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Summary
Infinite-duration games provide a convenient way to model distributed, reactive and
open systems in which several entities and an uncontrollable environment interact.
Here, each entitity as well as the uncontrollable environment are modelled as players.

A strategy for an entity player in the model corresponds directly to a program
for the corresponding entity of the system. A strategy for a player which ensures
that the player wins no matter how the other players behave then corresponds to
a program ensuring that the specification of the entity is satisfied no matter how
the other entities and the environment behaves. Synthesis of strategies in games
can thus be used for automatic generation of correct-by-construction programs from
specifications.

We consider verification and synthesis problems for several well-known game-based
models. This includes both model-checking problems and satisfiability problems for
logics capable of expressing strategic abilities of players in games with both qualitative
and quantitative objectives.

A number of computational complexity results for model-checking and satisfiabil-
ity problems in this domain are obtained. We also show how the technique of sym-
metry reduction can be extended to solve finitely-branching turn-based games more
efficiently. Further, the novel concept of winning cores in parity games is introduced.
We use this to develop a new polynomial-time under-approximation algorithm for
solving parity games. Experimental results show that this algorithm performs better
than the state-of-the-art algorithms in most benchmark games.

Two new game-based modelling formalisms for distributed systems are presented.
The first makes it possible to reason about systems where several identical entities
interact. The second provides a game-based modelling formalism for distributed
systems with continuous time and probability distributions over the duration of delays.
For these new models we provide decidability and undecidability results for problems
concerning computation of symmetric Nash equilibria and for deciding existence of
strategies that ensure reaching a target with a high probability.
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Resumé
Spil af uendelig varighed udgør bekvemme modeller for distribuerede, reaktive og
åbne systemer hvori flere enheder og et ukontrollerbart miljø interagerer. Hver enkelt
enhed samt det ukontrollerbare miljø modelleres som spillere.

En strategi for en enhedsspiller i modellen svarer direkte til et program for den
tilsvarende enhed i systemet. En strategi for en spiller, som sikrer at spilleren vinder
ligegyldigt hvordan de andre spillere opfører sig, svarer så til et program der sikrer
at specifikationen for enheden overholdes ligegyldigt hvordan de andre enheder og
miljøet opfører sig. Syntese af strategier i spil kan således anvendes til automatisk
generering af programmer fra specifikationer, der er korrekte per konstruktion.

Vi betragter verifikations- og synteseproblemer for flere velkendte spilbaserede
modeller. Det inkluderer både model-checking problemer og satisfiability problemer
for logikker som kan udtrykke strategiske evner for spillere i spil med både kvalitative
og kvantitative mål.

En række beregningsmæssige kompleksitetsresultater for model-checking og satisfi-
ability problemer indenfor dette felt bliver opnået. Vi viser også hvordan symmetrire-
duktion kan genereliseres til turbaserede spil med endelig forgrening. Desuden intro-
duceres det nye koncept vindende kerner i parity games. Dette bruges til at udvikle
en ny underapproksimerende algoritme som kører i polynomiel tid. Eksperimentelle
resultater viser at denne algoritme præsterer bedre end de eksisterende algoritmer for
de fleste benchmark spil.

To nye spilbaserede modelleringsformalismer for distribuerede systemer bliver
præsenteret. Den første gør det muligt at ræsonnere om systemer hvor flere iden-
tiske enheder interagerer. Den anden er en formalisme for distribuerede systemer
med kontinuert tid og sandsynlighedsfordelinger over varigheden af forsinkelser. For
disse nye modeller præsenterers afgørbarheds- og uafgørbarhedsresultater for proble-
mer vedrørende beregning af symmetriske Nash ligevægte og eksistens af strategier
som sikrer at nå en bestemt tilstand med høj sandsynlighed.
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CHAPTER 1
Introduction

Formal modelling and verification of computing systems dates at least back to works of
Alan Turing [Tur36] and Alonso Church [Chu40] that introduced respectively Turing
machines and Lambda calculus as means to model computing systems. Impressively,
these modelling formalisms are still valid and widely used in theoretical computer
science today.

It was shown by Turing that the halting problem, i.e. the problem of verifying
whether a given Turing machine halts on a given input, is undecidable. This is one
of the earliest indications that formal verification of computing systems poses some
very difficult challenges. Indeed, just deciding whether or not a given machine can
reach a certain state is impossible!

To find verification problems that are decidable and tractable there are in general
two ways to go. The first is to consider simpler, and less general, models of computa-
tion. The second is to ask simpler questions about these models. Just asking whether
a machine will eventually stop is a quite simple question and therefore it seems that
we need to restrict our model of computation in order to be able to verify anything
interesting.

This has led to a plethora of different models of computing with varying gener-
ality. Some of the more prominent models of computing are finite-state automata
and pushdown systems (see e.g. [HMU03]), counter-systems [Min61] and Petri nets
[Mur89; Pet62]. In many of these models we obtain decidability of the reachability
problem unlike for the Turing machine. Next, it is natural to ask: which questions can
we decide on these less general models of computation? And which time and space
resources will we need to decide them? These questions are some of the cornerstones
of the area of formal verification of computing systems. These are also the types of
questions we ask and answer in this thesis.

1.1 Games as models

Traditionally, the purpose of computers was to calculate things in an input-output
fashion. They simply calculated the value of a function for a given input. Today, the
purpose of computers has shifted from being mathematical calculators to being tools
used for a wide variety of different things in a wide variety of different settings.

In particular, it has become increasingly important for computers to be able to
interact. Not only with human users but also with other machines over networks
as well as with their physical environment. This means that computers need to be



2 1 Introduction

reactive to a higher degree than what used to be the case. That is, they need to be
able to handle ongoing and non-deterministic behaviour from the surrounding world.

In order to model systems with several interacting components it is quite natural
to use the framework of games which has been used for modelling interaction between
entities in economics for many years (see e.g. [OR94]). In our setting, the players of
the game correspond to the components of the system (possibly including an environ-
ment player) and further, strategies of these players correspond to programs for the
components.

This means that when we ask whether there is a good strategy for a player in
the game, we are asking whether there exists a good program for the corresponding
component. In addition, if we can find such a strategy in the game model we would
like to be able to translate the strategy to a program for the component.

As the systems we wish to model are reactive systems with theoretically infinite
behavior (for instance servers, mobile phones, hardware circuits) it is natural that
the games we use as models are infinite-duration games.

The idea to consider synthesis in infinite-duration settings such as this dates back
to Alonso Church [Tho08] where circuit synthesis was considered in a setting similar
to the games we consider here. For a survey on infinite-duration games, see [GTW02].

1.2 Model-checking

Model-checking is a very succesful model-based approach to automated verification
where a system to be verified is being modelled [CGP01; BK08; Eme08]. Traditional
modelling formalisms are non-deterministic transition systems [CE81; EH86; Pnu77;
Hol04]), Markov chains [KNP02] and real-time systems [ACD93; LPY97].

The specification of the system is then expressed using a logical formula, often in a
temporal logic such as the linear-time temporal logic LTL [Pnu77] or the computation
tree logics CTL [CE81] and CTL∗ [EH86]. The act of model-checking is to decide,
given a model M of a system and a specification φ in a suitable logic, whether the
model M satisfies the specification φ. This is usually written M |= φ.

If the model satisfies the specification this provides a higher degree of certainty
that the real system is correct with respect to the specification. Here, it is of course
important that the model is as accurate a representation of the system as possible for
the analysis to be meaningful.

If the model does not satisfy the specification it is also desirable if the model-
checker can give a counter-example. That is, an explanation why the model does not
satisfy the specification. In this case the counter-example might reveal problems with
the real system that is being modelled.

We consider model-checking where the models are infinite-duration games and
specifications are given in the alternating-time temporal logic ATL∗ [AHK02]. This
makes it possible to specify properties such as “Player 1 can ensure that a target state
is eventually reached” expressed by the ATL∗ formula

⟨⟨{1}⟩⟩F target
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Figure 1.1: A turn-based game. Player 0 controls circle states and player 1 controls
square states.

and “Player 2 and 3 can together ensure that a bad state is avoided” expressed by
the ATL∗ formula

⟨⟨{2, 3}⟩⟩G¬bad
Here, Fφ and Gφ have the meaning “eventually φ is true” and “globally φ is true”
for a given ATL∗ formula φ. The formula ⟨⟨A⟩⟩φ expresses that players in the set A
can make sure that φ is true.

A turn-based game G between two players 0 and 1 is illustrated in Figure 1.1.
Circle states are controlled by player 0 and square states by player 1. It is played by
placing a token in an initial state. The player controlling the state must move the
token along one of the transitions to a new state. Then the player controlling that
state moves the token. This behaviour continues indefinitely. States are labelled with
propositions p, q and r that are true in those states.

Now, asking whether G, s0 |= ⟨⟨{0}⟩⟩Fq is the same as asking whether player 0 has
a strategy to ensure that q is eventually true when the game G begins in state s0.
Thus, we ask whether the formula ⟨⟨{0}⟩⟩Fq is true in the model G, s0 consisting of
a turn-based game G and an initial state s0. As player 0 can enforce this by moving
the token from s0 to s1 this is in fact true.

We can show that neither player 0 nor player 1 can ensure on their own that
the play eventually reaches s2. Player 0 cannot ensure this as player 1 might move
the token from s1 to s0 every time s1 is reached. Player 1 cannot ensure this either
as player 0 might keep moving the token along the self-loop back to s0. However,
together they can ensure that the token reaches s2. This can be expressed as follows

• G, s0 ̸|= ⟨⟨{0}⟩⟩Fr

• G, s0 ̸|= ⟨⟨{1}⟩⟩Fr

• G, s0 |= ⟨⟨{0, 1}⟩⟩Fr

Indeed, by solving the model-checking problem we can automatically decide the
truth of such statements.

One traditional problem that can be represented as a model-checking problem for
alternating-time temporal logic is the realizability problem for LTL [PR89a; PR89b]
which is the problem of deciding whether there exists a program satisfying a given LTL
specification no matter how the environment behaves. This is closely related to the
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Figure 1.2: Example of a model-checking game.

synthesis problem which consists of generating a program meeting such a specification
(see Section 1.4).

In addition to applications in synthesis and realizability the model-checking ap-
proach for alternating-time temporal logic is simply a natural approach for the veri-
fation of multi-agent systems that has grown out of the traditions of linear-time and
branching-time logics. Indeed, ATL∗ generalizes both LTL,CTL and CTL∗. The im-
portant difference is that there is an explicit distinction between the non-deterministic
choices made by different agents. In particular, this makes us able to reason about
what can be achieved by a subset of the agents no matter how the remaining agents
react.

Model-checking games
In addition to using games as models we also use the approach of model-checking
games (also called evaluation games) to solving the model-checking problem (see e.g.
[Sti95]). The idea is to reduce the question of whether a model M satisfies a formula
φ, i.e. whether M |= φ, to deciding the winner in a game G.

The intuition behind this is that G has two players 0 and 1 that are trying to prove
and disprove M |= φ respectively. If player 0 has a winning strategy then M |= φ
and if player 1 has winning strategy then M ̸|= φ.

Example 1.1 As an example, consider model-checking of a positive Boolean formula.
A positive Boolean formula φ consists of variables x1, x2, ..., xm, conjunctions and
disjunctions. A model M of such a formula is an assignment of truth values (⊤ for
true and ⊥ for false) to the variables. Given such a model it is possible to decide
whether φ is true in the model M using a model-checking game.

For the particular formula φ = (x1 ∨ x2) ∧ x3 and the model M assigning ⊤ to
x1 and x3 and ⊥ to x2 the corresponding model-checking game can be seen in Figure
1.2.

The game starts by placing a token in the root node of this game tree labelled with
the instantiated formula φ[x1 7→ ⊤, x2 7→ ⊥, x3 7→ ⊤]. Then, if the main connective
of the formula is a conjunction player 1 must move the token along one of the edges.
If the main connective of the formula is a disjunction then player 0 must move the
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token along one of the edges. The choices of the players correspond to picking one of
the subformulas connected by the main connective.

In the figure player 0 controls the rounded node and player 1 controls the rectangle
node. The players keep moving the token until a node is reached which is labelled ⊤
or ⊥. If ⊤ is reached player 0 wins and if ⊥ is reached player 1 wins.

The intuition behind the construction is that if a conjunctive formula is false then
one of the conjuncts must be false. Then player 1 can show it false by picking such a
conjunct. On the other hand, if a disjunctive formula is true then one of the disjuncts
must be true. Then player 0 can show it true by picking such a disjunct.

In the example the formula evaluates to true as both conjuncts are true. To show
this player 0 must choose ⊤ rather than ⊥ to show that the disjunct of the left-most
conjunct of φ is true. This winning strategy implies that φ is true in the model M .

In Chapter 4 we consider new algorithms for solving a class of games called parity
games [EJ91]. An important application of parity games is that they are the model-
checking games that arise from model-checking of the model µ-calculus in finite-state
transition systems [Sti95]. Thus, if we can solve parity games efficiently we can solve
the model-checking problem of the modal µ-calculus efficiently.

In Chapter 5 we will apply the technique of model-checking games to develop
algorithms for model-checking ATL and ATL∗ with quantitative extensions where
the models are one-counter games. These are some of the first decidability results for
ATL∗ in infinite-state systems.

In Chapter 6 we study a symmetry reduction technique that can be used to reduce
state spaces in various problems related to games in the presence of symmetry. This
includes both solving parity games and model-checking of alternating-time temporal
logics. It has yet to be seen how large efficiency gains this technique will give in
practice. However, in model-checking of transition systems [ID96; Cla+96; Cla+98],
real-time systems [Hen+03] and probabilistic systems [KNP06] this technique has had
a large impact of the applicability of model-checking.

1.3 Satisfiability

Whereas the model-checking problem considers the truth of a formula φ in a particular
model M the satisfiability problem asks, given a specification φ, whether there exist
a model satisfying this specification. This is closely related to the validity problem
which asks whether the specification φ is true for every model M . Indeed, a formula
φ is unsatisfiable if and only if ¬φ is valid.

In the classical Boolean satisfiability problem the models are assignments of truth
values to the variables. Thus, the Boolean satisfiability problem asks whether there
exists a truth assignment of the variables that makes the formula true.

In Chapter 7 we consider satisfiability problems for fragments of the alternating-
time temporal logic ATL∗. Here, recall that the models of formulas are games. This
means that the satisfiability problem for an ATL∗ formula φ asks whether there exists
a game in which φ is true.
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Example 1.2 An example of a satisfiable formula is ⟨⟨{0, 1}⟩⟩Fr. Indeed, a model
satisfying this formula was given in Figure 1.1. There it was shown that G, s0 |=
⟨⟨{0, 1}⟩⟩Fr implying that the formula is satisfiable.

An example of an unsatisfiable formula is ⟨⟨{0}⟩⟩Gp∧⟨⟨{1}⟩⟩G¬p. It expresses that
player 0 has a strategy to force p to be true forever and that player 1 has a strategy
to force p to be false forever. This is not true in any game. Thus, the formula is
unsatisfiable.

As ATL∗ formulas can express properties about the abilities of players the satisfia-
bility problem is in fact quite closely related to the area of mechanism design (see e.g.
[Nis+07]). Indeed, mechanism design is a discipline in economics where the objective
is to design games with desirable properties. By solving the satisfiability problem for
ATL∗ we can automatically decide whether a game meeting a certain specification
even exists.

As Boolean satisfiability is already NP-complete [Coo71] and this problem is a spe-
cial case of all the satisfiability problems we consider, we can in general expect a quite
high complexity for these problems. Indeed, satisfiability for ATL∗ is 2ExpTime-
complete [Sch08].

In Chapter 7 we study the computational complexity of various flat fragments of
ATL∗. That is, fragments where nesting of the strategic operator ⟨⟨·⟩⟩ is not allowed.
This restriction is considered to obtain a better balance between computational com-
plexity and expressiveness. Indeed, many interesting properties can still be expressed
in the flat fragments of ATL∗. Another reason is that it can been argued that the
semantics of nesting quantifiers in ATL∗ is not natural [ÅGJ07; Bri+09].

1.4 Synthesis and Realizability

When doing model-checking and satisfiability testing of ATL∗ formulas we decide the
truth of specifications about capabilities of players in games. A similar problem was
also tackled in [PR89a; PR89b], namely the realizability problem which asks to decide
if there exists a program for a system satisfying a given LTL specification no matter
how the environment behaves. The very related synthesis problem asks to generate
such a program if it exists.

A two-player game can be constructed modelling the situation with a controller
and an uncooperative environment. A controller player represents the controller and
an environment player represents the non-deterministic environment. The goal of the
controller player is that the specification is satisfied no matter how the environment
player behaves. As such, a strategy for the controller player that is winning no matter
how the environment player behaves corresponds to a control program satisfying a
specification no matter which input it receives from the environment.

When we do model-checking we decide existence of certain strategies, analogously
to the realizability problem. However, to be practical it is also important that we are
able to construct winning strategies and not just decide existence of them. This is
because the strategies correspond to actual programs that we want to generate.



1.5 Qualitative and quantitative objectives 7

The techniques we apply in this thesis are constructive in the sense that the
algorithms which decide existence of certain strategies work by finding particular
strategies as witnesses of the existence. Thus, whereas the purpose of traditional
model-checking is to verify correctness of an already implemented program, model-
checking of games gives us not just the opportunity to verify properties of multi-agent
systems, but also to synthesize programs from the specification. The synthesized
program will then, by construction, be correct. Correctness is of course provided that
our specification does in fact specify how we want the program to behave. For a
discussion on the difficulty of specification for synthesis, see [Blo+14].

Thus, our model-checking approach allows us to model situations where a system
is not yet built contrary to in traditional model-checking. The purpose is instead to
synthesize a correct system from a specification. See [PPS06; Blo+12] for applications
of this approach to practical case studies.

1.5 Qualitative and quantitative objectives

Recently, the game-based approach to program synthesis has had more focus on
specifications that are not just qualitative , but also quantitative . Instead of just
being able to require qualitative correctness properties such as

• is it possible to ensure reaching a target state?

• is it possible to avoid deadlocks?

• is it possible to keep getting access to the database?

we also want to require that the correct system behaves well according to some per-
formance metrics. We can then ask quantitative questions like

• Can a target state be reached fast?

• How much energy is needed to accomplish a goal?

• Can a device avoid ever running out of battery?

The study of such quantitative objectives is currently an active research area, see
e.g. [Blo+09; Hen12; BG13]. In Chapter 5 we will extend ATL∗ to be able to express
combined qualitative and quantitative objectives in games with an unbounded counter
as was done in [BG13]. Such a counter could for instance model things like battery
level, time or even money. We provide some of the first decidability results for ATL∗

(as well as for the quantitative extension QATL∗) in infinite-state systems.
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1.6 Models for distributed systems

For the model-checking and satisfiability problems we consider in Part I all the models
are full observation games. However, in many applications of reactive systems, and
particularly distributed systems , it is an inherent property that the different entities
do not fully observe the state of the other entities. Modelling formalisms for such
systems is the topic of Part II. These are partial-observation games.

Example 1.3 As an example of a distributed system with partial observation consider
a system with a number of clients communicating with a server that can grant access
to a printer. Here, a client does not know the state of the other clients and, in
particular, does know whether another client is currently using the printer. To model
such situations partial observation of the current state is vital.

Many settings of infinite-duration games with partial observation have a very
high complexity compared to the full observation case. For instance, it was shown in
[PR90] that deciding existence of winning strategies in turn-based games with partial
observation and LTL objectives is undecidable. In [BK10] it was even shown that the
same question is undecidable already for safety specifications. See also [FS05] for a
discussion of this phenomenon.

To combat this issue there has been a number of attempts at defining more re-
stricted ways to define partial observation and also restrictions on the structures
themselves. See e.g. [Gen+13; FO14; Mus15].

In Chapter 9 and Chapter 10 we study similar models and also obtain a number of
similar undecidability results. In Chapter 10 we also prove undecidability of almost-
sure reachability in the formalism of decentralized Markov decision processes already
for 2 players. In both chapters we also provide decidability results. In Chapter 9
these results are obtained by restricting to finite-memory strategies for the players
whereas a decidability result is obtained in Chapter 10 by making certain restrictions
on the structure of the game.

1.6.1 Non-zero sum objectives
In Part I all the situations we analyze boil down to so-called zero-sum games . That
is, games where the objective of one player is the opposite of the other. Consider
again the game between a controller player and an environment player. Here, the
objectives of the two players are exactly the opposite.

In distributed settings, where there are often more than two players, it can be too
restrictive to only consider zero-sum objectives. Indeed, entities such as the clients
in Example 1.3 are typically interested in what is best for themselves but do not gain
by other clients having bad performance.

In such a setting it is also too restrictive for each player to have worst-case assump-
tions about the other players in the game. It is not rational for a client to assume
that all other clients will try to work against it, it is rational to assume that all other
clients will try to do what is best for themselves.
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These considerations lead us to the study of non-zero sum games as known from
classical game theory (see e.g. [OR94]). Here, Nash equilibria Nash equilibrium is
one of the most applied solution concepts. A Nash equilibrium specifies a strategy
for all players in a game such that no single player can deviate from this specification
and improve his payoff given that all other players stick to the specification.

In Chapter 9 we study a novel modelling formalism for distributed systems called
symmetric game networks . In this setting symmetry means that several of the players
in the game are identical with identical goals. Example 1.3 is a good example of such
a setting. We study the problem of deciding existence of symmetric Nash equilibria
in such a setting. That is, a Nash equilibria where all players use the same strategy.

1.6.2 Timed and stochastic behavior
In Chapter 10 we present another new modelling formalism for distributed systems
called distributed interactive Markov chains that includes details about the timed
behaviour of the systems. Here, time is assumed to be continuous contrary to the
other chapters where time is assumed to be discrete.

The models also include stochastic transitions with probability distributions over
the duration of these transitions. This is done in a way similar to the paradigm of
continuous-time Markov chains.

Finally, the models includes explicit communication primitives making it more
natural to model communication between the different players in a model.

As these models are already quite complicated we consider simpler objectives than
in previous chapters. Indeed, we focus on situations where the players collaborate
towards maximizing the probability of reaching a specified set of target states.

1.7 Goals

The purpose of this thesis is to advance the current knowledge of foundational prob-
lems within game-based synthesis and verification as well as improve existing tech-
niques within this area. Our goals can be divided into three main categories:

1. Improving the efficiency of existing techniques for automated verification and
synthesis. As computational resources such as time and space are the main
bottlenecks for the success of game-based techniques such improvements have
the potential to extend the application scope of this approach significantly.

2. Deciding the computational complexity of a number of foundational model-
checking, satisfiability and synthesis problems. Such results advance the current
insight into the possibilities and future promises of game-based techniques. In
particular it is important for deciding the direction of further research and
development in the area.

3. Developing new formalisms for modelling of distributed and reactive systems.
As game-based synthesis of distributed and reactive systems is still a young
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field there are still rich possibilities for introducing new modelling formalisms.
In particular, we consider the problems of modelling such systems that contain
many identical components. We also consider the problem of modelling game-
based distributed settings where time is continuous and duration of delays are
modelled by continuous probability distributions.

1.8 Thesis outline

The thesis begins with an introduction and a general chapter on preliminaries. The
rest of the thesis is divided into two main parts. Part I considers settings with full
observation games and Part II considers settings with partial observation games. For
each part there is an introduction chapter. Then follows chapters presenting the
results obtained during the Ph.d. studies. Specifically:

• Chapter 1 is an introductory chapter

• Chapter 2 is a general chapter containing preliminaries

• Part I contains the following chapters:

– Chapter 3 introduces Part I on full observation games.
– Chapter 4 studies the algorithmic problem of solving parity games. In

particular, the novel concept of winning cores in parity games are analyzed
and used to develop an under-approximation algorithm for solving parity
games. Practical experiments are very promising compared to existing
algorithms. It is based on [Ves16].

– Chapter 5 presents computational complexity results on model-checking
quantitative extensions ATL∗ and ATL in one-counter games. Algorithms
based on model-checking games are presented and matching lower bounds
are shown. It is based on [Ves15].

– Chapter 6 develops the symmetry reduction technique for turn-based games
with finite branching. The technique is shown to be applicable both for
parity game solving and model-checking of ATL∗. It is based on [MV14].

– Chapter 7 presents computational complexity results on satisfiability for
various flat fragments of ATL∗. That is, fragments where the strategic
operators ⟨⟨·⟩⟩ cannot be nested. It is based on [GV14].

• Part II contains the following chapters:

– Chapter 8 introduces Part II on partial observation games
– Chapter 9 develops the new modelling formalism of symmetric game net-

works. This setting is used to model distributed settings where several
players are identical. Several undecidability and complexity results are
shown for questions concerning the existence of symmetric Nash equilibria
in such models. It is based on [BMV14] and [BMV16].
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– Chapter 10 introduces another new modelling formalism, distributed in-
teractive Markov chains. The purpose of this formalism is to model dis-
tributed settings with continuous time and probability distributions over
durations of transitions. A number of undecidability results are shown. We
present a decidability result for the value problem for 2-player non-urgent
models. It is based on [HKV16].

• Chapter 11 contains a conclusion of the thesis.
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CHAPTER 2
Preliminaries

In this chapter we introduce a number of definitions and concepts which will be of
use to us for the rest of the thesis. This includes basic models, games, automata
as well as different logics. Further, we introduce the complexity classes that can be
encountered throughout the thesis.

2.1 Modelling formalisms

In this thesis the focus is on games as modelling formalisms for reactive and multi-
agent systems. Except for the models in Chapter 10 we deal only with discrete-time
models without probabilistic choices. That is, discrete-state systems where all non-
determinism stems from choices made by the players in the games. All games we
consider are infinite duration games as the target applications are systems that should
be able to run forever.

We consider both turn-based games where players alternate turns as well as concur-
rent games where players simultaneously and independently choose actions. Further,
in Chapter 9 and 10 we consider games where players have only partial information
about the state of the game.

2.1.1 Turn-based games
Turn-based games comprise a simple, yet powerful way to model interaction. We focus
on computational aspects of various subclasses of turn-based games in Chapter 4, 5
and 6; all games considered are games of infinite duration.

A turn-based game is played by a finite number of players. It is played in a finite
transition system where the states are partitioned according to the players. We say
that a player controls the states in his partition. The game is played by placing
a token in an initial state s0 of the transition system. The player controlling the
current state must choose a successor state to move the token to while respecting
the transition relation. Then the player controlling the successor state chooses a new
successor state and so on indefinitely or until there is no outgoing transition from the
current state. Thus, the play is either a finite or infinite sequence of states.
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Figure 2.1: A turn-based game.

Definition 2.1 A turn-based game is a tuple G = (S,Π, (Sj)j∈Π, R) where

• S is a non-empty set of states

• Π is a non-empty, finite set of players

• Sj ⊆ S is the set of states that player j ∈ Π controls

• Si ∩ Sj = ∅ when i ̸= j and S =
∪
j∈Π Sj

• R ⊆ S × S is the transition relation

Example 2.2 A simple example of a turn-based game is shown in Figure 2.1. In
this game there are two players 0 and 1. Circle states are in S0 and square states in
S1. In other words, player 0 controls the circle states and player 1 controls the square
states. There is an arrow from state s to state t if (s, t) ∈ R. In this game every
state has an outgoing transition and therefore every play of this game is an infinite
sequence of states.

Let us fix a turn-based game G = (S,Π, (Sj)j∈Π, R) in the following. A turn-based
game is played by placing a token on an initial state s0 ∈ S. Then it proceeds for a
number of rounds as follows. In each round the player who controls the current state
s (the state where the token is placed) must choose to move the token to a state t
such that (s, t) ∈ R if one such exists. In this case we call (s, t) a legal move. The
game is played in this fashion for an infinite number of rounds or until there is no
legal move in the current state.

More formally, for a setX we denote byX∗, X+ andXω the set of finite sequences,
non-empty finite sequences and infinite sequences of elements fromX respectively. For
a sequence ρ = s0s1... and i ∈ N0 we define ρi = si, ρ≤i = s0...si and ρ≥i = sisi+1....
When ρ is finite, i.e. ρ = s0...sℓ we write last(ρ) = sℓ for the last state in ρ and
|ρ| = ℓ for the number of transitions in ρ.

A play is either an infinite sequence s0s1... ∈ Sω such that (si, si+1) ∈ R for all
i ≥ 0 or a non-empty finite sequence s0...sℓ ∈ S+ such that (si, si+1) ∈ R for all
0 ≤ i < ℓ and with the requirement that there does not exist t so (sℓ, t) ∈ R. The
set of plays is denoted Play(G). For s0 ∈ S the set of plays with initial state s0 is
denoted Play(G, s0). An objective for a player is a subset of Play(G).

A history is a non-empty, proper prefix of a play. The set of all histories (respec-
tively histories with initial state s0) is denoted Hist(G) (respectively Hist(G, s0)).
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Note that a transition system is simply a turn-based game with a single player. In
this case we simply omit the set of players and the partition of the states and write
(S,R) for the transition system with the set S of states and transition relation R.

Strategies

In a turn-based game G a strategy for player j ∈ Π is a partial function

σj : Hist(G)→ S

defined for histories s0...sℓ such that sℓ ∈ Sj with a requirement that (sℓ, σj(s0...sℓ)) ∈
R. We say that an infinite play ρ is compatible with a strategy σj if σj(ρ≤i) = ρi+1

for every i ≥ 0 such that ρi ∈ Sj . For a finite play ρ we require the same but only
for 0 ≤ i < |ρ|. The set of plays with initial state s0 compatible with σj is denoted
Play(G, s0, σj). Compatibility of histories with strategies is defined analogously. The
set of histories with initial state s0 compatible with σj is denoted Hist(G, s0, σj).

Depending on the type of game, a player does not always need to remember the
entire history of the play in order to play well. In some games a bounded amount
of memory suffices to win and in others a play might need no memory at all except
knowledge of the current state of the game. One advantage of showing that a small
amount of memory is enough in order to win in a certain class of games is that it can
make the search for a winning strategy easier. This trick is used later in the thesis.

We define a bounded-memory strategy as a certain type of deterministic finite-state
transducer (DFST) which is a finite-state automaton extended with output symbols
on the transitions. The idea is that the DFST reads the states of the game during the
play and in each game step it updates its memory and outputs a symbol according
to what is observed.

