deg(ri)

2 − 2
(2v−1) deg(ri)

2

)
is more explicit.

Remark 5 To completely describe the nonlinearity distribution in C1 and C2
it is inevitable to consider the generating polynomials. Otherwise, in order to
determine Nn(s) or Mn(s) for a specific s, one would first have to find all
possible ways of expressing s as a sum of degrees of polynomials in the prime
self-reciprocal factorization of xn + 1, which for general n is illusive.

4 Weight distribution of subcodes of second order Reed-Muller
codes

Let Q be a set of quadratic functions, which do not contain linear or constant
terms. Assume that Q is closed under addition. Denote the set of affine func-
tions from F2n to F2 by A = {Trn(bx) + c : b ∈ F2n , c ∈ F2}. Then the
set

Q⊕A = {Q(x) + l(x) : Q ∈ Q, l ∈ A}

gives rise to a linear subcode R̄Q of the second order Reed-Muller code R(2, n),
which contains the first order Reed-Muller code R(1, n) as a subcode. Clearly,
we can write Q⊕A as the union Q⊕A = ∪Q∈QQ+A of (disjoint) cosets of
A.

The weight distribution of other subcodes of R(2, n) containing R(1, n) has
been investigated in [1,10]. More precisely, the authors determine the weight
distribution of some extended cyclic codes of length 2n with special generator
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polynomials in terms of Gaussian coefficients. In our work, we are interested in
the classes of subcodes generated by the cosets of R(1, n) containing rotation
symmetric functions. We emphasize that these classes of subcodes are different
than the ones investigated in [1,10]. For example, the punctured code (the
reverse operation of extending code) of our corresponding subcodes is not
cyclic.

To obtain the weight distribution of the code R̄Q, it is sufficient to know
the weight distribution for each of these cosets. It can be seen easily that the
weight of the codeword cQ of a (quadratic) function Q can be expressed in
terms of the Walsh transform as

wt(cQ) = 2n−1 − 1

2
Q̂(0) .

For a quadratic function Q we define Qb,c(x) = Q(x) + Trn(bx + c). Using

Q̂b,c(0) = (−1)Trn(c)Q̂(b) one can show that the weight distribution of the
coset Q+A for an s-plateaued quadratic function Q is as follows. There are

- 2n−s codewords of weight 2n−1 + 2
n+s
2 −1,

- 2n−s codewords of weight 2n−1 − 2
n+s
2 −1, and

- 2n+1 − 2n−s+1 codewords of weight 2n−1.

Hence, if one knows the number of s-plateaued quadratic functions in Q for
every s, one can determine the weight distribution of R̄Q.
If Q is the set of all quadratic functions, then R̄Q = R(2, n). The weight
distribution of R(2, n) is completely described in [2] by explicit, quite involved
formulas. Here we focus on the subcodes of R(2, n), obtained from the sets
C1 and C2, in other words from the set of idempotent quadratic functions.
Putting k = n− s (which is even), the observations above imply that the only

weights that can occur are 2n−1 and 2n−1 ± 2n−1−
k
2 , 0 ≤ k ≤ n. Moreover,

codewords of the weights 2n−1 + 2n−1−
k
2 and 2n−1− 2n−1−

k
2 appear the same

number of times. Hence to describe the weight distribution of the codes R̄C we
may consider the polynomialWC(z) =

∑n
k=0A

C
kz
k, where ACk is the number of

codewords in R̄C of weight 2n−1 ± 2n−1−
k
2 . Again by the above observations,

AC1k = Nn(n− k)2k and AC2k =Mn(n− k)2k. Consequently,

WC1(z) =
n∑
k=0

AC1k z
k =

n∑
k=0

Nn(n− k)2kzk = Gn(2z) ,

WC2(z) =

n∑
k=0

AC2k z
k =

n∑
k=0

Mn(n− k)2kzk = Hn(2z) . (5)

For the number AC1 of codewords in R̄C1 of weight 2n−1 we have

AC1 =

n∑
k=0

Nn(n− k)(2n+1 − 2k+1) = 2n+1
n∑
k=0

Nn(n− k)− 2

n∑
k=0

Nn(n− k)2k

= 2n+1Gn(1)− 2Gn(2) .
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Similarly, AC2 = 2n+1Hn(1)− 2Hn(2).
The following theorem describes the weight distribution of the codes R̄C .

Theorem 2 Let n = 2tm, m odd, and let xn + 1 = (x + 1)2
t

r2
t

1 · · · r2
t

l for
prime self-reciprocal polynomials r1, . . . , rl of even degree. Then for even n

WC2(z) =

n∑
k=0

AC2k z
k =

1 +

2t−1∑
j=1

23j−1z2j

 l∏
i=1

Wi(z) ,

where

Wi(z) = 1 +

2t∑
j=1

(
2

3j deg(ri)

2 − 2
(3j−1) deg(ri)

2

)
zj deg(ri) ,

and

AC2 = 2n+1+2t−1
l∏
i=1

1 +

2t∑
j=1

(
2

j deg(ri)

2 − 2
(j−1) deg(ri)

2

)
−23(2

t−1+1) + 6

7

l∏
i=1

1 +

2t∑
j=1

(
2

3j deg(ri)

2 − 2
(3j−1) deg(ri)

2

) .

