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SUMMARY  

Talaromyces islandicus (“Penicillium islandicum”) is a widespread foodborne mold that produces  

numerous secondary metabolites, among them potent mycotoxins belonging to different chemical  

classes. A notable metabolite is the hepatotoxic and carcinogenic pentapeptide cyclochlorotine that  

contains the unusual amino acids β-phenylalanine, 2-aminobutyric acid and 3,4-dichloroproline.  

Although the chemical structure has been known for over five decades, nothing is known about the  

biosynthetic pathway of cyclochlorotine. Bioinformatic analysis of the recently sequenced genome of  

T. islandicus identified a wealth of gene clusters potentially coding for the synthesis of secondary  

metabolites. Here we show by RNA interference-mediated gene silencing that a nonribosomal peptide  

synthetase, CctN, is responsible for the synthesis of cyclochlorotine. Moreover, we identified novel  

cyclochlorotine chemical variants, whose production also depended on cctN expression. Surprisingly, the  

halogenase required for cyclochlorotine biosynthesis is not encoded in the cct cluster. Nonetheless, our  

findings enabled us to propose a detailed model for cyclochlorotine biosynthesis. In addition,  

comparative genomics revealed cct-like clusters are present in all of the sequenced Talaromyces strains  

indicating a high prevalence of cyclochlorotine production ability.  
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INTRODUCTION  

Filamentous fungi are prolific producers of secondary metabolites (SMs) with various bioactivities that  

range from toxic (e.g. aflatoxins, fumonisins) to beneficial and pharmaceutically important (e.g.  

penicillin, cyclosporine, lovastatin). The biosynthesis genes of fungal SMs are usually organized on a  

single genetic locus as a biosynthetic gene cluster (BGC) (Keller and Hohn, 1997; Hoffmeister and Keller,  

2007). The genus Talaromyces is among the chemically most versatile producers of all fungi (Frisvad,  

2014). To date, four genomes of the 88 known Talaromyces strains have been sequenced and annotated.  

Bioinformatic analyses based on biosynthetic key genes revealed between 48 and 62 BGCs in the  

investigated genomes (Nierman et al., 2015; Schafhauser et al., 2015), indicating that the genus has the  

ability to produce more SMs than currently described in the literature.  

Talaromyces islandicus, formerly designated as Penicillium islandicum (Samson et al., 2011), is a  

commonly found grain decaying mold and an important foodborne species in tropical regions (Frisvad  

and Thrane, 2004). T. islandicus produces more than 20 mainly polyene-like or quinoid pigments (Yilmaz  

et al., 2014) including skyrin, erythroskyrin, and islandicin, some of which show pronounced  

hepatotoxicity (Cole et al., 1976; Liberman et al., 1980; Kawai et al., 1984). Furthermore, T. islandicus is  

known to produce the halogenated peptide cyclochlorotine which is toxic and carcinogenic to liver cells  

of mice (Uraguchi et al., 1972). Cyclochlorotine, also referred to as islanditoxin (Samson et al., 2011), was  

identified as one of the so-called yellow-rice syndrome causing agents in Japan after World War II  

(Uraguchi, 1961), when T. islandicus became prevalent on foodstuff deliveries from overseas. The  

molecular target of cyclochlorotine was presumed to be cytoskeletal filaments (Ohmi et al., 2001).  

However, the specific mechanisms of toxicity and carcinogenicity remain poorly understood.  

Structurally, cyclochlorotine is composed of the nonproteinogenic amino acids L-2-aminobutyrate  

(2Abu), L-β-phenylalanine (βPhe), the unique L-cis-3,4-dichloroproline [Pro(Cl2)] and two L-serines (Ser),  

which results in the cyclic chlorinated pentapeptide cyclo[ Ser-βPhe-Ser-Pro(Cl2)-2Abu]. It thus shows  
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remarkable similarities to the plant-derived astins of Aster tataricus (Kosemura et al., 1993; Morita et al., 

1993). The only difference between cyclochlorotine and astin C is the replacement of one of the serines 

by a second 2-aminobutyrate [Ser-βPhe-2Abu-Pro(Cl2)-2Abu]. Nonetheless, nothing is known about the 

biosynthesis of cyclochlorotine and the same applies for the formation of the non-proteinogenic 

moieties βPhe, 2Abu and the unique Pro(Cl2).  

Modified cyclic pentapeptides are typically synthesized by non-ribosomal peptide synthetases (NRPSs), 

large multifunctional enzymes that assemble simple building blocks to complex molecules (Hori et al., 

1989; Finking and Marahiel, 2004). About 500 different amino acids have been identified to date in 

nonribosomal peptides (reviewed in Walsh et al., 2013), thereby extending the range of selectable 

building blocks far beyond the 21 proteinogenic amino acids (a comprehensive documentation and 

examples are given in the Norine database, Caboche et al., 2008). However, modified cyclic peptides may 

as well derive from ribosomally produced natural products (RiPPs) that undergo posttranslational 

modification and cyclization. This has recently been exemplified by the characterization of the ustiloxin B 

pathway in Aspergillus flavus (Umemura et al., 2014). 

Here, we used a comprehensive genome mining approach to identify and characterize the 

cyclochlorotine biosynthesis gene cluster from Talaromyces islandicus. Based on our results, we propose 

an NRPS pathway model which to our knowledge represents the first characterized NRPS pathway in the 

genus Talaromyces. 
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MATERIAL AND METHODS 

General 

Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich, St. Louis, USA. Plasmids are 

listed in Table 1 and sequences of primers used in this study are shown in Table S1 in supplementary 

information. Purification of the putative halogenase Pisl3812_03494 and the halogenation assays as well 

as purification of the proline dehydrogenase Pisl3812_07821 and the dehydrogenation assay are 

described in the supplementary information. 

As standard cultivation, T. islandicus WF-38-12 (ATCC 26535, obtained as Penicillium islandicum Sopp) 

was grown in PDB (potato dextrose broth, see Table S2) at 27°C in the dark. Cultures were incubated 

under shaking (150 rpm) for strain maintenance and under non-shaking for metabolite production 

purposes and for qPCR studies, unless otherwise stated. 