Definition 2.3 A deterministic finite-state transducer is a tuple
T = (M,m0,Σ,Γ, δ,O) where

• M is a finite set of states

• m0 ∈M is the initial state

• Σ is a set of input symbols

• Γ is a set of output symbols

• δ :M × Σ→M is the transition function

• O :M × Σ→ Γ is the output function.

Note in particular that we allow a DFST to have infinite sets of input and output
symbols. This choice makes the DFST a meaningful representation of a bounded-
memory strategy for games with an infinite set of states.
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Figure 2.2: A 1-player turn-based game.
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Figure 2.3: DFST representing a 2-memory strategy for the single player in the
game in Figure 2.2.

We say that a strategy σ for player j in G is a bounded-memory strategy if there
exists a DFST T = (M,m0, S, S, δ,O) with S being both the set of input symbols
and output symbols of T and such that for every history h = s0...sℓ in G such that
sℓ ∈ Sj we have

σ(h) = O(δ(...δ(δ(m0, s0), s1), ..., sℓ−1), sℓ)

In addition, we say that σ is represented by the DFST T . Further, if T has k states
we say that σ is a k-memory strategy or that σ has size k.

A memoryless strategy is a strategy such that σ(h) = σ(h′) for all histories h
and h′ with the same final state. Memoryless strategies are precisely the 1-memory
strategies and can be seen as functions from Sj to S respecting the transition relation.
For memoryless strategies we abuse notation and write σ(s) = s′ if σ(h) = s′ for every
history h with final state s.

Example 2.4 Consider the one-player game in Figure 2.2. Suppose that the play
begins in s0 and that the player wins if he keeps visiting both s1 and s2 infinitely often.
Clearly he can make sure to win as he controls all the states. However, he cannot
do so using a memoryless strategy. Indeed, suppose there was a memoryless winning
strategy σ. Then either σ(h) = s1 for all histories h ending in s0 or σ(h) = s2 for all
histories h ending in s0. In both cases the goal of the player will not be accomplished
as he makes the same decision every time s0 is reached using a memoryless strategy.
However, he can win using the 2-memory strategy represented by the DFST depicted
in Figure 2.3. Here, a transition from state m to m′ labelled by s/t means that
δ(m, s) = m′ and O(m, s) = t where δ and O are the transition function and output
function of the DFST respectively. This strategy makes sure that the player chooses
s1 every other time s0 is reached and s2 every other time s0 is reached.
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A coalition in a game G is a subset A ⊆ Π of players in the game. A strategy
σA for a coalition A is a tuple (σa)a∈A of strategies, one for each player a ∈ A. A
strategy for the coalition Π consisting of all players is called a strategy profile.

2.1.2 Concurrent games
In Chapter 7 and 9 we will use a more general class of models than turn-based games,
namely concurrent games [AHK02]. As in a turn-based game, a concurrent is played
by placing a token in an initial state and then an infinite number of rounds are
played where the token moves from state to state in each round. However, unlike
in turn-based games, the movement of the token can be affected by all the players
in the game as follows: In each round, every player has a non-empty set of actions
available. Concurrently and independently each player chooses one of the actions
available to him. Based on these choices of actions and the current state a transition
function assigns the successor state deterministically. Concurrent games can be seen
as a subclass of stochastic games [Sha53] with a deterministic transition function.

Definition 2.5 A concurrent game is a tuple C = (S,Π,Σ,Γ, δ) where

• S is a set of states

• Π is a finite, non-empty set of players

• Σ is a set of actions

• Γ : S × Π→ 2Σ \ {∅} is a function specifying for each state s and player j the
set of actions available to player j in state s

• δ : S ×ΣΠ → S is the transition function which assigns a successor state when
the current state s is given and an available action for each player in s.

Example 2.6 We model the game of Rock-paper-scissors as a two-player concurrent
game in Figure 2.4. An arrow from state s to state t labelled by (a1, a2) means
δ(s, (a1, a2)) = t where δ is the transition function. Note that in every state, each
player must have at least one action available. When a player has won the game we
let each player choose the void action ∗ indefinitely.

We fix a concurrent game C = (S,Π,Σ,Γ, δ) in the following. A play is an infinite
sequence s0s1... ∈ Sω such that for all i ≥ 0 there exists actions aj ∈ Γ(s, t) for every
j ∈ Π such that δ(si, (aj)j∈Π) = si+1. A history is a non-empty finite prefix of a play.
The set of histories and plays in C is denoted as for turn-based games.

Strategies are defined analogously to turn-based games, but are functions from
histories to actions. Formally, a strategy for player j is a function

σ : Hist(C)→ Σ
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Figure 2.4: Rock-paper-scissors as a concurrent game.

such that σ(h) ∈ Γ(last(h), j) for every history h and player j. That is, a strategy
can only choose an action that is available to the player at the current state of the
play.

Note that turn-based games can be seen as the special case of concurrent games
where for each state s ∈ S there exists at most one player j such that |Γ(s, j)| > 1.
In other words, in every state of the game there is at most one player with a choice
affecting the successor state.

Memoryless strategies and bounded-memory strategies are defined analogously to
in turn-based games. This is also the case for strategies for coalitions of players.

2.1.3 Partial observation games
In Part II we study games where the players only have partial observation of the
current state of the game. This makes us able to model more interesting scenarios
but also gives rise to more complex problems.

To model partial observation we use the notion of observation sets for each player
similarly to the concurrent games in [AHK02], game structures in [Cha+06] and
partially observable Markov decision processes. An observation set for a player is a
set of states that the player cannot distinguish between. As such, for every player
we partition the set of states into observation sets. This gives rise to an equivalence
relation ∼j for player j defined for all states s, s′ such that s ∼j s′ means that
player j cannot distinguish between s and s′. For this to be meaningful we require
that the set of actions available to player j in s and s′ are the same when they are
indistinguishable. Formally, we define concurrent games with partial observation as
follows:

Definition 2.7 A concurrent game with partial observation is a tuple
C = (S,Π,Σ,Γ, δ, (∼j)j∈Π) where

• (S,Π,Σ,Γ, δ) is a concurrent game
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• ∼j⊆ S × S is an equivalence relation for every player j ∈ Π

• For all s, s′ ∈ S and j ∈ Π we require that s ∼j s′ implies Γ(s, j) = Γ(s′, j).

The equivalence relation ∼j induces a set of equivalence classes on states for each
player j. We call such an equivalence class an observation set. We denote by [s]j the
observation set that state s belongs to for player j. This set contains the set of states
which are indistinguishable to s from the point of view of player j.

Plays and histories are defined as for concurrent games with full observation. How-
ever, in order to define strategies we need the notion of observation history. For a
given history h = s0...sℓ in G we define the corresponding observation history [h]j for
player j by

[h]j = [s0]j ...[sℓ]j

We denote the set of observation histories for player j by ObsHistj(G). Instead of
being functions from histories to actions, a strategy for player j in a concurrent game
with partial information G is a mapping σ : ObsHistj → Σ such that σ(o0...oℓ) ∈
Γ(s, j) for every state s ∈ oℓ. That is, a player can only base his decision on the
sequence of observations seen so far during the play and not on the sequence of states
that actually occured so far during the play. Note that full observation concurrent
games is just the special case where ∼j is the identity relation for every player j.

Another way to view the strategies in partial information games is as mappings
from histories to actions just as in the full observation case. However, to be compatible
with the partial observation a strategy must satisfy certain constraints. Let σ be such
a strategy for player j. We say that σ is ∼j-realizable (or simply realizable if ∼j is
given by the context) if for all histories h, h′ with [h]j = [h′]j we have σ(h) = σ(h′).
The set of realizable strategies are exactly the same as the set of strategies as defined
by mappings from observation histories to actions. Depending on the context we will
use both definitions of strategies in partial observation games.

Example 2.8 An example of a concurrent game with partial information can be seen
in Figure 2.5. The games has two players, player 0 and player 1. Initially, player 0
chooses either + or − in s0. Afterwards, player 1 also gets to choose between + or −.
However, player 1 cannot observe what player 0 chose because s1 ∼1 s2. This means
that player 1 cannot make sure that the play ends up in s3 as he does not know which
action player 0 chose initially.

In Chapter 9 a special class of concurrent games with partial information, game
networks, is introduced and investigated. In Chapter 10 we will also consider mod-
els with probabilistic transitions functions and partial observation such as partially
observable Markov decision processes (POMDPs) and decentralized partially observ-
able Markov decision processes (DEC-POMDPs). In these cases partial observation
is included in the models analogously to in concurrent games using observation sets.
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Figure 2.5: A concurrent game with partial information. Here, s1 and s2 are indis-
tinguishable to player 1 as illustrated by the dashed ellipse. We have
omitted self-loops from s3 and s4 in the figure for simplicity.
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Figure 2.6: A labelled turn-based game.

Labelling
In order to use games as models for specification logics we assign meaning to different
states using a finite set AP of proposition symbols. A labelling function L assigns a
set of propositions true in a given state.

The turn-based game (S,Π, (Sj)j∈Π, R) illustrated in Figure 2.6 have assigned
proposition symbols from the set AP = {p, q} to the different states. For instance,
L(s2) = {p} and L(s4) = ∅.

We call G = (S,Π, (Sj)j∈Π, R,AP, L) where L : S → 2AP a labelled turn-based
game. In a similar way we can extend transition systems and concurrent games to
labelled transition systems and labelled concurrent games.

2.2 Logics

As specifications for systems we use various different logics. In particular, we use
temporal logics which are capable of expressing qualitative properties about infinite
executions of systems. The widely used linear-time temporal logic (LTL) [Pnu77] is
capable of expressing properties of infinite executions whereas the computation tree
logics CTL [CE81] and CTL∗ [EH86] are used to express properties of infinite trees
of execution.
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A natural way of generalizing these logics to systems where several players are
responsible for non-deterministic choices is given by the alternating-time temporal
logics ATL and ATL∗ [AHK02]. With these logics it is possible to express capabilities
of coalitions of players of the form ⟨⟨A⟩⟩Φ which, informally, means that coalition A
has a strategy to force that the property Φ is true no matter what the other players
in the game do. Such formulas can be nested and combined with the usual temporal
operators known from LTL. CTL and CTL∗ are the one-player fragments of ATL
and ATL∗ respectively.

Chapters 5, 6, 7 and 9 all consider automated verification of properties specified
in these temporal logics.

2.2.1 Alternating-time temporal logic
We first introduce the alternating-time temporal logic ATL∗ [AHK02] and then define
branching-time logics and linear-time logics as fragments of ATL∗. Formulas of ATL∗

are interpreted in labelled concurrent games and is used to express capabilities of
coalitions of players in such a game. The most interesting quantifier in ATL∗ is the
strategic quantifier ⟨⟨A⟩⟩ for a coalition A of players in a game. The formula ⟨⟨A⟩⟩Φ
expresses that the players in coalition A can force the ATL∗ formula Φ to be true. It
can be seen that ATL∗ is a generalization of CTL∗ (and thus also CTL and LTL) by
noting that the universal path quantifier A and the existential path quantifier E are
equivalent to ⟨⟨∅⟩⟩ and ⟨⟨Π⟩⟩ respectively, where Π is the set of players in the game.

Syntax

There are two types of formulas in ATL∗ like for CTL∗: state formulas that are
evaluated at states and path formulas that are evaluated on plays. The state formulas
of ATL∗ are defined by the grammar

φ ::= p | ¬φ1 | φ1 ∧ φ2 | ⟨⟨A⟩⟩Φ1

where p ∈ AP is an atomic proposition, A ⊆ Π is a coalition, φ1 and φ2 are ATL∗

state formulas and Φ1 is an ATL∗ path formula. The path formulas of ATL∗ are
defined by the grammar

Φ ::= φ1 | ¬Φ1 | Φ1 ∧ Φ2 | XΦ1 | Φ1UΦ2

where φ1 is an ATL∗ state formula and Φ1 and Φ2 are ATL∗ path formulas.
The other Boolean connectives are defined as usual. The temporal operator F

specifying eventual truth is defined by FΦ = ⊤UΦ and the temporal operator G
specifying global truth is defined by GΦ = ¬F¬Φ. The release operator R is defined
by Φ1RΦ2 = ¬(¬Φ1U¬Φ2). To keep the notation lighter we will sometimes list the
members of A in ⟨⟨A⟩⟩ without using {}.

The fragment ATL+ of ATL∗ is obtained when the temporal operators may only
be applied to state formulas, i.e. when path formulas are re-defined as

Φ ::= φ1 | ¬Φ1 | Φ1 ∧ Φ2 | Xφ1 | φ1Uφ2 | φ1Rφ2
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where φ1 and φ2 are ATL+ state formulas and Φ1 and Φ2 are ATL+ path formulas.
The further restricted fragment ATL only contains state formulas of the following

form
φ ::= p | ¬φ1 | φ1 ∧ φ2 | ⟨⟨A⟩⟩Xφ1 | ⟨⟨A⟩⟩(φ1Uφ2) | ⟨⟨A⟩⟩(φ1Rφ2)

where A ⊆ Π is a coalition, p ∈ AP is a proposition and φ1 and φ2 are ATL formulas.

Remark 2.9 Note that for ATL+ and ATL we include the release operator R in the
syntax. The reason is that while R can be defined using the other operators in ATL∗

as shown above it was shown in [LMO08] that it cannot be defined in ATL when only
the temporal operators U and X are available.

Given a set AP of atomic propositions, the set of literals over APis AP ∪ {¬p |
p ∈ AP}.

Semantics

The semantics of ATL∗ formulas is given with respect to a labelled concurrent game
G = (S,Π,Σ,Γ, δ,AP, L) and defined by two semantics relations

• G, s |= φ meaning that the state formula φ holds at state s in G

• G, ρ |= Φ meaning that the path formula Φ holds along the play ρ in G

The two semantic relations are defined by mutual recursion. For state formulas it
is given as follows where s ∈ S, p ∈ AP, φ1 and φ2 are ATL∗ state formulas, Φ is a
an ATL∗ path formula and A ⊆ Π is a coalition

G, s |= p if p ∈ L(s)
G, s |= ¬φ1 if G, s ̸|= φ1

G, s |= φ1 ∧ φ2 if G, s |= φ1 and G, s |= φ2

G, s |= ⟨⟨A⟩⟩Φ if there exists a strategy σA ∈ StratG(A),
such that G, ρ |= Φ for all ρ ∈ PlayG(s, σA)

The semantics of path formulas is given as follows where φ is a state formula, Φ1

and Φ2 are path formulas and A ⊆ Π is a coalition

G, ρ |= φ if G, ρ0 |= φ
G, ρ |= ¬Φ1 if G, ρ ̸|= Φ1

G, ρ |= Φ1 ∧ Φ2 if G, ρ |= Φ1 and G, ρ |= Φ2

G, ρ |= XΦ1 if G, ρ≥1 |= Φ1

G, ρ |= Φ1UΦ2 if ∃k.G, ρ≥k |= Φ2 and ∀j < k.G, ρ≥j |= Φ1

G, ρ |= Φ1RΦ2 if ∀k.G, ρ≥k |= Φ2 or
∃k.G, ρ≥k |= Φ1 and ∀j ≤ k.G, ρ≥j |= Φ1

The branching-time logics CTL∗,CTL+ and CTL are the one-player fragments of
ATL∗,ATL+ and ATL respectively. For an overview of the relationships between the
different logics see Figure 2.7.
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Figure 2.7: Inclusions between different logics. An arrow from L1 to L2 means that
every L1 formula is an L2 formula.

2.3 Automata

We will apply an automata-theoretic approach to verification [VW86]. Here, the main
idea is to construct an automaton Aφ from a temporal logic formula φ in such a way
that the language L(Aφ) accepted by the automaton is exactly the set of models
that make the formula true. As such, reasoning about the automaton corresponds in
several ways to reasoning about the formula. For instance, the satisfiability problem
for the formula φ asks whether there exists a model for φ. Thus, satisfiability of φ
can be reduced to checking emptiness of L(Aφ).

In this section we introduce several different classes of automata and properties
of these known from the litterature. They will be applied as part of our toolbox in
later chapters. As the systems we wish to model are reactive systems with infinite
duration it is natural that we only consider automata accepting infinite words.

2.3.1 Non-deterministic Büchi automata
The simplest class of automata we introduce is the class of non-deterministic Büchi
automata. They accept words based on the Büchi condition; a word is accepted if
and only if there exists a run of the automaton on the word that passes through an
accepting state infinitely many times.

Büchi automata are, for example, used for automated verification via model-
checking of LTL properties of finite-state systems [CGP01; BK08].

Definition 2.10 A non-deterministic Büchi automaton on infinite words (NBA) is
a tuple A = (Q,Σ, q0, δ, F ) where

• Q is a finite set of states

• Σ is a finite alphabet

• q0 ∈ Q is the initial state

• δ : Q× Σ→ 2Q is the transition function
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• F ⊆ Q is a set of accepting states.

A run of an NBA A on an infinite word w = w0w1... ∈ Σω is an infinite sequence
ρ = q0q1... of states such that for all i ≥ 0 we have qi+1 ∈ δ(qi, wi). We say that ρ
is accepting if there exists infinitely many i ≥ 0 such that qi ∈ F . We say that A
accepts the word w if there exists an accepting run of A on the word w. The language
of A is the set L(A) ⊆ Σω of infinite words which are accepted by A.

It can be shown that the set of languages accepted by NBAs are exactly the ω-
regular languages (see e.g. [GTW02]). That is, for a given ω-regular language L
there exists an NBA A such that L(A) = L and for every NBA A the language L(A)
accepted by A is ω-regular.

In particular, it has been shown that for a given LTL formula φ one can show
that there exists an NBA A which accepts exactly the infinite words that are models
for φ. Further, such an automaton can be constructed with 2O(|φ|) states [WVS83].
By the previous paragraph this means that the set of models for an LTL formula is
ω-regular.

2.3.2 Deterministic parity automata
When doing model-checking of games we encounter situations where non-deterministic
automata are not suitable due to the alternation between players. Therefore we will
need deterministic automata with enough expressiveness for LTL formulas. As deter-
ministic Büchi automata are not capable of this (see e.g. [BK08]) we will apply deter-
ministic parity automata which are equally expressive as NBAs (see e.g. [GTW02]).

Definition 2.11 A deterministic parity automaton on infinite words (DPA) is a tuple
A = (Q,Σ, q0, δ, c) where

• Q is a finite set of states

• Σ is a finite alphabet

• q0 ∈ Q is the initial state

• δ : Q× Σ→ Q is the transition function

• c : Q→ N is a coloring function.

A run of a DPA A on an infinite word w = w0w1... ∈ Σω is an infinite sequence
ρ = q0q1... of states such that for all i ≥ 0 we have qi+1 = δ(qi, wi). We say that ρ
is accepting if the largest color that occurs infinitely often in ρ is even. That is, the
largest value e such that c(qi) = e for infinitely many i must be even.

We say that A accepts the word w if there exists an accepting run of A on the
word w. The language of A is the set L(A) ⊆ Σω of infinite words which are accepted
by A.
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It is possible to construct a DPA B from an NBA A such that the two automata
accept the same language. This can be done such that the number of states of B is
in 2O(n) and the number of colors are in O(n) where n is the number of states in A
[Pit07]. Thus, from an LTL formula φ one can construct a DPA accepting exactly
the models of φ which has 22O(|φ|) states and 2O(|φ|) colors.

2.4 Turing machines

We introduce notation for deterministic Turing machines here as we will need reduc-
tions from the halting problem of such machines in several chapters of this thesis. For
a more thorough introduction to Turing machines, see e.g. [HMU03; AB09].

Definition 2.12 A deterministic Turing machine is a tuple T = (Q, q0,Σ, δ, qF )
where

• Q is a finite set of control states

• q0 ∈ Q is the initial state

• Σ is a finite tape alphabet containing the blank symbol ♭ ∈ Σ.

• δ : Q× Σ→ Q× Σ× {−1,+1} is the transition function

• qF ∈ Q is the accepting state

Note that we use −1 and +1 to denote that the tape head moves left and right
respectively.

2.5 Two-counter machine

We introduce notation for deterministic two-counter machines here as we will need
reductions from the halting problem of such machines. This problem is undecidable
[Min61]. For a more thorough introduction to counter machines, see e.g. [HMU03].

Definition 2.13 A two-counter machine is a tuple M = (Q, q0, δ, qF ) where

• Q is a finite set of control states

• q0 ∈ Q is the initial state

• δ : Q→ (Q× {c, d} × {+1}) ∪ (Q2 × {c, d} × {−1}) is the transition function

• qF ∈ Q is the accepting state
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Figure 2.8: Inclusions between complexity classes. An arrow from class C1 to class
C2 implies that C1 ⊆ C2.

The two counters are called c and d respectively. The transition function δ spec-
ifies for each state an increment transition (denoted +1) or a decrement transition
(denoted -1). For increment transitions, the counter of the transition is increased and
the successor state is chosen according to δ. In the case of decrement transitions there
are two possible successor states. The first is chosen if the current counter value is
positive and the counter is decreased by one. The other is chosen if the counter value
is 0 and the counter value is left unchanged.

2.6 Complexity classes

We will encounter a variety of computational problems with different computational
complexities. In fact, a large part of the thesis deals with the classification of the
complexity of problems. This both involves providing algorithms for solving problems
as well as proving lower bounds. To do this kind of classification we draw upon a
number of well-known complexity classes as well as a few more exotic classes. Finally,
some problems will also be shown to be undecidable.

We will encounter standard deterministic-time and non-deterministic time com-
plexity classes such as PTime and NP which consist of problems solvable by de-
terministic polynomial-time Turing machines and non-deterministic polynomial-time
Turing machines respectively. In addition, we will see dEXPTIME for d ≥ 1 and

dEXPSPACE for d ≥ 1 which contain problems solvable using O(22
···2︸ ︷︷ ︸
d

nk

) time and

space respectively where n is the size of the input and k is a constant. In particular,
for d = 1 we simply denote these classes ExpTime and ExpSpace respectively. We
also use coC to denote the complement of the complexity class C. For instance, coNP
is the complement of NP.

Inclusions among these classes are illustrated in Figure 2.8. For a more thorough
introduction to these classes, see e.g. [Pap94; AB09]. Below we give a short overview
of some of the more non-standard classes used.
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Figure 2.9: Inclusions between complexity classes. An arrow from class C1 to class
C2 implies that C1 ⊆ C2.

2.6.1 The polynomial hierarchy
The polynomial hierarchy consists of an infinite number of complexity classes that are
more general than NP and coNP but less general than PSpace . They are based on
the notion of oracle machines and all have complete problems.

For two decision problems A and B we denote by AB the class of problems that
can be solved by a Turing machine for class A with access to an oracle for a complete
problem of class B. For a more detail account, see [Pap94; AB09].

The classes of the polynomial hierarchy are now defined inductively by

ΣP0 = ΠP0 = ∆P
0 = PTime

and for every i ≥ 0

∆P
i+1 = PTimeΣP

i ,
ΣPi+1 = NPΣP

i and
ΠPi+1 = coNPΣP

i

In particular, we have that ΣP1 = NP and ΠP1 = coNP. Relationships between
the classes are shown in Figure 2.9.

The canonical PSpace-complete problem is QSat which asks whether a formula
of the form

Q1x1Q2x2...Qmxm.φ(x1, ..., xm)

is satisfiable where Qi ∈ {∃,∀} for all 1 ≤ i ≤ m are quantifiers and φ(x1, ..., xm) is
a Boolean formula over the Boolean variables x1, ..., xm.

We now define the problem ΣPi -Sat for i ≥ 1 like QSat, but where Q1 = ∃ and
there are i − 1 alternations between the quantifiers Qi. ΠPi -Sat is defined likewise,
but with Q1 = ∀. An example of an instance of ΣP3 -Sat is

∃x1∃x2∃x3∀x4∃x5.(x1 ∧ x2 ∧ ¬x5) ∨ (x3 ∧ x4)

Note in particular that ΣP1 -Sat is the Boolean satisfiability problem which is NP-
complete and that ΠP1 -Sat is the Boolean validity problem which is coNP-complete.
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More generally, CPi -Sat is a complete problem for the complexity class CPi where
C ∈ {Σ,Π} and i ≥ 1.

In Chapter 7 we will encounter problems which are complete for low levels in the
polynomial hierarchy.

2.6.2 UP and coUP
The class UP is a subset of NP which contains problems that are recognizable by an
unambiguous non-deterministic polynomial-time Turing machine. A non-deterministic
polynomial time Turing machine is called unambiguous if for every input it has at
most one accepting computation, see e.g. [Pap94; Jur98]. As for other classes, coUP
is the complement of the class UP. It is known that PTime ⊆ UP ⊆ NP, but not
whether any of the inclusions are strict. An important problem which is in UP∩coUP
(and thus in NP ∩ coNP) but not known to be in PTime is that of solving parity
games [Jur98]. We will consider such games in Chapter 4.
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Games with full observation





CHAPTER 3
Introduction and

background
Games with full observation provide a natural way to model open systems [AHK02].
An open system is a system which interacts with its environment. This includes sys-
tems such as programs which must react to user input, servers that receive inputs from
clients and even hardware circuits which receive inputs and produce corresponding
outputs. To model such systems faithfully we need to be able to model the possible
behaviors of its environment.

In order to provide guarantees for an open system it is meaningful to require that
the system satisfies its specification no matter how the environment behaves. When
we model open systems with games this directly corresponds to finding a strategy
for the player representing the system which is guaranteed to win no matter how
the player representing the environment behaves. Here the winning condition for the
system player corresponds directly to the specification of the system.

For the questions considered we are very pessimistic about the behavior of the
environment which is assumed to be antagonistic. Intuitively, we imagine that the
environment tries to sabotage our system and therefore want to design our system such
that the antagonistic environment cannot possible succeed. In fact, this is implicitly
assumed for most of the problems we consider in Part I.

In this part it is also assumed that both the system and the environment have
full observation of the current state of the world. This assumption restricts us with
respect to the systems that we can reasonably model. However, the lack of generality
gives us a much lower complexity for the problems considered. As we shall see in Part
II it will be more difficult to find decidable problems and problems with a tractable
complexity in the partial information case.

An example of an open system where it is reasonable to assume that both the
system and the environment have full observation is a hardware circuit. In a syn-
chronous fashion such a circuit receives a fixed number of input signals and must
produce a fixed number of output signals in each step. Such steps are then repeated
indefinitely. It seems reasonable to assume that the circuit observes all the inputs it
receives and that it knows exactly which outputs it has produced. On the other hand,
as we are being pessimistic with respect to the environment it is also reasonable to
assume that the environment has observed both the sequence of inputs and outputs
that has occured.
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However, there are also cases which are not meaningful to model in this way. As
an example, consider a system for controlling the temperature within a house. This
system has a number of sensors in different rooms and has the ability to alter the
temperature in different rooms by increasing or decreasing the amount of power spent
in different heating devices. This system will receive some information about the
current state of the distribution of heat throughout the house, but cannot observe
it fully due to imprecision of sensors. As such, it can only act based on partial
information. Models to capture partial information systems like this is the topic of
Part II.

The purpose of this part of the thesis is to

• investigate the computational complexity and

• design techniques for improving the efficiency of decision procedures

for problems concerning winning strategies in various classes of full observation games.
One of the most notable classes of games we investigate are parity games which

have many applications in verification, for instance they are closely related to model-
checking of the modal µ-calculus. We also consider one-counter games which are some
of the simplest infinite-state games which are useful for modelling systems with an
unbounded resource. Whereas our results on parity games and one-counter games are
quite specific to these classes of games, some of the other results we develop consider
more general classes of infinite-state games.

Specifically, in Chapter 4 we develop the concept of winning cores in parity games
and apply this concept to design a new polynomial-time approximation algorithm
for solving parity games efficiently. In Chapter 5 we investigate the complexity of
model-checking alternating-time temporal logics and branching-time temporal logics
in one-counter games as well as deciding the winner in such games with LTL ob-
jectives. In Chapter 6 we extend the symmetry reduction technique known from
transition systems, probabilistic systems and real-time systems to be able to handle
finitely branching turn-based games. In Chapter 7 we consider the complexity of
the satisfiability problem for a number of flat fragments of alternating-time temporal
logics and branching-time temporal logics.

The chapters in this part are ordered by the generality of the games considered,
where Chapter 4 considers finite-state turn-based games, Chapter 5 we consider one-
counter games which is a special class of infinite-state turn-based games. Chapter
6 deals with (possibly infinite-state) turn-based games with finite branching and in
Chapter 7 we handle concurrent games.



CHAPTER 4
Winning cores in parity

games
This chapter is an adapted version of the paper

• [Ves16] Steen Vester. “Winning Cores in Parity Games”. To appear in Proceed-
ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS). 2016

It has been updated to be compatible with the other chapters of the thesis. Further,
some of the experimental results are presented in more detail in this chapter.

4.1 Introduction

Solving parity games [EJ91] is an important problem of both theoretical and practical
interest. It is known to be in NP∩coNP [EJS01] and UP∩coUP [Jur98] but in spite
of the development of many different algorithms (see e.g. [Zie98; Jur00; VJ00; JPZ06;
Sch07]), frameworks for benchmarking such algorithms [FL09; Kei14] and families
of parity games designed to expose the worst-case behaviour of existing algorithms
[Jur00; Fri09; Fri11] it has remained an open problem whether a polynomial-time
algorithm exists.

Various problems for which polynomial-time algorithms are not known can been
reduced in polynomial time to the problem of solving parity games. Among these are
model-checking of the propositional µ-calculus [Koz83; EL86; Sti95], the emptiness
problem for parity automata on infinite binary trees [Mos84; EJS01] and solving
Boolean equation systems [Mad97]. For relations to other problems in logic and
automata theory, see e.g. [GTW02].

Some of the most notable algorithms from the litterature of solving parity games
include Zielonka’s algorithm [Zie98] using O(nd) time, the small progress measures
algorithm [Jur00] using O(d ·m · (n/d)d/2) time, the strategy improvement algorithm
[VJ00] using O(n · m · 2m) time, the big step algorithm [Sch07] using O(m · nd/3)
time and the dominion decomposition algorithm [JPZ06] using O(n

√
n) time. Here,

n is the number of states in the game, m is the number of transitions and d is the
maximal color of the game.
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Contribution
The main contributions of this chapter are to introduce the novel concept of win-
ning cores in parity games and develop a fast deterministic polynomial-time under-
approximation algorithm for solving parity games based on properties of winning
cores. Two different, but equivalent, definitions of winning cores are given both of
which are used to show a number of interesting properties. One is based on the new
notion of consecutive dominating sequences.