When t = 0, i.e., n is odd, we have

WC1(z) =

n∑
k=0

AC1k z
k =

l∏
i=1

[
1 + (23deg(ri)/2 − 2deg(ri))zdeg(ri)

]
, and (6)

AC1 = 2
3n+1

2 − 2

l∏
i=1

(
1 + (23deg(ri)/2 − 2deg(ri))

)
.

Proof. By using (5), the formulas for WC1(z) and WC2(z) follow from the

generating function Gn(z) =
∏l
i=1

[
1 + (2deg(ri)/2 − 1)zdeg(ri)

]
when n is odd

(see Theorem 5(i) in [16]) and Theorem 1. The formulas for AC1 and AC2 are
obtained by expanding 2n+1Gn(1)− 2Gn(2) and 2n+1Hn(1)− 2Hn(2). �

Remark 6 When n is odd, the code R̄C1 has 2(3n+1)/2 codewords, i.e. dim(R̄C1) =
(3n + 1)/2. Observing that the coefficient of zk in (6) is not zero if and only
if k =

∑
ri∈{r1,...,rl} deg(ri), for r = min{deg(ri)}li=1 we conclude that R̄C1 is

a [2n, (3n+ 1)/2, 2n−1 − 2n−1−
r
2 ] code.

Remark 7 We emphasize that in order to describe the weight distribution of
the codes that we study, it is not possible to avoid the use of generating poly-
nomials. Note that every explicit formula for the number of codewords with a
given weight should depend on all possible ways of expressing the correspond-
ing parameter s as a sum of degrees of polynomials in the prime self-reciprocal
factorization of xn + 1. Hence such formulas for general n cannot be given
unless the degrees of these divisors follow a particular pattern. Description of
the weight distribution via a generating polynomial is for these codes the best
one can expect.
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5 Enumeration of s-plateaued quadratic functions for odd
characteristic

In this section we apply our method to quadratic functions in D. Recall that
results on D translate to results on the set of rotation symmetric functions
from Fnp to Fp. As we will see, determining the generating function in odd
characteristic is considerably more involved. We can restrict ourselves to the
case gcd(n, p) > 1 since the case gcd(n, p) = 1 is dealt with in [16] with
a different method which employs discrete Fourier transform. We emphasize
that the method of [16] is not applicable to the case gcd(n, p) > 1.

Recall that to Q(x) = Trn

(∑bn/2c
i=0 aix

pi+1
)
∈ D, the associate is

A(x) =

bn/2c∑
i=0

(aix
i + aix

n−i) ,

which is a polynomial of degree at most n. We treat the cases of odd and even
n separately.

The case of odd n

In this case the factorization of xn − 1 into prime self-reciprocal divisors is
given by

xn − 1 = (x− 1)p
v

rp
v

1 · · · r
pv

k .

Firstly we note that xn−1 is not divisible by x+ 1 as n is an odd integer, and
hence each ri, 1 ≤ i ≤ k, is a prime self-reciprocal polynomial of even degree.
Write A(x) as

A(x) =

bn/2c∑
i=0

(aix
i + aix

n−i) = xch(x) ,

where h(x) is a self-reciprocal polynomial of degree n−2c. Since n is odd, also
the degree of h is odd, and hence x+ 1 is a factor of A(x). In fact, x+ 1 must
appear as an odd power in the factorization of A(x). In particular,

A(x) = xc(x+ 1)%(x)

for a self-reciprocal polynomial %(x) of even degree n−2c−1. As a consequence,

gcd(A(x), xn − 1) = gcd(%(x), xn − 1) = (x− 1)εf1(x) ,

for a self-reciprocal polynomial f1 of even degree, and some ε ∈ {0, 1}. That
is,

%(x) = (x− 1)εf1(x)g1(x) with gcd

(
xn − 1

(x− 1)εf1(x)
, g1(x)

)
= 1 .

We will frequently use the following observation, which immediately follows
from the definition of φp.
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Proposition 2 For a self-reciprocal polynomial d of even degree we have

φp((x± 1)d) = φp((x± 1)2d) .

We now represent the counting function N (p)
n (s) in terms of the function

Nn(f ; t) in (4). The arguments are more complicated than in the even char-
acteristic case, for instance, here the distinction between odd and even n is
required. As we see in the proposition below, for odd n we also need to con-
sider odd and even s separately. In the next subsection, where n is even, we
have to treat four cases.

Proposition 3 Let n be an odd integer such that the p-adic valuation of n

is vp(n) = v. The number N (p)
n (s) of quadratic s-plateaued functions in D is

given by

N (p)
n (s) =

Nn( xn−1
(x−1)p

v ;n− s) if s is odd,

Nn((x− 1)(xn − 1);n− s + 1)−Nn( xn−1
(x−1)p

v ;n− s + 1) if s is even.