 

Gene expression assay 

Quantitative real-time PCR (qPCR) on an IQ5 iCycler (Bio-Rad, Munich, Germany) was used to determine 

the expression of the cct cluster genes, the putative flavin-dependent halogenase gene pisl3812_03494 

and the cct-like NRPS gene pisl3812_04906. Total RNA was extracted from liquid nitrogen ground 

material of 21-day-old standing cultures grown in PDB (in case of the halogenase gene expression assays 

7-d-old shaking cultures were used) with the RNeasy Mini Kit (Qiagen, Hilden, Germany) and using the 

QIAshredder homogenizers. Isolated RNA was treated with DNase (Thermo Scientific) to remove 

genomic DNA contamination. Total cDNA was prepared from RNA (50 ng/µl) using the RevertAid reverse 

transcriptase (0.2 µl, Thermo Scientific) and 100 pmol anchored oligo(dT)10 primers (sequence: 5’-

NVTTTTTTTTTT-3’) in a 20 µl volume reaction. The qPCR was assessed with the iQ SYBR Green supermix 

(2x, Bio-Rad), 40 pmol primers and 1.5 µl cDNA in a 20 µl volume reaction. The cycle threshold (Ct) values 
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were determined automatically by the Bio-Rad IQ5 software (V2.1) after automated base-line  

subtraction. A two-step program on the thermocycler was used: 95°C for 3 min and subsequently 40  

cycles at 95°C for 10 sec and 55°C for 60 sec. For each sample, RNA was used as a negative control to  

confirm absence of contaminating genomic DNA. For each gene, 3 biological replicates were performed  

(in case of the halogenase gene expression assays only 2 replicates) with primers amplifying a ~250 bp  

region near the 3’ end of the gene. Melting curve analyses were performed at the end of the PCR  

program, to exclude possible nonspecific amplification products. PCR efficiency (E) for each pair of  

primers was calculated in advance with the help of the regression of a standard curve from dilution  

series of genomic DNA with the formula Egene = 10^(-1/regression). Finally, all gene expression values  

were normalized to the expression of the reference genes gpd (glyceraldehyde-3-phosphate  

dehydrogenase coding) or act-1 (β-actin coding) from the same sample with the formula  

Eref^Ctref/Egene^Ctgene.  

  

Silencing the NRPS gene cctN  

RNA interference-mediated gene silencing was realized with the hairpin RNA-expressing plasmid pSilent- 

1. A ~500 bp fragment of gene cctN was PCR-amplified with the primer pair cctN_KD-F / cctN_KDHind-R  

(generating a 3’ HindIII-site) and ligated into the pJET1.2/blunt vector resulting in a template construct  

that is flanked by primer- and vector-derived restriction sites (BglII-XhoI-cctN fragment-HindIII-BglII).  

Sense and antisense fragments were consecutively ligated into pSilent-1 using XhoI/HindIII-restriction  

and BglII-restriction and the T4 DNA ligase (Thermo Scientific), respectively, in consideration of the  

correct orientation of the latter fragment (antisense). The resulting plasmid pST-cctN was transferred  

into T. islandicus WT protoplasts. Gene expression of some hygromycin resistant transformants was  

analyzed and the strain with lowest cctN-expression was selected for further studies.  
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Overexpression of genes cctM, cctT and pisl3812_03494 

The plasmid pSilent-1 was used as basis for gene overexpression taking advantage of the strong 

Aspergillus nidulans PtrpC promoter in front of the first MCS. The hygromycin resistance cassette was cut 

out with NotI and exchanged against the (terminator-free) nourseothricin resistance cassette of plasmid 

pD-NAT1 using the primer pair PtrpCNot-F/Nat1Not-R and T4 DNA ligase. The resulting plasmid pOE was 

linearized with XhoI/BglII, which eliminated the loop forming spacer sequence. The genes cctM, cctT and 

pisl3812_03494 were PCR-amplified with the primer pairs cctM_OE-F / -R, cctT_OE-F / -R and 

halo3494_OE-F / -R, which generated overhangs complementary to the plasmid endings, and ligated into 

the linearized pOE by Gibson assembly (New England Biolabs, Ipswich, USA) according to the 

manufacturer protocol. The resulting plasmids pOE-cctM, pOE-cctT and pOE-halo3494 were transferred 

into T. islandicus WT protoplasts. For each gene, expression analysis of some nourseothricin resistant 

transformants was performed and strains with highest gene-expression were selected for further 

studies. 

 

Protoplast transformation 

Protocols for generation and transformation of protoplasts were adapted from Huang, et al.(1995). 

T. islandicus spores were incubated for 2-3 days in PDB under shaking. Cells from 15 mL culture were 

pelleted (5000 rpm, 10 min), washed twice with osmotic medium (OM, 1.2 M MgSO4, 50 mM phosphate 

buffer, pH 5.8) and resuspended in 10 mL OM. Generation of protoplasts was achieved by adding 

5 mg/mL Yatalase (Takara, Kyoto, Japan) and 5 mg/mL Glucanex (lysing enzymes from T. harzianum, 

Sigma-Aldrich) followed by incubation under shaking at 30°C for 0.5-1.5 h. After protoplast formation, 

the mixture was filtered using a glass frit (pore size 40-100 µm), carefully covered with 10 mL STC buffer 
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(1.2 M Sorbitol, 10 mM CaCl2, 10 mM Tris-HCl, pH 7.5) and centrifuged at 1500 g for 15 min. Protoplasts 

at the interphase were generously removed, pelleted, washed twice with 5 mL STC and finally 

resuspended in 1 mL STC. 

For transformation of protoplasts, 1 µg plasmid DNA and 40 µl PEG (polyethylene glycol) solution 

consisting of 40 % (w/v) PEG 6000 (Merck, Darmstadt, Germany), 50 mM CaCl2 and 10 mM Tris-HCl (pH 

7.5) were added to 1-5x10
6
 protoplasts (usually 200 µl). The mixture was incubated for 10 min on ice, 

another 1 mL PEG solution was added followed by 10 min incubation at room temperature and finally 

5 mL STC buffer were added. Transformed protoplasts were pelleted and plated onto PDA (potato 

dextrose agar) containing 1.2 M sorbitol and either 200 µg/mL nourseothricin (cloNAT, Werner 

Bioagents, Jena, Germany) or 100 µg/mL hygromycin B (Sigma-Aldrich). 