We investigate winning cores and show that the winning core of a player is always
a subset of the winning region of the player and more importantly that the winning
core of a player is empty if and only if the winning region of the player is empty. A
result of [DKT12] then implies that emptiness of the winning core of a player can be
decided in polynomial time if and only if parity games can be solved in polynomial
time. We further show that the winning cores for the two players contain all fatal
attractors [HKP13; HKP14] and show properties of winning cores which are similar
in nature to the properties of winning regions that form the basis of the recursive
algorithms in [Zie98; JPZ06; Sch07] for solving parity games.

We also show that winning cores are not necessarily dominions [JPZ06] which
is interesting on its own. To the knowledge of the author no meaningful subsets
of the winning regions have been characterized in the litterature which were not
dominions. Several of the existing algorithms for solving parity games are based on
finding dominions, e.g. [Zie98; JPZ06; Sch07]. However, it was recently shown in
[Gaj+15] that there is no algorithm which decides if there exists a dominion with at
most k states in time no(

√
k) unless the exponential-time hypothesis fails. Thus, going

beyond dominions could very well be important in the search for a polynomial-time
algorithm for solving parity games. Winning cores provide a viable direction for this
search.

Next, we show the existence of memoryless optimal strategies for games with a
certain type of prefix-dependent objectives using a result of [GZ05]. Based on this we
provide a decreasing sequence of sets of states which converges to the winning core in
at most n steps. It is also shown that winning cores can be computed in polynomial
time if and only if parity games can be solved in polynomial time and that winning
core computation is in UP ∩ coUP by a reduction to solving parity games.

The correctness of our under-approximation algorithm relies on fast convergence
of the sequence mentioned above. It uses O(d · n2 · (n+m)) time and O(d+ n+m)
space. It is an under-approximation algorithm in the sense that it returns subsets of
the winning regions for the two players.

The algorithm has been implemented in OCaml on top of the PgSolver frame-
work [FL09] and experiments have been carried out both to test the quality of the
approximations as well as the practical running times. The experimental results are
very positive as it solved all games from the benchmark set of PgSolver completely
and solved a very high ratio of randomly generated games completely. Further, on
most of the benchmark games it outperformed the existing state-of-the-art algorithms
significantly and solved games with more than 107 states. The algorithm also per-
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Figure 4.1: Example of a parity game.

formed very well compared to the best existing partial solver for parity games [HKP13;
HKP14] both with respect to quality of approximation and running time.

Outline
Section 4.2 contains preliminary definitions and Section 4.3 introduces consecutive
dominating sequences. In Section 4.4 winning cores are introduced and a number of
properties about them are presented. In Chaper 4.5 the computational complexity of
computing winning cores is analyzed. In Section 4.6 the approximation algorithm is
presented and Section 4.7 contains experimental results. Finally, Section 4.8 contains
a summary.

4.2 Preliminaries

A parity game [EJ91] is a two-player finite-state turn-based game where each state is
labelled with a natural number. This number is called the color of the state. Player 0
wants the greatest color occuring infinitely often during the play to be even whereas
player 1 wants it to be odd. The transition relation R is assumed to be left-total, i.e.
for every state s in the game there exists a state t such that (s, t) ∈ R. This implies
that every play is infinite.

Formally, we define parity games as follows.

Definition 4.1 A parity game is a tuple G = (S, S0, S1, R, c) such that

• (S, {0, 1}, (S0, S1), R) is a finite-state turn-based game with R being left-total

• c : S 7→ {1, ..., d} is a coloring function specifying a color for each state

Example 4.2 A simple example of a parity game can be seen in Figure 4.1. Circle
states are in S0 and square states in S1. The values drawn inside states are colors.
There is an arrow from state s to state t if (s, t) ∈ R.

For the rest of this section as well as Sections 4.3 and 4.4 we fix a parity game
G = (S, S0, S1, R, c) with colors in {1, ..., d} and n states.

Concepts such as plays, histories and strategies in G are defined as for the under-
lying turn-based game (S, {0, 1}, (S0, S1), R).

For a path ρ = s0s1... in G we define the associated sequence c(ρ) = c(s0)c(s1)...
of colors and for a set P of paths define c(P ) = {c(ρ) | ρ ∈ P}. For a sequence
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π = e0e1... let

inf(π) = {e | there exists infinitely many i s.t. e = ei}

We define the parity condition Ξj for player j ∈ {0, 1} by

Ξj = {π ∈ Nω | ∃k.∀i ≥ 0.πi ≤ k ∧max(inf(π)) ≡ j (mod 2)}

where N is the set of non-negative integers. This is the set of infinite sequences of
colors which are winning for player j in a parity game. That is, the infinite sequences
of colors where the largest color that occurs infinitely often is equivalent to j modulo
2. Further, let

Λj = {π ∈ Ξj | max
i>0

πi ≡ j (mod 2)}

be the subset of Ξj where it is also required that the largest non-initial color occuring
in a sequence is equivalent to j modulo 2. Note that the initial element of the sequence
is not counted.

We say that a strategy σj for player j is a winning strategy for player j from state
s0 if c(Play(G, s0, σj)) ⊆ Ξj . When such a strategy exists we call s0 a winning state
for player j. We writeWj(G) for the set of winning states of player j in G. This is also
called the winning region for player j. Since parity games are memoryless determined
[EM79; EJ91] we have W0(G) ∪W1(G) = S and W0(G) ∩W1(G) = ∅. Further, there
is a memoryless strategy for player j that is winning from every s ∈Wj(G).

4.2.1 Restricted parity games
We define the restricted parity game G ↾ S′ = (S′, S′

0, S
′
1, R

′, c′) for a subset S′ ⊆ S
by

• S′
j = S′ ∩ Sj for j ∈ {0, 1}

• R′ = R ∩ (S′ × S′)

• c′(s) = c(s) for every s ∈ S′

Intuitively, the restricted parity game G ↾ S′ is the same as G where all states not in
S′ are removed and all transitions (s, s′) with either s or s′ not in S′ are removed.
Note that the restricted parity game is only a well-defined parity game when R′ is
left-total.

4.2.2 Attractor sets
The notion of an attractor set is well-known [Zie98] and is the set of states from which
a player j can ensure reaching a set of target states.
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Definition 4.3 The attractor set Attrj(G, T ) for a target set T ⊆ S and a player j
is the limit of the sequence Attrij(G, T ) where

Attr0j (G, T ) = T

Attri+1
j (G, T ) = Attrij(G, T )

∪{s ∈ Sj | ∃t.(s, t) ∈ R ∧ t ∈ Attrij(G, T )}
∪{s ∈ S1−j | ∀t.(s, t) ∈ R⇒ t ∈ Attrij(G, T )}

The attractor set and a memoryless strategy to ensure reaching the target from
this set can be computed in time O(n+m) in a game with n states and m transitions
[AHK98]. The positive attractor Attr+j (G, T ) is the set of states from which player j
can ensure reaching T in at least 1 step. Formally,

Attr+j (G, T ) = Attrj(G,
{s ∈ Sj | ∃t ∈ T.(s, t) ∈ R}
∪{s ∈ S1−j | ∀t ∈ S.(s, t) ∈ R⇒ t ∈ T})

4.2.3 j-closed sets and dominions
A subset S′ ⊆ S of states in a parity game is called j-closed if

1. For every s ∈ S1−j ∩ S′ there exists no t ∈ S \ S′ such that (s, t) ∈ R

2. For every s ∈ Sj ∩ S′ there exists t ∈ S′ such that (s, t) ∈ R

Thus, a set of states is j-closed if and only if player j can force the play to stay
in this set of states.

A j-dominion [JPZ06] for player j is a set T ⊆ S such that from every state s ∈ T
player j has a strategy σ such that c(Play(G, s, σ)) ⊆ Ξj and Play(G, s, σ) ⊆ Tω.
That is, from every state in a j-dominion, player j can ensure to win while keeping
the play inside the j-dominion. Thus, a j-dominion is j-closed.

Proposition 4.4 ([JPZ06]) Wj(G) is a j-dominion.

Proposition 4.5 ([JPZ06]) Let V ⊆ Wj(G), V ′ = Attrj(G, V ) and G′ = G ↾ (S \
V ′). Then Wj(G) = V ′ ∪Wj(G′) and W1−j(G) =W1−j(G′).

In Figure 4.2 we illustrate Proposition 4.5. As player j is winning in V he is
also winning from his attractor set V ′ of V as he can force the play to V and ensure
winning from there. Then, the remaining winning states for the two players can be
found by looking at the remaining game G′ = G ↾ (S \ V ′).

Many of the existing algorithms for solving parity games work by finding a do-
minion D for some player j and then apply Proposition 4.5 to remove the states in
Attrj(G, D) and recursively solve the smaller resulting game. This includes Zielonka’s
algorithm [Zie98], the dominion decomposition algorithm [JPZ06] and the big step
algorithm [Sch07]. The algorithm we present in this chapter also applies this propo-
sition, but the winning cores which we search for are not necessarily dominions.
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Figure 4.2: Illustration of Proposition 4.5.
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Figure 4.3: Consecutive j-dominating sequences illustrated by bold lines. Note the
overlap of one state between sequences.

4.3 Dominating Sequences

We say that a path ρ = s0s1... with at least one transition is 0-dominating if the color
e = max{c(si) | i > 0} is even and 1-dominating if it is odd. Note that we do not
include the color of the first state of the sequence.

We say that a path ρ begins with k consecutive j-dominating sequences if there
exist indices i0 < i1 < ... < ik with i0 = 0 such that ρiℓρiℓ+1...ρiℓ+1

is j-dominating
for all 0 ≤ ℓ < k. Similarly, a play ρ begins with an infinite number of consecutive
j-dominating sequences if there exists an infinite sequence i0 < i1 < ... of indices with
i0 = 0 such that ρiℓρiℓ+1...ρiℓ+1

is j-dominating for all ℓ ≥ 0.
As examples, the sequence on the left in Figure 4.3 begins with two consecutive

0-dominating sequences s0s1 and s1s2s3 whereas the sequence to the right begins with
only one 0-dominating sequence t0t1, but not two consecutive 0-dominating sequences.
Also, the sequence to the left does not begin with a 1-dominating sequence whereas
the sequence to the right begins with an infinite number of consecutive 1-dominating
sequences: t0t1t2, t2t3t4, t4t5t6 etc.

We start with the following well-known lemma, stating that the winner of a play
ρ in a parity game is independent of a given finite prefix of the play.

Lemma 4.6 Let ρ be a play and ρ′ be a suffix of ρ. Then c(ρ) ∈ Ξj if and only if
c(ρ′) ∈ Ξj.
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The following proposition shows that a play is winning for player j if and only
if it has a suffix that begins with an infinite number of consecutive j-dominating
sequences.

Proposition 4.7 Let ρ be a play. Then c(ρ) ∈ Ξj if and only if there is a suffix of
ρ that begins with an infinite number of consecutive j-dominating sequences.

Proof. (⇒) Let ρ be a play such that c(ρ) ∈ Ξj . Let e ≡ j (mod 2) be the
greatest color occuring infinitely often in ρ. Since there are only a finite number of
different colors, there can only be a finite number of indices i such that c(ρi) > e.
Let ℓ be the largest such index. Further, let ℓ < i0 < i1 < ... be an infinite sequence
of indices such that c(ρik) = e for all k ≥ 0. Such a sequence exists since e occurs
infinitely often in ρ. Now, ρ≥i0 begins with an infinite number of consecutive j-
dominating sequences, namely the sequences πk = ρikρik+1...ρik+1

for k ≥ 0.
(⇐) Let ρ be a play with a suffix ρ≥i0 that begins with an infinite number of

consecutive j-dominating sequences. Let i0 < i1 < ... be an infinite sequence of
indices such that πℓ = ρiℓρiℓ+1...ρiℓ+1

is j-dominating for every ℓ ≥ 0.
Now, suppose for contradiction that c(ρ) ∈ Ξ1−j . Then the greatest color e that

occurs infinitely often in ρ satisfies e ≡ 1 − j (mod 2). Now, e is the color of a
non-initial state in πℓ for an infinite number of indices ℓ. Since every such πℓ is j-
dominating there is an infinite number of states in ρ with a color e′ > e such that
e′ ≡ j (mod 2). Since there are only finitely many different colors, there exists a
particular color e′′ > e which is the color of infinitely many states in ρ. This gives a
contradiction since e was chosen as the greatest color that occurs infinitely often in
ρ. This implies that c(ρ) ∈ Ξj . □

Next, we show a slightly surprising fact. A play begins with an infinite number of
consecutive j-dominating sequences if and only if it is both winning for player j and
j-dominating. This means that we have two quite different characterizations of the
same concept. Both will be used to obtain results later.

Proposition 4.8 Let ρ be a play. Then ρ begins with an infinite number of consecu-
tive j-dominating sequences if and only if ρ is j-dominating and c(ρ) ∈ Ξj.

Proof. (⇐) Suppose that ρ is j-dominating and c(ρ) ∈ Ξj . By Proposition
4.7 there exists a suffix ρ≥ℓ of ρ that begins with an infinite number of consecutive
j-dominating sequences ρ0, ρ1, .... Let i0 < i1 < ... be the indices such that ρℓ =
ρiℓρiℓ+1...ρiℓ+1

. Since ρ is j-dominating the greatest color e of a non-initial state in
ρ satisfies e ≡ j (mod 2). Let k ≥ 0 be the smallest index such that max{c(ρi) | 0 <
i ≤ ik+1} = e. Now we have that ρ begins with an infinite number of consecutive
j-dominating sequences, namely ρ≤ik+1

, ρk+1, ρk+2....
(⇒) By Proposition 4.7 we also have that if ρ begins with an infinite number

of consecutive j-dominating sequences ρ0, ρ1, ... then c(ρ) ∈ Ξ. Now, suppose for
contradiction that ρ is not j-dominating. Then the largest color e of a non-initial
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Figure 4.4: A parity game where W0(G) = {s0, s1, s2, s3} and A0(G) = {s0, s3}.

state in ρ satisfies e ≡ 1− j (mod 2). Let i > 0 be an index such that c(ρi) = e. Let
k be an index such that ρk contains ρi as a non-initial state. As ρk is j-dominating
there is a non-initial state in ρk with a color e′ > e which gives a contradiction. □

As the two characterizations are equivalent, we will just write c(ρ) ∈ Λj for the
remainder of the chapter when we know that either property is true of ρ.

4.4 Winning cores

We define the winning core Aj(G) for player j in the parity game G as the set of states
s from which player j has a strategy σ such that c(Play(G, s, σ)) ⊆ Λj . According to
Proposition 4.8 we have two different characterizations of this set of plays. Both will
be used in the following depending on the application.

As an example, consider the game illustrated in Figure 4.4. Here player 0 is
winning from all states. The winning core is given by A0(G) = {s0, s3}. Indeed, from
states s1 and s2 player 1 can force the play to be 1-dominating.

4.4.1 The winning core and the winning region
First note that since Λj ⊆ Ξj we have that every state in the winning core for player
j is a winning state for player j.

Proposition 4.9 Let G be a parity game. Then Aj(G) ⊆Wj(G).

Next, we will show a more surprising fact: If the winning core for player j is
empty, then the winning region of player j is empty as well. This is a very important
property of winning cores.

Proposition 4.10 Let G be a parity game. If Aj(G) = ∅ then Wj(G) = ∅.

Proof. Let Aj(G) = ∅. Suppose for contradiction that Wj(G) ̸= ∅. Then there
exists s ∈Wj(G) and a memoryless winning strategy σ for player j from s.

Since s ̸∈ Aj(G) there exists ρ ∈ Play(G, s, σ) that does not begin with an infinite
number of consecutive j-dominating sequences. However, since c(ρ) ∈ Ξj there is a
suffix of ρ that begins with an infinite number of consecutive j-dominating sequences.
Let ℓ0 > 0 be the smallest index such that ρ≥ℓ0 begins with an infinite number of con-
secutive j-dominating sequences. Then ρ≤ℓ0 is (1− j)-dominating, because otherwise
ρ would begin with an infinite number of consecutive j-dominating sequences.
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Figure 4.5: Construction of a play π ∈ Play(G, s, σ) that begins with an infinite
number of consecutive (1−j)-dominating sequences. π is the solid path
in the figure.

Since Aj(G) = ∅ there exists ρ′ ∈ Play(G, ρℓ0 , σ) that does not begin with an
infinite number of consecutive j-dominating sequences. Since σ is memoryless we
have ρ<ℓ0 · ρ′ ∈ Play(G, s, σ) which means that c(ρ′) ∈ Ξj according to Lemma 4.6.
Here, · is the concatenation operator. This implies that there is a suffix of ρ′ that
begins with an infinite number of consecutive j-dominating sequences. Let ℓ1 > 0
be the smallest index such that ρ′≥ℓ1 begins with an infinite number of consecutive
j-dominating sequences. Then ρ′≤ℓ1 is (1−j)-dominating, because otherwise ρ′ would
begin with an infinite number of consecutive j-dominating sequences.

Since Aj(G) = ∅ there exists ρ′′ ∈ Play(G, ρ′ℓ1 , σ) that does not begin with an
infinite number of consecutive j-dominating sequences. Since σ is memoryless we
have that ρ<ℓ0 · ρ′<ℓ1 · ρ

′′ ∈ Play(G, s, σ) which means that c(ρ′′) ∈ Ξj according to
Lemma 4.6. We can continue this construction in the same way to obtain the play
π = ρ<ℓ0 ·ρ′<ℓ1 ·ρ

′′
<ℓ2
· ... which belongs to Play(G, s, σ). The construction is illustrated

in Figure 4.5.
Observe that π begins with an infinite number of consecutive (1− j)-dominating

sequences, namely ρ≤ℓ0 , ρ′≤ℓ1 , ρ
′′
≤ℓ2 ,... which are all (1−j)-dominating. By Proposition

4.7 we have c(π) ∈ Ξ1−j . This is a contradiction since π ∈ Play(G, s, σ) and c(π) ∈ Ξj .
Thus, Wj(G) = ∅. □

Proposition 4.9 and 4.10 give us the following result.

Theorem 4.11 Let G be a parity game. The winning core Aj(G) for player j in G
is empty if and only if the winning region Wj(G) for player j in G is empty.

Remark 4.12 As shown in [DKT12] parity games can be solved in polynomial time if
and only if it can be decided in polynomial time whether the winning region Wj(G) = ∅
for player j. Thus, Theorem 4.11 implies that parity games can be solved in polynomial
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time if and only if emptiness of the winning core for player j can be decided in
polynomial time.

In [HKP13] the concept of a fatal attractor is defined and used for partially solving
parity games. A fatal attractor is a set X of states colored e ≡ j (mod 2) with the
property that player j can ensure that when the play begins in a state in X then it
will eventually reach X again without having passed through any states with color
greater then e along the way. Player j can thus force the play to begin with an infinite
number of consecutive j-dominating sequences from states in X by repeatedly forcing
the play back to X in this fashion.

Proposition 4.13 Let X be a fatal attractor for player j in G. Then X ⊆ Aj(G).

Note that the winning core Aj(G) for player j need not be a j-dominion. In
addition, neither does Attrj(G, Aj(G)). Indeed, consider again the parity game in
Figure 4.4. In this game, the winning core for player 0 is A0(G) = {s0, s3} and also
Attr0(G, A0(G)) = A0(G). Clearly, this is not a 0-dominion as player 1 can force the
play to go outside this set. Note also that this game has no fatal attractors. Thus,
the winning core can contain more states than just the fatal attractors.

The property that the winning core for player j is not necessarily a j-dominion is
interesting as, to the knowledge of the author, no meaningful subsets of the winning
region for player j that are not necessarily j-dominions have been characterized in
the litterature. Thus, many algorithms focus on looking for dominions which can be
removed from the game, e.g. the algorithms from [Zie98; JPZ06; Sch07]. However,
it was recently shown in [Gaj+15] that there is no algorithm which decides if there
exists a dominion with at most k states in time no(

√
k) unless the exponential-time

hypothesis fails. This, along with Theorem 4.11 make winning cores very interesting
objects for further study as they propose a fresh direction of research in solving parity
games.

In the remainder of this subsection we show some more interesting properties
about winning cores which are similar in nature to the results on winning regions
in parity games from [Zie98] that form the basis of Zielonka’s algorithm for solving
parity games as well as optimized versions in [JPZ06; Sch07]. To do this we first need
a lemma.

Lemma 4.14 Let T ⊆ S be j-closed and σ′ be a strategy for player j in G ↾ T . Then
there exists a strategy σ for player j in G such that

Play(G, s, σ) = Play(G ↾ T, s, σ′)

for all s ∈ T . Moreover, if σ′ is memoryless then σ can be chosen to be memoryless
as well.

Proof. Define σ by σ(h) = σ′(h) for every history h that only contains states in
T and arbitrarily for all other histories.
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First we have that every play ρ = s0s1... ∈ Play(G ↾ T, s, σ′) where s ∈ T belongs
to Play(G, s, σ) as well since σ(s0...sℓ) = σ′(s0...sℓ) = sℓ+1 for every prefix s0...sℓ of
ρ such that sℓ ∈ Sj and (sℓ, sℓ+1) ∈ R whenever sℓ ∈ S1−j .

On the other hand, for every play ρ = s0s1... ∈ Play(G, s, σ) where s ∈ T we have
that si ∈ T for every i ≥ 0. This can be shown by induction as follows. For the base
case we have that s0 ∈ T . For the induction step we have that whenever si ∈ S1−j∩T
then there exists no t ∈ S \ T with (si, t) ∈ R since T is j-closed. Further, whenever
si ∈ Sj ∩ T and s0, ..., si ∈ T then σ(s0...si) = σ′(s0.., si) ∈ T . This also implies that
ρ ∈ Play(G ↾ T, s, σ′). Thus, Play(G, s, σ) = Play(G ↾ T, s, σ′) for s ∈ T .

Note that if σ′ is memoryless then σ can be chosen to be memoryless as well. □

Corollary 4.15 If T ⊆ S is j-closed in G then Wj(G ↾ T ) ⊆Wj(G).

Now, let G = (S, S0, S1, R, c) be a parity game with largest color d. Let k be
the player such that d ≡ k (mod 2). Let S=d be the set of states with color d and
U = Attr+k (G, S=d). Let G′ = G ↾ (S \U). We use S′ to denote the set of states of G′.

Proposition 4.16 A1−k(G) = A1−k(G′)

Proof. Suppose first that s ∈ A1−k(G′). Then there exists a strategy σ′ for
player 1 − k in G′ such that every play ρ ∈ Play(G′, s, σ′) begins with an infinite
number of consecutive (1 − k)-dominating sequences. Let σ be a strategy in G for
player 1− k defined by σ(h) = σ′(h) for histories h that only contain states from S′.
Let σ be defined arbitrarily for all other histories. We now have that Play(G, s, σ) =
Play(G′, s, σ′) as player k does not control any state in S′ with a transition to U and
σ only prescribes taking transitions that make the play stay in S′ if no state outside
S′ is reached. This implies that s ∈ A1−k(G).

Suppose on the other hand that s ∈ A1−k(G). Then there exists a strategy
σ for player 1 − k such that every play ρ ∈ Play(G, s, σ′) begins with an infinite
number of consecutive (1 − k)-dominating sequences. As d ≡ k (mod 2) it follows
from Proposition 4.8 that no state in a play ρ ∈ Play(G, s, σ′) is contained in U . Thus,
we can define a strategy σ′ in G′ by σ′(h) = σ(h) for every history with initial state
s and obtain Play(G, s, σ) = Play(G′, s, σ′). This implies that s ∈ Ak(G′). □

We define G′′ = G ↾ (S \Attr1−k(G, A1−k(G)) as the parity game obtained from G
by removing the set of states from which player 1− k can force the play to go to his
winning core in G. We use S′′ to denote the set of states of G′′.

Proposition 4.17 Ak(G) = Ak(G′′)

Proof. Suppose first that s ∈ Ak(G′′). Then there exists a strategy σ′′ for player
k in G′′ such that every play ρ ∈ Play(G′′, s, σ′′) begins with an infinite number of
consecutive k-dominating sequences. Let σ be a strategy in G for player k defined
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Figure 4.6: Illustration of winning cores and winning regions in G.

by σ(h) = σ′′(h) for histories h that only contain states from S′′. Let σ be defined
arbitrarily for all other histories. We now have that Play(G, s, σ) = Play(G′′, s, σ′′) as
player 1− k does not control any state in S′′ with a transition to S \ S′′ and σ only
prescribes taking transitions that make the play stay in S′′ if no state outside S′′ is
reached. This implies that s ∈ Ak(G).

On the other hand suppose that s ∈ Ak(G). Then there exists a strategy σ for
player k in G such that every play ρ ∈ Play(G, s, σ) begins with an infinite number
of consecutive k-dominating sequences. Note that no such play has a state contained
in Attr1−k(G, A1−k(G′)) = Attr1−k(G, A1−k(G)) because all such states are winning
for player 1 − k. Therefore, it is possible to define a strategy σ′′ in G′′ for player
k by σ′′(h) = σ(h) for every history h in G′′ with initial state s. Further, we get
Play(G, s, σ) = Play(G′′, s, σ′′) which implies s ∈ Ak(G′′). □

The situation is illustrated in Figure 4.6 where the winning regions and winning
cores for the two players in G′ are shown as well (recall that G′ is obtained from G by
removing states in U).

Note first that A1−k(G) is contained in W1−k(G′) but that Ak(G) can contain
states in U . And as Proposition 4.16 tells us, A1−k(G) = A1−k(G′). The game G′′ is
then obtained by removing the attractor for player 1 − k of this winning core. This
is not illustrated in the figure.

4.4.2 Memoryless strategies
In this subsection we will show that from winning core states, player j has a mem-
oryless strategy σ which ensures that the play begins with an infinite number of
consecutive j-dominating sequences. In fact, we will show something even stronger,
namely the following.

Theorem 4.18 Let G be a parity game and j be a player. There is a memoryless
strategy σ for player j such that
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• c(Play(G, s, σ)) ⊆ Λj for every s ∈ Aj(G)

• c(Play(G, s, σ)) ⊆ Ξj for every s ∈Wj(G)

• c(Play(G, s, σ)) ∩ Λ1−j = ∅ for every s ̸∈ A1−j(G)

That is, player j has a memoryless strategy that ensures that the play begins
with an infinite number of consecutive j-dominating sequences when the play starts
in a winning core state. Moreover, it ensures that the play is winning when the play
begins in a winning state for player j. Finally, it ensures that the play does not begin
with an infinite number of (1−j)-dominating sequences when the play does not begin
in a winning core state of player 1− j.

In order to prove Theorem 4.18 we will use a result from [GZ05]. But first we need
a few definitions. Let a preference relation be a binary relation on infinite sequences
of colors (from a finite set of colors) that is reflexive, transitive and total. Let ⊑0 be
a preference relation for player 0. Intuitively, for two infinite sequences α and α′ of
colors we write α ⊑0 α

′ when α′ is at least as good for player 0 as α. As we deal only
with antagonistic games here, we assume that there is a corresponding preference
relation ⊑1 for player 1 such that for all infinite sequences α, α′ of colors we have
α ⊑0 α

′ if and only if α′ ⊑1 α. We write α ⊏j α′ for player j when α ⊑j α′ and
α′ ̸⊑j α.

An optimal strategy σ∗
j for player j in a game G with preference relation ⊑j is

a strategy such that for every state s, all strategies σj and σ1−j of player j and
1 − j, respectively, the unique plays ρ∗ ∈ Play(G, s, σ∗

j ) ∩ Play(G, s, σ1−j) and ρ ∈
Play(G, s, σj) ∩ Play(G, s, σ1−j) satisfy ρ ⊑j ρ∗.

We now define a total order ⊴j for player j with corresponding strict order ◁j on
{Λj ,Λ1−j ,Ξj \ Λj ,Ξ1−j \ Λ1−j} by

Λ1−j ◁j Ξ1−j \ Λ1−j ◁j Ξj \ Λj ◁j Λj

Note that an infinite sequence α of colors in a parity game belongs to exactly one
of the four sets above. We write κ(α) for the set that α belongs to. For instance,
κ(α) = Ξ0 \ Λ0 for the infinite sequence α = 232222...

Now, more specifically, let ≤j be a preference relation for player j on infinite
sequences α, α′ of colors induced by the order ⊴j as follows

α ≤j α′ if and only if κ(α) ⊴j κ(α′)

As a special case of Proposition 7 in [GZ05] we have the following.

Proposition 4.19 Let player 0 have preference relation ≤0 and player 1 have pref-
erence relation ≤1. If

1. every parity game G = (S, S0, S1, R, c) with S = S0 has a memoryless optimal
strategy for player 0 and
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2. every parity game G = (S, S0, S1, R, c) with S = S1 has a memoryless optimal
strategy for player 1

then in every parity game G both player 0 and player 1 have memoryless optimal
strategies.

That is, there exist memoryless optimal strategies in every game if and only if
there exist memoryless optimal strategies in every game where one player controls all
the states.

As the preference relations ≤j are defined symmetrically, Proposition 4.19 tells us
that if we can show that player 0 has a memoryless optimal strategy with preference
relation ≤0 in all parity games where player 0 controls every state then Theorem 4.18
follows. This is in fact the case.

Proposition 4.20 Let G = (S, S0, S1, R, c) be a parity game with S = S0. Then
player 0 has a memoryless optimal strategy with preference relation ≤0.

Proof. First, we need the reward order ≺j for player j on colors which was
introduced in [VJ00]. It is defined by

v ≺j u⇔ (v < u ∧ u ≡ j (mod 2)) ∨ (u < v ∧ v ≡ 1− j (mod 2))

We let it be defined for 0 in this way as well. Intuitively, the preference order tells us
which color player j would rather like to see during a play. For instance, if d is even
then

d− 1 ≺0 d− 3 ≺0 ... ≺0 1 ≺0 0 ≺0 2 ≺0 ... ≺0 d− 2 ≺0 d

Letm(ρ) denote the largest non-initial color of a play ρ. For each state s0 ∈W0(G)
there exists a play ρ = s0s1... such that c(ρ) ∈ Ξ0. In particular, let val(s0) = m(ρ)
for a play ρ from s0 such that c(ρ) ∈ Ξj and such that m(ρ) is maximal with respect
to the reward order ⪯0.