Proof Suppose that gcd(A(x), xn − 1) = (x− 1)f1(x), i.e. ε = 1. This holds if
only if s is odd. In this case, deg(g1) is odd and g1(x) is divisible by (x−1) since
%(x) is a self-reciprocal polynomial of even degree, i.e. g1(x) = (x− 1)g(x) for
some self-reciprocal polynomial g of even degree. Furthermore we know that
gcd( xn−1

(x−1)f1(x) , g1(x)) = 1, and therefore x − 1 is not a factor of xn−1
(x−1)f1(x) .

Consequently, (x− 1)p
v−1 must divide f1(x). Hence h(x) can be expressed as

h(x) = (x+ 1)(x− 1)p
v+1f(x)g(x) with gcd

(
xn − 1

(x− 1)pvf(x)
, g(x)

)
= 1 ,

where g is a self-reciprocal polynomial of even degree smaller than n− s, and

hence g ∈ K
(

xn−1
(x−1)pv f(x)

)
. Furthermore, each divisor d of xn−1

(x−1)pv of degree

n− s uniquely determines f(x). As a result, there exist

∑
d| xn−1

(x−1)p
v ; deg(d)=n−s

φp(d) = Nn
(

xn − 1

(x− 1)pv
;n− s

)

s-plateaued quadratic functions in D if s is odd. Now we consider the case of

even s, i.e. ε = 0 and gcd(A(x), xn− 1) = f(x), where the multiplicity of x− 1
in f is even. As a result, x

n−1
f(x) is divisible by x− 1, which implies that g(x) is

not divisible by x− 1. In this case,

h(x) = (x+ 1)f(x)g(x) with gcd

(
xn − 1

f(x)
, g(x)

)
= 1 ,

i.e. g ∈ K
(
xn−1
f(x)

)
= K

(
(x− 1)x

n−1
f(x)

)
by Proposition 2. Furthermore for any

self-reciprocal divisor d of xn−1 of degree n−s−1, the factor (x−1)d uniquely
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determines f . Hence there are∑
(x−1)d|xn−1; deg(d)=n−s−1

φp((x− 1)d)

=
∑

(x−1)2d|(x−1)(xn−1); deg(d)=n−s−1

φp((x− 1)2d)

s-plateaued functions in D in the case of even s, where d runs over all monic
self-reciprocal divisors of xn−1. In order to determine the last sum, we separate
the set

S = {d : d is monic, self-reciprocal, d|(x− 1)(xn − 1), deg(d) = n− s+ 1}

into two disjoint subsets. The set S1 consists of elements of S which are divis-
ible by x− 1, and S2 is the complement, i.e.

S1 = {d : d = (x− 1)2k ∈ S, k is self-reciprocal, deg(k) = n− s− 1},

S2 =

{
d : d ∈ S, d| x

n − 1

(x− 1)pv

}
.

Then ∑
d∈S1

φp(d) =
∑
d∈S

φp(d)−
∑
d∈S2

φp(d) ,

or equivalently ∑
(x−1)2d|(x−1)(xn−1); deg(d)=n−s−1

φp((x− 1)2d)

=
∑

d|(x−1)(xn−1); deg(d)=n−s+1

φp(d)−
∑

d| xn−1

(x−1)p
v ; deg(d)=n−s+1

φp(d)

= Nn((x− 1)(xn − 1);n− s+ 1)−Nn(
xn − 1

(x− 1)pv
;n− s+ 1) .

Remark 8 Note that from the proof of Proposition 3, we see that s ≥ pv if s
is odd.

Theorem 3 Let n be an odd integer and let xn − 1 = (x − 1)p
v

rp
v

1 · · · r
pv

k be
the factorization of xn−1 into distinct prime self-reciprocal polynomials. Then

G(p)n =
∑n
t=0N

(p)
n (n− t)zt is given by

G(p)n (z) =

1 +

pv+1
2∑
j=1

pj−1(p− 1)z2j−1

 k∏
i=1

Gi(z) ,

where

Gi(z) = 1 +

pv∑
j=1

(p
deg(r

j
i
)

2 − p
deg(r

j
i
)−deg(ri)

2 )zjdeg(ri) .
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Proof We can express the generating function as

G(p)n (z) =
∑

t: even

N (p)
n (n− t)zt +

∑
t: odd

N (p)
n (n− t)zt

=
∑

t: even

Nn

(
xn − 1

(x− 1)pv
; t

)
zt +

∑
t: odd

(
Nn((x− 1)(xn − 1); t + 1)−Nn

(
xn − 1

(x− 1)pv
; t + 1

))
zt

=
∑

t: even

Nn

(
xn − 1

(x− 1)pv
; t

)
zt +

1

z

∑
t: odd

(
Nn((x− 1)(xn − 1); t + 1)−Nn

(
xn − 1

(x− 1)pv
; t + 1

))
zt+1

=
∑

t: even

Nn

(
xn − 1

(x− 1)pv
; t

)
zt +

1

z

[ ∑
t: even

(
Nn((x− 1)(xn − 1); t)−Nn

(
xn − 1

(x− 1)pv
; t

))
zt

]

= Gn
(

xn − 1

(x− 1)pv
; z

)
+

1

z

[
Gn((x− 1)(xn − 1); z)− Gn

(
xn − 1

(x− 1)pv
; z

)]

=

k∏
i=1

Gn(rp
v

i ; z)

(
1−

1

z
+

1

z
Gn((x− 1)p

v+1; z)

)
.