 

Cyclopeptide screening by HPLC-MS and HPLC-MS
2
 

Cyclochlorotine and variants were extracted from 20 mL of culture filtrate with the same volume of 

butanol. The butanol phase was evaporated to dryness in vacuo and extracted material was dissolved in 

0.5 mL MeOH/H2O (50:50) and subsequently analyzed by mass spectrometry as described in Spohn et al. 

(2014). 

HPLC-MS guided cyclopeptide isolation 

Ten L of CYA medium (Czapek Yeast Autolysate, see Table S2) were inoculated with 0.2 L of a 3-day-old 

T. islandicus pre-culture (grown under shaking in PDB), divided over 24 Erlenmeyer flasks and incubated 

for 12 days under non-shaking conditions at 27°C. Likewise, 2.5 L of CYA medium were inoculated, 

divided over 6 Fernbach flasks and incubated for 31 days. Cultures from both approaches were merged, 

filtered and adsorbed on Amberlite XAD16 resin (40x8 cm column). MeOH eluents containing 

cyclopeptides were evaporated in vacuo, dissolved in H2O and separated by size-exclusion 
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chromatography on a Bio-Gel P2 column (95x5.2 cm, Bio-Rad). Fractions containing compounds 1-2 were 

combined, purified by preparative RP-HPLC (Reprosil-Pur Basic-C18, 10 µm, 250x20 mm, Maisch, 

Ammerbuch, Germany) with a linear gradient from 30-70 % MeOH over 20 min. The flow rate for RP-

HPLC was 24 mL min
-1

. The isolation yielded 30 mg of cyclochlorotine (1). Fractions containing hydroxy-

cyclochlorotine (2) were further purified by RP-HPLC (Reprosil Pur ODS-3, 10 µm, 250x20 mm, Maisch) 

and eluted with 30 % acetonitrile (ACN, isocratic) which yielded 10 mg of 2. Bio-Gel fractions containing 

compound 3 as well as combined fractions with compounds 4-5 were evaporated in vacuo, dissolved in 

MeOH and each consecutively purified on Sephadex LH-20 (90x5 cm, Amersham, Freiburg, Germany) and 

Toyopearl HW-40-F (95x2.5 cm, Toyo Biosep, Stuttgart, Germany) columns. Fractions containing 3 were 

purified by two consecutive RP-HPLC steps on Reprosil Pur Basic-C18 (linear gradient from 30-60 % 

MeOH over 15 min) and Reprosil Pur ODS-3 (20 % ACN, isocratic), which yielded 3 mg of cyclotine (3). 

Compounds 4 and 5 from Toyopearl fractions were combined and purified on Reprosil Pur Basic-C18 

(linear gradient from 30-60 % MeOH over 20 min) and finally separately purified on Reprosil Pur ODS-3. 

Elution with ACN (linear gradient of 20-26 % ACN over 1.5 min, followed by 26 % ACN isocratic) yielded 

~2 mg of compound 4 and the elution with a linear gradient from 20-60 % ACN over 15 min yielded 

~2 mg of compound 5. 

 

Structure elucidation (HR-MS and NMR) 

Optical rotations were measured on a JASCO P-2000 polarimeter. Nuclear magnetic resonance (NMR) 

spectra of compound 1 were recorded on a Bruker AMX-600 spectrometer. NMR spectra of compounds 

2, 3, 4, and 5 were acquired on a Bruker Avance III 500 HD spectrometer, equipped with a BBFO cryo 

probe head. Spectra were referenced to residual protonated solvent signals with resonances at δH/C 

2.50/39.5 (deuterated dimethyl sulfoxide [d6-DMSO]). High-resolution (HR) electrospray ionization-time 
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of flight mass spectrometry (ESI-TOF MS) data were recorded using a Bruker Daltonic maXis 4G 

instrument. 
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RESULTS AND DISCUSSION 

Identification of candidate NRPS genes for cyclochlorotine biosynthesis 

The ability of T. islandicus to produce nonribosomal peptides was investigated by means of the SM 

analysis software antiSMASH (version 3.0, Weber et al., 2015). A total of 62 BGCs were identified from 

the genome, among them as many as 13 putative NPRS gene clusters. Four of the putative 13 NRPS 

genes encode a predicted penta-modular composition consistent with the pentapeptide structure of 

cyclochlorotine. Given that all amino acids in cyclochlorotine occur in L-configuration, no epimerization 

domains are expected. Furthermore, a terminal domain displaying a CT domain specific signature 

(Caradec et al., 2014) is expected in the NRPS for cyclization and release of cyclochlorotine. These 

considerations allowed us to further narrow down the plausible NRPSs to two candidates with the 

deduced domain architecture A-T-(C-A-T)4-CT (see Fig. S1), in which A, T, C and CT stand for adenylation 

domain, thiolation domain, condensation domain and terminal condensation-like domain, respectively. 

These remaining NRPSs share a remarkably high amino acid sequence identity of 57 % over the whole 

length of around 5,600 amino acids (see Fig. S1). They are encoded by the genes cctN (16926 bp) and 

pisl3812_04907 (16874 bp) which are located on different chromosomes, respectively. 

T. islandicus produced cyclochlorotine under standard cultivation conditions. Metabolite production was 

analyzed by high performance liquid chromatography coupled to mass spectrometry (HPLC-MS) of 

culture filtrate butanol extracts. Cyclochlorotine was identified by the mass of its pseudo-molecular ion 

([M+H]
+
, m/z 572.4, Fig. 1A) and due to the characteristic isotope pattern caused by the two chlorine 

atoms of the Pro(Cl2) residue (Fig. 1B). According to the initial genome sequence analysis two candidate 

NRPS genes might play a role in cyclochlorotine biosynthesis. To elucidate whether both candidate NRPS 

genes are transcribed, quantitative real-time PCR (qPCR) studies under standard cultivation conditions 

were performed in the T. islandicus control strain (WT + empty plasmid pSilent-1, see below). The 

expression analysis revealed that only cctN is transcribed in these cyclochlorotine producing cultures 
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(21.9 % ± 5.9, normalized to reference gene, Fig. 1C), while pisl3812_04907 is hardly expressed (0.05 % ± 

0.01, data not shown). Investigation of the WT without the empty plasmid pSilent-1 confirmed these 

results (not shown) suggesting that only the NRPS CctN is involved in the biosynthesis of cyclochlorotine.  

