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Abstract The Walsh transform @ of a quadratic function @ : Fp» — I, satis-
fies |Q(b)| € {O,pngs }for all b € Fpyn, where 0 < s < n—1is an integer depend-
ing on Q. In this article, we study the following three classes of quadratic func-

tions of wide interest. The class C; is defined for arbitrary n as C1 = {Q(z) =
Trn(E:iLgLfl)/QJ a;z® 1) ¢ a; € Fo}, and the larger class Co is defined for even
nas Cy = {Q(z) = Troy(3\M) 7 q,a2'+1) + Trn/g(an/2x2"/2+1) :a; € Fa}.

i=
For an odd prime p, the subclass D of all p-ary quadratic functions is defined
as D = {Q(z) = Trn(ZiLZézJ a;z? 1) 1 a; € F,}. We determine the gener-
ating function for the distribution of the parameter s for C;,Co and D. As a
consequence we completely describe the distribution of the nonlinearity for the
rotation symmetric quadratic Boolean functions, and in the case p > 2, the
distribution of the co-dimension for the rotation symmetric quadratic p-ary
functions, which have been attracting considerable attention recently. Our re-
sults also facilitate obtaining closed formulas for the number of such quadratic
functions with prescribed s for small values of s, and hence extend earlier re-
sults on this topic. We also present the complete weight distribution of the
subcodes of the second order Reed-Muller codes corresponding to C; and Cs
in terms of a generating function.
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1 Introduction

Let p be a prime and let f be a function from F,» to F,. Then we can write
f in polynomial form, for instance as the trace of a polynomial of degree
at most p” — 1. Clearly such a representation is not unique. Recall that the
algebraic degree of f is the largest p-ary weight of an exponent in a polynomial
representation of f. In this article we deal with functions @ from F,» to F, of
algebraic degree 2, which we call quadratic functions. The degree of a function
on F» will always refer to the polynomial degree, i.e. to the largest exponent
of its (unique) representation as a polynomial of degree at most p™ — 1.

Omitting the linear and constant terms, a quadratic function @ from Fp»
to I, for a prime p, can be expressed in trace form as

nj2l
Q(z) = Tr, Z aie? TV a4 € Fp (1)
=0

where Tr;,, denotes the absolute trace from F,» to F,. When n is odd, this
representation is unique. For even n the coefficient a,,/ is taken modulo the
additive subgroup G = {z € Fyn @ Try 5(z) = 0} of Fpn, where Tr, 5 denotes
the relative trace from Fyn to Fpn/2. Furthermore, if p = 2, then ag = 0, hence
i in the summation in (1) ranges over 1 < i < [n/2], since apz? is a linear
term. R

The Walsh transform f of a function f : Fpn — [, is the function from

Fy» into the set of complex numbers defined as

7 x)—Tr, (bx
foy= 32 et

z€F,n

where €, = e2™/P ig a complex p-th root of unity.

Quadratic functions belong to the class of plateaued functions, for which
for every b € Fpn, the Walsh transform f(b) vanishes or has absolute value
p("t9)/2 for some fixed integer 0 < s < n. Accordingly we call f s-plateaued.
Note that if p = 2, then ¢, = —1, and f(b) is an integer. Hence for any s-
plateaued function from Fan to Fa, n and s must be of the same parity. Recall
that a O-plateaued function from Fy» to I, is called bent. Clearly a Boolean
bent function can exist only when n is even. When p is odd, a 1-plateaued
function is called semi-bent. A Boolean function f is called semi-bent, if f is
1 or 2-plateaued, depending on the parity of n.
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The nonlinearity N¢ of a function f : Fpn — I, is defined to be the smallest
Hamming distance of f to any affine function, i.e.
Ny = i F,n : Try, .
£= i, o € B ¢ f(@) # Tra(ur) + v}

The nonlinearity of a Boolean function f can be expressed in terms of the
Walsh transform as

Ny =271 = 2 max | f(b)] . (2)
~ 2

By Parseval’s identity we have >, cp ‘f(b)‘
f. As a consequence, Boolean bent functions are the Boolean functions at-
taining the highest possible nonlinearity. Since high nonlinearity is crucial for

cryptographic applications, Boolean bent functions are of particular interest.
Recall that the rth order Reed-Muller code R(r,n) of length 2™ is defined

= 22" for any Boolean function

R(r,n) = {(f(en), f(az),---, flazn)) [ f € P},

where P, is the set of all polynomials from Fa» to Fy (or from F% to Fs) of
algebraic degree at most r, and aq, g, . .., agn are the elements of Fon (or F3)
in some fixed order. The set of quadratic Boolean functions together with the
constant and affine functions form the second order Reed-Muller codes.

In this work we focus on the subclasses of the set of quadratic functions
given in Equation (1), obtained by restricting the coefficients to the prime
subfield. Namely, for p = 2 we consider C; and the larger class C defined as

L(n—=1)/2]

i . n—1
C1 =< Q(x) = Try ; ax® | g eFy, 1<i< {2J , and
(n/2)—1

Co = < Q(x) = Tr, Z aix2i+l —&-Trn/g(an/gach/QH) :
i=1

a; € Fy, 1§i§n/2}.

Note that Cy is defined for arbitrary n, while Cs is defined for even n only.
These two classes of Boolean functions have attracted significant attention in
the last decade, see the articles [5,6,9,11-13,15-17]. For p > 2 we put

ln/2] ,
D=<Q(z)=Tr, Z az? | e € F,
i=0

The class D has also been studied previously, see [11,12,14-16].
The study of the Walsh spectrum of quadratic functions in C; and D has
been initiated in [12], where the authors determine all n for which all such
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quadratic functions are semi-bent. This result was extended in [5] for C;. In
the articles [9,17] bent functions in Cy are constructed.

Enumeration of functions in Cy, C» and D for particular values of s has
been a challenging problem. In [17] the number of bent functions in Cy was
obtained for some special classes of n. Counting results on Boolean quadratic
functions in C; with a large value of s have been obtained in the paper [6]. Far
reaching enumeration results for the sets C; and D have been obtained in [11,
15,16] by the use of methods originally employed in the analysis of the linear
complexity of periodic sequences, such as the method in [7].

Let us denote the number of s-plateaued quadratic functions in C; and
D by N, (s) and NP (s), respectively. In [15], the number A/, (s) has been
determined for n = 2™, m > 1, and all possible values of s, with combinatorial
methods. In [16], NV, (s) and Nﬁp)(s) are described by the use of generating
polynomials G, (z) and g,(f’)(z), defined by

n

Gn(z) = ZNn(n — 1)zt and GWP(z) = ZN;SP)(W —t)2".
t=0

t=0

In the cases of odd n and n = 2m for an odd m, the polynomial G, (z) is
determined as a product of polynomials, see [16]. Similarly Gy )(z) is obtained
for n with ged(n,p) = 1 in [4,16]. In particular, explicit formulas for the
number of bent functions in D and of semi-bent functions in C; are given for
such n. For a result on the number of semi-bent functions in Cs we may refer
to the recent article [13]. The average behaviour of the Walsh transform for
many classes of functions in C; and D is analysed in [11]. We remark that
unlike Cs, the set C; does not contain bent functions.

We note that the main results in [16] are obtained by using the discrete
Fourier transform. This method is only applicable when ged(n,p) = 1. Hence
the study of the case ged(n, p) > 1 necessitates different methods. Moreover the
discrete Fourier transform can not be used for the analysis of the the important
class Co. In order to obtain G, (z) when n = 2m for odd m, a modification of
the method that was used to analyse linear complexity of sequences in [7]
was first employed in [16]. However the arguments in [16] heavily rely on the
property, specific to the case studied in that paper, that the multiplicity of 1
as a root of ged(2™ 4 1, A(x)) is exactly 2, where A(x) is defined as in (3).