Note that in the fourth equality we added and subtracted Nn((x − 1)(xn −
1); 0) = Nn

(
xn−1

(x−1)pv ; 0
)

= 1. In the last equality we used Lemma 3. We then

obtain the claimed formula by Lemma 4.

The case of even n

In this case the factorization of xn − 1 is given by

xn − 1 = (x− 1)p
v

(x+ 1)p
v

rp
v

1 · · · r
pv

k ,

for some distinct prime self-reciprocal polynomials ri, 1 ≤ i ≤ k, of even
degree. Now

A(x) =

n/2∑
i=0

(aix
i + aix

n−i) = xch(x) ,

where h(x) is self-reciprocal, and of even degree n−2c. For the gcd(A(x), xn−1)
we have

gcd(A(x), xn − 1) = gcd(h(x), xn − 1) = (x− 1)ε(x+ 1)δf1(x) , (7)

for a self-reciprocal polynomial f1 of even degree, and elements ε, δ ∈ {0, 1}.
Consequently,

h(x) = (x−1)ε(x+1)δf1(x)g1(x), with gcd

(
xn − 1

(x− 1)ε(x+ 1)δf1(x)
, g1(x)

)
= 1 .

We now have to distinguish four cases depending on the values of ε and δ in
(7).
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(i) Let ε = δ = 1, i.e., gcd(A(x), xn − 1) = gcd(h(x), xn − 1) = (x − 1)(x +
1)f1(x). In this case, s is even and the self-reciprocal polynomial h of even
degree is given by

h(x) = (x− 1)(x+ 1)f1(x)(x− 1)(x+ 1)g(x)

with gcd

(
(x− 1)(x+ 1)g(x),

xn − 1

(x− 1)(x+ 1)f1

)
= 1 ,

where g(x) is a self-reciprocal polynomial of degree ≤ n−s−2. As a result,
f1(x) = (x − 1)p

v−1(x + 1)p
v−1f(x) for a self-reciprocal polynomial f of

even degree (which of course is a product of some ri’s). As a consequence,

h(x) = (x− 1)p
v+1(x+ 1)p

v+1f(x)g(x) ,

for some self-reciprocal polynomial g. Note that deg(g) is an even inte-

ger smaller than n− s and gcd
(
g, xn−1

(x−1)pv (x+1)pv f(x)

)
= 1. Recalling that

deg
(

xn−1
(x−1)pv (x+1)pv f(x)

)
= n − s, we see that g ∈ K

(
xn−1

(x−1)pv (x+1)pv f(x)

)
.

Furthermore each divisor d of xn−1
(x−1)pv (x+1)pv

of degree n − s uniquely de-

termines f , and hence there exist∑
d| xn−1

(x−1)p
v
(x+1)p

v ; deg(d)=n−s

φp(d)

such polynomials h.
(ii) Let ε = 1 and δ = 0, i.e., gcd(A(x), xn − 1) = gcd(h(x), xn − 1) = (x −

1)f1(x). In this case, s is odd and the self-reciprocal polynomial h of even
degree is given by

h(x) = (x− 1)f1(x)(x− 1)g(x) with gcd

(
(x− 1)g(x),

xn − 1

(x− 1)f1

)
= 1 ,

for some self-reciprocal polynomial g,where deg(g) is even, and smaller
than n− s. Consequently, f1(x) = (x− 1)p

v−1f(x) for some self-reciprocal
polynomial f of even degree, and therefore

h(x) = (x− 1)p
v+1f(x)g(x) ,

where gcd
(
g, xn−1

(x−1)pv f(x)

)
= 1. Since xn−1

(x−1)f1 contains the factor x+ 1, the

polynomial g is not divisible by x+1. In particular, g ∈ K((x+1)d), where
d = xn−1

(x−1)pv (x+1)f(x)
is a self-reciprocal polynomial of even degree n−s−1.

As above, each self-reciprocal divisor d of xn−1
(x−1)pv (x+1)

of degree n− s− 1

uniquely determines f . Consequently there exist∑
d| xn−1

(x−1)p
v
(x+1)

; deg(d)=n−s−1

φp((x+ 1)d)

such polynomials h.
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(iii) The case ε = 0 and δ = 1 is very similar. With the same argument as in
(ii) we get

h(x) = (x+ 1)f1(x)(x+ 1)g(x) with gcd

(
(x+ 1)g(x),

xn − 1

(x+ 1)f1

)
= 1 ,

(8)
for some self-reciprocal polynomial g, where deg(g) is even, smaller than
n− s, and ∑

d| xn−1

(x+1)p
v
(x−1)

; deg(d)=n−s−1

φp((x− 1)d)

is the number of polynomials h of the form (8).
(iv) Let ε = δ = 0, i.e., gcd(A(x), xn − 1) = gcd(h(x), xn − 1) = f(x) for some

self-reciprocal polynomial f of even degree. In this case we see that the
self-reciprocal polynomial h is given by

h(x) = f(x)g(x) with gcd

(
g(x),

xn − 1

f(x)

)
= 1 ,

where g(x) is a self-reciprocal polynomial of degree ≤ n−s. Note that xn−1
f(x)

is divisible by both x − 1 and x + 1, so g(x) is not divisible by neither.
Therefore

h(x) = f(x)g(x) with gcd

(
g(x), (x− 1)(x+ 1)

xn − 1

f(x)

)
= 1 , (9)

where g(x) is a self-reciprocal polynomial of degree smaller than n− s+ 2.
As for each self-reciprocal divisor d of xn− 1 of degree n− s, f is uniquely
determined, we can again express the number of polynomials h of the form
(9) in terms of φp as ∑

(x−1)(x+1)d|(x−1)(x+1)(xn−1); deg(d)=n−s

φp((x− 1)(x+ 1)d).