 

The NRPS CctN is required for cyclochlorotine production 

Due to extremely inefficient homologous recombination, RNA interference based gene silencing in 

combination with ectopic integration of plasmids was considered for further exploring the functions of 

the candidate genes. For this, an internal 500 bp sequence of cctN was ligated in both orientations 

around the loop forming spacer sequence of the plasmid pSilent-1. The resulting hairpin RNA-expressing 

plasmid (pST-cctN) was subsequently transferred into T. islandicus wild type protoplasts. Two of several 

transformants were analyzed by quantitative real-time PCR (qPCR) revealing a decrease of cctN 

expression to ~8 % and ~16 % (with regard to the cctN expression level of the WT control strain with an 

empty plasmid [WT+pSilent-1]). The transformant with lowest cctN expression was grown in triplicates 

and qPCR analysis at days 7, 14, and 21 confirmed a stable decrease of cctN expression at around 10 % 

(Fig. 1C). Remarkably, metabolite profile analysis showed the complete abolishment of cyclochlorotine 

production, whereas the control strain (WT+pSilent-1) was not affected in this respect (Fig. 1A). This 

clearly demonstrated the requirement of the NRPS CctN in the biosynthesis of cyclochlorotine. In 

addition, comparison of the metabolite profiles of the cctN silenced strain (WT+pST-cctN) with the 

control strain (WT+pSilent-1) allowed us to screen for further pentapeptide metabolites that potentially 

originate from the same pathway. Indeed, besides cyclochlorotine, an additional seven compounds with 

ion masses, retention times and isotope pattern suitable for variants of cyclochlorotine were detected in 

wild type culture extracts (Fig. 1A and 1B). These metabolites were completely absent in the silenced 

strain indicating that their productions also rely on the NRPS CctN.  
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Isolation of new pentapeptides and structure determination 

Out of 15 different cultivation media tested, CYA medium was selected because most of the 

cyclochlorotine variants were produced in appropriate amounts (Fig. S3). Since production rates of the 

individual metabolites slightly altered over time, filtrates of cultures differing in age were collected and 

applied to HPLC-MS guided column chromatography and preparative HPLC. The isolated compounds 1 

and 2 were verified as cyclochlorotine and the allo-threonine-containing hydroxy-cyclochlorotine 

(Mizutani et al., 2008), respectively, on the basis of their pseudo-molecular ion peaks in high-resolution 

electrospray-ionization time-of-fly MS (HR-ESI-TOF-MS; [M+Na]
+
 at m/z 594.1493 for 1; [M+Na]

+
 at m/z 

610.1442 for 2) and by comparison of their recorded 1D-NMR data with the respective literature data. (A 

detailed discussion of the spectral and mass data is provided in the supplementary information.) 

Likewise, for the structure elucidation of the new compounds 3, 4, and 5 HR-ESI-TOF-MS data as well as 

extensive 1D- and 2D-NMR data were recorded (see supplementary information). Accordingly, 

compound 3 ([M+Na]
+
 at m/z 526.2270) represents the dehalogenated derivative of cyclochlorotine (1) 

for which the trivial name cyclotine is proposed. Compound 4 ([M+Na]
+
 at m/z 560.1883) is the mono-

chlorinated derivative of 1 with the proline residue being chlorinated only at its β-position. For this 

compound, the trivial name cyclochlorotine B is proposed. Compound 5 ([M+Na]
+
 at m/z 578.1544) 

possesses an alanine residue instead of a serine residue between βPhe and Pro(Cl2), with respect to 

cyclochlorotine (1), and therefore the trivial name deoxy-cyclochlorotine is proposed. The compounds 6, 

7, and 8 were only obtained in minor amounts and no NMR studies could be performed. ESI-MS
2
 

experiments of these compounds revealed identical fragmentation patterns as for compounds 1, 3, and 

4 respectively (Fig S36), so that they can be assumed as stereo- or regioisomers of their respective 

counterparts. 
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Of all variants from T. islandicus, cyclochlorotine (1) was produced in the highest quantities and  

production rates decreased from compound 2 to 8. The new pentapeptide variants from T. islandicus will  

help to identify the biological target and exploring the structure-function relationship in future  

experiments. Especially the pentapeptides varying in chlorination will be investigated in this context in  

order to clarify whether chlorination is crucial for biological activity.  

  

Characterization of the cyclochlorotine biosynthesis cluster  

To determine the full extent of the cyclochlorotine gene cluster, the genetic environment of the cctN  

gene was investigated (see Fig. 2). The left border is marked by a presumably non-coding region of  

around 270 kbp with a GC content below 20 %. Notably, the whole genome of T. islandicus is sporadically  

interspersed by such A+T rich islands that span up to 300-400 kbp. These islands consist of repetitive as  

well as mobile elements and they encode, if any, only fragments of genes. They might represent areas of  

increased horizontal gene transfer activity which, however, has yet to be supported by experimental or  

further theoretical evidence. Genome comparisons of the right cluster region with MultiGeneBlast  

(Medema et al., 2013) revealed that the right border of the cyclochlorotine cluster is defined by  

pisl3812_02626 representing the first gene of a conserved synteny block occurring in many ascomycete  

genomes, among them in Penicillium roqueforti. Hence, we concluded that the cyclochlorotine gene  

cluster encompasses the eight genes pisl3812_02618-25, designated as cctM to cctT (Fig. 3 and Table 2).   