In this work we present the solution of the enumeration problem in full
generality. We first extend the above results to functions in C; and Cs for
arbitrary n and all possible s, by determining,

(i) the generating polynomial G, (z) for any (even) number n,
(ii) the generating polynomial H,(z) = >}, My (n—t)z" concerning the num-
ber M,,(s) of s-plateaued functions in Cy, for any even number n.

Finally we adapt our method to the considerably more complicated case of
functions in D, and determine

(iii) the generating polynomial g};’)(z) for any number n, ged(n,p) > 1.
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We therefore completely describe the distribution of the parameter s in the
set Co, and in the sets C; and D in all remaining cases. This also yields the
distribution of the nonlinearity in C; and Cy in full generality. In particular,
one can obtain the number of bent functions in the sets Co and D, or the
number of semi-bent functions in Cy, Co and D for arbitrary integers n.

Remark 1 The classes C1,Co and D have additional properties that we ex-
plain below. A Boolean function f, defined over Fan is idempotent if it satisfies
f(x?) = f(z) for all x € Fan. The set of idempotent quadratic functions co-
incides with C; when n is odd, and it coincides with Co> when n is even. For
an odd prime p, one can similarly define a p-potent function as a function f
from Fp» to F,, that satisfies f(aP) = f(z) for all € Fpn. As one would ex-
pect, the set of p-potent quadratic functions coincides with D. It is observed in
[3] that there is a nonlinearity preserving one-to-one correspondence between
the set of idempotent quadratic functions from Fon to Fy and the set of ro-
tation symmetric quadratic functions from FJ to Fo. (Note that only even n
is considered in [3], but the same applies to the case of odd n.) Following the
arguments of [3], one can show that this property extends to any prime p > 2
and hence there is a one-to-one correspondence between the set D and the
set of rotation symmetric quadratic functions from F} to [}, which preserves
the parameter s. Hence many results on idempotent and p-potent quadratic
functions also yield results on rotation symmetric quadratic functions, which
add to the interest in the classes Cy, Co and D.

Having obtained the distribution of s in Cy, Ca, D, we are able to give the distri-
bution of the nonlinearity of rotation symmetric quadratic functions from Fg
to Fy, and the distribution of the co-dimension of rotation symmetric quadratic
functions from F} to ), for odd p. We also analyse the subcodes of the sec-
ond order Reed-Muller code obtained from C; and C3, and present the weight
distribution for both subcodes of R(2,n).

2 Preliminaries

In this section we summarize basic tools that we use to obtain our results. We
essentially follow the notation of [15,16]. For technical reasons we include the
0-function, for which all coefficients a; are zero, in all sets C1, Co and D. Being
constant, the zero function is n-plateaued.

Let Q(z) be in Cy, i.e. Q(z) = Trn(g:itinfl)/2J a;z?*1), a; € Fy. We asso-
ciate to @, the polynomial

ln-v)/2) _
A(z) = Z (a;x® 4+ a;z™™") (3)

i=1

of degree at most n — 1. For even n we consider Q(z) € Ca, ie. Q(z) =
Trn(zgz/f)_l a;z? ) +Trn/2(an/2:r2n/2“), a; € Fy, and the associated poly-
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nomial
(n/2)-1
Az) = Z (aix’ + azz" ") + an/gx"/Q
i=1

of degree at most n — 1.
When p is odd and n is arbitrary we consider Q(z) € D, i.e. the quadratic
function of the form Q(z) = Trn(ZZ-LZéQJ a;z?’ 1), a; € F,, and the associated
polynomial

[n/2]

Ax) = Z (a;x" + a;z" ")

i=0
of degree at most n. With the standard Welch squaring method of the Walsh
transform, one can easily see that in all three cases, the quadratic function @
is s-plateaued if and only if

s =deg (gcd(x" =1, A(x))) )

see also [8,12,14,17]. We observe that A(x) = z?h(x), where d is a non-negative
integer and h is a self-reciprocal polynomial of degree n — 2d. Note that d is a
positive integer in the case p = 2. When Q(z) € C; or Q(z) € Cq, and hence Q
is a Boolean function, the polynomial ged(z™ + 1, A(z)) is also self-reciprocal,
and A(x) can be written as

Alz) = 2 f(z)g(2) ,

where f is a self-reciprocal divisor of x™+1 of degree s, and g is a self-reciprocal
polynomial with degree smaller than n — s, satisfying ged(g, (™ +1)/f) = 1.
When p is odd, then 2" — 1 = (z — 1)¢(z), where ¢(z) = 1+ 2 +---+a2" ! €
F,[z] is self-reciprocal. Hence ged(2™ — 1, A(z)) = (z — 1) f(z), € € {0, 1}, for
a self-reciprocal divisor f of 2™ — 1. Thus A(z) can be written as

Ale) = 2(z = 1) f()g(2) ,

where g satisfies ged(g, (2™ —1)/((x — 1)< f)) = 1.

Obviously the factorization of 2™+ 1 and ¥ (x) into self-reciprocal factors plays
an important role. In accordance with [15,16], for a prime power ¢, we call a
self-reciprocal polynomial f € Fy[x] prime self-reciprocal if

(i) f is irreducible over F,, or
(ii) f = ugg*, where g is irreducible over F,, the polynomial g* # ¢ is the
reciprocal of g and u € Fj is a constant.

To analyse the factorization of ™ + 1 and (2™ — 1)/(x — 1) into prime self-
reciprocal polynomials, we recall the canonical factorization of z" — 1 into
irreducible polynomials. Since 2" — 1 = (2 — 1)P" if n = mp?, ged(m,p) = 1,
we can assume that n and p are relatively prime. Let o be a primitive nth root
of unity in an extension field of F,, and let C; = {jp* mod n : k € N} be the
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cyclotomic coset of j modulo n (relative to powers of p). Then 2" — 1 € F,[]
can be factorized into irreducible polynomials as

h
7" —1=]]fu@) with fi2)= ][] @—a),
t=1

iECjt

where Cj,,...,C}, are the distinct cyclotomic cosets modulo n.

It is observed in [15,16] that, when p is odd, an irreducible factor fi(x) =
Hz‘ecjf (x — ') of 2™ — 1, different from z — 1, is self-reciprocal if and only if
C;, contains with i, its additive inverse —i modulo n. Otherwise there exists a
cyclotomic coset C_j,, which consists of the additive inverses of the elements
of Cj,, and the polynomial f;(z) = Hiec,jt (x — '), which is the reciprocal
of f;. In this case f;f; is a prime self-reciprocal divisor of z" — 1.

Most of our results are expressed in terms of the degrees of the prime self-
reciprocal factors of ™ — 1. We remark that by Lemma 2 in [15], the car-
dinalities of the cyclotomic cosets modulo n, and the degrees of the prime
self-reciprocal divisors of ™ — 1 can be obtained directly from the factoriza-
tion of n.

As explained above our aim is to determine the generating polynomials
Gn(z) and H,(z) for even n, and gﬁf’)(z) for n = p”m, v > 0. This enables us
to solve the problem of enumerating quadratic functions in the sets Cy, C3 and
D with prescribed s. We adapt the number theoretical approach used in [16,
Section V], by which the generating polynomial G, (z) is obtained to yield the
number of s-plateaued quadratic functions in C; for the two cases; odd n and
n = 2m, where m is odd. We start by giving some definitions and lemmas.

For a (self-reciprocal) polynomial f € F,[z] we define

C(f) :={g € Fpz] | g is self-reciprocal, deg(g) is even, and deg(g) < deg(f)} ,
K(f) :={9 € C(f) | ged(g(x), f(z)) =1} , and

op(f) = [K(f)] -

Let f be a monic self-reciprocal polynomial in Fp[z] with even degree. Let
f = ri{'---r;* be the factorization of f into distinct monic self-reciprocal
polynomials all of even degree, i.e. either r1 = (x 4+ 1)? and ri, 2<j <k, are

prime self-reciprocal polynomials, or r; is prime self-reciprocal for all 1 < j <
k. Then we define the (following variant of the Mébius) function p, as

(DR e == =1,
po(f) = {0 otherwise.