Intuitively, val(s0) for a state s0 ∈ W0(G) is the ⪯0-best value that player 0 can
ensure as a maximal color of a non-initial state of a play beginning in s0 while still
ensuring that he wins the play. Note that if val(s0) is known for a state, then we can
simply tell whether s0 ∈ Λ0 or s0 ∈ Ξ0 \ Λ0 by checking whether val(s0) ⪰0 0.

For states s0 such that val(s0) ⪰0 0 we define dist(s0) to be the length of the
shortest history ρ = s0...sℓ from s0 to a state sℓ with color val(s0) such that for all
0 < i < ℓ we have c(si) < val(s0) and such that val(sℓ) ⪰0 val(s0) − 1. Note that
such a history must exist since val(s0) ⪰0 0.

For states s0 such that val(s0) ≺0 0 we define dist(s0) to be the length of the
shortest history ρ = s0...sℓ from s0 to a state sℓ with color val(s0) such that for all
0 < i < ℓ we have c(si) < val(s0) and such that val(sℓ) ≻0 val(s0). Note that such a
history must exist since val(s0) ≺0 0 and s0 ∈W0(G).

For states s with val(s) ⪰0 0 and dist(s) > 1 there must exist a successor t of s
such that val(t) = val(s), c(t) < val(s) and dist(t) = dist(s) − 1. Define next(s) = t
for an arbitrary such successor t.
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For states s with val(s) ⪰0 0 and dist(s) = 1 there must exist a successor t of s
such that c(t) = val(s) and val(t) ⪰0 val(s) − 1. Define next(s) = t for an arbitrary
such successor t.

For states s with val(s) ≺0 0 and dist(s) > 1 there must exist a successor t of s
such that val(t) = val(s), c(t) < val(s) and dist(t) = dist(s) − 1. Define next(s) = t
for an arbitrary such successor t.

For states s with val(s) ≺0 0 and dist(s) = 1 there must exist a successor t of s
such that c(t) = val(s) and val(t) ≻0 val(s). Define next(s) = t for an arbitrary such
successor t.

Now, define a memoryless strategy σ for player 0 by σ(s) = next(s) for every
s ∈W0(G). For states in W1(G) there are no transitions to states in W0(G) as S = S0.
As player 0 cannot win from a state in W1(G) all he can hope to achieve is a play
with corresponding color sequence that is not in Λ1 which can be obtained if and
only if the largest color in the play is even. This is also known as the weak parity
condition. As weak parity games are memoryless determined [Cha08] player 0 can
use a memoryless optimal strategy from the weak parity game obtained by restricting
G to states in W1(G). Let σ play in this way from states in W1(G).

We will now show that σ is a memoryless optimal strategy for player 0 with
preference relation ≤0. As argued above this is already the case from states inW1(G).
Thus, we now focus on states in W0(G).

Let ρ be the single play in Play(G, s0, σ) for a state s0 ∈ W0(G). We will now
show that c(ρ) ∈ Ξ0 and that m(ρ) = val(s0). These two properties imply that σ
ensures that c(Play(G, s, σ)) ⊆ Ξ0 for every s ∈W0(G) and that c(Play(G, s, σ)) ⊆ Λ0

for every s ∈ A0(G) as states s in A0(G) are exactly those states with val(s) ⪰0 0.
Let ρ = s0s1... and let i0 < i1 < ... be all indices such that dist(sik) = 1 for every

k ≥ 0. Notice that there are infinitely many such indices since dist(si)−1 = dist(si+1)
whenever dist(si) > 1 and dist(si) ≥ 1 for all i ≥ 0.

As argued before, whenever dist(sℓ) > 1 we have val(sℓ) = val(sℓ+1). When
dist(sℓ) = 1 and val(sℓ) ⪰0 0 then val(sℓ+1) ⪰0 val(sℓ) − 1 which implies that
val(sℓ) ≥ val(sℓ+1). Finally, when dist(sℓ) = 1 and val(sℓ) ≺0 0 then val(sℓ + 1) ≻0

val(sℓ) which implies that val(sℓ) ≥ val(sℓ+1). Thus, we have

val(s0) ≥ val(s1) ≥ val(s2) ≥ ...

For all ℓ such that dist(sℓ) > 1 we have val(sℓ+1) = val(sℓ). However, when dist(sℓ) =
1 and val(sℓ) ≺0 0 then val(sℓ) > val(sℓ+1). As there are infinitely many ℓ such that
dist(sℓ) = 1 there can only be finitely many ℓ such that val(sℓ) ≺0 0. Thus, there
exists q such that

0 ⪯0 val(sq) = val(sq+1) = val(sq+2) = ...

Note that for all ℓ > 0 we have val(ℓ) ≥ c(ℓ). However, we have val(sik) = c(sik+1)
for all k ≥ 0. Let p be the smallest index such that ip > q. Then this implies
that c(sip+1) = val(sip) is the largest color that occurs infinitely often in ρ. Thus,
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c(ρ) ∈ Ξ0. In addition, note that c(si0+1) = val(si0) = val(s0) is the largest non-
initial color that occurs in ρ. Thus, m(ρ) = val(s0). This concludes the proof that σ
is a memoryless optimal strategy. □

4.4.3 A sequence that converges quickly to the winning core
Let Aij(G) be the set of states from which player j can ensure that the play begins
with at least i consecutive j-dominating sequences. First, note that this defines an
infinite decreasing sequence

A0
j (G) ⊇ A1

j (G) ⊇ ...

of sets of states and that Aij(G) ⊇ Aj(G) for all i ≥ 0.

Theorem 4.21 Anj (G) = Aj(G)

Proof. First note that Anj (G) ⊇ Aj(G). To show that Anj (G) ⊆ Aj(G) suppose
for contradiction that s ∈ Anj (G) and s ̸∈ Aj(G). By Theorem 4.18 player 1− j has a
memoryless strategy σ in G such that c(Play(G, s, σ)) ∩ Λj = ∅.

Since s ∈ Anj (G) there exists a play ρ ∈ Play(G, s, σ) that begins with n consec-
utive j-dominating sequences. Let i0 < ... < in be indices with i0 = 0 such that
ρikρik+1...ρii+1 is j-dominating for all 0 ≤ k < n. As there are n + 1 indices and
only n different states in G there must exist two indices u, v with u < v such that
ρiu = ρiv . Now, the play π = ρ0...ρu(ρu+1...ρv)

ω belongs to Play(G, s, σ) as well since
σ is memoryless. This gives a contradiction since c(π) ∈ Λj and Play(G, s, σ) contains
no such play according to the definition of σ. □

This proposition implies that if there is a way to compute Aij(G) from the sequence
A0
j (G), ..., A

i−1
j (G) in polynomial time for a given i then the winning core can be

computed in polynomial time as the sequence converges after at most n steps. This
would also imply that parity games could be solved in polynomial time.

To illustrate why it is not necessarily easy to compute this in a simple way consider
again the parity game in Figure 4.4 and the history h = s0s1s2s2s2s2 which begins
with the 5 consecutive 0-dominating sequences s0s1, s1s2, s2s2, s2s2 and s2s2. As
player 1 controls every state of the game he might force the play after h to continue
with the suffix s3sω0 . Now, the way we chopped h into 5 consecutive 0-dominating
sequences cannot be extended such that the entire play ρ = h · s3sω0 begins with an
infinite number of consecutive 0-dominating sequences as the color of s3 is larger than
all colors that appear later in ρ. However, if we pick the first 0-dominating sequence
to be s0s1s2s2s2s2s3 then it is easy to see that ρ begins with an infinite number of
consecutive 0-dominating sequences. Thus, during the play of a game we might not
know how to chop up the play in a way which ensures that the play begins with
an infinite number of consecutive 0-dominating sequences when the play begins in
a winning core state for player 0. However, we know that it is possible for player
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ParityGameSolver(G):
A←WinningCore(G, 0)
if A = ∅ then return (∅, S)
A′ = Attr0(G, A)
(W0,W1)← ParityGameSolver(G ↾ (S \A′))
return (A′ ∪W0,W1)

Figure 4.7: Solving parity games using winning core computation.

0 to force that the play begins with an infinite number of consecutive 0-dominating
sequences.

4.5 Complexity of winning core computation

In this section we show how computation of winning cores can be used to solve parity
games. Next, we provide a polynomial-time reduction of solving parity games to
computing winning cores.

4.5.1 Solving parity games by winning core computation
By Proposition 4.9 the winning core for player j is a subset of the winning region.
Thus, according to Proposition 4.5 we get the following corollary which forms the
basis of a recursive algorithm for solving parity games by computing winning cores.

Corollary 4.22 Let G = (S, S0, S1, R, c) be a parity game, A′ = Attrj(G, Aj(G)) and
G′ = G ↾ (S \A′). Then

• Wj(G) = A′ ∪Wj(G′)

• W1−j(G) =W1−j(G′)

Given an algorithm WinningCore(G, j) that computes the winning core Aj(G)
for player j in G we can compute winning regions in parity games using the algorithm
in Figure 4.7.

The algorithm first calculates the winning core for player 0. If it is empty then by
Theorem 4.11 player 1 wins in all states. Otherwise, A′ = Attr0(G, A0(G)) is winning
for player 0 and further, the remaining winning states can be computed by a recursive
call on G ↾ (S \ A′) according to Corollary 4.22. Note that this game has a strictly
smaller number of states than G as A′ ̸= ∅. Thus, the algorithm performs at most
n recursive calls. This implies that if winning cores can be computed in polynomial
time then parity games can be solved in polynomial time.
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4.5.2 Reducing winning core computation to solving parity games
We have seen how existence of a polynomial-time algorithm for computing winning
cores would imply the existence of a polynomial-time algorithm for solving parity
games. Here, we show the converse by a reduction from computing winning cores to
solving parity games.

We begin by introducing the notion of a product game G†j of a parity game G
for player j. Let G = (S,R, S0, S1, c) be a parity game with colors in {1, ..., d} and
j ∈ {0, 1} be a player. Construct from this a game G†j = (S′, S′

0, S
′
1, R

′, c′) such that
S′ = S × {0, 1, ..., d}, S′

j = Sj × {0, 1, ..., d} for j ∈ {0, 1}, R′ = {((s, v), (s′, v′)) ∈
S′×S′ | (s, s′) ∈ R∧ v′ = max(v, c(s′))}. Finally, c′(s, v) = c(s) if v ≡ j (mod 2) and
c′(s, v) = v otherwise.

The idea is that the rules of G†j when the play starts in (s, 0) are the same as in
G when the play starts in s, but with two main differences. The first is that in G†j ,
the greatest color that has occured during the play (excluding the color of the initial
state) is recorded in the state. The second is that the colors of states in G†j are as
in G when the greatest color e occuring so far in the play satisfies e ≡ j (mod 2).
Otherwise, the state is colored e.

We define a bijection γG : Path(G)×{0, ..., d} → Path(G†j ) for ρ = s0s1... ∈ Path(G)
and v ∈ {0, ..., d} by

γG(ρ, v) = (s0, w0)(s1, w1)...

where wi = max(v,max0<k≤i c(si)). In particular, w0 = v.
For a pair (s, v) ∈ S × {0, ..., d} we define st(s, v) = s and val(s, v) = v. This is

extended to paths ρ = (s0, v0)(s1, v1)... in G†j such that the state sequence st(ρ) =
s0s1... and value sequence val(ρ) = v0v1....

The following two lemmas show that s ∈ S is in the winning core of player j in G
if and only if (s, 0) is a winning state for player j in G†j . As G†j has size polynomial
in the size of G this gives a reduction from computing winning cores to computing
winning regions.

Lemma 4.23 Let G be a parity game and s be a state. Then s ∈ Aj(G) implies
(s, 0) ∈Wj(G†j ).

Proof. Let s ∈ Aj(G). This implies that player j has a strategy σ in G such
that c(Play(G, s, σ)) ⊆ Λj . Now, construct from this a strategy σ′ for player j in G†j
defined by

σ′(h) = (σ(st(h)),max(vℓ, c(σ(st(h)))))

for every history h = (s0, v0)...(sℓ, vℓ) in G†j .
Consider an arbitrary play

ρ′ = (s0, v0)(s1, v1)... ∈ Play(G†j , (s, 0), σ′)
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from (s, 0) compatible with σ′. By the definition of σ′ we have that ρ = s0s1... ∈
Play(G, s, σ) and thus c(ρ) ∈ Λj as for every i ≥ 0 such that (si, vi) ∈ Sj we have
si+1 = σ(s0...si).

Let e be the largest color that occurs in ρ. As c(ρ) ∈ Λj we have e ≡ j (mod 2).
Thus, there exists an ℓ such that vi = e for all i ≥ ℓ. This implies that c′((si, vi)) =
c(si) for all i ≥ ℓ by the definition of G†j . Thus, the sequence of colors occuring in ρ′≥ℓ
is the same as in ρ≥ℓ and therefore c(ρ′) ∈ Ξj using Lemma 4.6. As ρ′ was chosen
arbitrarily from Play(G†j , (s, 0), σ′) we have (s, 0) ∈Wj(G†j ). □

Lemma 4.24 Let G be a parity game and s be a state. Then (s, 0) ∈Wj(G†j ) implies
s ∈ Aj(G).

Proof. Suppose that (s, 0) ∈Wj(G†j ). Then player j has a strategy σ′ in G†j such
that c(Play(G†j , (s, 0), σ′)) ⊆ Ξj . Define a strategy σ of player j for every history h in
G by

σ(h) = st(σ′(γG(h, 0)))

Consider an arbitrary play ρ = s0s1... ∈ Play(G, s, σ) from s compatible with σ.
By the definition of σ and G†j we have that

ρ′ = γG(ρ, 0)

belongs to Play(G†j , (s, 0), σ′) and thus c(ρ′) ∈ Ξj . This implies that the greatest color
e occuring in ρ′ satisfies e ≡ j (mod 2) by the definition of G†j . Further, the greatest
color e′ that occurs infinitely often in ρ′ also satisfies e′ ≡ j (mod 2). We have that
e and e′ are also the greatest color occuring and greatest color occuring infinitely
often respectively in ρ. Using Proposition 4.8 this implies that c(ρ) ∈ Λj . As ρ is an
arbitrary play in Play(G, s, σ) we have s ∈ Aj(G). □

This means that solving parity games can be done in polynomial time if and only
if winning cores can be computed in polynomial time. We also have that computing
winning cores is in NP ∩ coNP and UP ∩ coUP like parity games [Jur98].

Theorem 4.25 Computing winning cores is in NP ∩ coNP and UP ∩ coUP.

This fact is important as it makes the search for a polynomial-time algorithm
for computing winning cores a viable direction in the search for a polynomial-time
algorithm for solving parity games. This had not been the case if computing winning
cores was e.g. NP-hard (which is still possible, but only if NP = coNP).
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4.6 A polynomial-time approximation algorithm

A natural approach for computing the winning core is to try to apply Theorem 4.21
using an algorithm resembling the standard algorithm for solving Büchi games using
repeated attractor computations [Tho95]. The idea is to first compute the set of states
from which player j can ensure that the play begins with one j-dominating sequence,
then use this to compute the set of states from which player j can ensure that the
play begins with two consecutive j-dominating sequences, then three consecutive j-
dominating sequences and so on until convergence. However, this turns out not to be
so simple to do efficiently. In this section we propose a polynomial-time algorithm
using the intuition above, but which is only guaranteed to compute a subset of the
winning core. However, as we will see in Section 4.7, this algorithm turns out to be
very fast in practice and solves many games completely. We will show to make it
work using O(d · n2 · (n+m)) time and O(d+ n+m) space.

4.6.1 The basic algorithm
For a parity game G, a player j and integer i ≥ 0 we define sets Bij(G) as underap-
proximations of Aij(G) by B0

j (G) = S and by letting Bi+1
j (G) be the set of states from

which player j can force the play to begin with a j-dominating sequence ending in
Bij(G). Formally, for every i ≥ 0 let Bi+1

j (G) ⊆ Bij(G) contain all states s such that
that there exists a strategy σ for player j satisfying

∀ρ ∈ Play(G, s, σ).∃k.ρ≤k is j-dominating and ρk ∈ Bij(G)

Note that this sequence converges in at most n steps since it is decreasing. Let the
limit of this sequence be Bj(G).

Proposition 4.26 Bj(G) ⊆ Aj(G)

Proof. For every s ∈ Bj(G) there exists a strategy σs for player j such that for
every ρ ∈ Play(G, s, σs) there exists k such that ρ≤k is j-dominating and ρk ∈ Bj(G).

Now, define a strategy σ for player j in G on histories with initial state s0 ∈ Bj(G)
(and arbitrarily for all other initial states) as follows. Let σ play like σs0 until it
reaches a state s1 in a way such that the sequence of states from s0 to s1 is j-
dominating and s1 ∈ Bj(G). From this point on σ plays like σs1 would do if the play
started in s1 until a state s2 is reached in a way such that the sequence of states from
s1 to s2 is j-dominating and s2 ∈ Bj(G). Let σ prescribe continuing in this fashion
indefinitely.

With this definition we have that Play(G, s0, σ) ⊆ Λj for every s0 ∈ Bj(G) as
every play must begin with an infinite number of consecutive j-dominating sequences.
Thus, s0 ∈ Bj(G) implies s0 ∈ Aj(G). □
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Figure 4.8: A parity game with no fatal attractors where B0(G) = A0(G) =
{s0, s1, s3}.

Remark 4.27 Note that we do not always have Bj(G) = Aj(G). For instance, this is
not the case in the game in Figure 4.4 where A0(G) = {s0, s3} but B1

0(G) = {s0, s1, s3},
B2

0(G) = {s0, s3}, B3
0(G) = {s3} and B4

0(G) = B0(G) = ∅. The reason is that from s0
player 0 cannot force the play to ever get back to the set {s0, s3} as player 1 controls
all states. It can be shown that A1

j (G) = B1
j (G) always, but there are parity games

where A2
j (G) ̸= B2

j (G).

However, as we shall see later, this underapproximation of the winning core is
very good as a tool to compute underapproximations of winning regions in parity
games. And in practice, it is often good enough to compute the entire winning
regions. Moreover, we will show that Bj(G) can be computed in polynomial time
and linear space. To motivate the practicality we note that the underapproximation
Bj(G) contains all fatal attractors for player j. It was shown in [HKP13; HKP14]
that just being able to compute fatal attractors is enough to solve a lot of games in
practice. Figure 4.8 shows an example where Bj(G) contains even more states than
just fatal attractors.

Let [1, d]j = {v ∈ {1, ..., d} | v ≡ j (mod 2)}. We can now show the following
proposition which provides us with a naïve way to compute Bi+1

j (G) given that we
know Bij(G).

Lemma 4.28 Let i ≥ 0 be an integer and j be a player. Then

s ∈ Bi+1
j (G) if and only if (s, 0) ∈ Attrj(G†j , Bij(G)× [1, d]j)

where G†j is the product game of G for player j.

Proof. (⇒) Suppose that s ∈ Bi+1
j (G). Then there exists a strategy σ for player

j in G such that for every ρ = s0s1... ∈ Play(G, s, σ) there exists k > 0 such that
s0...sk is j-dominating and sk ∈ Bij(G). Define a strategy σ′ in G†j by

σ′(h) = (σ(st(h)),max(vℓ, c(σ(st(h)))))

for every history h = (t0, v0)...(tℓ, vℓ) in G†j . Let ρ′ = (s′0, v
′
0)(s

′
1, v

′
1)... be an arbitrary

play in Play(G†j , (s, 0), σ′). Then s′0s
′
1... ∈ Play(G, s, σ). Thus, there exists k such
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that s′0...s′k is j-dominating and s′k ∈ Bij(G). This implies that v′k ≡ j (mod 2) and
thus (s′k, v′k) ∈ Bij(G)× [1, d]j . As ρ′ was arbitrarily chosen in Play(G†j , (s, 0), σ′) this
means that (s, 0) ∈ Attrj(G†j , Bij(G)× [1, d]j).

(⇐) For the other direction suppose that (s, 0) ∈ Attrj(G†j , Bij(G)× [1, d]j). Then
there exists a strategy σ′ for player j in G†j such that for every ρ′ = (s0, v0)(s1, v1)... ∈
Play(G†j , (s, 0), σ′) there exists k such that ρ′k ∈ Bij(G) × [1, d]j . Define a strategy σ
for player j in G by

σ(h) = st(σ′(γG(h, 0)))

for every history h in G. Let ρ = s0s1... be an arbitrary play in Play(G, s, σ). By the
definition of σ and G†j we have that

ρ′ = γG(ρ, 0)

belongs to Play(G†j , (s, 0), σ′). Thus, there exists k such that ρ′k ∈ Bij(G)×[1, d]j . This
implies that s0...sk is j-dominating and that sk ∈ Bij(G). As ρ was chosen arbitrarily
from Play(G, s, σ) this means that s ∈ Bi+1

j (G). □

Note that Lemma 4.28 makes us able to compute Bj(G) in time O(d · n · (n+m))
and space O(d · (n+m)). This is because the sequence converges in at most n steps
and in each step we just have to compute the attractor set in G†j which has O(d · n)
states and O(d ·m) transitions.

4.6.2 Improving the complexity
We will now show how to improve the space complexity to O(d + n + m) while
keeping the same time complexity. Indeed, we will show how to compute Bj(G)
without actually having to construct G†j explicitly. This makes a very large difference
in practice, especially when the number of colors is large.

Recall that≺j is the reward order for player j. We can now show that the attractor
set needed to compute Bi+1

j (G) in G†j is upward-closed in the following sense.

Lemma 4.29 Let s ∈ S, i ≥ 0 and k ≥ 0 be such that (s, k) ∈ Attrj(G†j , Bij(G) ×
[1, d]j). Then for all k′ ≻j k we have

(s, k′) ∈ Attrj(G†j , Bij(G)× [1, d]j)

Proof. For a strategy σ in G†j and v ∈ {0, ..., d} define a strategy σv for every
history s0...sℓ in G by

σv(s0...sℓ) = st(σ((s0, v)...(sℓ,max(v, max
0<ℓ′≤ℓ

c(sℓ′)))))
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Suppose (s, k) ∈ Attrj(G†j , Bij(G)× [1, d]j). Then there exists a particular strategy
σ for player j in G†j such that for every ρ ∈ Play(G, (s, k), σ) there exists q such that
ρq ∈ Bij(G)× [1, d]j . Let k′ ≻j k and let σ′ be a strategy for player j in G†j defined by

σ′((s0, v0)...(sℓ, vℓ)) = (σk(s0...sℓ),max(vℓ, c(σk(s0...sℓ))))

for every history h = (s0, v0)...(sℓ, vℓ) with s0 = s and v0 = k′.
We now want to show that σ′ ensures that a state in Bij(G)× [1, d]j is eventually

reached when the play begins in (s, k′). From this the lemma follows.
Consider a given play

ρ′ = (s0, v0)(s1, v1)... ∈ Play(G†j , (s, k′), σ′)

By the definition of σ′ we have s0s1... ∈ Play(G, s, σk). Further, the sequence

ρ = (s0, w0)(s1, w1)...

where w0 = k and wℓ+1 = max(wℓ, c(sℓ+1)) for all ℓ ≥ 0 belongs to Play(G, (s, k), σ).
Thus, there exists q such that ρq ∈ Bij(G)× [1, d]j . This means that either

1. w0 ≡ j (mod 2) and w0 = wq or

2. wq = max(c(sℓ))1≤ℓ≤q > w0

In the first case we have v0 > w0 and v0 ≡ j (mod 2) since w0 ≡ j (mod 2) and
v0 ≻j w0 which implies vq = v0. Thus, in this case (sq, vq) ∈ Bij(G)× [1, d]j .

In the second case, if v0 ≤ w0 then (sq, vq) = (sq, wq) ∈ Bij(G)×[1, d]j immediately.
On the other hand, suppose v0 > w0. Since v0 ≻j w0 this implies v0 ≡ j (mod 2) by
the definition of ≻j . Since either vq = v0 or vq = max(c(sℓ))1≤ℓ≤q = wq this implies
(sq, vq) ∈ Bij(G)× [1, d]j . □

We can use Lemma 4.29 to compute Attrj(G†j , Bij(G)× [1, d]j) as follows. In each
step of the attractor computation we store for each state s ∈ S the ≺j-smallest value k
such that (s, k) belongs to the part of the attractor set computed so far. Thus, in each
step we store an n-dimensional vector k = (k0, ..., kn−1) of these values, one for each
state. In each step of the attractor computation we compute the ≺j-smallest values
k’ in the next step of the attractor computation based on k. Using a technique
similar to the way the standard attractor set can be computed in time O(n + m)

[AHK98] the computation of Attrj(G†j , Bij(G)× [1, d]j) can be done in this fashion in
time O(d · (n+m)). Thus, Bj(G) can be computed using O(d · n · (n+m)) time and
O(n+m+ d) space.
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PartialSolver(G):
A← B0(G)
if A ̸= ∅ then

A′ = Attr0(G, A)
(W0,W1)← PartialSolver(G ↾ (S \A′))
return (A′ ∪W0,W1)

A← B1(G)
if A ̸= ∅ then

A′ = Attr1(G, A)
(W0,W1)← PartialSolver(G ↾ (S \A′))
return (W0, A

′ ∪W1)

return (∅, ∅)

Figure 4.9: A partial solver for parity games based on winning cores.

4.6.3 Partially solving parity games
Using a similar idea as in the algorithm from Section 4.5 we present an algorithm for
solving parity games partially which relies on the underapproximation Bj(G). It can
be seen in Figure 4.9.

This algorithm uses the procedure outlined in the previous subsection for comput-
ing the underapproximation Bj(G). It is guaranteed to return underapproximations
of the winning regions according to Proposition 4.26. Further, as each call to the
algorithm makes at most one recursive call to a game with fewer states there are at
most O(n) recursive calls in total. Thus, the algorithm for partially solving parity
games runs in time O(d · n2 · (n +m)). It can be implemented to use O(n +m + d)
space.

4.6.4 Quality of approximation
For approximation algorithms a widely used notion is that of approximation ratio (see
e.g. [WS11]) which is used to give guarantees on the value of an approximation.

A meaningful way to define approximation ratio in parity games is to say that
an algorithm is an α-approximation algorithm for 0 < α ≤ 1 if the algorithm always
decides the winning player of at least ⌈α ·n⌉ states where n is the number of states in
the game. The problem with this, however, is that if there exists a polynomial-time α-
approximation algorithm for some 0 < α ≤ 1 then this algorithm can be used to solve
parity games completely in polynomial time. One could run such an algorithm and
remove the attractor sets of the winning states it finds. Then, run the approximation
algorithm on the remaining game and continue in the same fashion until the entire
winning regions are computed.

This tells us that it will probably be hard to show that there exists a polynomial-
time α-approximation algorithm as this would show solvability of parity games in
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polynomial time. In particular, our partial solver is not an α-approximation algo-
rithm.

A game that the partial solver cannot solve is the one in Figure 4.4. The reason
is that from every state player 1 can force the play to leave as well as stay outside of
the winning core for player 0. This simple example implies that the algorithm is not
guaranteed to solve games completely on standard subclasses of games investigated in
the litterature such as games with bounded tree-width [Obd03], bounded DAG-width
[Ber+06] and other games with restrictions on the game graph [DKT12]. Though,
the algorithm always solves Büchi games completely and it does so in time O(nm).

Despite the lack of theoretical guarantees we will show that the algorithm performs
remarkably well in practice, with respect to solving games completely and with respect
to running time.

4.7 Experimental results

We present experimental results for the improved version of the winning core ap-
proximation algorithm presented in Section 4.6, it is called the WC algorithm for the
remainder of this section.

The experimental results are both performed to investigate how often the algo-
rithm solves games completely and to investigate the running-time of the algorithm
in practice compared to existing parity game solvers. The algorithm has been imple-
mented in OCaml on top of the PgSolver framework [FL09].

We both compare with results for state-of-the-art complete solvers implemented
in the PgSolver framework, namely

• Zie: Zielonka’s algorithm [Zie98]

• DD: Dominion decomposition algorithm [JPZ06]

• SI: Strategy improvement algorithm [VJ00]

• SPM: Small progress measures algorithm [Jur00]

• BS: Big step algorithm [Sch07]

and with the partial solver psolB from [HKP13; HKP14] that is based on fatal attrac-
tor computation. The experiments with the WC algorithm and the other solvers from
the PgSolver framework have been performed on a machine with an Intel® CoreTM
i7-4600M CPU with 4 2.90GHz processors and 15.6GiB memory. All optimizations
of the PgSolver framework were disabled in all experiments. The WC algorithm uses
the same basic data structures as the other solvers from the PgSolver framework.
All results of the partial solver psolB are taken from [HKP14]. Thus, one should be
careful about these results as it was implemented in Scala and experiments were run
on a different machine.
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Game psolB WC
k |S| k |S|

Clique 5.232 5.232 8.979 8.979
Ladder 1.596.624 3.193.248 7.308.357 14.616.714
Jur(10,k) 2.890 121.380 4.784 200.928
Jur(k,10) 4.380 175.220 96.881 3.875.260
Jur(k,k) 200 160.400 635 1.614.170
RecLad 2.064 10.320 14.008 70.040
MCLad 12.288 36.865 5.178.332 15.534.997
Hanoi 10 236.196 13 6.377.292
Elev 6 108.336 8 7.744.224

Table 4.10: The table shows the maximum input parameter k and number |S| of
states for which the solvers terminated within 20 minutes. The numbers
for psolB are from [HKP14].

4.7.1 Benchmark games
Experiments have been performed on benchmark games from the classes Clique
Games, Ladder Games, Jurdzinski Games, Recursive Ladder Games, Model Checker
Ladder Games, Towers of Hanoi, Elevator Verification and Language Inclusion
of the PgSolver framework. WC solved all these benchmark games completely. As
reported in [HKP14] the best existing partial solver psolB solves all games completely
except for the Elevator Verification games.

In Table 4.10 we compare WC to psolB with respect to the size of benchmark games
solvable within 20 minutes. WC vastly outperforms psolB in all cases considered solv-
ing games with between 1.65 and 421 times as many states in 20 minutes depending
on the benchmark.

Comparison of running time1 of the complete solvers and WC can be seen in Figures
4.11 and 4.12. It can be seen that in the experiments WC never performs much worse
than the best state-of-the-art complete solvers and in some cases it vastly outperforms
the complete solvers. Thus, it seems to be very robust compared to the best complete
solvers each of which have games on which they perform poorly compared to the rest.