Based on sequence comparisons with the NCBI Conserved Domain Database, cctQ and cctS encode  

proteins belonging to the major facilitator superfamily (MFS) and to ABC-transporters, respectively. Such  

transporters mediate the efflux of SMs from fungi. The gene cctP is assumed to encode a phenylalanine  

ammonia lyase (PAL). Genomic analyses revealed that PALs are found predominantly in plants and fungi  

aside from one report from prokaryotes (Wu et al., 2014). Members of this subfamily of  
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methylideneimidazole-5-one (MIO) prosthetic group enzymes catalyze the conversion of Phe into 

cinnamic acid. However, minor structural modifications could turn the lyase activity into a phenylalanine 

aminomutase (PAM) activity. The rigidity of an active-site inner loop is discussed to be crucial for forcing 

the MIO-amine adduct in the active site to promote re-addition of the amino group onto cinnamic acid 

to form βPhe as the final product (Heberling et al., 2015). In this model, the inner loop enables the 

chemically challenging 2,3-amine shift when closed and causes a lyase reaction when open. In order to 

predict the enzymatic function of CctP, the primary sequence was compared with those of the Taxus 

chinensis PAM and Petroselinum crispum PAL prototypes. Small and hydrophobic residues at 

characteristic inner loop positions were identified (Fig. S37) which, in accordance with the findings of 

Heberling et al. (2015), may prevent the exposure to solvent and hence promote rigidity to the loop. 

Thus we suggest that CctP rather acts as a PAM and provides the uncommon building block βPhe for 

cyclochlorotine biosynthesis. Interestingly, the C-terminus of CctP comprises a domain of unknown 

function (DUF3328) that is completely uncharacterized and only found in eukaryotes. The small genes 

cctO and cctR encode DUF3328 domains, too. In the ascomycete Sordaria macrospora, a model organism 

for the analysis of sexual development and cell differentiation, a cluster of also three DUF3328 encoding 

genes is upregulated in young fruiting bodies compared to sexual mycelium which might indicate an 

involvement in cell differentiation (Teichert et al., 2012). Notably though, the cluster in S. macrospora 

does not comprise any SM genes. The scarce knowledge about DUF3328 proteins does not allow any 

speculation of their role in cyclochlorotine biosynthesis. The remaining two genes cctM and cctT encode 

proteins with domains belonging to the short chain dehydrogenase/reductase (SDR) superfamily and 

although they have no obvious role in cyclochlorotine biosynthesis we provisionally assigned them as 

members of the cluster. 

Quantitative real-time PCR studies on cDNA prepared from cyclochlorotine producing cultures were 

carried out showing that all genes in the cct gene cluster were strongly expressed (Fig. 4A). The 
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comparable expression levels suggest a co-regulated role during biosynthesis, although no  

transcriptional regulator is encoded within the cluster. More detailed expression studies will be  

necessary to address the exact regulation of the cyclochlorotine biosynthesis genes. The examination of  

gene expression did not help to assign the borders of the cct gene cluster, since the neighboring genes of  

cctT were transcribed at similar levels as the cluster genes (data not shown).  

  

Cct-like gene clusters are prevalent in Talaromyces strains  

Many Talaromyces species are of economical relevance. For instance, T. marneffei is a medically  

important pathogen causing mycosis in immunocompromised patients (Zheng et al., 2015) and  

T. stipitatus has an impact on food industry as it causes spoilage of fruit based products (Yilmaz et al.,  

2014). Therefore, the occurrence of cct-like genes in these and other fungi was investigated in  

consideration of the toxicity of cyclochlorotine pentapeptides that may derive from such a genetic  

disposition. Indeed, comparative genomics using MultiGeneBlast (Medema et al., 2013) revealed that  

the cyclochlorotine synthetase coding gene cctN and five adjacent genes, cctO-S, in the cct gene cluster  

of T. islandicus show remarkable similarities (yet low synteny) to genes of the uncharacterized and  

orphan NRPS gene clusters from T. stipitatus ATCC 18224 (genes tsta_038070-130), T. marneffei ATCC  

18224 (genes pmaa_075440- 540) and T. cellulolyticus Y-94 (genes tce0_017r03506-24) suggesting  

conserved function in the respective pathways (Fig. 3). Thus, all of the Talaromyces genomes sequenced  

and annotated to date harbor a cct-like NRPS cluster. Moreover, the NRPSs of all four species share very  

high amino acid identities (53-81 %), identical deduced domain architectures (A-T-(C-A-T)4-CT) as well as  

extremely similar A domain binding pockets (see Fig. S1). A further common feature of the cct-like gene  

clusters is the presence of DUF3328 coding genes including their general bias to be repeatedly encoded  

up to four times. These findings indicate that many Talaromyces species have the ability to produce a  

cyclic pentapeptide of the cyclochlorotine group. No cct-like gene clusters were found in genomes of  
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other organisms, neither eukaryotes nor bacteria which could indicate that cyclochlorotines are specific 

to the genus Talaromyces. The only structurally similar pentapeptides described in literature are the 

astins of the plant A. tataricus (Kosemura et al., 1993; Morita et al., 1993). However, no genome 

information is available for the plant. It is conceivable that astins are actually produced by a fungal 

endophyte potentially related to the genus Talaromyces. 

 

Cyclochlorotine biosynthesis model 

Supply of the non-proteinogenic amino acids 

Cyclochlorotine and variants consist of five amino acids including modified and quite uncommon building 

blocks that have to be supplied before or during peptide assembly. The cluster-encoded PAM CctP most 

likely provides βPhe (see above). Furthermore, 2Abu can be synthesized from threonine which in E. coli 

has been shown to depend on the concerted actions of a dehydratase and a transaminase 

(Fotheringham et al., 1999). In the first step of 2Abu synthesis, the dehydration of threonine is 

accompanied by a hydrolytic release of ammonia resulting in an oxo-acid, which requires the transfer of 

an amino group in the second step (see Fig. 5). Genes encoding putative threonine dehydratases (e.g. 

pisl3812_05069, pisl3812_05443) and several transaminases are scattered over the genome and the 

respective enzymes should be capable of 2Abu biosynthesis. 