Remark 9 From the above observations we conclude that again s ≥ pv if s is
odd.

Theorem 4 Let n be an even integer and let xn−1 = (x−1)p
v

(x+1)p
v

rp
v

1 · · · r
pv

k

be the factorization of xn − 1 into distinct prime self-reciprocal polynomials.

Then the generating function G(p)n is given by

G(p)n (z) =

1 +

pv+1
2∑
j=1

pj−1(p− 1)z2j−1

2
k∏
i=1

Gi(z) ,

where

Gi(z) = 1 +

pv∑
j=1

(p
deg(r

j
i
)

2 − p
deg(r

j
i
)−deg(ri)

2 )zjdeg(ri) .
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Proof First let s be odd, which applies in the cases (ii) and (iii) above. The

discussion of these cases imply for N (p)
n (s) that

N (p)
n (s) =

∑
d| xn−1

(x−1)p
v
(x+1)

; deg(d)=n−s−1

φp((x+ 1)d) +
∑

d| xn−1

(x+1)p
v
(x−1)

; deg(d)=n−s−1

φp((x− 1)d)

=
∑

d| xn−1

(x−1)p
v
(x+1)

; deg(d)=n−s−1

φp((x+ 1)
2
d) +

∑
d| xn−1

(x+1)p
v
(x−1)

; deg(d)=n−s−1

φp((x− 1)
2
d) .

(10)

To determine the sum (10) we separate the set

S =

{
h : h is monic, self-reciprocal, h| x

n − 1

(x− 1)pv
, deg(h) = n− s+ 1

}
into the two disjoint subsets

S1 = {h : h ∈ S and gcd(h, x+ 1) = 1}, and

S2 = {h : h ∈ S and (x+ 1)|h}.

Note that being self-reciprocal and of even degree, the polynomials h in the
set S2 are divisible by (x+ 1)2. Then for the first sum in (10) we obtain∑
d| xn−1

(x−1)p
v
(x+1)

; deg(d)=n−s−1

φp((x+ 1)2d) =
∑
h∈S2

φp(h)

=
∑

h| (x+1)(xn−1)

(x−1)p
v ; deg(h)=n−s+1

φp(h)−
∑
h∈S1

φp(h)

=
∑

h| (x+1)(xn−1)

(x−1)p
v ; deg(h)=n−s+1

φp(h)−
∑

h| xn−1

(x−1)p
v
(x+1)p

v ; deg(h)=n−s+1

φp(h)

= Nn
(

(x+ 1)(xn − 1)

(x− 1)pv
;n− s+ 1

)
−Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
;n− s+ 1

)
.

In a similar way, for the second sum in (10) we get∑
d| xn−1

(x+1)p
v
(x−1)

; deg(d)=n−s−1

φp((x− 1)2d)

Nn
(

(x− 1)(xn − 1)

(x+ 1)pv
;n− s+ 1

)
−Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
;n− s+ 1

)
.

Combining, we obtain

N (p)
n (s) = Nn

(
(x+ 1)(xn − 1)

(x− 1)pv
;n− s+ 1

)
+Nn

(
(x− 1)(xn − 1)

(x+ 1)pv
;n− s+ 1

)
−2Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
;n− s+ 1

)
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for an odd integer s. Now we consider the case of even s, which corresponds

to (i) and (iv). By the above observations,

N (p)
n (s) =

∑
d| xn−1

(x−1)p
v
(x+1)p

v ; deg(d)=n−s

φp(d)

+
∑

(x−1)(x+1)d|(x−1)(x+1)(xn−1); deg(d)=n−s

φp((x− 1)(x+ 1)d)

= Nn
(

xn − 1

(x− 1)pv (x+ 1)pv
;n− s

)
+

∑
(x−1)(x+1)d|(x−1)(x+1)(xn−1); deg(d)=n−s

φp((x− 1)(x+ 1)d).

We set T :=
∑

(x−1)(x+1)d|(x−1)(x+1)(xn−1); deg(d)=n−s φp((x− 1)(x+ 1)d) and

in order to determine T we consider the set

S = {h(x) : h(x) is self-reciprocal, h|(x−1)(x+1)(xn−1), deg(h) = n−s+2}

and its subsets

S1 = {h(x) : h ∈ S, gcd(h, x− 1) = 1},
S2 = {h(x) : h ∈ S, gcd(h, x+ 1) = 1},
S3 = {h(x) : h ∈ S, gcd(h, x2 − 1) = 1}.