4.7.2 Random games
Although random games are not necessarily good representatives for real-life instances
of parity games they can give us some indication of the quality of a partial solver. In
order to compare with the results in [HKP14] we have used the same program with
the same parameters for generating random games.

1For the recursive ladder games some solvers were much better with an odd input parameter and
some were much better with an even input parameter. Thus, for each input k in the data set, the
running time on both input k and k+ 1 was measured and the worst result is displayed in the plot.
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Figure 4.11: Performance for benchmark games.

The games are generated using the randomgame function in the PgSolver frame-
work which takes as input n, d, ℓ, u where n is the number of states, the color of
each state is chosen uniformly at random in [1, d] and each node has a number of
successors chosen uniformly at random in [ℓ, u] without any self-loops. 16 different
configuration settings were chosen as in [HKP14]: n = 500 for all parameter settings,
d ∈ {5, 50, 250, 500} and (ℓ, u) ∈ {(1, 5), (5, 10), (1, 100), (50, 250)}. 100.000 games
were solved for each configuration and the results are shown in Table 4.13.

It can be seen that the algorithm only failed to solve 295 of the 1.600.000 games
completely and thus solved 99.98% of the games completely. For the 295 games that
were not solved completely by the winning core algorithm it still found the winning
player for 56% of the states on average. Also note that the algorithm only failed
to solve games with a very low out-degree as was the case for psolB. For the dense
games it solved all the games completely.

Compared to psolB the WC solver does very well. The partial solver lift(X)
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Figure 4.12: Performance for benchmark games.

d (l, u)
# n.c.s.
psolB

# n.c.s.
lift(psolB)

# n.c.s.
WC

5 (1, 5) 1275 233 258
50 (1, 5) 1030 43 9
250 (1, 5) 1138 36 16
500 (1, 5) 1086 35 12
5 (5, 10) 0 0 0
50 (5, 10) 1 0 0
250 (5, 10) 2 0 0
500 (5, 10) 2 0 0

Table 4.13: Table shows the number random of games out of 100.000 that were not
completely solved (# n.c.s.) by the solvers for each configuration. For
all configurations with (ℓ, u) ∈ {(1, 100), (50, 250)} all solvers solved all
games completely.
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is a generic solver from [HKP14] which uses a partial solver X to improve in cases
where X does not solve the complete game. It also runs in polynomial time but
gives a very large overhead in practice as it potentially calls the solver X a quadratic
number of times in the number of transitions of a game. Even compared with this
generic optimization of psolB the WC solver does well with respect to solving games
completely.

4.8 Summary

We have introduced winning cores in parity games and motivated their importance
by showing a number of interesting properties about them. In particular, they are
interesting to investigate due to the fact that they are not necessarily dominions and
because emptiness of the winning core of a player is equivalent to emptiness of the
winning region of the player. Further, we have provided a new algorithm for solving
parity games approximately which increases the size of parity games that can be
solved in practice siginificantly compared to existing techniques.
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CHAPTER 5
Model-checking in

one-counter systems
This chapter is an adapted version of the paper

• [Ves15] Steen Vester. “On the Complexity of Model-Checking Branching and
Alternating-Time Temporal Logics in One-Counter Systems”. In: Proceedings
of the 13th International Symposium on Automated Technology for Verification
and Analysis (ATVA). 2015, pages 361–377

It has been updated to be compatible with the other chapters of the thesis. More
proof details are presented in this chapter, especially for the lower bound proofs.
Further, an example of a model-checking game has been added together with a few
new references.

5.1 Introduction

In this chapter focus is on the model-checking problem for some of the simplest
infinite-state systems one can construct, namely finite-state systems combined with
an unbounded counter that can hold a non-negative integer value. The complexity of
model-checking such systems has been determined for LTL [DG09; Göl+10] and CTL
[Göl+10; GL13] but not yet for CTL∗,ATL and ATL∗ which is the main purpose
here. Recently it was also shown that reachability in succinct one-counter games is
ExpSpace-complete [Hun15].

Another focus of this chapter is to consider generalizations of the logics capable of
expressing combined qualitative and quantitative properties of systems. This is done
by extending to subsets of the quantitative alternating-time temporal logics QATL
and QATL∗ [BG13] making it possible to compare the counter value with constants.
This extension lets us express many interesting properties of systems in a simple way.
As an example, consider deciding the winner in an energy game [Bou+08] modelling
systems in which a controller needs to keep an energy level positive. This can be done
by model-checking the QATL formula ⟨⟨Ctrl⟩⟩G(r > 0) where r is used to denote the
current value of the counter.

Let us give another example of a QATL∗ specification. Consider the game in
Figure 5.1 modelling the interaction between the controller of a vending machine and
an environment. The environment controls the rectangular states and the controller
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Figure 5.1: Model of interaction between a vending machine controller and an en-
vironment.

controls the circular state. Initially, the environment can insert a coin or request
coffee. Upon either input the controller can decrease or increase the balance, dispense
coffee or release control to the environment again. Some examples of specifications
in QATL∗ using this model are

• ⟨⟨{Ctrl}⟩⟩G(Request ∧ (r < 3) → XXRelease): The controller can make sure
that control is released immediately whenever coffee is requested and the balance
is less than 3.

• ⟨⟨{Ctrl}⟩⟩G(Request ∧ (r ≥ 3) → FDispense): The controller can make sure
that whenever coffee is requested and the balance is at least 3 then eventually
a cup of coffee is dispensed.

It is indeed quite natural to model systems with a resource (e.g. battery level, time,
money) using a counter where production and consumption correspond to increasing
and decreasing the counter respectively. Extending to several counters would be
meaningful, but as reachability games are already undecidable for games with two
counters [BJK10] the restriction to a single counter is very important.

Contribution
The contribution of this chapter is to present algorithms and complexity results for
model-checking of CTL∗, ATL and ATL∗ in one-counter systems. The complexity is
investigated both in terms of whether only edge weights in {−1, 0,+1} can be used
(non-succinct systems) or if we allow any integer weights encoded in binary (succinct
systems). We also distinguish between data complexity and combined complexity. In
data complexity, the formula is assumed to be fixed whereas in combined complexity
both the formula and the game are parameters.

We characterize the complexity of all the model-checking problems that arise
from these distinctions. For CTL∗ the results on data complexity follow directly from
results in [Ser06; Göl+10; GL13] even though this is not mentioned explicitly. We also
show that the logics considered can be extended with quantitative constraints without
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Table 5.2: Complexity of model-checking in non-succinct systems.
Non-succinct

Data Combined
CTL PSpace [Ser06; GL13] PSpace [Ser06; GL13]
CTL∗ PSpace [Ser06; GL13] ExpSpace (Theorem 5.8)
µ-calculus PSpace [Ser06; JS07; Hol95] PSpace [Ser06; JS07; Hol95]
ATL PSpace (Theorem 5.5) PSpace (Theorem 5.5)
ATL∗ PSpace (Theorem 5.7) 2ExpSpace (Theorem 5.7)

Table 5.3: Complexity of model-checking in succinct systems.
Succinct

Data Combined
CTL ExpSpace [Göl+10] ExpSpace [Göl+10]
CTL∗ ExpSpace [Göl+10] ExpSpace (Theorem 5.8)
µ-calculus ExpSpace [Göl+10] ExpSpace [Göl+10]
ATL ExpSpace (Theorem 5.5) ExpSpace (Theorem 5.5)
ATL∗ ExpSpace (Theorem 5.7) 2ExpSpace (Theorem 5.7)

Table 5.4: Complexity of deciding the winner in one-counter games with LTL objec-
tives. The results are from Corollary 5.13.

Non-succinct Succinct
Data Combined Data Combined

PSpace 2ExpSpace ExpSpace 2ExpSpace

a jump in complexity and that deciding the winner in a one-counter game with LTL
objectives is 2ExpSpace-complete in all cases considered as for ATL∗ model-checking
in one-counter games. This closes a gap between 2ExpTime-completeness in finite-
state games with LTL objectives and 3ExpTime-completeness in pushdown games
with LTL objectives [LMS04]. The results are presented in Table 5.2, 5.3 and 5.3
together with related results from the literature. All results are completeness results.

The decidability results are, together with results from [MP15; CSW16], some
of the first decidability results for ATL and ATL∗ model-checking in infinite-state
games.

Outline

In Section 5.2 we introduce the technical setup for the chapter. In Section 5.3 model-
checking algorithms based on model-checking games are presented. In Section 5.4 we
provide lower bounds matching the complexity of the algorithms from Section 5.3.
Section 5.5 provides a summary.
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5.2 Preliminaries

A one-counter game (OCG) is a particular kind of finitely representable infinite-state
turn-based game. Such a game is represented by a finite game graph where each
transition is labelled with an integer from the set {−1, 0, 1} as well as a counter that
can hold any non-negative value. When a transition labelled v is taken and the current
counter value is c, the counter value changes to c+ v. We require that transitions are
only applicable when c+ v ≥ 0.

Definition 5.1 A labelled one-counter game is a tuple G = (S,Π, (Sj)j∈Π, R,AP, L)
where S is a finite set of states, Π is a finite set of players and Sj ⊆ S for all j ∈ Π.
We require

∪
j∈Π Sj = S and Si ∩ Sj = ∅ for all i ̸= j. R ⊆ S × {−1, 0, 1} × S is a

transition relation, AP is a finite set of propositions and L : S → 2AP is a labelling
function.

As all one-counter games in this chapter are labelled, we just write one-counter
game instead of labelled one-counter game. An OCG G = (S,Π, (Sj)j∈Π, R,AP, L)
is a finite representation of the labelled infinite-state turn-based game H = (S ×
N,Π, (Sj×N)j∈Π, R

′,AP, L′) where (s, v, s′) ∈ R if and only if ((s, w), (s′, w+v)) ∈ R′

for all w ∈ N such that w + v ∈ N. Further, L′(s, v) = L(s) for all s ∈ S and v ∈ N.
We call H the turn-based game induced by G. For OCGs we refer to the elements

of S ×N as configurations and elements of S as states even though S ×N technically
is the set of states of the induced turn-based game. Note that every configuration
with a given state s has the same labelling. Strategies, plays and histories are defined
in the same way for G and H.

We extend one-counter games so arbitrary integer weights are allowed and such
that transitions are still disabled if they would make the counter go negative. Such
games are called succinct one-counter games (SOCGs). The special cases of OCGs
and SOCGs where |Π| = 1 are called one-counter processes (OCPs) and succinct one-
counter processes (SOCPs) respectively. In these cases we omit Π and (Sj)j∈Π from
the definition.

By a one-counter parity game (OCPG) we mean a one-counter game with two
players and a parity winning condition. It was shown in [Ser06] that the winner can
be determined in an OCPG in PSpace by reducing to the emptiness problem for
alternating two-way parity automata [Var98].

Proposition 5.2 Determining the winner in OCPGs is in PSpace.

When interpreting formulas of alternating-time temporal logics in an OCG/SOCG
G with induced turn-based game H we use the notation G, s, i |= Φ to be equivalent
to H, (s, i) |= Φ for every s ∈ S, i ∈ N and ATL∗ state formula Φ. Likewise we use
G, (s0, v0)(s1, v1)... |= Φ to be equivalent to H, (s0, v0)(s1, v1)... |= Φ for every play
(s0, v0)(s1, v1)... in G and every ATL∗ path formula Φ.

As an extension of the logics introduced in Section 2.2 we consider fragments of
the quantitative alternating-time temporal logics QATL and QATL∗ [BG13]. These
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logics extend ATL and ATL∗ with state formulas of the form r ▷◁ c where c ∈ Z,
▷◁∈ {≤, <,=, >,≥,≡k} and k ∈ N. This type of formula is called a counter constraint
and is interpreted such that e.g. r ≤ 5 is true if the current counter value is at most
5 whereas r ≡4 3 is true if the current counter value is equivalent to 3 modulo 4.

Formally, the semantics is given by G, s, i |= r ▷◁ c iff i ▷◁ c. The extension of
L ∈ {LTL,CTL,CTL∗} with counter constraints is called QL as for QATL∗.

In this chapter we focus on the model-checking problem. That is to decide, given
an OCG/SOCG G, a state s in G, a natural number i and a state formula φ whether
G, s, i |= φ. When model-checking non-succinct models, the initial counter value, edge
weights and integers in the formula are assumed to be input in unary. For succinct
models they are input in binary.

5.3 Model-checking algorithms

When model-checking branching and alternating-time temporal logics in finite-state
systems, the standard approach is to process the state subformulas from the innermost
to the outermost, at each step labelling states where the subformula is true. This
approach does not work directly in our setting since the state space is infinite. We
therefore take a different route and develop a model-checking game in which we
can avoid explicitly labelling the configurations in which a subformula is true. This
approach gives us optimal complexity in all cases considered and also allows us to
extend to quantitative constraints in a natural way. We first present the approach
for ATL and afterwards adapt it to ATL∗ and CTL∗ by combining it with automata
on infinite words. Finally it is shown how to handle counter constraints.

5.3.1 A model-checking game for ATL
We convert the model-checking problem asking whether G, s0, i |= φ for an ATL for-
mula φ and OCG G = (S,Π, (Sj)j∈Π, R,AP, L) to a model-checking game HG,s0,i(φ)
between two players 0 and 1 that are trying to respectively verify and falsify the
formula. The construction is done so player 0 has a winning strategy in HG,s0,i(φ)
if and only if G, s0, i |= φ and is done inductively on the structure of φ. For a given
ATL formula, a given OCG G and a given state s in G we define a characteristic OCG
HG,s(φ). Note that the initial counter value is not present in the construction yet.
When illustrating the games, the circle states are controlled by player 0, square states
are controlled by player 1 and diamond states can be both depending on the game.
States with color 1 are filled and states with color 2 are not. Player 0 wins the game
if the greatest color that appears infinitely often during the play is even, otherwise
player 1 wins the game. The edges are labelled with counter updates, but 0-labels
are omitted. The construction is done as follows.

• HG,s(p) : There are two cases which are illustrated in Figure 5.5 to the left.

• HG,s(φ1 ∨ φ2) : The game is shown in Figure 5.5 in the middle.
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Figure 5.6: HG,s(⟨⟨A⟩⟩Gφ1) and HG,s(⟨⟨A⟩⟩φ1Uφ2) are obtained by updating each
transition in G as shown to the left and right respectively.

• HG,s(¬φ1) : The game is constructed from HG,s(φ1) by interchanging circle
states and square states and either adding or subtracting 1 to/from all colors.

• HG,s(⟨⟨A⟩⟩Xφ1) : Let R(s) = {(s, v, s′) ∈ R} = {(s, v1, s1), ..., (s, vm, sm)}.
There are two cases to consider. One when s ∈ Sj for some j ∈ A and one
when s ̸∈ Sj for all j ∈ A. Both are illustrated in Figure 5.5 to the right.

• HG,s(⟨⟨A⟩⟩Gφ1) : We let HG,s(⟨⟨A⟩⟩Gφ1) have the same structure as G, but with
a few differences. Player 0 controls all states that are in

∪
j∈A Sj and player

1 controls the rest. Further, for each transition t = (s′, v, s′′) ∈ R we add a
state st controlled by player 1 between s′ and s′′. If the player controlling s′
chooses transition t the play is taken to the state st from which player 1 can
either choose to continue to s′′ or to HG,s′′(φ1). Every state in HG,s(⟨⟨A⟩⟩Gφ1)
which is not part of HG,s′′(φ1) has color 2. It is illustrated in Figure 5.6. The
intuition is that player 1 can challenge and claim that φ1 is not true in the
current configuration. If he does so, player 0 must be able show that it is in
fact true in order to win. In addition, such a module is added before the initial
state s so player 1 can challenge the truth of φ1 already in the initial state.

• HG,s(⟨⟨A⟩⟩φ1Uφ2) : The game is similar to the case of ⟨⟨A⟩⟩G. The differences
are that every state is colored 1 and for each transition t = (s′, v, s′′) ∈ R we
add two states st and s′t controlled by player 0 and player 1 respectively with
transitions to HG,s′′(φ2) and HG,s′′(φ1) respectively. It is illustrated in Figure
5.6. The intuition is similar, but here player 0 loses unless he can claim φ2 is
true at some point (and subsequently show this). In addition φ1 cannot become
false before this point, because then player 1 can claim φ1 is false and win. As
for the previous case, such a module is added before the initial state as well.
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Finally, we define the game HG,s,i(φ) from HG,s(φ) and i ∈ N by adding an initial
module such that the counter is increased to i before entering HG,s(φ). We can now
show the following by induction on the structure of the ATL formula.

Proposition 5.3 For every OCG G, state s in G, i ∈ N and φ ∈ ATL

G, s, i |= φ if and only if player 0 has a winning strategy in HG,s,i(φ)

Proof. The proof is done for QATL formulas (and thus works for ATL as well).
The proof is done by induction on the structure of φ. First, we consider the base case.

φ = p : In this case player 0 has a winning strategy in HG,s,i(p) if and only if
p ∈ L(s) if and only if G, s, i |= p.

Next, we consider the inductive cases.

φ = φ1 ∨ φ2 : Clearly, if player 0 has a winning strategy in HG,s,i(φ1) or in
HG,s,i(φ2) then he has a winning strategy in HG,s,i(φ1 ∨ φ2) since he can choose
which of the games to play and reuse the winning strategy. On other hand, if player
0 has a winning strategy in HG,s,i(φ1 ∨φ2) then he is either winning in HG,s,i(φ1) or
in HG,s,i(φ2) because he can reuse the strategy and be sure to win in at least one of
these games. Then, by using the induction hypothesis we have that player 0 has a win-
ning strategy in HG,s,i(φ1 ∨φ2) if and only if he has a winning strategy in HG,s,i(φ1)
or in HG,s,i(φ2) if and only if G, s, i |= φ1 or G, s, i |= φ2 if and only if G, s, i |= φ1∨φ2.

φ = ¬φ1 : The construction essentially switches player 0 with player 1 when cre-
ating HG,s,i(¬φ1) from HG,s,i(φ1). This means that player 0 has a winning strategy
in HG,s,i(¬φ1) if and only if player 1 has a winning strategy in HG,s,i(φ1). We have
that one-counter games with parity conditions are determined [Ser06]. It follows that
player 0 has a winning strategy in HG,s,i(¬φ1) if and only if player 0 does not have
a winning strategy in HG,s,i(φ1). Using the induction hypothesis this means that
player 0 has a winning strategy in HG,s,i(¬φ1) if and only if G, s, i ̸|= φ1 if and only
if G, s, i |= ¬φ1.

φ = ⟨⟨A⟩⟩Xφ1 : There are two cases to consider. First, suppose s ∈ Sj for some
j ∈ A. Then player 0 has a winning strategy in HG,s,i(⟨⟨A⟩⟩Xφ1) if and only if there
is a transition (s, v, s′) ∈ R with v+i ≥ 0 such that player 0 has a winning strategy in
HG,s′,i+v(φ1) since parity objectives are prefix independent. Using the induction hy-
pothesis, this is the case if and only if there is a transition (s, v, s′) ∈ R with v+ i ≥ 0
such that G, s′, i+ v |= φ1 which is the case if and only if G, s, i |= ⟨⟨A⟩⟩Xφ1. For the
case where s ̸∈ Sj for all j ∈ A the proof is similar, but uses universal quantification
over the transitions.

φ = ⟨⟨A⟩⟩Gφ1 : The intuition of the construction is that player 0 controls the
players in A and player 1 controls the players in Π\A. At each configuration (s′, v) ∈
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Figure 5.7: One-counter game G.

S×N of the game player 1 can challenge the truth value of φ1 by going to HG,s′,v(φ1)
in which player 1 has a winning strategy if and only if φ1 is indeed false in G, s′, v by
the induction hypothesis. If player 1 challenges at the wrong time or never challenges
then player 0 can make sure to win.

More precisely, suppose player 0 has a winning strategy σ inHG,s,i(⟨⟨A⟩⟩Gφ1) then
every possible play when player 0 plays according to σ either never goes into one of
the modules HG,s′(φ1) or the play goes into one of the modules at some point and
never returns. Since σ is a winning strategy for player 0, we have by the induction
hypothesis that every pair (s′, v) ∈ S × N reachable when player 0 plays according
to σ is such that G, s′, v |= φ1, because otherwise σ would not be a winning strategy
for player 0. If coalition A follows the same strategy σ adapted to G then the same
state, value pairs are reachable. Since for all these reachable pairs (s′, v) we have
G, s′, v |= φ1 this strategy is a witness that G, s, i |= ⟨⟨A⟩⟩Gφ1.

On the other hand, suppose that coalition A can ensure Gφ1 from (s, i) using
strategy σ. Then in every reachable configuration (s′, v) we have G, s′, v |= φ1. From
this we can generate a winning strategy for player 0 in HG,s,i(⟨⟨A⟩⟩Gφ1) that plays
in the same way until (if ever) player 1 challenges and takes a transition to a module
HG,s′,v(φ1) for some (s′, v). Since the same configurations can be reached before a
challenge as when A plays according to σ, this means that player 0 can make sure
to win in HG,s′,v(φ1) by the induction hypothesis. Thus, if player 1 challenges player
0 can make sure to win and if player 1 never challenges player 0 also wins since all
states reached have color 2. Thus, player 0 has a winning strategy inHG,s,i(⟨⟨A⟩⟩Gφ1).

φ = ⟨⟨A⟩⟩φ1Uφ2 : The proof works as in the case above with some minor dif-
ferences. In this case, player 0 needs to show that he can reach a configuration
where φ2 is true when controlling the players in A and therefore he loses if player 1
does not challenge incorrectly and he never reaches a module HG,s′,v(φ2) such that
G, s′, v |= φ2. At the same time, he has to make sure that configurations (s′, v) where
G, s′, v ̸|= φ1 are not reached in an intermediate configuration since player 1 still has
the ability to challenge, as in the previous case. Note that player 0 gets the chance
to commit to showing that φ2 is true in a given configuration before player 1 gets the
chance to challenge the value of φ1. This is due to the definition of the until operator
that does not require φ1 to be true at the point where φ2 becomes true. We leave
out the remaining details. □
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Example 5.4 Consider the OCG G in Figure 5.7 between player a and b. Player a
controls circle states and player b controls square states. Let φ = ⟨⟨{a}⟩⟩qUp be an
ATL formula which specifies that player a can force the play to eventually reach a p
state while only visiting q states along the way.

We create the model-checking game HG,s0,2(φ) in Figure 5.8. It can be used to
decide whether player a can force the play to eventually reach a p state in G while
only visiting q states along the way given that the play begins in s0 with an initial
counter value of 2.

In the model-checking game recall that player 0 controls circle states and player
1 controls square states. Filled states are colored 1 and the non-filled are colored
2. If player 0 can force the play to infinitely often reach a non-filled state in this
one-counter parity game then we have G, s0, 2 |= φ.

In general, such one-counter parity games can be solved in polynomial space by
using a reduction to the emptiness problem for two-way alternating parity automata
on words. For details, see [Ser06].

In this example, we can argue that player 0 has a winning strategy as follows.
Consider a strategy which ensures that the value of the counter is odd when s1 is
reached and which takes the play to the module HG,s3(p) from the challenge module
between s2 and s3. Indeed, if the counter value is odd when s1 is reached then player
1 cannot avoid taking the play to the challenge module between s2 and s3 (or making
a losing challenge earlier). If he keeps avoiding this the counter value will eventually
be 0 when s2 is reached and he has no other choice than moving the play towards s3.
In this case player 0 can take the play to HG,s3(p) and win.

Note that this strategy resembles the strategy needed for player a in G in order to
force that qUp is true.

We can create a model-checking game for ATL in SOCGs as for OCGs and obtain
a model-checking game which is a succinct OCPG. This can be transformed into an
OCPG that is exponentially larger. It is done by replacing each transition with weight
v with a path that has |v| transitions and adding small gadgets so a player loses if he
takes a transition with value −w for w ∈ N when the current counter value r < w.
The exponential blowup is due to weights being input in binary. By Proposition 5.2
this gives upper bounds for ATL model-checking. Matching lower bounds follow from
PSpace-hardness [GL13] and ExpSpace-hardness [Göl+10] of data complexity of
CTL in OCPs and SOCPs respectively.

Theorem 5.5 The data complexity and combined complexity of model-checking ATL
are PSpace-complete for OCGs and ExpSpace-complete for SOCGs.

5.3.2 Adapting the construction to ATL∗

As for ATL we rely on the approach of a model-checking game when model-checking
ATL∗. However, due to the extended possibilities of nesting we do not handle tem-
poral operators directly as for ATL. Instead, we resort to translation of LTL formu-
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Figure 5.9: HG,s(⟨⟨A⟩⟩φ) is obtained by updating each transition as shown in the
figure.

las into deterministic parity automata (DPA) which are combined with the model-
checking games. This gives us model-checking games which are one-counter parity
games as for ATL, but with a doubly-exponential blowup.

Let G = (S,Π, (Sj)j∈Π, R,AP,L) be an OCG, s0 ∈ S, i ∈ N and φ be an
ATL∗ state formula. The algorithm to decide whether G, s0, i |= φ follows along
the same lines as our algorithm for ATL. That is, we construct a model-checking
game HG,s0,i(φ) between player 0 and player 1 such that player 0 has a winning strat-
egy in HG,s0,i(φ) if and only if G, s0, i |= φ. The construction is done inductively on
the structure of φ. For each state s ∈ S and state formula φ we define a characteristic
OCG HG,s(φ).

For formulas of the form p,¬φ1 and φ1∨φ2 the construction is as for ATL assuming
in the inductive cases that HG,s(φ1) and HG,s(φ2) have already been defined. The
interesting case is φ = ⟨⟨A⟩⟩φ1. Here, let ψ1, ..., ψm be the outermost proper state
subformulas of φ1. Let P = {p1, ..., pm} be fresh propositions and let f(φ1) =
φ1[ψ1 7→ p1, ..., ψm 7→ pm] be the formula obtained from φ1 by replacing the outermost
proper state subformulas with the corresponding fresh propositions. Let AP′ = AP∪
P . Now, f(φ1) is an LTL formula over AP′. We can therefore construct a DPA
Af(φ1) with input alphabet 2AP′ such that the language L(Af(φ1)) of the automaton
is exactly the set of linear models of f(φ1). The number of states of the DPA can
be bounded by 22

O(|f(φ1)|) and the number of colors of the DPA can be bounded by
2O(|f(φ1)|) [Pit07].

The game HG,s(φ) is now constructed with the same structure as G where player
0 controls the states for players in A and player 1 controls the states for players
in Π \ A. However, we need to deal with truth values of the formulas ψ1, ..., ψm
which can in general not be labelled to states in G since they depend both on the
current state and counter value. Therefore we change the structure to obtain HG,s(φ):
For each transition (s, v, t) ∈ R we embed a module as shown in Figure 5.9. Here,
2AP′

= {Φ0, ...,Φℓ} and for each 0 ≤ j ≤ ℓ we let {ψj0, ..., ψjkj} = {ψi | pi ∈
Φj} ∪ {¬ψi | pi ̸∈ Φj}. Such a module is added before the initial state as well.

The idea is that when a transition is taken from (s, w) to (t, w+ v), player 0 must
specify which of the propositions p1, ..., pm are true in (t, w + v). This is done by
picking one of the subsets Φj (which is the set of propositions that are true in state
t(Φj)). Then, to make sure that player 0 does not cheat, player 1 has the opportunity
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to challenge any of the truth values of the propositions specified by player 0. If player
1 challenges, the play never returns again. Thus, if player 1 challenges incorrectly,
player 0 can make sure to win the game. However, if player 1 challenges correctly
then player 1 can be sure to win the game. If player 0 has a winning strategy, then
it consists in choosing the correct values of the propositions at each step. If player 0
does choose correctly and player 1 never challenges, the winner of the game should be
determined based on whether the LTL property specified by f(φ1) is satisfied during
the play. We handle this by labelling t(Φj) with the propositions in Φj . Further, since
every step of the game is divided into three steps (the original step, the specification
by player 0 and the challenge opportunity for player 1) we alter Af(φ1) such that it
only takes a transition every third step. This simply increases its size by a factor
3. We then perform a product of the game with the updated parity automaton
to obtain the parity game HG,s(⟨⟨A⟩⟩φ1). It is important to note that the product
with the automaton is not performed on the challenge modules (which are already
colored), but only with states in the main module. This keeps the size of the game
doubly-exponential in the size of the formula. It is possible to prove the following by
induction on the structure of the formula. All cases except for ⟨⟨A⟩⟩φ are as for ATL.
In the last case the proof follows the intuition outlined above.

Proposition 5.6 For every OCG G, state s in G, i ∈ N and φ ∈ ATL∗

G, s, i |= φ if and only if 0 has a winning strategy in HG,s,i(φ)

Proof. The proof is done by induction on the structure of φ. The base cases as
well as boolean combinations are omitted since they work as for ATL. The interesting
case is φ = ⟨⟨A⟩⟩φ1.

Suppose first that G, s, i |= ⟨⟨A⟩⟩φ1. Then coalition A has a winning strategy
σ in G. From this, we generate a strategy σ′ for player 0 in HG,s,i(⟨⟨A⟩⟩φ1) that
consists in never cheating when specifying values of atomic formulas and choosing
transitions according to what σ would have done in G. Then, if player 1 challenges
at some point, player 0 can be sure to win by the induction hypothesis since he never
cheats. If player 1 never challenges (or, until he challenges), player 0 simply mimics
the collective winning strategy σ of coalition A in G from (s, i). This ensures that he
wins in the parity game due to the definition of the parity condition from the parity
automaton corresponding to f(φ1).

Suppose on the other hand that in HG,s,i(⟨⟨A⟩⟩φ1) player 0 has a winning strategy
σ. Then σ never cheats when specifying values of propositions, because then player 1
could win according to the induction hypothesis. Define a strategy σ′ for coalition A
in G that plays like σ in the part of HG,s,i(⟨⟨A⟩⟩φ1) where no challenge has occured.
σ′ is winning for A with condition φ1 in G due to the definition of HG,s,i(⟨⟨A⟩⟩φ1)
using the automaton Af(φ1). □

The size of the model-checking game is doubly-exponential in the size of the
formula for both OCGs and SOCGs. Indeed, we extend the technique to SOCGs as
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in the case of ATL. However, with respect to complexity, the blowup caused by the
binary representation of edge weights only matters when the formula is fixed since the
game is already doubly-exponential when the input formula is a parameter. Using
Proposition 5.2 we get upper bounds on complexity of model-checking ATL∗. For
data complexity the lower bounds follow from data complexity of CTL. 2ExpSpace-
hardness for combined complexity is proved in Section 5.4.