The building block allo-threonine for the side-product hydroxy-cyclochlorotine (2) is likely formed from 

acetaldehyde and glycine via an aldose reaction (such reactions are reviewed in Duckers et al., 2010) and 

as many as five enzymes that contain threonine aldolase domains are encoded in the genome, none of 

them however is located near the cyclochlorotine cluster. These enzymes, together with the putative 

threonine dehydratases, constitute a remarkable accumulation of threonine metabolizing enzymes in 
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T. islandicus which, besides being used for catabolic purposes, are apparently also used for biosyntheses 

of SMs. 

Intriguingly, no halogenase for the synthesis of the characteristic Pro(Cl2) moiety is encoded in the cct 

gene cluster and therefore the search for an appropriate gene was expanded to the complete genome. 

Formation of Pro(Cl2) requires regio- and stereospecific chlorination which is basically attributed to two 

groups of halogenating enzymes, the flavin-dependent halogenases and the non-heme iron and α-

ketoglutarate-dependent [2OG-Fe(II)] halogenases (e. g. reviewed by Neumann et al., 2008; van Pée, 

2012). Candidate 2OG-Fe(II) halogenase genes were identified by searching for conserved signatures 

(InterPro domain IPR006620) of prolyl oxidizing enzymes in deduced amino acid sequences. However, 

alignments of all candidate sequences did not reveal the halogenase typical HxA motif described by 

Blasiak et al. (2006) but showed the oxygenase characteristic HxD dyad (Fig. S37). We therefore assume 

that no 2OG-Fe(II) halogenase is involved in Pro(Cl2) synthesis. The alternative Pro(Cl2) formation via the 

action of flavin-dependent halogenases requires proline to be initially oxidized to pyrrole carboxylic acid 

in order to provide a double bond for the subsequent halogenase reaction (Thomas et al., 2002; Dong et 

al., 2005; van Pée and Patallo, 2006). One of three putative proline dehydrogenases identified by a BlastP 

search was heterologously produced (Fig. S38) and showed a specific proline dehydrogenating activity of 

0.6 U/mg (comparable to other ProDHs, see Huijbers and van Berkel, 2015) which demonstrates that the 

initial proline oxidation step can be accomplished. Likewise, a genome wide BlastP search revealed one 

putative flavin-dependent halogenase (Pisl3812_03494) featuring characteristic halogenase motifs. To 

investigate chlorination efficiency, the putative halogenase Pisl3812_03494 was heterologously 

produced and its activity was assayed in vitro. However, no chlorination could be observed in the assay 

by using different substrates such as the unchlorinated pentapeptide 3, pyrrole-2-carboxylic acid and 1H-

pyrrole-2-carbonyl-SNAC. The latter substrate was supposed to imitate the native substrate being 

tethered to peptidyl carrier proteins (see also Fig. 5). The missing halogenation activity strongly 
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challenges the hypothesis that Pisl3812_03494 is involved in cyclochlorotine biosynthesis. In line with 

this, qPCR experiments demonstrate that the halogenase encoding gene pisl3812_03494 is virtually not 

transcribed during metabolite production (Fig. S39A). Moreover, the insertion of an extra gene copy 

under the promoter PtrpC resulted in a strong overexpression of the putative halogenase gene but did 

not influence the ratio of produced chlorinated and non-chlorinated pentapeptides, as represented by 

constant amounts of the compounds cyclochlorotine (1) and cyclotine (3) (Fig. S39B). In summary, the 

biosynthesis of the unusual Pro(Cl2) moiety remains elusive. Even though the genome was thoroughly 

examined for candidate genes, the actual halogenase still awaits to be detected which includes the 

possibility that proline halogenation is accomplished by a so far unknown type of halogenase. 

 

Cyclochlorotine assembly, release and export 

The deduced domain organization A-T-(C-A-T)4-CT of the cyclochlorotine synthetase CctN (see Fig. S1) 

implies a linear assembly of five building blocks in which the selection of the substrate amino acids is 

based on the specificity conferring signatures of the A domains. This signature, also known as the 

nonribosomal code, is composed of 10 key amino acids that form the A domain active site (Stachelhaus 

et al., 1999; Challis et al., 2000). In order to assign the A domains of CctN to their substrate specificities, 

nonribosomal codes were extracted (Fig. 6 and Fig. S1) with the software NRPSpredictor2 (Röttig et al., 

2011) and manually compared with characterized fungal A domains that incorporate the same building 

blocks as CctN presumably does. Indeed, the nonribosomal code of CctN-A3 shares conserved residues 

with that of the SimA-A6 domain from cyclosporine biosynthesis (Fig. 6). From in vitro experiments it was 

concluded that SimA-A6 accepts 2Abu (Dittmann et al., 1994). Likewise, the CctN-A2 code resembles that 

of the proline activating Tex1-A13 domain in the paracelsin pathway, whose specificity to proline in turn 

could be concluded a priori (Wiest et al., 2002). Finally, both signatures of CctN-A4 and CctN-A1 are 

reminiscent of that of the biochemically characterized GliP-A2 domain which incorporates serine into 
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gliotoxin (Balibar and Walsh, 2006). Accordingly, the assembly order in CctN is very likely Ser-Pro-2Abu- 

Ser-βPhe which leads (after variable chlorination) to the compounds 1, 3, and 4. The variants 2 and 5  

might result from incorporation of the alternative substrates allo-threonine or alanine by the domains A3  

or A1, respectively. Considering the lower production yields of compounds 5 and 2, the alternative  

substrates though are much less favored.   

On the other hand, the proposed A domain promiscuity regarding Thr/2Abu and Ser/Ala is questionable  

since in both cases the substrate pairs differ by one hydrogen donor/acceptor which rather would expect  

differences in the shape of the binding pockets. Thus, it is also conceivable that compound 1 derives  

from 2 by α,β-dehydration of the allo-threonine moiety which would yield an intermediate containing  

dehydrobutyrine (similar to the biosynthesis of the lanthipeptide nisin, Karakas Sen et al., 1999). In  

contrast to the reaction on free allo-threonine, the dehydration of a mature peptide would not be  

accompanied by a hydrolysis of ammonia but result in formation of a C=C bond which can easily be  

reduced to form the 2Abu residue. Likewise, compound 5 might result from 1 in a similar manner with an  

intermediate peptide harboring a dehydroalanine residue instead of serine, which subsequently is  

dehydrogenated to alanine. To test whether the cct cluster-encoded putative dehydrogenases CctM or  

CctT are involved in these dehydration reactions, their genes were overexpressed in T. islandicus  

(Fig. 4A), which should change the ratio of compounds 2, 1, and 5 in favor of the latter ones. However,  

compound analysis of the overproduction strains did not show any changes in this production ratio  

(Fig. 4B), indicating that neither CctM nor CctT play a role in this hypothetical scenario.  