Note that since h is a self-reciprocal polynomial of even degree, h is divisible
by (x∓ 1)2 if it is divisible by x∓ 1. As a consequence,

T =
∑

h|(x−1)(x+1)(xn−1); deg(h)=n−s+2

φp(h)−
∑
h∈S1

φp(h)−
∑
h∈S2

φp(h) +
∑
h∈S3

φp(h).

We also note that for h in the set S, h ∈ S1 if and only if h|(x + 1) xn−1
(x−1)pv ,

h ∈ S2 if and only if h|(x−1) xn−1
(x+1)pv

and h ∈ S3 if and only if h| xn−1
(x−1)pv (x+1)pv

.

Therefore we can express the sum T as

T =
∑

h|(x−1)(x+1)(xn−1); deg(h)=n−s+2

φp(h)−
∑

h|(x+1) xn−1

(x−1)p
v ; deg(h)=n−s+2

φp(h)

−
∑

h|(x−1) xn−1

(x+1)p
v ; deg(h)=n−s+2

φp(h) +
∑

h| xn−1

(x−1)p
v
(x+1)p

v ; deg(h)=n−s+2

φp(h).

Hence, for an even integer s

N (p)
n (s) = Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
;n− s

)
+Nn

(
(x− 1)(x+ 1)(x

n − 1);n− s+ 2
)

−Nn

(
(x+ 1)(xn − 1)

(x− 1)pv
;n− s+ 2

)
−Nn

(
(x− 1)(xn − 1)

(x+ 1)pv
;n− s+ 2

)
+Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
;n− s+ 2

)
.
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From the above equalities we get

G(p)
n (z) =

n∑
t=0

N (p)
n (n− t)zt =

∑
t: odd

N (p)
n (n− t)zt +

∑
t: even

N (p)
n (n− t)zt

=
∑

t: odd

[
Nn

(
(x+ 1)(xn − 1)

(x− 1)pv
; t+ 1

)
+Nn

(
(x− 1)(xn − 1)

(x+ 1)pv
; t+ 1

)
− 2Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t+ 1

)]
z
t

+
∑

t: even

[
Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t

)
+Nn

(
(x− 1)(x+ 1)(x

n − 1); t+ 2
)
−Nn

(
(x+ 1)(xn − 1)

(x− 1)pv
; t+ 2

)

−Nn

(
(x− 1)(xn − 1)

(x+ 1)pv
; t+ 2

)
+Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t+ 2

)]
z
t

=
1

z

∑
t: odd

[
Nn

(
(x+ 1)(xn − 1)

(x− 1)pv
; t+ 1

)
+Nn

(
(x− 1)(xn − 1)

(x+ 1)pv
; t+ 1

)
− 2Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t+ 1

)]
z
t+1

+
∑

t: even

Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t

)
z
t
+

1

z2

∑
t: even

[
Nn

(
(x− 1)(x+ 1)(x

n − 1); t+ 2
)

−Nn

(
(x+ 1)(xn − 1)

(x− 1)pv
; t+ 2

)
−Nn

(
(x− 1)(xn − 1)

(x+ 1)pv
; t+ 2

)
+Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t+ 2

)]
z
t+2

=
1

z

∑
t: even

[
Nn

(
(x+ 1)(xn − 1)

(x− 1)pv
; t

)
+Nn

(
(x− 1)(xn − 1)

(x+ 1)pv
; t

)
− 2Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t

)]
z
t

+
∑

t: even

Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t

)
z
t
+

1

z2

∑
t: even

[
Nn

(
(x− 1)(x+ 1)(x

n − 1); t
)

−Nn

(
(x+ 1)(xn − 1)

(x− 1)pv
; t

)
−Nn

(
(x− 1)(xn − 1)

(x+ 1)pv
; t

)
+Nn

(
xn − 1

(x− 1)pv (x+ 1)pv
; t

)]
z
t

=
1

z

[
Gn
(

(x+ 1)(xn − 1)

(x− 1)pv
; z

)
+ Gn

(
(x− 1)(xn − 1)

(x+ 1)pv
; z

)
− 2Gn

(
xn − 1

(x− 1)pv (x+ 1)pv
; z

)]
+ Gn

(
xn − 1

(x− 1)pv (x+ 1)pv
; z

)
+

1

z2

[
Gn
(
(x− 1)(x+ 1)(x

n − 1); z
)

− Gn
(

(x+ 1)(xn − 1)

(x− 1)pv
; z

)
− Gn

(
(x− 1)(xn − 1)

(x+ 1)pv
; z

)
+ Gn

(
xn − 1

(x− 1)pv (x+ 1)pv
; z

)]

=

k∏
i=1

Gn(rp
v

i ; z)

(
1

z
Gn((x+ 1)

pv+1
; z) +

1

z
Gn((x− 1)

pv+1
; z)−

2

z
+ 1

+
1

z2
Gn((x− 1)

pv+1
(x+ 1)

pv+1
; z)−

1

z2
Gn((x+ 1)

pv+1
; z)−

1

z2
Gn((x− 1)

pv+1
; z) +

1

z2

)
.