As for the classical Mobius function on the set of positive integers, we have
1 iff=1,

Zup(d) - {O otherwise,

dlf

where the summation is over all monic self-reciprocal divisors d of f of even
degree.
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Remark 2 Compare p, with the ”M6bius function” used in [16], which is de-
fined on the set of all self-reciprocal polynomials. Here considering the M&bius
function on the set of self-reciprocal polynomials of even degree, where the
set of the prime elements is the union of {(z + 1)?} and the set of prime
self-reciprocal polynomials of even degree, proved to be advantageous and has

facilitated obtaining Gy, (z), Hn(2) and GP(2) in full generality.

The next lemma is Lemma 8 in [16], except that the condition on a self-
reciprocal polynomial "not to be divisible by x+1” is replaced by the condition
that it is of "even degree”. The proof is similar to the one in [16] with this
slight modification and hence we omit it.

Lemma 1 [16, Lemma 8] Let f € Fy[z] be a monic self-reciprocal polynomial
whose degree is a positive even integer. Then

deg(f)
Z (bp(d) =P 2 -1 )

dlf
where the sum runs over all monic self-reciprocal divisors d of f of even degree.

The next lemma is again similar to Lemma 9 in [16], except that polynomials
involved are of even degree. We give the proof for the convenience of the reader.

Lemma 2 [16, Lemma 9] Let f, f1, fo € Fplz] be monic self-reciprocal poly-
nomials whose degrees are positive even integers.

(i) We have
deg(f)—deg(d)
(bp(f) = Zﬂp(d)p 2 )
dlf
where the sum runs over all monic self-reciprocal divisors d of f of even
degree.

(ii) If f = f1f2 such that ged(f1, f2) =1, then
¢p(f) = ¢p(f1)¢p(f2) .

Proof. Taking the summation over all monic self-reciprocal divisors d of f of
even degree, by Lemma 1 we get

Sl (5 1) = S (1) (074 )

dlf dlf
= Zﬂp (2) Z¢p(d1) = Z¢p(d1) Z tp(9) = dp(f)
dlf di|d dilf o4

where in the last step we use the fact that the inner sum is 1 for d; = f and
0 otherwise. With

op(f) = > () (p

dalf

deg(f)—deg(d) deg(f)—deg(d)
=> wp(dp 7 =Y mpd) =D p(dp T,

d|f dlf dlf

deg(f)—deg(d)
eg - eg _ 1)
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we finish the proof for (i).

If ged(f1, f2) = 1, then p,(f1f2) = pp(f1)pp(f2). Taking the summation over
all monic self-reciprocal divisors d; of f; with deg(d;) is even, i = 1,2, we then
have

deg(fy)—deg(d;) dPE(fh) dﬁ'g(fz)—deg(de)
d) f1¢pf2 Z,Updl Z’up p)

di|f1 da|f2
deg(fy fo)—deg(djda) deg(f)—deg(d)
= Z ,Ufp(dle)p 2 = Z,u'p(d)p 2 ’
dilf1 d|f
dalf2
which shows (ii). O
For an integer ¢, we define N, (f;t) by
1 ift=0
Nu(f5t) = S Doaif.deg(ay=t Pp(d) if t > 0is even (4)
0 otherwise,

where the above sum runs over all monic self-reciprocal divisors d of f of
degree t. Then we define the generating function G, (f;z) for the distribution

of the values N,,(f;t) by
z) = ZNn(f;t)zt

We note that G, (f;2) is a polynomial by definition of N, (f;t).
The next lemma and its proof resemble Lemma 10 in [16] for p = 2.

Lemma 3 [16, Lemma 10] Let f = fifa for two self-reciprocal polynomials
f1, f2 of even degree. If ged(f1, f2) = 1, then

gn(f7 Z) = gn(fl; Z)gn(f27 Z) .
Proof. We have to show that for each ¢t > 0,

> Nalfist)Na(fait — 1)

0<t, <t

For t =0, t > deg(f) and ¢ odd this is trivial. Assume that 1 <t < deg(f) is
even. Taking into account that ¢,(1) = 0, by Lemma 2(ii), and the definition
of N,,(f;t) we obtain

> Nalfi )N (fait — t1) = No(f1; 00N (f23 1) + Noa(f1; )N (f2;0)

0<t,1 <t
2 X ad) Y d(d)
1<ty <t—1 dylf1 da|fa2
even deg(dy)=tq deg(dg)=t—1tq
= Na(f2it) + No(frst) + > > Gp(didy)
1<ty <t—1 dq|fy;deg(dy)=t1
even  dy|fyideg(dg)=t—t1
= Na(foit) + Na(fist) + D dp(d) = D dpldi) = DY dp(do)
dlf d1lf1 da|fg
deg(d)=t deg(dy)=t deg(dg)=t

= Ml(f; t)'
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]

Lemma 4 Let r be a prime self-reciprocal polynomial of even degree. Then

k ) .
Gul(r;2) = 14+ 3 (p™F — ™ ides(r),

For an even integer k we have

Gn((x+ 1% 2) = Gul((z — 1)%; —1+Zp] Lp—1)z

Proof. If r is a prime self-reciprocal polynomial of even degree, then

Gu(rFiz) = > Na(rhit)z' =14 ) Yo g(@ ]
t: even t: even, t>0 \d|rk; deg(d)=t
-1+ Z¢ ,rj yadeg(r) _ q + Z Zﬂp M ddeg(r)
J=1 \d|ri

=1+ Z ( deg(ﬂ) deg(ﬂ)zdeg(ﬂ) Zjdeg(r).

The expression for G, (((z — 1)2)*/2; 2) follows as a special case, and G, (((x +
1)2)¥/2; 2) is determined in the same way since the sum in (4) is over self-
reciprocal polynomials d of even degree dividing f, and N (f;t) = 0 for odd ¢.
O

3 Distribution of the nonlinearity in C; and C,

Our aim in this section is to determine both G,,(z) and H,,(z) for all (even) in-
tegers n. By Remark 1, this does not only enable us to completely describe the
distribution of the nonlinearity for the set of idempotent quadratic Boolean
functions, but also for the set of rotation symmetric quadratic Boolean func-
tions.

We first express our counting functions N, (s) and M, (s) in terms of

N(f;t).

Proposition 1 Let n be even and let N, (s) and M, (s) be the number of
s-plateaued quadratic functions in Cy and Cs, respectively. Then

" +1

Nalo) = 80 (G gy

—s) and M, (s) = Np(z" 4+ 1;n —s) .
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Proof. The statement is clear when n — s is zero or odd. Suppose n — s > 0
is even. First we consider quadratic functions @) € C;. For the corresponding
associate polynomial A(z) we have ged(A(z), 2" +1) = (x+1)2f1(x) for some
self-reciprocal divisor fi of (z" + 1)/(2? + 1) of degree s — 2, i.e.

A(z) = a%(z + 1) fi(2)g(x)

for an integer ¢ > 1 and a self-reciprocal polynomial g of even degree less than

n — s, which is relatively prime to d(z) = mf;izfl() In other words, g is any

of the ¢2(d) polynomials in K (d). To determine the number N, (s) we consider
all divisors (x+1)2f1(x) of 2 +1 of degree s, or equivalently, all divisors d(z)
of (z™ +1)/(x? + 1) of degree n — s. Hence we obtain N, (s) as

No(s) = > b2(d) .

|(11J1r)12 and deg(d)=n—s

If @ € Co, then the associated polynomial A(x) satisfies ged(A(x), 2™ +1) =
fi1(z), where f; is a self-reciprocal polynomial of degree s, i.e.

A(z) = a° fr(z)g(x)

for an integer ¢ > 1 and a self-reciprocal polynomial g of even degree less than
n —s with ged (g, (™ + 1)/ f1(x)) = 1. Therefore g € K(d). As a consequence,
the number of s-plateaued quadratic functions in Cs is

Ma(s) = > (d) |
d|(z™+1) and deg(d)=n—s
which finishes the proof. |

The following is the main theorem of this section.