The assembled linear pentapeptide, tethered to domain T5 of module five, is then assumed to be  

released through cyclization by the terminal condensation-like (CT) domain which shows the  

characteristic variations in the first histidine residue of the highly conserved HHxxxDGxS motif of C  

domains (Bergendahl et al., 2002) (
5360

SHMQNDGWC in CctN, Fig. S1), as it has been demonstrated for  

other fungal NRPSs that produce macrocyclic peptides (Gao et al., 2012). Finally, the cluster encoded  
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transporters CctQ and CctS are most likely responsible for cyclochlorotine secretion and thereby may 

contribute to intrinsic resistance. 

  

CONCLUSION 

This study represents the first discovery of an NRPS gene cluster responsible for the biosynthesis of the 

cyclic chlorinated pentapeptide cyclochlorotine and newly described variants by taking advantage of the 

recently sequenced genome of T. islandicus (Schafhauser et al., 2015). In addition, the strain possesses a 

transcriptionally inactive and cryptic NRPS gene which is apparently paralogous to cctN. The high 

similarity of both genes is a strong argument for an intragenomical duplication event of an ancestral 

gene. The incidence of homologous NRPS biosynthetic genes of which one is silent has been found 

earlier in work on Aspergillus fumigatus (Steinchen et al., 2013). Genetic engineering and metabolite 

analysis revealed that both NRPS are functional and produce a similar set of small metabolites (Kalb et 

al., 2015). Apparently, the effort of harboring redundant NRPS pathways is prevalent in filamentous fungi 

and might emphasize the significance of the corresponding SMs. 

Considering the presence of homologous cyclochlorotine NRPS gene clusters in all of the Talaromyces 

strains from which annotated genomes are available and the fact that species within the genera 

Aspergillus, Penicillium and Talaromyces often have SMs in common (Frisvad, 2014), production of 

cyclochlorotine or similar pentapeptides might be more frequent than previously assumed. This, 

together with the fact that cyclic pentapeptides are easily overlooked by HPLC-coupled diode array 

detectors (due to only weak chromophore groups) could make a thorough screening for such SMs 

worthwhile in the genus Talaromyces. Furthermore, determining the cyclochlorotine gene cluster opens 

up the possibility of developing diagnostic PCR based techniques which are of relevance in 

environmental microbiology in terms of food control. 
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Investigations of the cyclochlorotine biosynthesis genes and rational interpretation of the biosynthetic  

capacity deduced from genetic analysis allowed us to draw a detailed model for cyclochlorotine  

biosynthesis. Although several biosynthetic steps have still to be verified in future biochemical  

experiments, this biosynthesis model provides the entry for the manipulation of the biosynthetic  

machinery towards higher yields and for rational design of cyclochlorotine variants. For instance,  

introduction of strong fungal promoters in front of biosynthetic key genes should increase formation of  

selected cyclopeptides.   

One of the main hallmarks of fungal SMs, the clustering of biosynthesis genes (Keller and Hohn, 1997),  

does not fully apply to the cyclochlorotine pathway, since important genes for precursor supply and  

tailoring reactions are not localized in the vicinity of the cyclochlorotine synthetase gene cctN. Especially,  

the formation of Pro(Cl2) remains mysterious, since no halogenase gene is part of the gene cluster and  

the only putative flavin-dependent halogenase encoded in the genome is not involved. This could imply  

that T. islandicus harbors a hitherto unknown kind of halogenating enzyme that awaits detection in  

future experiments. Remarkably, the unexpected issue of halogenases not being co-localized with the  

other biosynthesis genes was recently also demonstrated for the melleolide pathway in Armillaria mellea  

(Wick et al., 2015). It appears that for some SM pathways the biosynthesis genes and the halogenase  

gene have independent phylogenetic histories, which is in disagreement with the common assumption  

that SM biosynthesis genes usually are inherited as a joint entity. In these examples, halogenation might  

be a type of modification event that evolved independently and at a later evolutionary time point.  
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TABLES  

  

Table 1. Plasmids used in this study  

Plasmid Features and application Reference (origin) 

pJET1.2/blunt  Cloning of PCR-amplified DNA fragments 

Thermo Scientific, 

Waltham, USA 

pSilent-1  

Contains a hygromycin B resistance cassette; 

Carries a transcriptional unit for expression of hairpin RNA: a 

loop forming spacer sequence is flanked by two multiple 

cloning sites (MCS) for sense and antisense cloning of target 

gene fragment; 

Served as template for the expression plasmid pOE 

Nakayahiki et al., 

2005 (obtained from 

FGSC) 

pD-NAT1  Source of the nourseothricin resistance cassette 

Kück and Hoff, 2006 

(obtained from FGSC) 

pOE 

pSilent-1-based expression plasmid for fungi with the 

nourseothricin resistance cassette This study 

pBAD 

For protein synthesis in E. coli with the N-terminal affinity tag 

maltose binding protein (MBP) 

Guzman et al., 

1995(56) 

  

Table 2. Features of cct cluster genes  

Locus tag Gene 

name 

No. of 

introns 

No. of 

amino acids 

deduced domain/proposed function Putative 

biosynthetic role 

pisl3812_02618 cctM 5 395 Short-chain dehydrogenase  

pisl3812_02619 cctN 1 5641 NRPS Cyclochlorotine 

synthetase 

pisl3812_02620 cctO 4 300 DUF3328  

pisl3812_02621 cctP 6 997 Phenylalanine aminomutase and 

DUF3328 

βPhe-formation 

pisl3812_02622 cctQ 2 252 MFS transporter Efflux/resistance 

pisl3812_02623 cctR 1 261 DUF3328  

pisl3812_02624 cctS 0 1553 ABC transporter Efflux/resistance 

pisl3812_02625 cctT 1 283 Short-chain dehydrogenase  
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FIGURES 