Theorem 5.7 The data complexity for ATL∗ model-checking is PSpace-complete
and ExpSpace-complete for OCGs and SOCGs respectively. The combined complexity
is 2ExpSpace-complete for both OCGs and SOCGs.

5.3.3 Adapting the construction to CTL∗

While the model-checking game for ATL∗ works immediately for CTL∗, the doubly-
exponential size can improved. The reason is that when the model is not alternating,
we can use non-deterministic Büchi automata (NBAs) for path subformulas instead
of DPAs. To handle a formula of the form φ = Eφ1 we do as for ⟨⟨A⟩⟩φ1 in the
previous section except that the automaton Af(φ) is now an NBA with 2O(|f(φ)|)

states [WVS83]. Further, we need to handle the fact that the automaton is non-
deterministic and therefore can have several legal transitions.

The game is simply adjusted by letting player 0 choose the transitions in the
original system as well as of the automaton in each step of the main module in
HG,s(φ). This works as he just needs to show that there exists a path in the OCP
along with an accepting run of the automaton in order to be sure to win. If one
such exists he can show it by playing this path as well as playing the corresponding
run of the automaton. The only power that player 1 has in the main module is the
possibility to challenge the values for subformulas proposed by player 0. Thus, if
player 0 proposes an incorrect valuation or plays a path that is not accepting then
player 1 can make sure to win.

Note that this construction makes the model-checking game exponential in the size
of the formula. Again, Proposition 5.2 provides us with upper bounds. A matching
ExpSpace lower bounds for combined complexity of model-checking CTL∗ in OCPs
is shown in Section 5.4.

Theorem 5.8 The combined complexity of model-checking CTL∗ for both OCPs and
SOCPs is ExpSpace-complete.

The PSpace-completeness and ExpSpace-completeness of data complexity of
CTL∗ model-checking in OCPs and SOCPs follow immediately from results in the
literature. Indeed, lower bounds are inherited from CTL model-checking results
[Göl+10; GL13] and upper bounds can be derived from µ-calculus results [Ser06]
as for every CTL∗ formula there is an equivalent µ-calculus formula. However, note
that in these cases our construction above provides the matching upper bounds as
well without resorting to a translation from CTL∗ formulas to µ-calculus formulas.
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Figure 5.10: HG,s(r ≤ c) to the left and HG,s(r ≡k c) to the right.

5.3.4 Adding counter constraints
The model-checking game can be extended to handle counter constraints by creating
characteristic games HG,s(r ▷◁ c) for atomic formulas of the form r ▷◁ c with ▷◁∈
{≤, <,=, >,≥,≡k} where k ∈ N and c ∈ Z. As examples, see HG,s(r ≤ c) and
HG,s(r ≡k c) illustrated in Figure 5.10. Using similar constructions we can handle
the other cases as well. Note that adding these constraints to the logics does not
increase the complexity of the algorithms in any of the cases considered.

Having added counter constraints it is quite easy to see that model-checking of
CTL∗ in one-counter processes with zero-tests can be done without increasing the
complexity. This can be accomplished by updating the CTL∗ formula to only consider
paths that are legal according to the zero-tests. By reusing a technique from [BGM14]
we can also handle systems where the counter value is allowed to be negative. Similar
constructions can be made for ATL and ATL∗ model-checking by using alternation
between players to check that no player can choose a transition that he is not allowed
to choose without losing.

5.4 Lower bounds

In this section we provide lower bounds for combined complexity of CTL∗ in OCPs
and combined complexity of ATL∗ in OCGs.

5.4.1 Lower bound for CTL∗

For the combined complexity of CTL∗ in OCPs an ExpSpace lower bound does not
follow immediately from results for CTL since the combined complexity of CTL is
PSpace-complete in OCPs. To show this lower bound we do a reduction from the
data complexity of CTL in SOCPs which requires some more work.

Proposition 5.9 The combined complexity of model-checking CTL∗ in OCPs is
ExpSpace-hard.

Proof. We do the proof by a reduction from the model-checking problem for
a fixed CTL formula in an SOCP. That is, given a CTL formula φ, an SOCP G =
(S,R,AP, L), an initial state s0 and value v ∈ N we want to construct a CTL∗ formula
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Figure 5.11: Module G′t for transition t = (s, v, s′) with v ≥ 0.

φ′ and an OCP G′ = (S′, R′,AP′, L′) such that

G, s0, 0 |= φ if and only if G′, s0, 0 |= φ′

The challenge of the construction is that G′ can only have transitions with weights in
{−1, 0, 1}. In order to accomplish this without blowing up the state space exponen-
tially we add a module for each transition (s, v, s′) ∈ R designed to simulate adding
v to the counter value.

We explain the construction for v ≥ 0 first. Let c ∈ N be the smallest number
such that 2c > w for every integer w that is the label of a transition in G. Then every
edge weight can be represented using c bits. Now, to obtain G′ we do as follows. For
every transition t = (s, v, s′) ∈ R with v ≥ 0 we replace t with a module G′t as shown
in Figure 5.11.

In this module it is possible to increase the counter by any non-negative value
before completing the transition from s to s′. It is even possible to stay in the
module between s and s′ forever (unlike in G). Note also that v does not appear in
the module at all. We will use the CTL∗ formula to focus on paths that behave as
the transition (s, v, s′) in G when passing through this module.

We suppose that all new states in G′ are labelled with the proposition u and all
states from G are not. The idea is that this proposition expresses that an update of
the counter value is currently being performed. Further, for each state s in G′ there
is a special proposition s which is true exactly in that state.

A similar module can be created for v < 0 where the +1 transitions are changed
to −1 transitions.

Observe that the resulting structure G′ is an OCP since there are only transition
weights in {−1, 0, 1} and further, the reduction is polynomial in the number of bits
used to represent the integer weights in G. We next propose a function f mapping
CTL formulas to CTL∗ formulas such that G, s0, 0 |= φ if and only if G′, s0, 0 |= f(φ)
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for every CTL formula φ. First, let

ψcount =
∧

t=(s,v,s′)∈R

G(ψ1(t) ∧ ψ2(t) ∧ ψ3(t) ∧ ψ4(t))

The intuition is that the path formula ψcount is true along a path in G′ if every
subpath through a module G′t with t = (s, v, s′) updates the counter by adding ex-
actly v before reaching s′. Thus, the formula is true along a path ρ′ in G′ if and
only if ρ′ corresponds to a path in G (where each counter update of value v takes
(|v|+1) · (c+1)+ 2 steps in ρ′). The reason that we need to enforce counter updates
in this way is to avoid blowing up the size of the OCP G′. This is important since
edge weights are exponentially large in the input in G.

The truth value of proposition p is used as the bit-representation of the value
that the counter has already been updated with where the least significant bit occurs
first. The intuitive meaning of the subformulas are as follows for each transition
t = (s, a, s′).

• ψ1(t) : When the module G′t is entered, the path goes through only ¬p states
until rt since the counter has initially been updated with 0.

• ψ2(t) : The counter value must be updated by one every time rt is reached
except the last time before the module is left.

• ψ3(t) : The path must exit the module before the counter has been updated 2c

times.

• ψ4(t) : If the path exits the module, the counter must have been updated exactly
|v| times.

The subformulas are defined in LTL as below, where Xj is defined inductively by
X1 = X and Xj = Xj−1X for j > 1.

ψ1(t) = qt →

(
c∧
i=1

Xi¬p

)

ψ2(t) =

(qt ∨ rt)→ c∧
i=1

i−1∧
j=1

Xjp↔
(
Xi+c+1p↔ Xi¬p

)
U [X(¬rtU(rt ∧Xs′))]

ψ3(t) = rt →

(
c∨
i=1

Xip

)
UXs′

Finally, for each transition t = (s, v, s′) let v′ = |v| and let b1, ..., bc be the c-bit
representation of v′ where b1 is the least significant bit. Let Bt be the set of indices
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j such that bj = 1 and Ct be the set of indices j such that bj = 0. Now, define

ψ4(t) = (qt ∨ rt) ∧X(¬rtU(rt ∧Xs′))→
∧
j∈Bt

Xjp ∧
∧
j∈Ct

Xj¬p

We now define f inductively on the structure of a CTL formula. Thus, for every
proposition q from the labelling of G and all CTL formulas φ1, φ2

f(q) = q

f(φ1 ∨ φ2) = f(φ1) ∨ f(φ2)

f(¬φ1) = ¬f(φ1)

f(EGφ1) = E(ψcount ∧G(u ∨ (¬u ∧ f(φ1))))

f(Eφ1Uφ2) = E(ψcount ∧ (u ∨ (¬u ∧ f(φ1)))U(¬u ∧ f(φ2)))

f(EXφ1) = E(ψcount ∧ (XuUX(¬u ∧ f(φ1))))

Now, by induction on the structure of the CTL formula φ we show that for every
state s0 ∈ S and every v ∈ N we have G, s0, v |= φ if and only if G′, s0, v |= f(φ).

φ = q : For the base case it is true immediately since for every state s ∈ S and
q ∈ AP we have q ∈ L(s) iff q ∈ L′(s).

Assume as induction hypothesis that the claim is true for all proper subformulas
of φ. Then we have the following cases.

φ = φ1 ∨ φ2 : By the induction hypothesis we have

G, s0, v |= φ1 ∨ φ2

iff G, s0, v |= φ1 or G, s0, v |= φ2

iff G′, s0, v |= f(φ1) or G′, s0, v |= f(φ2)

iff G′, s0, v |= f(φ1) ∨ f(φ2)

iff G′, s0, v |= f(φ1 ∨ φ2)

φ = ¬φ1 : By the induction hypothesis we have
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G, s0, v |= ¬φ1

iff G, s0, v ̸|= φ1

iff G′, s0, v ̸|= f(φ1)

iff G′, s0, v |= ¬f(φ1)

iff G′, s0, v |= f(¬φ1)

φ = EGφ1 : Suppose first that G, s0, v |= EGφ1. Then there exists a path ρ in
G from s0 such that φ1 is true in every configuration of ρ. There exists a correspond-
ing path in G′ which passes through the same configurations as ρ but with update
modules in between. Let ρ′ be the unique path with this property and such that ρ′
also satisfies ψcount. Now, in every configuration of ρ′ either u is true or false. When
u is false the current configuration of ρ′ is also a configuration of ρ since ρ′ satisfies
ψcount. By the induction hypothesis, each such configuration of ρ′ thus satisfies f(φ1).
This means that we have G′, s0, v |= E(ψcount ∧G(u ∨ (¬u ∧ f(φ1)))) = f(EGφ1).
For the other direction the argument is similar, showing that if there is a path ρ′ in
G′ from s0, v satisfying ψcount∧G(u∨ (¬u∧f(φ1))) then there exists a corresponding
path ρ in G from s0, v satisfying EGφ1.

The proofs for E(φ1Uφ2) and EXφ1 are done similarly to the case above. Thus,
we have that G, s0, v |= φ iff G′, s0, v |= f(φ). In particular this is the case for v = 0.
Since the model-checking problem for CTL in SOCPs can be easily reduced to the
same problem where the initial value v = 0 then we have that the model-checking
problem for CTL∗ in OCPs is ExpSpace-hard since the constructions of G′ and f(φ)
above are polynomial. Note that the CTL∗ formula is not fixed even if the CTL
formula is and therefore the result does not apply for the data complexity of CTL∗.
□

5.4.2 Lower bound for ATL∗

For combined complexity of ATL∗ we can show that 2ExpSpace is a tight lower
bound by a reduction from the word acceptance problem of a doubly-exponential
space deterministic Turing machine.

Let T = (Q, q0,Σ, δ, qF ) be a deterministic Turing machine that uses at most
22

|w|k tape cells on input w where k is a constant and |w| is the number of symbols
in w. Here, Q is a finite set of control states, q0 ∈ Q is the initial control state.
Σ = {0, 1, ♭, a, r} is the tape alphabet containing the blank symbol ♭ and special
symbols a and r such that T accepts immediately if it reads a and rejects immediately
if it reads r. Recall that δ : Q×Σ→ Q×Σ×{−1,+1} is the transition function and
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qF ∈ Q is the accepting state. If δ(q, a) = (q′, a′, x) we write δ1(q, a) = q′, δ2(q, a) = a′

and δ3(q, a) = x. Let ΣI = Σ \ {♭}.
Now, let w = w1...w|w| ∈ Σ∗

I be an input word. From this we construct an OCG
G, an initial state s0 and an ATL∗ formula Φ all with size polynomial in n = |w|k
and |T | such that T accepts w if and only if G, (s0, 0) |= Φ.

An intermediate reduction
We use an intermediate step in the reduction for simplicity. This is done by consider-
ing an OCG H = (S′, {0, 1}, (S′

0, S
′
1), R

′) with two players player 0 and player 1 and
an initial state s′0 such that player 0 can force the play to reach s′F if and only if T
accepts w. However, the size of the set S′ of states will be doubly-exponential in n.
The idea of this construction resembles a reduction from the word acceptance prob-
lem for polynomial-space Turing machines to the emptiness problem for alternating
finite automata with a singleton alphabet used in [JS07].

Afterwards we will reduce this to model-checking of the ATL∗ formula Φ in G
where |S| is polynomial in n. This reduction can be performed by considering a
more involved formula. We will use a technique similar to [Kup+00; Boz07; BMP10]
to simulate a 2n-bit counter by using LTL properties and alternation between the
players. This is the main trick to keep the state-space of G small.

We start with some notation. We assume that T uses the tape cells numbered
1, ..., 22

n and that the tape head points to position 1 initially. In addition, suppose
for ease of arguments that there are two extra tape cells numbered 0 and 22

n

+ 1
such that T immediately accepts if the tape head reaches cell 0 or cell 22n + 1. That
is, cell 0 and 22

n

+ 1 holds the symbol a initially. Further, assume without loss of
generality that if T halts it always does so with the tape head pointing to cell 1 that
contains the symbol a. Since T is deterministic it has a unique (finite or infinite) run
on the word w which is a sequence Cw0 Cw1 ... of configurations. Let ∆ = Σ ∪ (Q× Σ).
Then each configuration Cwi is a sequence in ∆22

n
+2 containing exactly one element

in Q × Σ which is used to specify the current control state and location of the tape
head. For instance, the initial configuration Cw0 is given by

Cw0 = a(q0, w1)w2w3...w|w|♭♭....♭a

We use Cwi (j) to denote the jth element of configuration Cwi . For a given element
d ∈ ∆ we define the set Pre(d) of predecessor triples of d as

Pre(d) =
{(d1, d2, d3) ∈ Σ3 | d2 = d}
∪{((q, b), d2, d3) ∈ (Q× Σ)× Σ2 | d = (δ1(q, b), d2) and δ3(q, b) = +1}
∪{((q, b), d2, d3) ∈ (Q× Σ)× Σ2 | d = d2 and δ3(q, b) ̸= +1}
∪{(d1, d2, (q, b)) ∈ Σ2 × (Q× Σ) | d = (δ1(q, b), d2) and δ3(q, b) = −1}
∪{(d1, d2, (q, b)) ∈ Σ2 × (Q× Σ) | d = d2 and δ3(q, b) ̸= −1}
∪{(d1, (q, b), d3) ∈ Σ× (Q× Σ)× Σ | d = δ2(q, b)}
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The idea is that given the three elements Cwi (j−1), Cwi (j) and Cwi (j+1) one can
uniquely determine Cwi+1(j) according to the definition of a Turing machine. Pre(d)
is then the set of all triples (d1, d2, d3) such that it is possible to have Cwi (j − 1) =
d1, C

w
i (j) = d2, C

w
i (j + 1) = d3 and Cwi+1(j) = d.

We now define H = (S′, {0, 1}, (S′
0, S

′
1), R

′) by

• S′ = ({0, ..., 22n + 1} × (∆ ∪∆3)) ∪ {s′0, s′z, s′r, s′F }

• S′
0 = ({0, ..., 22n + 1} ×∆) ∪ {s′0}

• S′
1 = ({0, ..., 22n + 1} ×∆3) ∪ {s′z, s′r, s′F }

• R′ contains exactly the elements below

– (s′0, 1, s
′
0) ∈ R′

– (s′0, 0, (1, (qF , a))) ∈ R′

– ((j, d), 0, (j, (d1, d2, d3))) ∈ R′ for all j ∈ {1, ..., 22n} and all (d1, d2, d3) ∈
Pre(d)

– For j ∈ {0, 22n +1} we have ((j, a), 0, s′F ) ∈ R′ and ((j, d), 0, s′r) ∈ R′ when
d ̸= a

– ((j, d), 0, s′z) ∈ R′ for all (j, d) such that Cw0 (j) = d.
– (s′z, 0, s

′
F ) ∈ R′

– (s′z,−1, s′r) ∈ R′

– ((j, (d1, d2, d3)),−1, (j−1, d1)) ∈ R′ for all j ∈ {1, ..., 22n} and all d1, d2, d3 ∈
∆

– ((j, (d1, d2, d3)),−1, (j, d2)) ∈ R′ for all j ∈ {1, ..., 22n} and all d1, d2, d3 ∈
∆

– ((j, (d1, d2, d3)),−1, (j+1, d3)) ∈ R′ for all j ∈ {1, ..., 22n} and all d1, d2, d3 ∈
∆

The different types of transitions are shown in Figure 5.12, 5.13 and 5.14. The
intuition is that player 0 tries to show that T accepts w and player 1 tries to prevent
this. Initially, player 0 can increase the counter to any natural number, assume
he chooses v. If T accepts w it does so in a final configuration with the tape head
pointing at cell 1 holding the symbol a with the current control state qF . The game is
now played by moving backwards from the state (1, (qF , a)) holding this information.
Player 0 can choose a predecessor triple that leads to (1, (qF , a)). Player 1 then
chooses one of the elements of the triple, the counter is decreased by one and the play
continues like this. Finally, if the counter is 0 in a state (j, d) such that Cw0 (j) = d
then player 0 can win by going to s′z from which player 1 can only go to s′F . We will
argue that player 0 can make sure that this happens if and only if T accepts w after
performing v steps.
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Figure 5.12: From the initial state, player 0 can increase the counter to any natural
number before starting the game.
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Figure 5.13: From a state (j, d) ∈ {1, ..., 22n}×∆ player 0 can choose a predecessor
triple of d. The dashed transition only exists when Cw0 (j) = d. In this
case player 0 can be sure to win if the current counter value is 0.
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Figure 5.14: From a precedessor triple chosen by player 0, player 1 can choose which
predecessor to continue with.
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Lemma 5.10 The configuration ((j, d), i) ∈ ({1, ..., 22n} × ∆) × N is winning for
player 0 if and only if Cwi (j) = d. In particular ((1, (qF , a)), i) is winning for player 0
if and only if Cwi (1) = (qF , a) if and only if T accepts w after i steps of computation.

Proof. The proof is done by induction on i. For the base case i = 0 the statement
says that ((j, d), 0) is winning for player 0 if and only if Cw0 (j) = d. Indeed, if ((j, d), 0)
is winning for player 0 he must go directly from (j, d) to s′z because all other paths
are blocked after one step since the counter value is 0. If he goes to s′z then he wins
because player 1 can only go to s′F . However, note that there is only a transition from
(j, d) to s′z if Cw0 (j) = d by construction. Thus, if player 0 is winning from ((j, d), 0)
then Cw0 (j) = d. For the other direction, suppose Cw0 (j) = d. Then player 0 can
make sure to win by going to s′z.

For the induction step, suppose the lemma is true for i. Now we need to show
that ((j, d), i + 1) is winning for player 0 if and only if Cwi+1(j) = d. Suppose first
that ((j, d), i + 1) is winning for player 0. The winning strategy σ cannot consist
in going directly to s′z because then player 1 can go to s′r. Thus, player 0 must
choose a predecessor triple (d1, d2, d3) ∈ Pre(d) when playing according to σ. After
he chooses this, player 1 chooses one of them and the counter is decreased by one.
Thus, player 1 can choose either ((j − 1, d1), i), ((j, d2), i) or (j + 1, d3), i). Thus,
by the induction hypothesis Cwi (j − 1) = d1, Cwi (j) = d2 and Cwi (j + 1) = d3
since player 0 is winning. By the definition of predecessor triples, this means that
Cwi+1(j) = d. For the other direction, suppose Cwi+1(j) = d. Then by going to the state
(j, (Cwi (j − 1), Cwi (j), C

w
i (j + 1))) he can be sure to win by the induction hypothesis.

□

Lemma 5.11 Starting in configuration (s′0, 0) player 0 can make sure to reach s′F if
and only if T accepts w.

Simulating the counter using ATL∗

We have now reduced the word acceptance problem to a reachability game in an
OCG H with a doubly-exponential number of states. Due to the structure of H we
can reduce this to model-checking an ATL∗ formula Φ in the OCG G. The difficult
part is that we need to store the position of the tape head, which can be of doubly-
exponential size. The other features of H are polynomial in the input.

Note that at each step of the game, the position of the tape head either stays the
same, increases by one or decreases by one. This is essential for our ability to encode
it using ATL∗. We construct G much like H but where the position of the tape head
is not present in the set of states. Instead, for each transition in the game between
states s and s′ we have a module in which player 0 encodes the position of the tape
head by his choices. This is done much like in the proof of Proposition 5.9. However,
we need a 2n-bit counter in this case rather than just a c-bit counter. For this we
need alternation between the players. It is done by giving player 1 the possibility to
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challenge if player 0 has not chosen the correct value of the tape head position. This
can be ensured by use of the ATL∗ formula Φ = ⟨⟨{0}⟩⟩φ where φ is an LTL formula.
The details of simulating a 2n-bit counter like this can be obtained from [Kup+00;
Boz07; BMP10].

According to the choices of player 1 then player 0must be able to increase, decrease
or leave unchanged the position of the tape head. This can be enforced by a formula
with a size polynomial in n. Except for having to implement the position of the tape
head in this way, the rules of G are the same as for H where player 0 needs to show
that T accepts w by choosing a strategy that ensures reaching a certain state in the
game while updating the tape head position correctly. In the end, this means that for
the initial state s0 in G corresponding to s′0 in H we get G, s0, 0 |= ⟨⟨{0}⟩⟩(φ∧FsF ) if
and only if T halts on w. Here we assume that the play also goes to a halting state
sF corresponding to s′F if player 1 challenges the counter value incorrectly.

Proposition 5.12 The combined complexity of model-checking ATL∗ is 2ExpSpace-
hard in both OCGs and SOCGs.

Since our lower bound is for formulas of the form ⟨⟨{0}⟩⟩φ where φ is an LTL
formula and player 0 is a player this means that the complexity of deciding the
winner in one-counter games with LTL objectives is 2ExpSpace-complete both in
the succinct and non-succinct case. With a fixed formula the complexity of this
problem is PSpace-complete in OCGs due to PSpace-hardness of model-checking
LTL in finite-state systems [SC85]. For SOCGs the model-checking game from Section
5.3 provides a reduction from data complexity of model-checking CTL in SOCPs to
deciding the winner in succinct OCPGs with a fixed number of colors. Such a parity
condition can be expressed by a fixed LTL objective.

Corollary 5.13 Deciding the winner in two-player OCGs and SOCGs with LTL
objectives are both 2ExpSpace-complete. For a fixed LTL formula, these problems
are PSpace-complete and ExpSpace-complete respectively.

5.5 Summary

Complexity results for a number of model-checking problems for one-counter games
have been proved for alternating-time temporal logics and branching-time tempo-
ral logics including quantitative extensions. In addition to this we have solved the
open problem of finding the complexity of deciding the winner in one-counter games
and succinct one-counter games with LTL objectives. The 2ExpSpace-completeness
closes the gap between the known 2ExpTime-hardness [PR89b] and membership in
3ExpTime [LMS04].
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CHAPTER 6
Symmetry reduction in

infinite games with finite
branching

This chapter is an adapted version of the paper

• [MV14] Nicolas Markey and Steen Vester. “Symmetry Reduction in Infinite
Games with Finite Branching”. In: Proceedings of the 12th International Sym-
posium on Automated Technology for Verification and Analysis (ATVA). vol-
ume 8837. Lecture Notes in Computer Science. Springer, November 2014,
pages 281–296

It has been updated to be compatible with the other chapters of the thesis. No major
things have been added or removed.

6.1 Introduction

Symmetry reduction techniques have been introduced in model-checking around twenty
years ago for combatting the state-space explosion in systems that posses some
amount of symmetry [Cla+96; ES96; ID96; Cla+98]. The idea is to merge states
of a system that behave in the same way with respect to a given property φ. This
provides a smaller model of the system which exhibits the same behaviors as the
original model with respect to φ. This yields a more efficient verification procedure
since the original model need not be constructed.

While the technique does not guarantee a great efficiency improvement in general,
it has been applied to a large number of practical cases with great success [ID96;
Cla+96; Cla+98; Hen+03; KNP06; WBE08]. These applications include extensions
from traditional model-checking of finite-state transition systems to real-time sys-
tems [Hen+03] and probabilistic systems [KNP06]. It seems that many naturally
occuring instances of model-checking of concurrent and hardware systems contain
symmetry and therefore the technique is very applicable.
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Contribution
In this chapter, we extend symmetry reduction for transition systems to symmetry
reduction of games. We expect that on practical instances, symmetry reduction in
games should be as applicable as it has been in model-checking of temporal logics.
Our contribution is to extend the symmetry reduction technique introduced in [ES96;
Cla+96] to games. A central result in these papers is a correspondence lemma that
describes a correspondence between paths in an original model M and in a reduced
model MG. Here, G is a symmetry group used to perform the reduction. This
correspondence is used to conclude that CTL∗ model-checking can be performed in
the reduced model instead of the original model.

In our setting, the correspondence lemma describes a correspondence between
strategies in an original game G and in a reduced game GG. This lemma can then be
used to establish a correspondence between winning strategies in the original game
and in the reduced game for many different types of objectives. In particular, it follows
from this that ATL∗ model-checking can be performed in the reduced game, and that
parity games can be reduced while preserving existence of winning strategies.

The technique, however, is applicable for a much more general set of objectives.
The proof that the reduction works for games is technically more involved than for
finite-state transition systems, due to the possible irregular behaviours of an opponent
player. This phenomenon leads us to apply König’s Lemma [Kön36] in order to
prove the correspondence between the original game and the reduced game when we
assume finite branching. In addition, our approach does not restrict to finite-state
games; it also works for games played on infinite graphs, provided that they have
finite branching.

Outline
In Section 6.2 the symmetry reduction technique for turn-based games is introduced.
In Section 6.3 some applications of the symmetry reduction technique are presented
and in Section 6.4 we discuss challenges of automation of symmetry reduction. In
Section 6.5 we provide a summary of the results.

6.2 Symmetry Reduction

In this chapter we consider only turn-based games with finite branching. For sim-
plicity of presentation we restrict to two-player games and to games with a left-total
transition relation. That is, every state has at least one successor state. However,
the techniques can be naturally extended to handle such cases.

For the remainder of the chapter when we write turn-based game we implicitly
mean two-player turn-based game with finite branching and a left-total transition
relation. The two players are called player 0 and player 1.

Recall that an objective is a set Ω ⊆ Play(G) of plays. A play ρ satisfies an
objective Ω iff ρ ∈ Ω. We say that σj is a winning strategy for player j ∈ {0, 1}
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from state s0 with objective Ω if Play(G, s0, σj) ⊆ Ω. If such a strategy exists, we say
that s0 is a winning state for player j with objective Ω. The set of winning states for
player j with objective Ω in game G is denoted Wj(G,Ω).

In the following we fix a turn-based game G = (S, {0, 1}, (S0, S1), R).

Definition 6.1 A permutation π of S is called a symmetry for G if for all s, s′ ∈ S

1. (s, s′) ∈ R⇔ (π(s), π(s′)) ∈ R

2. s ∈ Sj ⇔ π(s) ∈ Sj for j ∈ {0, 1}

Let SymG be the set of all symmetries in G. We call a set G of symmetries a
symmetry group if (G, ◦) is a group, where ◦ is the composition operator defined by
(f ◦ g)(x) = f(g(x)). We consider G to be a fixed symmetry group in the rest of this
section.

Definition 6.2 The orbit θ(s) of a state s induced by G is given by

θ(s) = {s′ ∈ S | ∃π ∈ G. π(s) = s′}.

The orbits induce an equivalence relation ∼G defined by s ∼G s′ if and only if
s ∈ θ(s′). The reason for ∼G being an equivalence relation is that G is a group.
The orbit θ(s) can be thought of as a set of states that have the same behavior as
s with respect to the symmetry defined by G. For a path ρ = s0s1... in G we define
θ(ρ) = θ(s0)θ(s1).... From each orbit θ(s) we choose a unique state Rep(θ(s)) ∈ θ(s)
as a representative of the orbit. For a strategy σ of player j ∈ {0, 1}, an initial
state s0 and a sequence t0...tℓ of orbits we choose a unique representative history
Reps0,σ(t0...tℓ) = s0...sℓ that is compatible with σ and such that si ∈ ti for all
0 ≤ i ≤ ℓ given that such a history exists. Otherwise, we define Reps0,σ(t0...tℓ) = ⊥.

We are now ready to define the notion of a quotient game.

Definition 6.3 Given a game G = (S, {0, 1}, (S0, S1), R) and a symmetry group G
we define the quotient game GG = (SG, {0, 1}, (SG0 , SG1 ), RG) by

• SG = {θ(s) | s ∈ S}

• RG = {(θ(s), θ(s′)) | (s, s′) ∈ R}

• SGj = {θ(s) | s ∈ Sj} for j ∈ {0, 1}

Notice that GG is indeed a game structure: symmetries respects the partition of S
into S0 and S1, and therefore SG0 and SG1 also constitute a partition of SG. Also, RG
is left-total and has finite branching.
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Figure 6.1: A game G to the left that has symmetric properties and the quotient
game GG induced by G on the right.