By Lemma 4 we get

G(p)n (z) =

k∏
i=1

Gn(rp
v

i ; z)

(
2

z
Gn((x− 1)p

v+1; z)− 2

z
+ 1 +

1

z2
Gn((x− 1)p

v+1; z)2

− 2

z2
Gn((x− 1)p

v+1; z) +
1

z2

)
.
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Putting

Gi := Gn(rp
v

i ; z) , and A :=

pv+1
2∑
j=1

pj−1(p− 1)z2j = Gn((x− 1)p
v+1; z)− 1

this yields

G(p)n (z) =

k∏
i=1

Gi

[
2

z
(1 +A)− 2

z
+ 1 +

1

z2
(1 +A)2 − 2

z2
(1 +A) +

1

z2

]

=

(
1 +

A

z

)2 k∏
i=1

Gi.

Simplifying and using Lemma 4 we get the desired result.

As an immediate corollary of Theorems 3 and 4 we obtain the number of
bent functions in the set D. Note that the case of gcd(n, p) = 1 is covered in
[16, Corollary 7].

Corollary 3 Let the factorization of xn− 1 into distinct prime self-reciprocal
polynomials be xn − 1 = (x − 1)p

v

rp
v

1 · · · r
pv

k when n is odd, and xn − 1 =

(x−1)p
v

(x+1)p
v

rp
v

1 · · · r
pv

k when n is even. Then the number of bent functions
in D is

Nn(0) = (p− 1)p
pv−1

2

k∏
i=1

(
p

pv deg(ri)

2 − p
(pv−1) deg(ri)

2

)
,

if n is odd, and

Nn(0) = ((p− 1)p
pv−1

2 )2
k∏
i=1

(
p

pv deg(ri)

2 − p
(pv−1) deg(ri)

2

)
,

if n is even.
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7 Appendix

We give some examples of generating function for p = 3.

Example n = 9·13: In this case, x9·13−1 = (x−1)9r91r
9
2 for prime self-reciprocal

polynomials r1, r2 both of degree 6. By Theorem 3,

G(3)9·13(z) = (1 + 2

5∑
j=1

3j−1z2j−1)(1 + 26

9∑
j=1

33(j−1)z6j)2.

Expanding this polynomial we obtain

G(3)
9·13(z) =

1 + 2 z + 6 z
3
+ 18 z

5
+ 52 z

6
+ 158 z

7
+ 474 z

9
+ 936 z

11
+ 2080 z

12
+ 6968 z

13
+ 20904 z

15
+ 37440 z

17

+ 74412 z
18

+ 261144 z
19

+ 783432 z
21

+ 1339416 z
23

+ 2501928 z
24

+ 9022104 z
25

+ 27066312 z
27

+ 45034704 z
29

+ 80857764 z
30

+ 296819640 z
31

+ 890458920 z
33

+ 1455439752 z
35

+ 2542413744 z
36

+ 9451146744 z
37

+ 28353440232 z
39

+ 45763447392 z
41

+ 78345032220 z
42

+ 293980406616 z
43

+ 881941219848 z
45

+ 1410210579960 z
47

+ 2377212120504 z
48

+ 8985055980888 z
49

+ 26955167942664 z
51

+ 42789818169072 z
53

+ 71255926018836 z
54

+ 270881306544888 z
55

+ 812643919634664 z
57

+ 1282606668339048 z
59

+ 1718301299950404 z
60

+ 7284422604917952 z
61

+ 21853267814753856 z
63

+ 30929423399107272 z
65

+ 41239231198809696 z
66

+ 175266732594941208 z
67

+ 525800197784823624 z
69

+ 742306161578574528 z
71

+ 974276837071879068 z
72

+ 4175472158879481720 z
73

+ 12526416476638445160 z
75

+ 17536983067293823224 z
77

+ 22547549657949201288 z
78

+ 97706048517779872248 z
79

+ 293118145553339616744 z
81

+ 405855893843085623184 z
83

+ 507319867303857028980 z
84

+ 2232207416136970927512 z
85

+ 6696622248410912782536 z
87

+ 9131757611469426521640 z
89

+ 10958109133763311825968 z
90

+ 49311491101934903216856 z
91

+ 147934473305804709650568 z
93

+ 197245964407739612867424 z
95

+ 221901709958707064475852 z
96

+ 1035541313140632967553976 z
97

+ 3106623939421898902661928 z
99

+ 3994230779256727160565336 z
101

+ 3994230779256727160565336 z
102

+ 19971153896283635802826680 z
103

+ 59913461688850907408480040 z
105

+ 71896154026621088890176048 z
107

+ 53922115519965816667632036 z
108

+ 323532693119794900005792216 z
109

+ 970598079359384700017376648 z
111

+ 970598079359384700017376648 z
113

+ 2911794238078154100052129944 z
115

+ 8735382714234462300156389832 z
117
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Example n = 9 · 14: In this case, x9·14− 1 = (x− 1)9(x+ 1)9r91r
9
2 for prime

self-reciprocal polynomials r1, r2 both of degree 6. By Theorem 4,

G(3)
9·14(z) = (1 + 2

5∑
j=1

3
j−1

z
2j−1

)
2
(1 + 26

9∑
j=1

3
3(j−1)