 
Figure 1. Production of cyclochlorotine and variants. A) Extracted ion chromatograms (EICs) of extracts 

from representative 3-week-old cultures analyzed by HPLC-MS show eight peaks that result from 

cyclochlorotine (1) and variants (2-8) in the T. islandicus control strain (WT + pSilent-1, left) but no 

compound peaks in the cctN knock-down strain (WT + pST-cctN, right). B) Mass spectra of compounds 1-

8 from the control strain (WT + pSilent-1). The intensity ratios of the isotope peaks indicate the presence 

of two chlorine atoms (compounds 1, 2, 5, and 6), one chlorine atom (compounds 4 and 8) and no 

chlorine (compounds 3 and 7) in the molecules. Molecular structures of compounds 1-5 are indicated. C) 

Mean expression rate (± 1 SD) of the NRPS gene cctN (relative to the β-actin coding reference gene act1) 

measured by qPCR in a control strain (WT + pSilent-1) and a cctN knock-down strain (WT + pST-cctN) (n = 

3). 
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Figure 2. Borders and genetic environment of the cct cluster. GC content of the T. islandicus genomic 

region around the cct cluster is outlined above illustrating a dramatic drop of GC content left of the cct 

cluster compared to the genome mean of 46 % (drops down to 0 % are caused by missing sequence 

information). No genes are encoded in the low-GC region. Cluster borders are indicated with black arrow 

heads. The right environment is formed by a synteny block of highly conserved genes belonging to 

primary metabolism that occur in many ascomycetes including Penicillium roqueforti. Putative functions 

of the gene products are outlined as follows: 1 = exocyst complex component Sec10; 2, 3, and 4 = hyp. 

prot.; 5 = vacuolar protein sorting/targeting prot. 10; 6 = cytidine deaminase; 7 = peptidase C12; 8 = 

NmrA-like prot.; 9 = amino acid transporter arg-13; 10 = Cgr1; 11 = hyp. prot.; 12 = translation 

machinery-associated prot. 22; 13 = DUF1752; 14 = cell motility prot. ELMO; 15 = checkpoint prot. 

Rad24; 16 = hyp. prot.; 17 = UAA transporter; 18 = dynamin-related prot.; 19 = neutrophil cytosol factor 

2 p67phox; 20 = AMP deaminase; 21 = hyp. prot.; 22 = DUF3752; 23 = porphobilinogen synthase; 24 = 

Zn(2)-C6 DNA-binding prot. ; 25 = exportin-1; 26 = phosphatase inhibitor; 27 = shugoshin; 28 = DASH 

complex; 29 = hyp. prot.; 30 = cytochrome P450; 31 = mitochondrial GPDH; 32 = amino acid transporter; 

33 and 34 = hyp. prot.; 35 = coiled-coil domain containing prot. 25; 36 = GRIP; 37 = guanylate kinase; 38 = 

septin homolog; 39 = ribosomal prot. L32p; 40 = meiotic recombination prot.; 41 = kinetochore prot. 

spc25; 42 = RNA pol initiation factor; 43 = metal homeostasis factor ATX1; 44 = DUF2293; 45 = complex 1 

LYR prot.; 46 = rubredoxin-type fold prot. 
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Figure 3. Genetic organization of the cct gene cluster and cct-like gene clusters. The cct gene cluster 

from T. islandicus encompasses eight genes cctM to cctT. A homologous cct-like gene cluster that is 

located on a different chromosome includes the NRPS gene pisl3812-04907. Further cct-like gene 

clusters were identified in the related species T. marneffei ATCC 18224, T. stipitatus ATCC 10500 and T. 

cellulolyticus Y-94. Deduced functions of the genes are indicated. 
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Figure 4. Expression of the cct cluster genes and production of selected cyclochlorotine variants. A)  

Mean gene expression rate (± 1 SD) relative to the β-actin coding reference gene act1 measured by qPCR  

in non-shaking cultures (n = 3). In the control strain (WT + pOE) expression of all cct cluster genes is  

shown. In the strains overexpressing the putative dehydrogenase genes (WT + pOE-cctM and WT + pOE- 

cctT) expression of only three selected genes is shown. B) Extracted ion chromatograms (EICs) of extracts  

from one representative culture, each (WT + pOE, WT + pOE-cctM and WT + pOE-cctT) showing no  

differences in mass peaks of cyclochlorotine (1), hydroxy-cyclochlorotine (2) and deoxy-cyclochlorotine  

(5), respectively.  
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Figure 5. Model for cyclochlorotine biosynthesis. The upper part proposes pathways for the non-

proteinogenic amino acid building blocks. Where applicable, candidate enzymes are indicated. Synthesis 

of 3,4-dichloroproline most likely is achieved on a carrier protein (e.g. T domain of module 2), and two 

possible pathways are shown. Halogenation occurs either directly by a 2KG/Fe(II)-dependent halogenase 

or by a flavin-dependent halogenase via a pyrrole carboxylic acid intermediate. The proline 

dehydrogenase (proDH) Pisl3812_07821 is considered to initiate the latter pathway by oxidation of free 

proline to form 1-pyrroline-5-carboxylic acid (P5C). Subsequent steps likely involve a P5C-carrier protein 

oxidase (according to Thomas et al., 2002; Mejean et al., 2010). In the lower part, NRPS domains are 

abbreviated as A for adenylation, T for thiolation, C for condensation and CT for terminal condensation-

like domains. The T domains are post-translationally modified by phosphopantetheinylation. Release and 

cyclization of cyclochlorotine is mediated by the CT domain. 
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Figure 6. Features of CctN A domains. Comparison of the nonribosomal codes of CctN A1, A2, A3, and A4 

with those of substrate-assigned A domains of characterized fungal NRPS. The amino acid numbering 

corresponds to the PheA domain of the gramicidin S synthetase GrsA (Stachelhaus et al., 1999). Black: 

identical amino acids; gray: similar amino acids. The nonribosomal codes were extracted with the 

software NRPSpredictor2. 
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