Example 6.4 Consider the game G = (S, {0, 1}, (S0, S1), R) to the left in Figure 6.1
and define

G =

π ∈ SymG

∣∣∣∣∣∣∣∣
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s2, s3, s4, s5)∨
π(s0, s1, s2, s3, s4, s5) = (s0, s4, s2, s3, s1, s5)∨
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s3, s2, s4, s5)∨
π(s0, s1, s2, s3, s4, s5) = (s0, s4, s3, s2, s1, s5)


It is easy to see that G is a symmetry group. G now induces the orbits {s0}, {s5},

{s2, s3} and {s1, s4}. This gives rise to the quotient game GG to the right in Figure
6.1. Note how the construction gives us a smaller game that still has many of the
structural properties of the original game.

We can show the following correspondence between plays in the original game and
the quotient game.

Lemma 6.5 Let G = (S, {0, 1}, (S0, S1), R) be a game and G be a symmetry group.
Then

1. For each play ρ ∈ Play(G) there exists a play ρ′ ∈ Play(GG) such that ρ′0 = θ(ρ0)
and ρi ∈ ρ′i for all i ≥ 0

2. For each play ρ′ ∈ Play(GG) and every s ∈ ρ′0 there exists a play ρ ∈ Play(G, s)
such that ρi ∈ ρ′i for all i ≥ 0

Proof. (1.) Suppose ρ ∈ Play(G). Then for every i ≥ 0 we have (ρi, ρi+1) ∈ R.
This implies that (θ(ρi), θ(ρi+1)) ∈ RG. Thus, θ(ρ) ∈ Play(GG). Since ρi ∈ θ(ρi) the
result follows.
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(2.) Suppose ρ′ ∈ Play(GG) and let s ∈ ρ′0. Construct a play ρ as follows. First,
let ρ0 = s. Next, suppose that the history ρ≤i has been constructed for some i ≥ 0
such that ρj ∈ ρ′j for all 0 ≤ j ≤ i. We have that (ρ′i, ρ′i+1) ∈ RG which implies that
there exists states s′, s′′ ∈ S such that (s′, s′′) ∈ R, s′ ∈ ρ′i and s′′ ∈ ρ′i+1. Since
ρi ∈ ρ′i there exists π ∈ G such that π(s′) = ρi. Further, we have (s′, s′′) ∈ R implies
that (π(s′), π(s′′)) ∈ R since π is a symmetry. Since π(s′) = ρi this means that
(ρi, π(s

′′)) ∈ R. Since s′′ ∈ ρ′i+1 we have π(s′′) ∈ ρ′i+1. Thus, the history ρ≤i can be
extended to a new history by setting ρi+1 = π(s′′) and satisfying ρi+1 ∈ ρ′i+1. We
can keep extending it in this way to obtain a play ρ with the desired property. □

We now show a correspondence lemma between strategies in the original game G
and the quotient game GG.

Lemma 6.6 Let G = (S, {0, 1}, (S0, S1), R) be a game, G be a symmetry group,
s0 ∈ S be an initial state, t0 = θ(s0) and j ∈ {0, 1}. Then

1. For any strategy σ of player j in G there exists a strategy σ′ of player j in GG
such that for all t0t1... ∈ Play(GG, t0, σ′) there exists s0s1... ∈ Play(G, s0, σ)
where si ∈ ti for all i ≥ 0;

2. For any strategy σ′ of player j in GG there exists a strategy σ of player j in G
such that for all s0s1... ∈ Play(G, s0, σ) there exists t0t1... ∈ Play(GG, t0, σ′)
where si ∈ ti for all i ≥ 0.

Proof. (1.) Let σ be a strategy for player j ∈ {0, 1} in the original game G.
From this we construct a strategy σ′ for player j in the quotient game GG by

σ′(h) = θ(σ(Reps0,σ(h)))

for all h ∈ Hist(GG) such that Reps0,σ(h) ̸= ⊥ and arbitrarily when Reps0,σ(h) = ⊥.
This strategy is well-defined since when Reps0,σ(h) ̸= ⊥ we have

(last(Reps0,σ(h)), σ(Reps0,σ(h))) ∈ R⇒ (θ(last(Reps0,σ(h))), θ(σ(Reps0,σ(h)))) ∈ R
G

⇒ (last(h), θ(σ(Reps0,σ(h)))) ∈ R
G

which means that there is a legal transition to the successor state prescribed by the
strategy σ′.

Now, let ρ = t0t1... ∈ Play(GG, t0, σ′) be an arbitrary play compatible with σ′

in GG from t0. We construct a directed tree T where the root is labelled by s0 and
where the labelling of the infinite paths in T are exactly the plays compatible with σ
in G from s0. From this tree we obtain a new tree Tρ by cutting away from T part
of the branches labelled s0s1... on which there exists i ≥ 0 such that si ̸∈ ti. If k is
the smallest number such that sk ̸∈ tk then the nodes labelled sksk+1... are removed.
The situation is illustrated in Figure 6.2.
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Figure 6.2: From left to right is drawn the original game G, the quotient game GG
and the trees T, Tρ where G = {(s0, s1, s2, s3), (s0, s2, s1, s3)}, σ(h) = s2
for all histories h ending in s0 and ρ = θ(s0)θ(s1)θ(s3)

ω. T and Tρ are
drawn together. T is the whole tree, Tρ only consists of the filled nodes.

We assume for contradiction that Tρ has a finite height ℓ. This means that there
must be a branch in the tree labelled by the history Reps0,σ(t0, ..., tℓ) = s0...sℓ because
if we had Reps0,σ(t0, ..., tℓ) = ⊥ then Tρ would have had height smaller than ℓ. There
are now two cases to consider

• Suppose sℓ ∈ Sj . Then due to the definition of σ′ we get

σ(s0...sℓ) = σ(Reps0,σ(t0...tℓ)) ∈ σ
′(t0...tℓ) = tℓ+1

Since s0...sℓσ(s0...sℓ) is compatible with σ and si ∈ ti for 0 ≤ i ≤ ℓ then
s0...sℓσ(s0...sℓ) is the labelling of a path in Tρ which gives a contradiction since
it has length ℓ+ 1.

• Suppose sℓ ̸∈ Sj . Since (tℓ, tℓ+1) ∈ RG there must exist (u, v) ∈ R such that
u ∈ tℓ and v ∈ tℓ+1. Since u ∈ tℓ = θ(sℓ) there exists a permutation π ∈ G
such that π(u) = sℓ. We also have that (u, v) ∈ R ⇒ (π(u), π(v)) ∈ R ⇒
(sℓ, π(v)) ∈ R since π preserves the transition relation. Since (sℓ, π(v)) ∈ R and
sℓ is not owned by player j then s0...sℓπ(v) is compatible with σ. But we also
have π(v) ∈ tℓ+1 since v ∈ tℓ+1. Thus, s0...sℓπ(v) is the labelling of a path in
Tρ of length ℓ+ 1. This gives a contradiction as well.

This means that Tρ is infinite. Since it is also finitely branching it has an infinite
path according to König’s Lemma. Let the labelling of such a path be s0s1.... Since
s0s1... is the labelling of an infinite path in Tρ it is a play compatible with σ since
all infinite paths in Tρ are infinite paths in T . Moreover, since it is an infinite path
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in Tρ it satisfies si ∈ ti for all i ≥ 0, because otherwise it would not be present in Tρ.
This proves the first part since t0t1... was an arbitrary play compatible with σ′.

(2.) Let σ′ be a strategy for player j in GG. Define σ from this in such a way that

σ(s0...sℓ) ∈ σ′(θ(s0)...θ(sℓ))

for all histories s0...sℓ in G with sℓ ∈ Sj . Note that when s0...sℓ is a history in G
then θ(s0)...θ(sℓ) is a history in GG. Further, we need to check that there exists a
state s ∈ σ′(θ(s0)...θ(sℓ)) such that (sℓ, s) ∈ R in order for the definition to make
sense. This can be seen as follows. Since (θ(sℓ), σ

′(θ(s0)...θ(sℓ))) ∈ RG there exists
(u, v) ∈ R such that u ∈ θ(sℓ) and v ∈ σ′(θ(s0)...θ(sℓ)). This means that there exists
π ∈ G with π(u) = sℓ. Now, (u, v) ∈ R ⇒ (π(u), π(v)) ∈ R ⇒ (sℓ, π(v)) ∈ R. Since
π(v) ∈ θ(v) = σ′(θ(s0)...θ(sℓ)) the state s = π(v) satisfies the property.

Now, suppose s0s1... ∈ Play(G, σ). We will show that θ(s0)θ(s1)... ∈ Play(GG, σ′).
This will prove 2. since si ∈ θ(si) for all i ≥ 0. For any prefix θ(s0)...θ(sℓ) we have
that

• If θ(sℓ) ̸∈ SGj then (sℓ, sℓ+1) ∈ R implies that (θ(sℓ), θ(sℓ+1)) ∈ RG.

• If θ(sℓ) ∈ SGj then sℓ+1 = σ(s0...sℓ) ∈ σ′(θ(s0)...θ(sℓ)). This implies that
θ(sℓ+1) = σ′(θ(s0)...θ(sℓ)).

This means that θ(s0)θ(s1)... is indeed compatible with σ′. □

This lemma leads to desirable properties of the quotient game when certain types
of objectives are considered.

Definition 6.7 A symmetry group G preserves the objective Ω if for any two plays
s0s1... ∈ Play(G) and s′0s

′
1... ∈ Play(G) it follows from s0s1... ∈ Ω and si ∼G s′i for

all i ≥ 0 that s′0s′1... ∈ Ω.

If Ω is an objective and G is a symmetry group that preserves it, then we denote by
ΩG the objective in the quotient game GG defined as ΩG = {θ(s0)θ(s1)... | s0s1... ∈ Ω}.
Lemma 6.6 gives us the following.

Theorem 6.8 Let G be a game, G be a symmetry group that preserves the objective
Ω, j ∈ {0, 1} and s0 ∈ S. Then

s0 ∈Wj(G,Ω) if and only if θ(s0) ∈Wj(GG,ΩG).

Proof. (⇒) Suppose player j has a winning strategy σ in G with objective Ω from
state s0. Then Play(G, s0, σ) ⊆ Ω. According to Lemma 6.6 there is a strategy σ′

for player j in GG such that for a given play t0t1... ∈ Play(GG, θ(s0), σ′) there exists
a play s0s1... ∈ Play(G, s0, σ) with si ∈ ti for all i ≥ 0. Since G preserves Ω and
Play(G, s, σ) ⊆ Ω this means that t0t1... ∈ ΩG. Since t0t1... is an arbitrary play
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compatible with σ′ from θ(s0) we have Play(GG, θ(s0), σ′) ⊆ ΩG and thus θ(s0) ∈
Wj(GG,ΩG).

(⇐) Suppose player j has a winning strategy σ′ in GG with objective ΩG from
state θ(s0). Then Play(GG, θ(s0), σ′) ⊆ ΩG. According to Lemma 6.6 there is a
strategy σ for player j in G such that for a given play s0s1... ∈ Play(G, s0, σ) there
exists a play t0t1... ∈ Play(GG, θ(s0), σ′) with si ∈ ti for all i ≥ 0. Since G preserves Ω
and Play(GG, θ(s0), σ′) ⊆ ΩG this means that s0s1... ∈ Ω. Since s0s1... is an arbitrary
play compatible with σ from s0 we have Play(G, s0, σ) ⊆ Ω and thus s0 ∈ Wj(G,Ω).
□

Corollary 6.9 Let G be a game, G be a symmetry group that preserves the objective
Ω, j ∈ {0, 1} and s, s′ ∈ S be such that s ∼G s′. Then

s ∈Wj(G,Ω) if and only if s′ ∈Wj(G,Ω).

We have now shown the main result of this chapter, namely that a winning strategy
exists in the original game if and only if it exists in the quotient game. This also
implies that there is a winning strategy from a state s in the original game if and
only if there is a winning strategy from another state s′ that belongs to the same
orbit.

For transition systems the correspondence between existence of paths in the origi-
nal system and the quotient system as shown in Lemma 6.5 was enough to show that
model-checking of a CTL∗ formula in the original system can be reduced to model-
checking the same formula in the quotient system if the symmetry group preserves
the labelling [ES96; Cla+96].

However, due to the possible behaviors of an opponent player we have had to
generalize this result in Lemma 6.6 which directly leads to Theorem 6.8. It will be
used in the next section to show that we can extend the symmetry reduction approach
to ATL∗. Since we apply Königs Lemma in the proof, we have assumed that the games
are finitely branching. We leave it as an open problem whether the technique can be
generalized to infinitely branching games as well.

6.3 Applications

In this section we provide some examples of applications of Theorem 6.8. We look at
symmetry reductions for parity games and games with properties defined in temporal
logics (by considering alternating bisimulation). We also consider an example of an
infinite-state game with a corresponding finite-state quotient game. This makes it
possible for us to decide existence of winning strategies in the original game by using
standard techniques on the quotient game.
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6.3.1 Parity games
Let G = (S, S0, S1, R, c) be a parity game. From this, the corresponding parity
objective is given by Ωj = {ρ ∈ Play(G) | c(ρ) ∈ Ξj} for player j. We say that a
symmetry group G preserves the coloring c if for all s, s′ ∈ S we have

s ∼G s′ ⇒ c(s) = c(s′)

When G preserves c, we define a coloring function cG on the set of orbits by
cG(t) = c(Rep(t)) for all orbits t. Using Theorem 6.8 we now get the following result
for parity games when we have a symmetry group preserving the coloring function.

Proposition 6.10 Let G = (S, S0, S1, R, c) be a parity game, G a symmetry group
that preserves c, s ∈ S and j ∈ {0, 1}. Then

1. G preserves the objective Ωj,

2. ΩGj = {θ(s0)θ(s1)... ∈ Play(GG) | cG(θ(s0))cG(θ(s1))... ∈ Ξj},

3. s ∈Wj(G,Ωj) if and only if θ(s) ∈Wj(GG,ΩGj ).

Proof. (1.) Suppose s0s1... ∈ Ωj and s′0s
′
1... ∈ Play(G) satisfy si ∼G s′i for all

i ≥ 0. Since G preserves the coloring c the two sequences are colored equivalently
and we have that s′0s′1... ∈ Ωj as well. Thus, G also preserves the objective Ωj .

(2.) This can be seen as follows

ΩGj = {θ(s0)θ(s1)... ∈ Play(GG) | s0s1... ∈ Ωj}
= {θ(s0)θ(s1)... ∈ Play(GG) | c(s0)c(s1)... ∈ Ξj}
= {θ(s0)θ(s1)... ∈ Play(GG) | c(Rep(θ(s0)))c(Rep(θ(s1)))... ∈ Ξj}
= {θ(s0)θ(s1)... ∈ Play(GG) | cG(θ(s0))cG(θ(s1))... ∈ Ξj}

(3.) From (1.) we have that G preserves Ωj and thus, we get the result by applying
Theorem 6.8. □

This means that if we have a symmetry group that preserves the coloring function
we can decide existence of winning strategies in a parity game by deciding existence
of winning strategies in the quotient game. Furthermore, the quotient game is also a
parity game and it has the same number of colors as the original game.

Example 6.11 Consider again the game G from Example 6.4. Let a coloring function
c be defined by c(s0) = c(s1) = c(s5) = 0 and c(s2) = c(s3) = c(s4) = 1. Then the
symmetry group G defined in the example does not preserve c since s1 ∼G s4 but
c(s1) ̸= c(s4). However, we can define a (smaller) symmetry group G′ that preserves
c by

G′ =

{
π ∈ SymG

∣∣∣∣ π(s0, s1, s2, s3, s4, s5) = (s0, s1, s2, s3, s4, s5)
π(s0, s1, s2, s3, s4, s5) = (s0, s1, s3, s2, s4, s5)

}
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This does not give as great a reduction as G, but on the other hand it preserves the
existence of winning strategies for parity conditions defined by c.

6.3.2 Alternating-time temporal logic
Consider a turn-based game G = (S, {0, 1}, (S0, S1), R,AP, L) with two players. We
will show that the symmetry reduction technique can be applied for model-checking
of the alternating-time temporal logic ATL∗ as well. We say that a symmetry group
G preserves the labelling function L if for all s, s′ ∈ S we have

s ∼G s′ ⇒ L(s) = L(s′)

When G preserves L we define a labelling function LG on the set of orbits by
LG(t) = L(Rep(t)) for all orbits t. By applying Theorem 6.8 we can now show that
the symmetry reduction works for ATL∗.

First we define alternating bisimulation [Alu+98] which is the analogue of bisim-
ulation extended to games.

Definition 6.12 Let G = (S, {0, 1}, (S0, S1), R,AP, L) be a turn-based game. Two
states s and s′ of S are alternating bisimilar if there exists a binary relation B over S
such that

• (s, s′) ∈ B;

• for every (t, t′) ∈ B, it holds that L(t) = L(t′);

• for every (t, t′) ∈ B, if it holds that t ∈ S0 if and only if t′ ∈ S0 then

– for every u s.t. (t, u) ∈ R, there exists u′ such that (t′, u′) ∈ R and
(u, u′) ∈ B;

– for every u′ s.t. (t′, u′) ∈ R, there exists u such that (t, u) ∈ R and
(u, u′) ∈ B;

• for every (t, t′) ∈ B, if it holds that t ∈ S0 if and only if t′ ∈ S1 then

– for every u, u′ s.t. (t, u) ∈ R and (t′, u′) ∈ R it holds that (u, u′) ∈ B;

Note in particular the fourth bullet in the definition. It tells us that two states
can be alternating bisimilar even if they are controlled by different players. Though,
this is only possible if all successors of the states are alternating bisimilar. That is,
up to alternating bisimulation there are no different choices available to the players.

Next, we show that s in G and θ(s) in GG are alternating bisimilar. As a conse-
quence of the results in [Alu+98] this implies that s and θ(s) satisfy the same ATL∗

formulas if the game has a finite set of states.
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Proposition 6.13 Let G = (S, {0, 1}, (S0, S1), R,AP, L) be a turn-based game. Let
G be a symmetry group that preserves L, and LG be the quotient labelling function
for SG. Then for any s ∈ S, s and θ(s) are alternating bisimilar.

Proof. We consider the disjoint union of G and GG, and the relation B defined
by

(s, s′) ∈ B if, and only if, s′ = θ(s).

Then the first two conditions in the definition of alternating bisimilarity are fulfilled.
Now, pick (t, t′) ∈ B, assuming that t (hence also t′ = θ(t)) belongs to Player 0.

First, pick a successor u of t, i.e. (t, u) ∈ R. Then (θ(t), θ(u)) ∈ RG and since
(u, θ(u)) ∈ B the first condition is satisfied. Second, pick a successor u′ of t′, i.e.
(t′, u′) ∈ RG. Then there exists v, w ∈ S such that (v, w) ∈ R, v ∈ t′ and w ∈ u′. Then
there exists π ∈ G such that π(v) = t. This means that (π(v), π(w)) = (t, π(w)) ∈ R.
Since π(w) ∈ u′ we also have (π(w), u′) ∈ B which means the second condition is
satisfied. The proof is the same if t belongs to Player 1.

□

We now show that s in G and θ(s) in GG also satisfy the same ATL∗ formulas for
infinite-state games with finite branching.

Proposition 6.14 Let G = (S, {0, 1}, (S0, S1), R,AP, L) be a turn-based game and
G be a symmetry group that preserves L. Then for every s ∈ S, every ρ ∈ Play(G),
every ATL∗ state formula φ and every ATL∗ path formula Φ over AP we have

• G, s |= φ if and only if GG, θ(s) |= φ

• G, ρ |= Φ if and only if GG, θ(ρ) |= Φ

where the satisfaction relation |= in GG is defined with respect to the labelling func-
tion LG.

Proof. The proof is done by induction on the structure of the formula. We omit
the proof for all the simple cases and focus on φ = ⟨⟨{j}⟩⟩Φ.

Define the objective ΩΦ = {ρ ∈ Play(G) | G, ρ |= Φ} as the set of plays in G
satisfying Φ. We will first show that G preserves ΩΦ. Suppose ρ ∈ ΩΦ and ρ′ ∈
Play(G) is a play such that ρ ∼G ρ′. According to the induction hypothesis, G, ρ |= Φ
if and only if GG, θ(ρ) |= Φ but also that G, ρ′ |= Φ if and only if GG, θ(ρ′) |= Φ. Since
θ(ρ) = θ(ρ′) we have that ρ′ satisfies Φ since ρ does. Thus, ρ′ ∈ ΩΦ which means
that G preserves ΩΦ. Then by the induction hypothesis we have

ΩGΦ = {θ(ρ) ∈ Play(GG) | ρ ∈ ΩΦ}
= {θ(ρ) ∈ Play(GG) | G, ρ |= Φ}
= {θ(ρ) ∈ Play(GG) | GG, θ(ρ) |= Φ}



98 6 Symmetry reduction in infinite games with finite branching

Using this and Theorem 6.8 we have for all s ∈ S

G, s |= ⟨⟨{j}⟩⟩Φ iff s ∈Wj(G,ΩΦ)

iff θ(s) ∈Wj(GG,ΩGΦ)
iff GG, θ(s) |= ⟨⟨{j}⟩⟩Φ

□

Remark 6.15 Even though the result for ATL∗ was only proved in two-player games
above, this can easily be extended to handle n-player games for n ≥ 3 as well. This is
the case since formulas of the form ⟨⟨A⟩⟩Φ can be evaluated at a state by letting one
player control the players in coalition A and let another player control the players in
coalition Π \A.

Remark 6.16 Notice that the result of Proposition 6.14 does not extend to Strategy
Logic [CHP07; MMV10] or ATL with strategy contexts [DLM10]. Considering the
game depicted on Figure 6.1, assume that s2 and s3 are labelled with p and s5 is
labelled with q. One can notice that there is a strategy of the circle player (namely,
playing from s2 to s3 and from s3 to s5) under which the following two propositions
hold in s0:

• there is a strategy for the square player to end up in a p-state after two steps
(namely, playing to s2),

• there is a strategy for the square player to end up in a q-state after two steps
(namely, playing to s3).

This obviously fails in the reduced game.

Example 6.17 Consider the infinite game illustrated in Figure 6.3 which is played
on an infinite grid. Player 0 controls the circle states and player 1 controls the square
states. The games starts in (0, 0) and in each state the player controlling the state
can move up, down, left or right. The proposition p is true exactly when the first
coordinate is odd. The game is defined by G = (S, {0, 1}, (S0, S1), R,AP, L) where

• S = Z2

• R = {((x1, y1), (x2, y2)) ∈ S × S | |x1 − x2|+ |y1 − y2| = 1}

• S0 = {(x, y) ∈ S | y is even}

• S1 = {(x, y) ∈ S | y is odd}
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Figure 6.3: Game on an infinite grid.

The labelling is defined by L((x, y)) = {p} if x is odd and L((x, y)) = ∅ if x is
even. Suppose we want to check if some ATL∗ formula φ over the set AP = {p}
is true in (0, 0). This is not necessarily easy to do in an automatic way since G is
infinite. However, we can use symmetry reduction to obtain a finite quotient game as
follows. Let us define

G = {π ∈ SymG | ∃a, b ∈ Z. ∀(x, y) ∈ S. π(x, y) = (x′ + 2 · a, y′ + 2 · b)}.

It is simple to show that G is a group and also that it preserves the labelling L. Further,
G induces four orbits θ((0, 0)), θ((0, 1)), θ((1, 0)) and θ((1, 1)). The corresponding
quotient game can be seen in Figure 6.4.

According to Proposition 6.14 we can just do model-checking in the quotient game
since G, (0, 0) |= φ if and only if GG, θ((0, 0)) |= φ. This shows an infinite-state game
with a finite-state quotient game.

6.4 Where do the symmetry groups come from?

Until now we have just assumed that a symmetry group G was known, but we have
not mentioned how to obtain it. The short answer is that it is not feasible to find
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Figure 6.4: Finite-state quotient game.

the symmetry group that gives the largest reduction in general. Indeed, even for
the special case of finite transition systems this problem is infeasible [ES96]. Another
problem is that the orbit problem is as hard as the Graph Isomorphism problem when
the transition system is finite [Cla+96]. The orbit problem is to decide for a given
group G generated by a set {π1, ..., πn} of permutations whether two states s and s′
belong to the same orbit. For many applications it is even the case that we would
like to construct the quotient game without building the original game explicitly in
the first place because the state spaces are very large.

While this may seem quite negative, the approach has given very large speed-
ups on practical verification instances. Here, it is typically the responsibility of the
engineer doing the verification to provide the symmetry groups as well as the orbits to
the program. The main reason why this is possible is that many natural instances of
embedded, concurrent and distributed systems have a number of identical components
or processes. This gives rise to symmetry in the model which is quite easy to detect
for an experienced human. Another approach is to design modelling languages and
data structures where certain forms of symmetry can be detected automatically. For
discussions of this in different contexts, see [ID96; Hen+03; KNP06]. We have no
reason to believe that the symmetry reduction technique will be less applicable for
model-checking properties of games.

6.5 Summary

We have proved that the symmetry reduction technique can be generalized to infinite-
state turn-based games with finite branching and provided particular applications of
this result in the areas of parity games and model-checking of ATL∗. The technique
has not yet been implemented and tested on practical examples, but we expect that it
should be as applicable as it has been in the context of model-checking of transition
systems, model-checking of real-time systems and probabilistic systems. It is still
open whether the technique can be generalized to games with infinite branching since
our application of König’s Lemma requires that the games have finite branching.



CHAPTER 7
Satisfiability in flat

fragments of temporal
logics

This chapter is an adapted version of the paper

• [GV14] Valentin Goranko and Steen Vester. “Optimal Decision Procedures for
Satisfiability in Fragments of Alternating-time Temporal Logics”. In: Advances
in Modal Logic 10, invited and contributed papers from the tenth conference on
Advances in Modal Logic (AiML). 2014, pages 234–253

It has been updated to be compatible with the other chapters of the thesis. In
particular, the introduction section has been reformatted and updated. Also, the
section defining the flat fragments has been reorganized to be consistent with other
chapters of the thesis.

7.1 Introduction

While found to be quite useful and natural for specification in open systems and multi-
agent systems the logic ATL∗ has some problematic features related to the nesting of
strategic quantifiers. This is why we propose to study flat fragments of ATL∗ in this
chapter.

As an example there may be a conceptual difficulty in understanding the meaning
of nested expressions of the type ⟨⟨A⟩⟩ . . . ⟨⟨B⟩⟩Φ, especially, when the coalitions A and
B share common agents. For instance, what exactly should ⟨⟨A⟩⟩¬⟨⟨A⟩⟩Φ mean?

This problem is related to a technical problem built in the semantics of ATL∗,
where e.g., in the truth evaluation of a formula of the type ⟨⟨A⟩⟩ . . . ⟨⟨B⟩⟩Φ the strategy
for A adopted to guarantee the success of the goal . . . ⟨⟨B⟩⟩Φ does not have any effect
when evaluating the truth of the subgoal ⟨⟨B⟩⟩Φ. This, arguably, goes against the
intuitive understanding of what a strategy and its execution mean.

Such problems have lead to several proposals of alternative semantics for ATL∗,
with irrevocable commitment to strategies [ÅGJ07] or with strategy contexts, explic-
itly controllable within the formulas [Bri+09].



102 7 Satisfiability in flat fragments of temporal logics

From a practical point of view it is also problematic that the computational com-
plexity of ATL∗ is very high: it is 2ExpTime-complete for both the model check-
ing [AHK02] and the satisfiability [Sch08] problems.

Thus, there are several good reasons to consider flat fragments of ATL∗, where
nesting of strategic quantifiers and temporal operators is restricted or completely dis-
allowed, thus avoiding the problems listed above at the cost of reduced expressiveness.

There are two natural kinds of ‘flatness’ in the language of ATL∗: with respect
to the temporal operators and with respect to strategic quantifiers. The former
comes naturally from purely temporal logics and has been investigated before, see
e.g., [Hal95], [DS02], and [SV10] from a more general, coalgebraic perspective. Here
we will mainly consider the latter type of flatness.

Contribution
The objective of this chapter is to develop optimal algorithms for solving the satisfi-
ability problem for the variety of naturally definable flat fragments of ATL∗ and to
analyze their computational complexity. Our main results and the contributions of
this chapter are as follows:

1. Satisfiability of ATL∗ where nesting between strategic quantifiers is not allowed
is PSpace-complete

2. Satisfiability in the flat fragments of ATL and ATL+ are shown to be ΣP3 -
complete

3. For all logics considered, already the fragments with a nesting depth 2 of strate-
gic quantifiers (respectively, path quantifiers) the satisfiability problem is as
hard as in the full logics. Indeed, for a given formula an equi-satisfiable formula
with nesting depth 2 and linear size can be computed in linear time.

Compared to 2ExpTime-completeness of satisfiability in ATL∗ [Sch08] and ATL+

[JL03] and ExpTime-completeness in ATL [Dri03; GD06] the complexity for flat
fragments are significantly lower.

We also provide complexity results for flat fragments of the branching-time logics
CTL,CTL+ and CTL∗ where, analogously to strategic quantifiers, path quantifiers
cannot be nested. The results are collected in Figure 7.4.

Outline
The structure of the chapter is as follows: In Section 7.2 we introduce the satisfiability
problem and various flat fragments of ATL∗ and discuss their expressiveness. Section
7.3 contains the technical preparation for our algorithms, where we introduce several
normal forms for ATL∗ formulas and obtain some key technical results. In Section 7.5
we provide sound and complete decision procedures as well as matching lower bounds
for the flat fragments of ATL∗. We end with a summary in Section 7.6.
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7.2 Flat fragments

In this section we introduce the flat fragments of temporal logics that will be analyzed
for the remainder of the chapter and provide preliminary results for the satisfiability
problem.

7.2.1 Flat fragments of LTL, CTL, CTL∗

We define the flat fragments LTL1, CTL1 and CTL∗
1 respectively as subsets of LTL,

CTL and CTL∗. In LTL1 no nesting of temporal operators is allowed. CTL∗
1,CTL+

1

and CTL1 are the fragments of CTL∗,CTL+ and CTL where no nesting of path
quantifiers is allowed. They are generating by the following grammar

LTL1: θ ::= p | ¬θ1 | θ1 ∧ θ2 | Xβ1 | β1Uβ2
CTL1: ψ ::= p | ¬ψ1 | ψ1 ∧ ψ2 | AXβ1 | A(β1Uβ2) | A(β1Rβ2)
CTL+

1 : ϑ ::= p | ¬ϑ1 | ϑ1 ∧ ϑ2 | Aθ1
CTL∗

1: φ ::= p | ¬φ1 | φ1 ∧ φ2 | Aη1

where p is a proposition, β1 and β2 are Boolean formulas, θ1 and θ2 are LTL1 formulas,
η1 is an LTL formula, ψ1 and ψ2 are CTL1 formulas, ϑ1 and ϑ2 are CTL+

1 formulas
and φ1 and φ2 are CTL∗

1 formulas. The temporal operators F and G are defined as
usual, for details see Section 2.2.1.