Theorem 1 Let n = 2"m, m odd, v > 0, and let 2" +1 = (x+1)2" 73" ~-~7‘zv,
where 11, ...,1, are prime self-reciprocal polynomials of even degree. We set

14 Z ( 7deg(r (7 1)292(’%‘)) i deg(r;) )

Then the generating polynomial G, (z) = Y 1 q Nu(n — t)z" is given by

2v—l_1

Gn(z) = 1+22J12J HG

and the generating polynomial H,(z) =Y ;o Mn(n —t)2" is given by

21}1

Ho(z) = 1+Z2J 1,2 HG
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Proof. By Proposition 1 and Lemma 3 we have

k

«In + 1 v—1__ v
Gn(2) = Gul g g37) = Gul(w + 1770 z>ggn<r$ 2)
and
L k
Ha(2) = Gul(a" + 1;2) = Gul((@+ 12 ;2) [[Gu(r?'2) -
=1

For a prime self-reciprocal polynomial r of even degree, Lemma 4 for p = 2
gives

(=Ddeg(r) |
272 )24 and

v
gn(r2v; Z) —1 n Z(2Jde2g(r) _
j=1
e
Gul(z +1)%%2) =1+ ZQj_lej.
j=1

Combining those formulas yields the assertion. O

Remark 3 Putting v = 1 and m > 1 in Theorem 1, one obtains G,(z) in
Theorem 5(ii) of [16]. Note that the Theorem 5(ii) in [16] contains an additional
factor 2, since a quadratic function there may also have a linear term. Similarly
the expression for G, (z) with m = 1 gives Theorem 6 in [15].

As a corollary of Theorem 1 we obtain the number M, (0) of bent functions
in the set Cy as the coefficient of z™ in H,,(z) for arbitrary (even) integers n.
This complements the results of [9,17], where M,,(0) has been presented for
the special cases n = 2Vp", where p is a prime such that the order of 2 modulo

pisp—1lor (p—1)/2.

Corollary 1 Letn = 2"m, m odd, v > 0, and let z"+1 = (z+1)2"r?" .. .r?",
where r1,- -+ , 1 are prime self-reciprocal polynomials of even degree. Then the
number of bent functions in Cq is

k
Mn(()) _ 221}71 H (22 dzg(ri) _ 2(2 —1>2deg(ri)) ’

i=1

which is also the number of rotation symmetric quadratic bent functions in n
variables.

Similarly one may obtain M,,(s) and N, (s) for other small values of s. The
number of semi-bent function in C; for even n, and in Cy is presented in the
next corollary. Note that the number of semi-bent functions in C; when n is
odd is given in [16, Corollary 7].
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Corollary 2 Letn = 2"m, m odd, v > 0, and let z"+1 = (z+1)>"r?" ...},
wherery, - -+, T are prime self-reciprocal polynomials of even degree. The num-
ber of semi-bent functions in Cy is

k
v—1_ 2" deg(r;) (2V —1) deg(r;)
N, (2) = 22 2H(2 P gt )
=1

The number of semi-bent functions in Co is
- My (2) = N, (2) if 3 does not divide n,
- Mn(2) = Nn(2) + 221]_17122”72 Hfi;ﬁmz—l-r-ﬂ—l
3 divides n.

2V deg(r;) (2¥ —1) deg(r;) .
( p) -9 3 ) zf

Proof. The corollary follows from Theorem 1 with the observation that 2 +z+1
divides =™ — 1 if and only if 3 divides n. |

Remark 4 In [13, Theorem 12], for n = 0 mod 3 an expression for the number
KC of semi-bent functions in Cy \ C is given, which involves a M&bius function
on the set of monic self-reciprocal polynomials. Our formula

k
K — 22'071_12211_2 H (22 dezg(ri) _ 2(2 —1)2deg(ri))
riZr24+x+1

is more explicit.

Remark 5 To completely describe the nonlinearity distribution in C; and Cs
it is inevitable to consider the generating polynomials. Otherwise, in order to
determine N, (s) or M, (s) for a specific s, one would first have to find all
possible ways of expressing s as a sum of degrees of polynomials in the prime
self-reciprocal factorization of ™ + 1, which for general n is illusive.

4 Weight distribution of subcodes of second order Reed-Muller
codes

Let Q be a set of quadratic functions, which do not contain linear or constant
terms. Assume that Q is closed under addition. Denote the set of affine func-
tions from Fan to Fy by A = {Tr,(bx) + ¢ : b € Fan, ¢ € Fo}. Then the
set

O A={Q(z)+1(z) : Q€ 9, le A}

gives rise to a linear subcode Rg of the second order Reed-Muller code R(2,n),
which contains the first order Reed-Muller code R(1,n) as a subcode. Clearly,
we can write Q & A as the union Q@ & A = Ugeco@ + A of (disjoint) cosets of
A.

The weight distribution of other subcodes of R(2,n) containing R(1,n) has
been investigated in [1,10]. More precisely, the authors determine the weight
distribution of some extended cyclic codes of length 2™ with special generator
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polynomials in terms of Gaussian coefficients. In our work, we are interested in
the classes of subcodes generated by the cosets of R(1,n) containing rotation
symmetric functions. We emphasize that these classes of subcodes are different
than the ones investigated in [1,10]. For example, the punctured code (the
reverse operation of extending code) of our corresponding subcodes is not
cyclic.

To obtain the weight distribution of the code Rg, it is sufficient to know
the weight distribution for each of these cosets. It can be seen easily that the
weight of the codeword cq of a (quadratic) function @ can be expressed in
terms of the Walsh transform as

Q(0) .

N

wt(cg) = 2"t —

For a quadratic function @ we define Qp () = Q(x) + Try(bz + ¢). Using

65;6(0) = (—1)Tr"(c)@(b) one can show that the weight distribution of the
coset @ + A for an s-plateaued quadratic function @ is as follows. There are

nts _q
b

- 27~ codewords of weight 27! 4 272
- 2775 codewords of weight 271 — 2%’1, and
- gntl _gn—=s+l codewords of weight 27~ 1.

Hence, if one knows the number of s-plateaued quadratic functions in Q for
every s, one can determine the weight distribution of Ro.

If Q is the set of all quadratic functions, then Rg = R(2,n). The weight
distribution of R(2,n) is completely described in [2] by explicit, quite involved
formulas. Here we focus on the subcodes of R(2,n), obtained from the sets
C; and Cs, in other words from the set of idempotent quadratic functions.
Putting k = n — s (which is even), the observations above imply that the only
weights that can occur are 2"~! and 2"~ ! + 2"’1*3, 0 < k£ < n. Moreover,
codewords of the weights 271 + 2n=1-% apd 2n—1 —2n-1-% appear the same
number of times. Hence to describe the weight distribution of the codes R¢ we
may consider the polynomial We(2) = Y_,_, A¢zF, where A is the number of
codewords in Re of weight 271 + gn—l-% Again by the above observations,
AGY = N, (n — k)2F and AS? = M,,(n — k)2*. Consequently,

We, (z) = Z AG R = ZNn(n —k)2F2F =G, (22) ,
k=0

k=0

n n
We, (z) = Z Aink = Z Mo (n — k)28 =, (22) . (5)
k=0 k=0
For the number A€t of codewords in Re, of weight 2"~! we have

A =" No(n = k)@ =28 = 2" TN NG (n — k) — 2 No(n — k)2
k=0 k=0 k=0
=2"71G (1) — 2G,(2) .
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Similarly, A% = 2"+, (1) — 2H,(2). B
The following theorem describes the weight distribution of the codes Re.