z
6j

)
2
=

1 + 4 z + 4 z
2
+ 12 z

3
+ 24 z

4
+ 36 z

5
+ 160 z

6
+ 316 z

7
+ 640 z

8
+ 948 z

9
+ 2868 z

10
+ 1872 z

11
+ 11584 z

12

+ 13936 z
13

+ 39532 z
14

+ 41808 z
15

+ 151656 z
16

+ 74880 z
17

+ 527472 z
18

+ 522288 z
19

+ 1651104 z
20

+ 1566864 z
21

+ 6065280 z
22

+ 2678832 z
23

+ 19990152 z
24

+ 18044208 z
25

+ 60349536 z
26

+ 54132624 z
27

+ 216985392 z
28

+ 90069408 z
29

+ 694967364 z
30

+ 593639280 z
31

+ 2055220128 z
32

+ 1780917840 z
33

+ 7295622048 z
34

+ 2910879504 z
35

+ 22955416848 z
36

+ 18902293488 z
37

+ 66987075168 z
38

+ 56706880464 z
39

+ 235781239824 z
40

+ 91526894784 z
41

+ 732961301436 z
42

+ 587960813232 z
43

+ 2119046585760 z
44

+ 1763882439696 z
45

+ 7413678477504 z
46

+ 2820421159920 z
47

+ 22845411395352 z
48

+ 17970111961776 z
49

+ 65594937833568 z
50

+ 53910335885328 z
51

+ 228454113953520 z
52

+ 85579636338144 z
53

+ 699323426602164 z
54

+ 541762613089776 z
55

+ 1997341681993632 z
56

+ 1625287839269328 z
57

+ 6931950543389664 z
58

+ 2565213336678096 z
59

+ 20712629060085924 z
60

+ 14568845209835904 z
61

+ 58451616870107760 z
62

+ 43706535629507712 z
63

+ 198265534609662000 z
64

+ 61858846798214544 z
65

+ 566246366845194672 z
66

+ 350533465189882416 z
67

+ 1530609927186590640 z
68

+ 1051600395569647248 z
69

+ 5020083336316641840 z
70

+ 1484612323157149056 z
71

+ 13978909783188828972 z
72

+ 8350944317758963440 z
73

+ 36744154998139439136 z
74

+ 25052832953276890320 z
75

+ 120253598175729073536 z
76

+ 35073966134587646448 z
77

+ 333202678278582641256 z
78

+ 195412097035559744496 z
79

+ 871838586774035783136 z
80

+ 586236291106679233488 z
81

+ 2840991256901599362288 z
82

+ 811711787686171246368 z
83

+ 7812725956479398246292 z
84

+ 4464414832273941855024 z
85

+ 20292794692154281159200 z
86

+ 13393244496821825565072 z
87

+ 65748654802579870955808 z
88

+ 18263515222938853043280 z
89

+ 178982449184800759824144 z
90

+ 98622982203869806433712 z
91

+ 460240583618059096690656 z
92

+ 295868946611609419301136 z
93

+ 1479344733058047096505680 z
94

+ 394491928815479225734848 z
95

+ 3969575033705759708956908 z
96

+ 2071082626281265935107952 z
97

+ 10059544184794720256238624 z
98

+ 6213247878843797805323856 z
99

+ 31953846234053817284522688 z
100

+ 7988461558513454321130672 z
101

+ 83878846364391270371872056 z
102

+ 39942307792567271605653360 z
103

+ 207700000521349812349397472 z
104

+ 119826923377701814816960080 z
105

+ 647065386239589800011584432 z
106

+ 143792308053242177780352096 z
107

+ 1635637504105629772251505092 z
108

+ 647065386239589800011584432 z
109

+ 3882392317437538800069506592 z
110

+ 1941196158718769400034753296 z
111

+ 11647176952312616400208519776 z
112

+ 1941196158718769400034753296 z
113

+ 27176746222062771600486546144 z
114

+ 5823588476156308200104259888 z
115

+ 58235884761563082001042598880 z
116

+ 17470765428468924600312779664 z
117

+ 157236888856220321402815016976 z
118

+ 314473777712440642805630033952 z
120

+ 471710666568660964208445050928 z
122

+ 943421333137321928416890101856 z
124

+ 1415131999705982892625335152784 z
126

Example n = 9 · 20: With x9·14 − 1 = (x − 1)9(x + 1)9r91r
9
2r

9
3, r

9
4, where

r1, r2, r3, r4 are prime self-reciprocal polynomials of degrees 2, 4, 4 and 8, from
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Theorem 4 we obtain

G(3)
9·20(z) = (1 + 2

5∑
j=1

3
j−1

z
2j−1

)
2
(1 + 2

9∑
j=1

3
j−1

z
2j

)(1 + 8
9∑

j=1

3
2(j−1)

z
4j

)
2
(1 + 80

9∑
j=1

3
4(j−1)

z
8j

)

Expanding, for instance from the coefficient of z99 we see that the number of
81-plateaued functions inD for p = 3 and n = 9·20 is 616946472137940526877139072.

Furthermore we see that the number of bent functions in the set D is N (3)
9·20 =

6054249652811609019026768290053459869736960. Here we omit writing down

the whole expanded version of the polynomial G(3)9·20.