Theorem 2 Let n = 2'm, m odd, and let 2™ +1 = (z + 1)2' 72" .. -7“12t for
prime self-reciprocal polynomials r1,...,r; of even degree. Then for even n

2t1

We, (2 ZAC2 = 1+2233129 HW

where
d j—1) d : .
—14 Z ( 3j eg(m (3J 1)2 eg(m)) i deg(rs) 7
and
! 2 j deg(r;) (j—1) deg(r;)
—1 j deg(r; j— eg(r;
AC2:2n+1+2t H 1+Z(2J i . 72J 7 l)
i=1 =1

23271 41) 4 g !

7 H 1 + Z ( 35 deg(r (3j71)2deg(7'i))

i=1

When t =0, i.e., n is odd, we have

l
WC1 ZACl k H |:1+ 23deg(rl)/ Zdeg(ri))zdeg(m)} , and (6)

k=0 =1

L 9 H (1 + (23deg(7'i)/2 _ 2deg(n))) )

i=1
Proof. By using (5), the formulas for We, (z) and We,(z) follow from the
generating function G, (z) = Hi:l [1 4 (24¢8(r:)/2 — 1)2dee(")] when n is odd
(see Theorem 5(i) in [16]) and Theorem 1. The formulas for A°* and A2 are
obtained by expanding 2"*1G, (1) — 2G,(2) and 2"F1H,, (1) — 2H.,(2). O

Remark 6 When n is odd, the code Re, has 237+1)/2 codewords, i.e. dim(R¢, ) =
(3n 4 1)/2. Observing that the coefficient of z* in (6) is not zero if and only
k=23 ctr,.nydeg(rs), for "= min{deg(r;)}._; we conclude that R, is
a 2", (3n+1)/2,2""1 —2n~17%] code.

Remark 7 We emphasize that in order to describe the weight distribution of
the codes that we study, it is not possible to avoid the use of generating poly-
nomials. Note that every explicit formula for the number of codewords with a
given weight should depend on all possible ways of expressing the correspond-
ing parameter s as a sum of degrees of polynomials in the prime self-reciprocal
factorization of ™ 4+ 1. Hence such formulas for general n cannot be given
unless the degrees of these divisors follow a particular pattern. Description of
the weight distribution via a generating polynomial is for these codes the best
one can expect.
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5 Enumeration of s-plateaued quadratic functions for odd
characteristic

In this section we apply our method to quadratic functions in D. Recall that
results on D translate to results on the set of rotation symmetric functions
from F) to F). As we will see, determining the generating function in odd
characteristic is considerably more involved. We can restrict ourselves to the
case ged(n,p) > 1 since the case ged(n,p) = 1 is dealt with in [16] with
a different method which employs discrete Fourier transform. We emphasize
that the method of [16] is not applicable to the case ged(n,p) > 1.

Recall that to Q(z) = Tr, (Z}Z{)QJ aixpiﬂ) € D, the associate is

Ln/2] ‘ ‘
A) = (@i’ + a;z" ")
i=0
which is a polynomial of degree at most n. We treat the cases of odd and even
n separately.

The case of odd n

In this case the factorization of ™ — 1 into prime self-reciprocal divisors is
given by } }
g —1=(z—1)Prd b

Firstly we note that ™ — 1 is not divisible by z+ 1 as n is an odd integer, and
hence each r;, 1 <1 < k, is a prime self-reciprocal polynomial of even degree.
Write A(x) as

[n/2]

A(z) = Z (aiz’ + a;z™ %) = z°h(z) ,

i=0
where h(x) is a self-reciprocal polynomial of degree n — 2¢. Since n is odd, also
the degree of h is odd, and hence = + 1 is a factor of A(x). In fact,  + 1 must
appear as an odd power in the factorization of A(z). In particular,

A(z) = 2°(x + 1)o(x)
for a self-reciprocal polynomial o(z) of even degree n—2c—1. As a consequence,
ged(A(z), 2™ — 1) = ged(o(x), 2" — 1) = (z — 1) f1(z) ,

for a self-reciprocal polynomial f; of even degree, and some e € {0,1}. That
is,

z" —1

o(z) = (x — 1) f1(x)g1(x) with ged ((x—l)efl(m)’gl(x)) =1.

We will frequently use the following observation, which immediately follows
from the definition of ¢,.
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Proposition 2 For a self-reciprocal polynomial d of even degree we have
Pp((z £ 1)d) = ¢p((z £1)°d) .

We now represent the counting function N (s) in terms of the function
N (f;t) in (4). The arguments are more complicated than in the even char-
acteristic case, for instance, here the distinction between odd and even n is
required. As we see in the proposition below, for odd n we also need to con-
sider odd and even s separately. In the next subsection, where n is even, we
have to treat four cases.

Proposition 3 Let n be an odd integer such that the p-adic valuation of n

is vp(n) = v. The number NP (s) of quadratic s-plateaued functions in D is
given by

NP (s) = No(Zogsprin = 9) if s is odd,
Nn((z—=1)(@" —1)in—s+1) - Nn((; 1_)11,“71—5—&—1) if s is even.

Proof Suppose that ged(A(z), 2™ — 1) = (z — 1) f1(z), i.e. e = 1. This holds if
only if s is odd. In this case, deg(g;) is odd and ¢; (z) is divisible by (x—1) since
o(x) is a self-reciprocal polynomial of even degree, i.e. g1(x) = (z — 1)g(x) for
some self-reciprocal polynomial g of even degree. Furthermore we know that
gcd((sz)i}llm,gl(m)) = 1, and therefore  — 1 is not a factor of (xic:)i}ll(:r)

Consequently, (z — 1)?"~! must divide f;(z). Hence h(z) can be expressed as

hz) = (2 + 1)@ — 1)L f(2)g(z) with ged (M,g(x)) _

where g is a self-reciprocal polynomial of even degree smaller than n — s, and
z"—1

(z—1)P" f ()

n — s uniquely determines f(x). As a result, there exist

Y el =a(Fpein )

d (;fnﬁ; deg(d)=n—s

. Furthermore, each divisor d of 0 of degree

hencegEK( W

s-plateaued quadratic functions in D if s is odd. Now we consider the case of

even s, i.e. ¢ = 0 and ged(A(x), 2™ —1) = f(z), where the multiplicity of  —1
in f is even. As a result, "’}(—;)1 is divisible by « — 1, which implies that g(x) is
not divisible by « — 1. In this case,

n

h(z) = (z + 1) f(x)g(z) with ged (xf(;)l,g(w)) 1,

ie.ge K (””f(;)l) =K ((m 1)z f(r) ) by Proposition 2. Furthermore for any

self-reciprocal divisor d of ™ —1 of degree n—s—1, the factor (z—1)d uniquely
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determines f. Hence there are

Z op((z —1)d)

(z—1)d|z™—1; deg(d)=n—s—1
= Z ¢p((z — 1)2d)
(z—1)2d|(z—1)(z™—1); deg(d)=n—s—1

s-plateaued functions in D in the case of even s, where d runs over all monic
self-reciprocal divisors of " —1. In order to determine the last sum, we separate
the set

S ={d : dis monic, self-reciprocal, d|(z — 1)(z" — 1), deg(d) =n—s+ 1}

into two disjoint subsets. The set S; consists of elements of S which are divis-
ible by  — 1, and S5 is the complement, i.e.

Si1={d : d=(x—1)%k €S, kis self-reciprocal, deg(k) =n —s— 1},

n—1
ng{d des, d(;’_l)pv}.

Then

Z d)p(d) = Z¢p(d) - Z ¢p(d) )

de Sy des deSs

or equivalently

op((z — 1)2d)

(z—1)2d|(z—1)(z™—1); deg(d)=n—s—1

= Z ¢p (d) - Z ¢p (d)

d|(z—1)(z"—1); deg(d)=n—s+1 d|(mffﬁ; deg(d)=n—s+1
" " —1

Remark 8 Note that from the proof of Proposition 3, we see that s > pv if s
is odd.

Theorem 3 Let n be an odd integer and let 2™ — 1 = (x — 1)P" 1" ~-~r£v be
the factorization of ™ —1 into distinct prime self-reciprocal polynomials. Then

() _ S, N,(lp)(n — 1)zt is given by
pU+1

3 k
GP(z) =14+ > P p-12 | [ Gi(2)
i=1 i=1

where

dog(rd) dog(rd)—deg(r;)

P
Gl(z) =1+ Z(p . —p 3 )Zjdeg(m) ]
j=1
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Proof We can express the generating function as

P = 3 NP -1zt + 3 NP (n— 1)t

t: even t: odd
- (x —1)P° - ™ —1); _ Lzt =1 t
7t§anNn( - ) )Z +t§d( (== D Dit+1) Nn((iﬂ—l)pvﬂt""l))z

t: even
> Nn( z" _lv,t)zt teven(Nn((l—l)(z S 1)) — N ((;i;)lt))t]
=)

t: even
k v

= [[9n07 s2) (1 ~ 14 (- 1)””1;2)) '
i=1 £z

Note that in the fourth equality we added and subtracted N, ((z — 1)(z"

1);0) = N, (ﬁ, 0) = 1. In the last equality we used Lemma 3. We then

obtain the claimed formula by Lemma 4.

The case of even n

In this case the factorization of ™ — 1 is given by

v

1= (=D @k )P

for some distinct prime self-reciprocal polynomials r;, 1 < i < k, of even
degree. Now
n/2

Az) = Z (aiz" + a;x""") = 2°h(z) ,

=0

where h(x) is self-reciprocal, and of even degree n—2c¢. For the ged(A(x), 2™ —1)
we have

ged(A(z), 2" — 1) = ged(h(z), 2" — 1) = (x — D)(z + 1)’ fi(x) ,  (7)

for a self-reciprocal polynomial f; of even degree, and elements €,6 € {0,1}.
Consequently,

" —1
G RE @) =1

We now have to distinguish four cases depending on the values of € and ¢ in

(7).

h(z) = (2-1)(a+1) fo(2)g (x), with ged (
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(i)

Let e = 6 =1, ie., ged(A(x), 2™ — 1) = ged(h(z), 2™ — 1) = (x — 1)(z +
1) f1(z). In this case, s is even and the self-reciprocal polynomial h of even
degree is given by

hz) = (z = 1)(z + D) fi(z)(x - 1)(z + 1)g(z)

with ged ((x — 1z + Dg(z), (IQIC;L(;il)fl) =1,

where g(x) is a self-reciprocal polynomial of degree < n—s—2. As a result,
fi(z) = (xz — 1P ~Yx + 1)P"~1f(z) for a self-reciprocal polynomial f of
even degree (which of course is a product of some r;’s). As a consequence,

h(z) = (@ = 1P M@+ 17 f(x)g(x)

for some self-reciprocal polynomial g. Note that deg(g) is an even inte-

ger smaller than n — s and ged (g, (ﬂ_l)pf(;ﬁ)pvf(x)) = 1. Recalling that

1 o o1
deg ((x_l)pv (IH)M“Z)) =n— s, we see that g € K ((I_l)pv (z+1)P”f(ac))'
" —1

Furthermore each divisor d of (TS of degree n — s uniquely de-

termines f, and hence there exist

> dp(d)

o o
A e deg(d)=n—s

such polynomials h.

Let e = 1 and 6 = 0, i.e., gcd(A(z), 2" — 1) = ged(h(x), 2™ — 1) = (z —
1) f1(x). In this case, s is odd and the self-reciprocal polynomial & of even
degree is given by

. "t —1
h(e) = (@ = Do)~ (o) with g ( (2 = (o). 7y ) =1
(z—=1)f1
for some self-reciprocal polynomial g,where deg(g) is even, and smaller
than n — s. Consequently, fi(x) = (x —1)?" ~! f(x) for some self-reciprocal
polynomial f of even degree, and therefore

h(z) = (& = D)P ' f(z)g(x) |

where ged (g, M) = 1. Since ﬁ contains the factor x + 1, the
polynomial g is not divisible by =+ 1. In particular, g € K((z+1)d), where
d= W is a self-reciprocal polynomial of even degree n —s—1.
As above, each self-reciprocal divisor d of mf;ﬁ of degree n —s — 1

uniquely determines f. Consequently there exist

2 ¢p((x +1)d)
d‘(rflw)zﬁ; deg(d)=n—s—1

such polynomials h.
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(iii)

(iv)

The case € = 0 and § = 1 is very similar. With the same argument as in
(ii) we get

hz) = (z+ D fi(2) (@ + 1)g(z) with ged ((:c—i— 1)g(x),(§j__1)1fl> _1,
(8)

for some self-reciprocal polynomial g, where deg(g) is even, smaller than
n — s, and

> ¢p((z = 1)d)

zn 1 . e
d‘i(wrlw”(w—l)’deg(d) n—s—1

is the number of polynomials A of the form (8).

Let e =6 =0, i.e., ged(A(z), 2™ — 1) = ged(h(z), 2™ — 1) = f(z) for some
self-reciprocal polynomial f of even degree. In this case we see that the
self-reciprocal polynomial A is given by

he) = F)gto) with ged (g(0). T ) =1

where g(x) is a self-reciprocal polynomial of degree < n—s. Note that o)

is divisible by both  — 1 and x + 1, so g(x) is not divisible by neither.
Therefore

" -1
he) = Fa)g(o) with ged (500, (@ - D+ D) =1, )
where g(z) is a self-reciprocal polynomial of degree smaller than n — s+ 2.
As for each self-reciprocal divisor d of ™ — 1 of degree n — s, f is uniquely
determined, we can again express the number of polynomials h of the form
(9) in terms of ¢, as

$ op((@ — D)z +1)d).

(z—1)(z+1)d|(z—1)(z+1)(z™—1); deg(d)=n—s

Remark 9 From the above observations we conclude that again s > pv if s is
odd.

Theorem 4 Letn be an even integer and let 2" —1 = (z—1)P" (z+1)P"rP" .. Ty

P v

be the factorization of x™ — 1 into distinct prime self-reciprocal polynomials.

Then the generating function g,(f’) s given by

pU+1 2

T2 k
6P () =1+ > P -1 | T[Gi2) .
j=1 i=1

where

dog(rd) dog(rd)—deg(r;)

P
Gl(z) =1+ Z(p z  —p 3 )Zjdeg(m) ]
j=1
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Proof First let s be odd, which applies in the cases (ii) and (iii) above. The
discussion of these cases imply for NP (s) that

NP (s) = > bp((z + 1)d) + S bp((z — 1)d)
d\m deg(d)=n—s—1 d\m deg(d)=n—s—1
- 2 #o((e+ 1% + > dpl(z—1)°a) .
\m deg(d)=n—s—1 \m deg(d)=n—s—1
(10)
To determine the sum (10) we separate the set
: . . " -1
S = <h : his monic, self-reciprocal, MW’ deg(h) =n—s+1
T —

into the two disjoint subsets

S1={h : he Sandged(h,z+1)=1}, and
Sy ={h : heSand (z+1)h}.

Note that being self-reciprocal and of even degree, the polynomials h in the
set Sy are divisible by (x + 1)2. Then for the first sum in (10) we obtain

> dp((@+1)%d) = Y ¢p(h)

xn 1 _ hGS
d\iu ATTTETE deg(d)=n—s—1 2
= > dp(h) = Y ép(h)
‘(1+1)(1I)n 1. ; deg(h)=n—s+1 hesS,
= > ¢p(h) — > ¢p(h)
x ™ — T —
h\i(' _(lei(l)P'” L. deg(h)=n—s+1 h|7(m71)“;v (m1+1)1’" ; deg(h)=n—s+1

_Nn(w —5—|—1> N”((x—f;:”(lerl)“’ s—|—1)

In a similar way, for the second sum in (10) we get

> ép((z —1)%d)

-1l . —p—g—
d| (z+1)P”(z—1)’deg(d) n—s—1

Combining, we obtain

NP (s) = N, (W;n—s+l> + No (W;n—s+l>

(Y
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for an odd integer s. Now we consider the case of even s, which corresponds
to (i) and (iv). By the above observations,

NP (s) = > ¢p(d)

a1 . o
U e ey de(d)=n=s

' > Bpl(z = 1) + 1)d)
(z—1)(z+1)d|(z—1)(z+1)(z™—1); deg(d)=n—s
" —1
N <<x )
; > Bp((x — 1)( + 1)d).

(z—1)(z+1)d|(z—1)(z+1)(z*—1); deg(d)=n—s

We set T := Z(wf1)(w+1)d|(zfl)(a:+1)(w"71); deg(d)=n—s ¢p((z —1)(z+1)d) and

in order to determine 1" we consider the set
S ={h(x) : h(x)is self-reciprocal, h|(z—1)(z+1)(z"—1), deg(h) = n—s+2}
and its subsets

Sy ={h(z) : hes, ged(h,z —1) =1},

So={h(z) : he S, ged(h,z+1) =1},

Sz = {h(x) : he S, ged(h,z? —1) =1}.

Note that since h is a self-reciprocal polynomial of even degree, h is divisible
by (z F 1)? if it is divisible by = F 1. As a consequence,

T= Z ¢p(h) - Z d’p(h) - Z ¢p(h) + Z ¢p(h)-
h|(z—1)(xz+1)(x™—1); deg(h)=n—s+2 hesS: heSs heS3

We also note that for h in the set S, h € Sy if and only if hl(x + 1)(;{71’)}]“,

h € S if and only if | (x —1) (Zg5ke and h € Sy if and only if h| =g e -

Therefore we can express the sum 7T as

T= Z ¢p(h) - Z ¢p(h)

h|(z—1)(z+1)(z™ —1); deg(h)=n—s+2 h|(m+1)(fj’ﬁ; deg(h)=n—s+2
= > ¢p(h) + > Pp(h).
_ a1 . ) o ™ —1 . —n—
h|(z 1)7(w+1)l’“ ; deg(h)=n—s+2 h| e DF e r 7 deg(h)=n—s+2

Hence, for an even integer s

NP @) = N (G )+ Ne (@ = D4 D6 = Din = +2)

(x — )P (z + 1)P

Ny <%;n—s+2> - No (%;n—s+2>

" —1
v;nfs+2>.

e (e



24 Nurdagiil Anbar et al.

From the above equalities we get

G () =S NP (-1t = 3 NP (—0)2'+ 3 NP (n—1)2

t=0 t: odd t: even

- 3 e () o (B ) - (e )

t: odd
—N,, (%;t+2> + Ny (Wﬁ,ﬁ;ﬂﬂﬂ 2*

_! > [Nn (%;wﬂ) + N, (%;t+1) — 2N, <m$ﬁ;t+1>} P

z

t: odd
+ tz;ﬁﬂm (—(3E — 1?;(_1»1 e ;t) 2+ z% t:;en [Nn (& —1)(z+ 1) (=" — 1)t +2)
() (S ) e (g
-2 3 e (B o (e - (e )
+ t;enj\/n ((r*l;ﬂ;ﬁt) 2t 4 Z% tezve [N ((z = 1)(z 4+ 1) (=" — 1);¢)

" (ﬁ> + i (G (2= D@+ (" = 1);2)

Q

+

v

1 v 1 v 2
Gn(r?”:2) (;gn«z“)” )+ Sa((@ - )P ) - 2

==~

= A

1

Gl = D7 e+ )P 5) - G (@ )P ) — =Gl — 1)) + %) .
z z z z

o
I

—

By Lemma 4 we get

k v 2 . 2 1 v
G (z) = Hgn(rf ;2) (zgn((fﬂ —1)P ) — s 1+ Z—an((w — )Pt 2)?
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Putting

pY+1
2
v

Gi=Gu(r? ;z), and A:= Z P p—1)2% =G, ((z — l)pﬂﬂ;z) -1
this yields

b 2 1 2 1
G®)(z) HGl[ (I+4) - -+1+ SA+A)? - S(1+A)+

2
z z
=1

:(1+’j> EGZ

Simplifying and using Lemma 4 we get the desired result.

<.

As an immediate corollary of Theorems 3 and 4 we obtain the number of
bent functions in the set D. Note that the case of ged(n,p) = 1 is covered in
[16, Corollary 7].

Corollary 3 Let the factorization of x™ —1 into distinct prime self-reciprocal
polynomials be z™ — 1 = (x — 1)P'rY --.v? when n is odd, and 2™ — 1 =
(x—1)P" (x+1)*" ?"Zl)v = -7{’ when n is even. Then the number of bent functions
in D is

p¥—1 p¥ deg(ry) (p¥—1) deg(r;)
Na(0)=(p—1)p > H(p 7 —p ) ;

=1

~.

k
V-1 pY deg(r;) (p¥ —1) deg(r;)
Nu(©) = ((p=Dp =PI (P —p" )

if n is even.

6 Acknowledgements

The first author gratefully acknowledges the support from The Danish Coun-
cil for Independent Research (Grant No. DFF-4002-00367) and H.C. Orsted
COFUND Post-doc Fellowship from the project ” Algebraic curves with many
rational points”.

The second author is supported by the Austrian Science Fund (FWF) Project
no. M 1767-N26.



26 Nurdagiil Anbar et al.

References

1. Berlekamp, E.R.: The weight enumerators for certain subcodes of the second order binary
Reed-Muller codes. Information and Control 17, 485-500 (1970)

2. Berlekamp, E.R., Sloane, N.: The weight enumerator of second-order Reed-Muller codes.
IEEE Trans. Inform. Theory IT-16, 745-751 (1970)

3. Carlet, C., Gao, G., Liu, W.: A secondary construction and a transformation on rota-
tion symmetric functions, and their action on bent and semi-bent functions. J. Combin.
Theory, Series A 127, 161-175 (2014)

4. Cesmelioglu, A., Meidl, W.: Non-weakly regular bent polynomials from vectorial
quadratic functions. In: Pott, A., et.al. (eds) Proceedings of the 11th international con-
ference on Finite Fields and their Applications, Contemporary Mathematics, 2015, 83-95

5. Charpin, P., Pasalic, E., Tavernier, C.: On bent and semi-bent quadratic Boolean func-
tions. IEEE Trans. Inform. Theory 51, 4286-4298 (2005)

6. Fitzgerald, R.W.: Trace forms over finite fields of characteristic 2 with prescribed invari-
ants. Finite Fields Appl. 15, 69-81 (2009)

7. Fu, F.W., Niederreiter, H., Ozbudak, F.: Joint linear complexity of multisequences con-
sisting of linear recurring sequences. Cryptogr. Commun. 1, 3-29 (2009)

8. Helleseth, T., Kholosha, A.: Monomial and quadratic bent functions over the finite fields
of odd characteristic. IEEE Trans. Inform. Theory 52, 2018-2032 (2006)

9. Hu, H., Feng, D.: On Quadratic bent functions in polynomial forms. IEEE Trans. Inform.
Theory 53, 2610- 2615 (2007)

10. Kasami T.: The weight enumerators for several classes of subcodes of the 2nd order
binary Reed-Muller codes. Information and Control 18, 369-394 (1971)

11. Kasikel, C., Meidl, W., Topuzoglu, A: Spectra of quadratic functions: Average behaviour
and counting functions. Cryptogr. Commun. DOI 10.1007/s12095-015-0142-9

12. Khoo, K., Gong, G., Stinson, D.: A new characterization of semi-bent and bent functions
on finite fields. Designs, Codes, Cryptogr. 38, 279-295 (2006)

13. Kocak, N., Kocak, O., Ozbudak, F., Saygi, Z.: Characterization and enumeration of a
class of semi-bent Boolean functions. Int. J. Inform. Coding Theory 3, 39-57 (2015)

14. Li, S., Hu, L., Zeng, X.: Constructions of p-ary quadratic bent functions. Acta Appl.
Math. 100, 227-245 (2008)

15. Meidl, W., Topuzoglu, A.: Quadratic functions with prescribed spectra. Designs, Codes,
Cryptogr. 66, 257-273 (2013)

16. Meidl, W., Roy, S., Topuzoglu, A.: Enumeration of quadratic functions with prescribed
Walsh spectrum. IEEE Trans. Inform. Theory 60, 6669-6680 (2014)

17. Yu, N.Y., Gong, G.: Constructions of quadratic bent functions in polynomial forms.
IEEE Trans. Inform. Theory 52, 3291-3299 (2006)



Title Suppressed Due to Excessive Length 27

7 Appendix

We give some examples of generating function for p = 3.

Ezample n = 9-13: In this case, 2913 —1 = (z—1)%{r) for prime self-reciprocal
polynomials 71, 79 both of degree 6. By Theorem 3,

5 9
Sla(z) = (142> 371271 (1426 33071072
j=1 j=1

Expanding this polynomial we obtain

G55 () =

1422462 +182° +522% 4 15827 + 474 2° + 936 21 + 2080 2'? + 6968 2% + 20904 2'° + 37440 27

+ 74412 2"® 4 261144 219 4 783432 22" + 1339416 2% + 2501928 2** + 9022104 22° + 27066312 27

+ 45034704 2° + 80857764 2°0 + 296819640 23" + 890458920 2% + 1455439752 2%° + 2542413744 2°°

+ 9451146744 237 + 28353440232 z3° 4 45763447392 2*! + 78345032220 2*? + 293980406616 z*3

+ 881941219848 z1° + 1410210579960 2?7 + 2377212120504 2*® + 8985055980888 2% + 26955167942664 2°*

+ 42789818169072 z°% + 71255926018836 2°* + 270881306544888 2°° + 812643919634664 z°7

+ 1282606668339048 z°° + 1718301299950404 2°° + 7284422604917952 2°! + 21853267814753856 2°°

+ 30929423399107272 2°° + 41239231198809696 2°¢ + 175266732594941208 2°7 + 525800197784823624 2%°

+ 742306161578574528 2 4 974276837071879068 2”2 + 4175472158879481720 2> 4 12526416476638445160 2" °
+ 17536983067293823224 277 + 22547549657949201288 27° + 97706048517779872248 27°
+293118145553339616744 25! + 405855893843085623184 2% + 507319867303857028980 z5*

+ 2232207416136970927512 2%° 4 6696622248410912782536 2°7 + 9131757611469426521640 2°°

+ 10958109133763311825968 2°° + 49311491101934903216856 2°' + 147934473305804709650568 2°°

+ 197245964407739612867424 z°° + 221901709958707064475852 2% + 1035541313140632967553976 2°7

+ 3106623939421898902661928 2°° + 3994230779256727160565336 2% + 3994230779256727160565336 22

+ 19971153896283635802826680 z'°3 + 59913461688850907408480040 2% + 71896154026621088890176048 z'°7
+ 53922115519965816667632036 z'°° + 323532693119794900005792216 27

+ 970598079359384700017376648 2! + 970598079359384700017376648 2>

+ 2911794238078154100052129944 2 '® 4 8735382714234462300156389832 27
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Ezample n =9 - 14: In this case, 291 — 1 = (z — 1)%(z + 1)°r{rJ for prime
self-reciprocal polynomials 71,79 both of degree 6. By Theorem 4,

5 9
G5 (2) = (1423037712572 (1 426 Y 37071 %92
j=1

j=1
1+4z+422+122% +242% 4 362° +1602° 4+ 31627 + 640 2% + 948 2° + 2868 210 + 187221 + 11584 2'2
+ 13936 2" + 39532 2 + 41808 2'° + 151656 2'° 4 74880 2'7 + 527472 2% + 522288 2'° + 1651104 2*°
+ 1566864 22! + 6065280 222 + 2678832 2% + 19990152 2%? + 18044208 22° + 60349536 22° + 54132624 227
+ 216985392 2% 4+ 90069408 z>° + 694967364 z°° + 593639280 z°' + 2055220128 z** + 1780917840 *°
+ 7295622048 234 4 2910879504 2>° + 22055416848 236 + 18902293488 237 + 66987075168 2>°
+ 56706880464 2°° + 235781239824 2% 4 91526894784 2*! + 732061301436 z** + 587960813232 2*°
+ 2119046585760 z** + 1763882439696 z*° + 7413678477504 2*® + 2820421159920 z*7 + 22845411395352 2*®
+ 17970111961776 z*° 4 65594937833568 2°° + 53910335885328 z°" + 228454113953520 2°°
+ 85579636338144 z°3 4 699323426602164 z°* + 541762613089776 z°° + 1997341681993632 z°°
+ 1625287839269328 z°7 + 6931950543389664 2°% + 2565213336678096 2°° + 20712629060085924 2°°
+ 14568845209835904 2°! + 58451616870107760 252 + 43706535629507712 2°3 4 198265534609662000 2°*
+ 61858846798214544 2°° 4 566246366845194672 2°¢ + 350533465189882416 2°7 + 1530609927186590640 z°°
+ 1051600395569647248 2°° + 5020083336316641840 z"° + 1484612323157149056 2+
+ 13978909783188828972 272 + 8350944317758963440 27° + 36744154998139439136 27 *
+ 25052832953276890320 z7° + 120253598175729073536 27 + 35073966134587646448 27"
+ 333202678278582641256 2 ° + 195412097035559744496 27° + 871838586774035783136 25°
+ 586236291106679233488 25! + 2840991256901599362288 257 + 811711787686171246368 25°
+ 7812725956479398246292 2% 4 4464414832273941855024 25° + 20292794692154281159200 2°°
+ 13393244496821825565072 27 + 65748654802579870955808 2% + 18263515222938853043280 2°°
+ 178982449184800759824144 z°° 4 98622982203869806433712 2°! + 460240583618059096690656 >
+ 295868946611609419301136 2°° + 1479344733058047096505680 2°* + 394491928815479225734848 2°°
+ 3969575033705759708956908 2°¢ + 2071082626281265935107952 2°7 + 10059544184794720256238624 2°°
+ 6213247878843797805323856 2% + 31953846234053817284522688 2'°° + 7988461558513454321130672 2'°*
+ 83878846364391270371872056 z'°% + 39942307792567271605653360 2 °°
+ 207700000521349812349397472 2'%* 4 119826923377701814816960080 z'°°
+ 647065386239589800011584432 2% + 143792308053242177780352096 z'°7
+ 1635637504105629772251505092 2% + 647065386239589800011584432 ' °°
+ 3882392317437538800069506592 2 0 4 1941196158718769400034753296 2
+ 11647176952312616400208519776 "% + 1941196158718769400034753296 z''3
+ 27176746222062771600486546144 z''* 4 5823588476156308200104259888 z''°
+ 58235884761563082001042598880 2" 1® + 17470765428468924600312779664 27
+ 157236888856220321402815016976 ' '® + 314473777712440642805630033952 2" °
+ 471710666568660964208445050928 z'2? 4 943421333137321928416890101856 2 2*
+ 1415131999705982892625335152784 226

Ezample n = 9 - 20: With 2914 — 1 = (z — 1)°(z + 1)°r{r3r, r}, where
71,79, 73,74 are prime self-reciprocal polynomials of degrees 2,4,4 and 8, from
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Theorem 4 we obtain

5 9 9 9
G5%0(2) = (1423737712272 (1423 37 ) (148> 320 )2 (1480 Y 340N
j=1 j=1 j=1 j=1
Expanding, for instance from the coefficient of z°° we see that the number of
81-plateaued functions in D for p = 3 and n = 9-20 is 616946472137940526877139072.
Furthermore we see that the number of bent functions in the set D is ./\/9(20 =
6054249652811609019026768290053459869736960. Here we omit writing down

the whole expanded version of the polynomial gg(fz)o