The following are examples of flat and non-flat formulas:

• pUq ∧X(r ∧ (q ∧ ¬p)) is in LTL1 but pU(Xq) is not.

• A(¬pU(p ∧ ¬q)) ∧ ¬(EF(q ∧ ¬p) ∧ ¬AF¬(p ∧ q)) is in CTL1 (and in CTL∗
1).

• AGFp is in CTL∗
1 but not in CTL1; AGEFp is neither in CTL1 nor in CTL∗

1.

7.2.2 A hierarchy of flat fragments of ATL∗

Here we define some flat fragments of ATL∗ and ATL. Flatness generally means no
nesting of non-Boolean operators. There are two natural notions of flatness in the
languages of ATL and ATL∗: with respect to temporal operators and with respect
to strategic quantifiers. We will be mostly concerned with the latter, but the former
also applies in the case of ATL.

For the remainder of this chapter we adopt the following notational conventions:
we will typically denote Boolean formulas by β, γ; LTL formulas by θ, η, ζ; ATL
formulas by φ,ψ; and ATL∗ formulas – both state and path – by Θ,Φ,Ψ; all possibly
with indices.

We will consider the following fragments of ATL∗, where p is an atomic proposition,
A ⊆ Π is a coalition and θ is an LTL formula:
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1. Separated ATL∗, denoted ATL∗
Sep, consists of those formulas of ATL∗ in

which there is no nesting of strategic quantifiers in the scope of temporal op-
erators (but, any nesting of temporal operators within strategic quantifiers or
temporal operators is allowed), so the (external) strategic and the (internal)
temporal layers are separated. More precisely, the formulas of ATL∗

Sep are gen-
erated as follows:

Φ ::= θ | ¬Φ1 | Φ1 ∧ Φ2 | ⟨⟨A⟩⟩Φ1

where Φ1 and Φ2 are ATL∗
Sep formulas.

2. Full (strategically) flat ATL∗, denoted ATL∗
1, consists of those formulas of

ATL∗ in which there is no nesting of strategic quantifiers within strategic quan-
tifiers (but, nesting of strategic quantifiers and temporal operators in temporal
operators is allowed), formally generated as follows:

Φ ::= p | ¬Φ1 | Φ1 ∧ Φ2 | ⟨⟨A⟩⟩θ | XΦ1 | Φ1UΦ2 | Φ1RΦ2

where Φ1 and Φ2 are ATL∗
1 formulas. If the restriction A ̸= ∅ is imposed, we

denote the resulting fragment ÂTL∗
1.

3. State fragment of ATL∗
1, denoted St(ATL∗

1), consists of the state formulas
of ATL∗

1, i.e. those formulas of ATL∗ in which there is no nesting of strategic
quantifiers in either temporal operators or strategic quantifiers (but, nesting
between temporal operators is allowed). The formulas of St(ATL∗

1) are explicitly
generated as follows:

Φ ::= p | ¬Φ1 | Φ1 ∧ Φ2 | ⟨⟨A⟩⟩θ.

where Φ1 and Φ2 are St(ATL∗
1) formulas.

4. Flat ATL+ (or, double-flat ATL∗), denoted ATL+
1 , consists of those formulas

of ATL+ which are also in St(ATL∗
1), e.g., with no nesting of either strategic

quantifiers or temporal operators within temporal operators. The formulas of
ATL+

1 are generated as follows:

Φ ::= p | ¬Φ1 | Φ1 ∧ Φ2 | ⟨⟨A⟩⟩θ1

where θ1 is an LTL1 formula and Φ1 and Φ2 are ATL+
1 formulas.

5. Flat ATL, denoted ATL1, consists of those formulas of ATL+
1 which are in

ATL, i.e., in which strategic quantifiers are followed immediately by temporal
operators. The formulas of ATL1 are generated as follows:

φ ::= p | ¬φ1 | φ1 ∧ φ2 | ⟨⟨A⟩⟩Xβ1 | ⟨⟨A⟩⟩(β1Uβ2) | ⟨⟨A⟩⟩(β1Rβ2)

where β1 and β2 are Boolean formulas and φ1 and φ2 are ATL1 formulas.
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Figure 7.1: Inclusions between flat fragments. An arrow from L1 to L2 means that
every L1 formula is an L2 formula.

Inclusions between the different flat fragments are illustrated in Figure 7.1. All
inclusions shown in the figure are strict and there are no inclusions except the ones
shown (where transitive closure is implicit). For example:

• (⟨⟨1⟩⟩G¬p ∧ ¬⟨⟨2⟩⟩X(p ∨ ¬q)) ∨ ⟨⟨1, 2⟩⟩(pU¬q) is in ATL1;

• ⟨⟨1⟩⟩(G¬p ∧ Fq), ¬⟨⟨1, 2⟩⟩((pR¬q) ∨ (¬pUq)) are in ATL+
1 but not in ATL1;

• ⟨⟨1⟩⟩(GF¬p ∨X¬(pU¬q)) is in St(ATL∗
1) but not ATL

+
1 ;

• G⟨⟨1, 2⟩⟩F(¬p ∨ q) is in ÂTL∗
1 but not in St(ATL∗

1);

• ⟨⟨∅⟩⟩Gp ∧G⟨⟨1, 2⟩⟩GF¬p is in ATL∗
1 but not in ÂTL∗

1;

• ⟨⟨2⟩⟩⟨⟨1⟩⟩¬(pU¬q) is in ATL∗
Sep but not in ATL∗

1.

7.2.3 Some remarks on the expressiveness of the flat
ATL∗-fragments

The lower complexity of the satisfiability in the flat fragments of ATL∗ comes with
a price, namely that various properties that require nesting of strategic quantifiers
cannot be expressed anymore. However, many interesting and important properties
of systems are still expressibe. For instance:

• ⟨⟨ctrl⟩⟩G¬break in ATL1 specifies that a controller can make sure the system
does not break no matter how the environment behaves,

•
∧n
i=1⟨⟨proci⟩⟩GFdb_accessi in ATL∗

1 expresses that each process can ensure
database access infinitely often,

• ⟨⟨A⟩⟩(θfair → θ) in ATL∗
1 means that coalition A can make sure that the LTL

property θ is satisfied on all fair paths (where fairness is defined by LTL formula
θfair).
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The semantics of ATL∗ is based on unbounded memory strategies, but it can
be restricted and parameterized with the amount of memory that the proponent
agents’ strategies can use. The extreme case is the memoryless semantics, where the
proponents may only use memoryless strategies. It turns out that satisfiability in
ATL, is unaffected by such restrictions, but differences occur in ATL∗ and even in
ATL+. For discussion on these see e.g., [BJ13].

In contrast, using the satisfiability procedures developed in Section 7.5, we will
show that all semantics based on different memory restrictions yield the same satisfi-
able (resp., the same valid) formulas in the flat fragment ATL∗

1.

7.2.4 The satisfiability problem
We focus on the satisfiability problem in this chapter where we distinguish between
the state satisfiabilitystatesatState satisfiability and path satisfiability problems which
are defined on a given fragment L of ATL∗ as follows:

• Given a state formula φ in L, does there exist a concurrent gameM and a state
s inM such thatM, s |= φ?

• Given a path formula Φ in L, does there exist a concurrent gameM and a play
ρ inM such thatM, ρ |= Φ?

Note that there are two variants of the satisfiability problem for formulas of ATL∗:
tight, where it is assumed that all agents in the model are mentioned in the formula,
and loose, where additional agents, not mentioned in the formula, are allowed in the
model. It is easy to see that these variants are really different, but the latter one is
immediately reducible to the former, by adding just one extra agent a to the language.
Furthermore, this extra agent can be easily added superfluously to the formula, e.g.,
by adding a conjunct ⟨⟨a⟩⟩X⊤, so we hereafter only consider the tight satisfiability
version. For further details and discussion on this issue, see e.g., [GS09; Wal+06].

Even though ATL∗
1 is included in ATL∗

Sep they have the same expressive power
and there is an efficient translation from ATL∗

Sep to ATL∗
1.

Proposition 7.1 Every formula of ATL∗
Sep is logically equivalent to a formula of

ATL∗
Sep which is at most as long and has no nesting of strategic quantifiers. Such a

formula is effectively computable in linear time.

Proof. Because ⟨⟨A⟩⟩Φ ≡ Φ for every state formula Φ and coalition A. □

Thus, deciding satisfiablity in ATL∗
Sep is reducible with no cost to satisfiablity in

St(ATL∗
1), so we will not discuss ATL∗

Sep hereafter. On the other hand, due to the
equivalence above, the fragment ATL∗

1 can be extended even further by allowing nest-
ing of strategic quantifiers, as long as there are no occurrences of temporal operators
in between them.
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The equivalence of ⟨⟨A⟩⟩Φ and Φ for state formulas Φ is an example of why nesting
of strategic quantifiers in ATL∗ can be considered unnatural. We note that this
phenomenon is avoided in ATL∗ with strategy context [Bri+09].

Between the full logics and their flat fragments, it is natural to consider the hierar-
chies of fragments with a bounded nesting depth of strategic quantifiers. However, the
next result shows that the fragments with nesting depth 2 are essentially as expressive
and computationally hard as the full logics.

Theorem 7.2 For any logic L ∈ {LTL,CTL,CTL+,CTL∗,ATL,ATL+,ATL∗} and
formula Φ of L there is an equi-satisfiable formula Φ′ in L with nesting depth 2 of
strategic quantifiers (resp., temporal operators for LTL) and length |Φ′| = O(|Φ|) that
can be computed in linear time.

Proof. In each of the cases, the flattening is done by repeated renaming of state
subformulas with fresh atomic propositions. We illustrate the technique on ATL∗.
Let Φ be an ATL∗ formula. For any innermost subformula Ψ of Φ beginning with
a strategic quantifier we introduce a fresh atomic proposition pΨ. Then Φ and
Φ′ = Φ[pΨ/Ψ] ∧AG(pΨ ↔ Ψ) are equi-satisfiable. By repeated application of such
renaming of strategically quantified subformulas we obtain an equi-satisfiable formula
of nesting depth 2 that is linear in the size of Φ. Since AG(pΨ ↔ Ψ) is a CTL for-
mula, this works for each logic L ∈ {CTL,CTL+,CTL∗,ATL,ATL+,ATL∗}, while
for LTL we use G(pΨ ↔ Ψ). □

Thus, when restricting the nesting depth of formulas, we only have something
to gain complexity-wise by considering a nesting depth of 1 as a nesting depth of 2
already give the same computational complexity as for the full fragments.

7.3 Normal forms and satisfiability of special sets

In this section we introduce several types of normal forms which will be used when
we consider algorithms for the satisfiability problems.

7.3.1 Negation normal form of ATL∗ formulas
The first normal form we introduce is negation normal form.

Definition 7.3 An ATL∗ formula Φ is in a negation normal form (NNF) if negations
in Φ may only occur immediately in front of atomic propositions.

We now define the dual [[φ]] to the strategic quantifier ⟨⟨φ⟩⟩ as usual. It reads:
“There is no strategy for coalition A which ensures that φ is not satisfied along the
play”. Formally it is defined as follows:

[[A]]φ := ¬⟨⟨A⟩⟩¬φ
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If we consider [[·]] as a primitive operator in ATL∗, then every ATL∗ formula can
be transformed to an equivalent formula in NNF by driving all negations inwards,
using the self-duality of X and the duality between U and R. However, using [[·]]
formally breaks the syntax of the fragments ATL and ATL1 because of inserting a ¬
between ⟨⟨·⟩⟩ and the temporal operator. Yet, this can be easily fixed by equivalently
re-defining the applications of [[·]], using the following equivalences:

• [[A]]Xφ ≡ ¬⟨⟨A⟩⟩X¬φ

• [[A]](φUψ) ≡ ¬⟨⟨A⟩⟩((¬φ)R(¬ψ))

• [[A]](φRψ) ≡ ¬⟨⟨A⟩⟩((¬φ)U(¬ψ))

Hereafter we assume that the language ATL∗ and each of its fragments introduced
above are formally extended with the operator [[·]] applied just like ⟨⟨·⟩⟩ in the respec-
tive fragments. Due to the equivalences above, the resulting extensions preserve the
expressiveness of these fragments. Formally:

Lemma 7.4 Every formula of ATL∗ extended with the operator [[·]] can be trans-
formed to an equivalent formula in NNF. Furthermore, each of the fragments ATL,
ATL1, ATL+

1 , St(ATL∗
1) and ATL∗

1, extended with [[·]], is closed under this transfor-
mation, i.e. if a formula is in any of these fragments then its NNF-equivalent formula
is in that fragment, too.

7.3.2 Successor normal forms
To define successor normal form we first need a few other definitions.

Definition 7.5 (Successor formulas) An ATL∗ formula is a successor formula
(SF) if it is of the type ⟨⟨A⟩⟩XΦ or [[A]]XΦ.

Definition 7.6 (Components) With every set

Γ = {⟨⟨A0⟩⟩XΦ0, . . . , ⟨⟨Am−1⟩⟩XΦm−1, [[B0]]XΨ0, . . . , [[Bn−1]]XΨn−1}

of ATL∗ successor formulas we associate the set of its

• ⟨⟨·⟩⟩X-components: ⟨⟨·⟩⟩X(Γ) = {Φ0, . . . ,Φm−1},

• [[·]]X-components: [[·]]X(Γ) = {Ψ0, . . . ,Ψn−1},

• successor components: SC(Γ) = ⟨⟨·⟩⟩X(Γ) ∪ [[·]]X(Γ).

Definition 7.7 (Successor normal form) Formulas in successor normal form are
defined as follows:
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1. An LTL formula is in an LTL successor normal form (LSNF) if it is in NNF and
is a Boolean combination of literals and successor formulas, i.e., LTL formulas
beginning with X.

2. An ATL∗ formula is in a successor normal form (SNF) if it is in NNF and is
a Boolean combination of literals and ATL∗ successor formulas.

Lemma 7.8 Every LTL-formula ζ can be effectively transformed to an equivalent
formula in LTL successor normal form LSNF (ζ), of length at most 6|ζ|.

Proof. We can assume that ζ is already transformed to NNF (of length less
than twice the original length). Consider all maximal subformulas of ζ of the types
(θUη) and (θRη). Replace each of them with its LTL-equivalent fixpoint unfolding,
respectively η ∨ (θ ∧X(θUη)) and η ∧ (θ ∨X(θRη)). Then, the same procedure is
applied recursively to all respective subformulas θ, η occurring above and not in the
scope of X, until all occurrences of U and R get in the scope of X. This procedure
at most triples the length of the starting formula and the result is clearly a formula
in LSNF. □

Definition 7.9 (Conjunctive formulas in SNF) An ATL∗ formula in SNF is con-
junctive if it is of the form

Θ = Φ ∧ ⟨⟨A0⟩⟩XΦ0 ∧ . . . ∧ ⟨⟨Am−1⟩⟩XΦm−1 ∧ [[B0]]XΨ0 ∧ . . . ∧ [[Bn−1]]XΨn−1

where Φ is a boolean combination of literals.
With every such formula Θ we associate the set of its successor conjuncts:

C(Θ) = {⟨⟨A0⟩⟩XΦ0, . . . , ⟨⟨Am−1⟩⟩XΦm−1, [[B0]]XΨ0, . . . , [[Bn−1]]XΨn−1}

7.4 Sets of distributed control of ATL∗ formulas

In this section we consider sets of distributed control which will be useful for us when
considering the satisfiability question. They are defined as follows.

Definition 7.10 (Set of distributed control) A set of ATL∗ formulas ∆ is a set
of distributed control if ∆ = {⟨⟨A0⟩⟩Φ0, . . . , ⟨⟨Am−1⟩⟩Φl−1, [[B]]Ψ} where the coalitions
A0, . . . , Al−1 are pairwise disjoint, and A0 ∪ . . . ∪Al−1 ⊆ B.

Lemma 7.11 A set of ATL∗ successor formulas

Γ = {⟨⟨A0⟩⟩XΦ0, . . . , ⟨⟨Am−1⟩⟩XΦm−1, [[B0]]XΨ0, . . . , [[Bn−1]]XΨn−1, [[Π]]X⊤}

is satisfiable if and only if every subset of distributed control ∆ of Γ has a satisfiable
set of successor components.
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Proof. First, note that the formula [[Π]]X⊤ is valid, so it plays no role in the
satisfiability of Γ; it is only added there in order to enable sufficiently many subsets
of distributed control.

Now, suppose Γ is true at a state s of a concurrent game M. Then for every
subset of distributed control ∆ = {⟨⟨A0⟩⟩XΦ0, . . . , ⟨⟨Al−1⟩⟩XΦl−1, [[B]]XΨ} consider
collective actions for the coalitions A0, . . . , Al−1 at s that guarantee satisfaction of
their respective nexttime objectives in ∆ in any of the resulting successor states. Add
arbitrarily fixed actions of the remaining agents in B and a respective collective action
for A \ B dependent on the so fixed actions of the agents in B, that brings about
satisfaction of Ψ in the resulting successor state s′. Then all successor components of
∆ are true at s′.

Conversely, suppose that ∆1, . . . ,∆d are all subsets of Γ of distributed control and
they are all satisfiable. For each ∆i we fix a concurrent game Mi and a state si in
it that satisfies SC(∆i). We can assume, w.l.o.g., that Mi is generated from si, i.e.
consists only of states reachable by plays starting at si.

We will construct a concurrent game satisfying Γ by using a construction from
[GD06]. The idea is to first create a root state s and supply all agents with sufficiently
many actions at s in order to ensure the existence of all collective actions and respec-
tive successor states necessary for satisfying the successor components of Γ. We will
show that it suffices to take care of the sets of successor components of each subset
of distributed control Γ and then will use the concurrent games satisfying these to
complete the construction of the model satisfying Γ.

Now, the construction. Recall that |Π| = k and let r = m+n (the numbers of ⟨⟨·⟩⟩-
and [[·]]-components in Γ). Each agent will have r available actions {0, . . . , r − 1} at
the root state s, hence {0, . . . , r − 1}k is the set of all possible action profiles at s.
The intuition is that every agent’s action at s is a choice of that agent of a formula
from Γ for the satisfaction of which the agent chooses to act. For every such action
profile σ we denote by N(σ) the set of agents {i | σi ≥ m} and then we define the
number neg(σ) to be the remainder of [

∑
i∈N(σ)(σi −m)] modulo n. (The idea of

this definition is that, once all agents in any given proper subset of N(σ) choose
their actions, the remaining agents in N(σ) can act accordingly to yield any value of
neg(σ) between 0 and n− 1 they wish, i.e., to set the ”collective action” of all agents
in neg(σ) on any [[·]]X-formula in Γ they choose.) Now, we consider the set

∆σ = {⟨⟨Aj⟩⟩XΦj | j < m and σi = j for all i ∈ Aj} ∪
{[[Bl]]XΨl | neg(σ) = l and Π \Bl ⊆ N(σ)}

Note that ∆σ is a subset of Γ of distributed control if it contains a formula
[[Bj ]]XΨ, or else can be made a set of distributed control by adding [[Π]]X⊤ to
it. Indeed, all agents in a Aj choose j, so all coalitions Aj must be pairwise disjoint.
Besides, if [[Bl]]XΨl ∈ ∆σ then it is clearly a unique [[·]]-formula in ∆σ and no agents
from any Aj ∈ ∆σ are in N(σ), hence Aj ⊆ Bl for each ⟨⟨Aj⟩⟩XΦj ∈ ∆σ. Thus, ∆σ

is one of ∆1, . . . ,∆d, say ∆i. Then, we determine the successor state δ(s, σ) to be si.
To complete the definition of the concurrent game, at each successor state si of s we
graft a copy ofMi.
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We will show that the resulting concurrent gameM satisfies Γ at s. Indeed, for
every ⟨⟨Aj⟩⟩XΦj ∈ Γ a collective strategy for Aj that guarantees the satisfaction of
that formula at s consists in all agents from Aj acting j at s, following their strategy
that guarantees inMi the satisfaction of the objective Φj if the play enters the copy
of Mi, and acting in an arbitrarily fixed manner at all other states of M. (Note
that, if the strategy for Aj inMi is positional, then the above described strategy is
positional, too.) Lastly, every [[Bl]]XΨl ∈ Γ is true at s, too, because if Bl ̸= Π then
for every collective action of all agents from [[Bl]]X there is a suitable complementary
action of Π\Bl, where all agents choose actions greater than m and such that neg(σ)
adds up to l modulo n. (In fact, this can be guaranteed by any agent in Π \ Bl
after all others have chosen their actions.) In the case when Bl = Π, every subset
{⟨⟨Aj⟩⟩XΦj , [[Bl]]XΨl} for j < m is of distributed control, hence Ψl is true at the
root si ofMi for each i = 1, ..., d. Thus,M, s |= Γ, which completes the proof. □

A consequence of the proof above is that memoryless and memory-based semantics
yield the same satisfiable state formulas in the flat fragments.

Corollary 7.12 A St(ATL∗
1) formula Φ is satisfiable in the memoryless semantics if

and only if it is satisfiable in the memory-based semantics.

Proof. Lemma 7.11 can be proved for memoryless semantics in the same way,
but only for St(ATL∗

1) formulas. This is because the successor components are LTL
formulas which have the same semantics with and without memory. Further, for both
semantics each subformula ⟨⟨A⟩⟩θ or [[A]]θ of Φ with a strategic quantifier as main
connective can be converted to SNF by converting θ to LSNF using Lemma 7.8. Then,
we can use the memoryless and memory-based version of Lemma 7.11 and obtain that
Φ is satisfiable in the memory-based semantics if and only if it is satisfiable in the
memoryless semantics since the satisfiable sets of successor components are the same
for the two types of semantics. □

7.5 Optimal decision procedures for satisfiability

In this section we provide algorithms for satisfiability in the flat fragments of ATL∗.
In addition, we provide matching lower bounds.

7.5.1 Centipede models and satisfiability in LTL1, CTL1 and
CTL+

1

Satisfiability of LTL1 is analyzed in [DS02]. In particular, it is shown that if an LTL1

formula θ is satisfiable then it is satisfiable in a model of the form s0s1...s
ω
ℓ where

ℓ = |θ|. Consequently, it is shown that satisfiability of LTL1 is NP-complete. We
provide similar results for CTL+

1 and CTL1 here.
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Figure 7.2: A centipede model.

Proposition 7.13 If a CTL+
1 formula φ has a model, then it has a model with at

most O(|φ|2) states.

Proof. Suppose M, s0 |= φ for a CTL+
1 formula φ, a model M and a state s0.

Assume w.l.o.g. that φ is in NNF. We generate another modelM′ with O(|φ|2) states
and a state s′0 such thatM′, s′0 |= φ.

Let ∆Q be the set of subformulas of φ that has Q as main connective for Q ∈
{E,A} and let ∆B be the set of maximal Boolean subformulas of φ that do not occur
in the scope of a path quantifier. For each Z ∈ {E,A,B} let ∆⊤

Z ⊆ ∆Z be the subsets
satisfied inM, s0.

Now, for each Eψ ∈ ∆⊤
E let ρψ = ρψ0 ρ

ψ
1 ... be a path inM starting in s0 such that

ρψ |= ψ. SinceM, s0 |= φ we have for every Aψ′ ∈ ∆⊤
A that ρψ |= ψ′ because ψ′ is

satisfied along all paths from s0. Further, ρψ0 = s0 implies that ρψ |= ψ∧
∧
ψ′∈∆⊤

A
ψ′∧∧

β∈∆⊤
B
β. Since this is an LTL1 formula of size at most |φ| it has a model πψ of the

form πψ0 ...(π
ψ
|φ|)

ω where πψ0 is labelled as s0. Now, by gluing together each path πψ

(which is made finite by adding a self-loop to the state πψ|φ|) in the initial state s′0 we
obtain a transition systemM′ such thatM′, s′0 |= φ. Since |∆⊤

E | ≤ |φ| there are at
most O(|φ|2) states inM′. □

Further, we will see that for satisfiable formulas of CTL∗
1, ATL1 and St(ATL∗

1)
there are models that can be obtained by gluing together ultimately periodic paths
as in the proof of Proposition 7.13. We call such models centipede models, illustrated
in Figure 7.2. Note that these models only branch in the initial state.

However, for the flat fragments CTL∗
1, ATL1, St(ATL∗

1) models of polynomial size
are not guaranteed to exist as for CTL+

1 . First, the length of the period and the
prefix of the ultimately periodic paths can be exponential due to LTL subformulas in
the case of CTL∗

1 and St(ATL∗
1). Second, in the cases of ATL1 and St(ATL∗

1) (but
not for CTL∗

1) an exponential branching factor in the initial state may be forced by
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a formula. Indeed, consider the following ATL1 formula

φ =
n∧
i=1

⟨⟨i⟩⟩Xpi ∧ ⟨⟨i⟩⟩X¬pi

over the propositions {p1, ..., pn} and players {1, ..., n}. For a state s0 to satisfy this
formula there has to be a successor state for each possible truth assignment to the
propositions {p1, ..., pn}, of which there are 2n. This phenomenon does not occur in
the branching-time logic CTL∗

1.

Proposition 7.14 Satisfiability in CTL+
1 is NP-complete.

Proof. NP-hardness follows from Boolean satisfiability. An NP-algorithm for
CTL+

1 works as follows. It takes as input a CTL+
1 formula φ in NNF, hence a positive

Boolean combination of flat CTL+
1 state formulas, and guesses non-deterministically a

centipede modelM, s0 of size O(|φ|2) for φ, as well as the disjuncts in φ that evaluate
to true at s0. (According to Proposition 7.13, if φ has a model then it has a model
of this form and size.) After guessing, it checks whether the resulting formula of the
form φ′ = β ∧

∧ℓ
i=0 φ

′
i is true in the guessed model where β is a Boolean formula and

each φ′
i is of the form Aθi or Eθi for an LTL1 formula θi. First, the model-checking of

β can be done in linear time. Next, for each of the O(|φ|) formulas θi it can checked
whether it is true in each of the O(|φ|) paths of the centipede model in polynomial
time since LTL model-checking of an ultimately periodic path of length O(|φ|) can be
done in polynomial time in |φ| [MS03]. Thus, the guess can be verified in polynomial
time due to the small model property of Proposition 7.13 and the centipede shape of
the model. □

Since CTL1 is included in CTL+
1 and CTL1 satisfiability also includes Boolean

satisfiability we have the following corollary.

Corollary 7.15 Satisfiability in CTL1 is NP-complete.

7.5.2 Lower bound for satisfiability in ATL1

In this section we show that satisfiability of flat ATL is hard for the complexity class
ΣP3 in the polynomial hierarchy.

Proposition 7.16 ATL1-SAT is ΣP3 -hard.

Proof. The proof is by reduction from the ΣP3 -SAT problem, which is ΣP3 -
complete. This problem takes as input a quantified Boolean sentence

γ = ∃x1, ..., xm∀xm+1, ..., xk∃xk+1, ..., xn.γ
′

where γ′ is a Boolean formula over the Boolean variables x1, ..., xn. The problem is
to decide whether γ is true.
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Given γ, we construct an ATL1 formula ψ over the set AP = {x1, ..., xn} of
proposition symbols as follows

ψ =
m∧
j=1

(AXxj ∨AX¬xj) ∧
n∧

i=m+1

(⟨⟨{i}⟩⟩Xxi ∧ ⟨⟨{i}⟩⟩X¬xi)∧¬⟨⟨{m+1, . . . , k}⟩⟩X¬γ′

We now claim that γ is true if and only if ψ is satisfiable.
The intuition behind this is as follows. Note first that the formula ψ only expresses

properties of the second state during the play. That is, after the first choice of actions
of all players in the game.

It is specified that every player i in {m+ 1, ..., n} controls the value of the propo-
sition xi in the second state. It is also specified that the value of proposition xj for
1 ≤ j ≤ m is the same in the second state of the game no matter what the players
do. That is, these values are specific to a game satisfying this formula. Finally, it is
specified that the coalition {m+1, ..., k} do not have a strategy to make sure that γ′
is false.

It is now possible to show that ψ is satisfiable if and only if there exists a game
(with particular truth values of x1, ..., xm) such that values of xm+1, ..., xk cannot be
chosen by players {m + 1, ..., k} in a way such that no values of xk+1, ..., xn (chosen
by players {k+1, ..., n}) makes γ′ true. In other words, there exists particular values
of x1, ..., xm such that for all values of xm+1, ..., xk there exists values of xk+1, ..., xn
such that γ′ is true. This intuition is now shown formally.

First, suppose that γ is true. Then we construct a concurrent game M =
(S,Π,Σ,Γ, δ,AP, L) and a state s0 ∈ S, such that M, s0 |= ψ, as follows. Let
Π = {m + 1, ..., n}, S = {s0} ∪ {svm+1,...,vn | vi ∈ {0, 1} for m + 1 ≤ i ≤ n} and
Σ = {0, 1}. Then, for every player a ∈ Π define Γ(s0, a) = {0, 1} and Γ(s, a) = {0}
for all s ̸= s0. The transitions are defined by δ(s0, (vm+1, . . . vn)) = svm+1,...,vn

and δ(s, αΠ) = s for all s ̸= s0 and all action tuples αΠ. The set of proposi-
tion symbols is AP = {x1, . . . , xn}. The labelling is given by L(s0) = ∅ and
for every i ∈ {m + 1, . . . , n} we have xi ∈ L(svm+1,...,vn) if and only if vi = 1
when svm+1,...,vn ∈ S \ {s0}. Finally, let x′1, ..., x′m be particular values such that
∀xm+1, . . . , xk∃xk+1, ..., xn.γ

′[x1 7→ x′1, . . . , xm 7→ x′m] is true. Such values exist since
γ is true. For 1 ≤ i ≤ m and every svm+1,...,vn ∈ S \ {s0}, let xi ∈ L(svm+1,...,vn) if
and only if x′i = 1.

Intuitively, for all i such that m + 1 ≤ i ≤ n player i chooses the value of xi
in the successor state and then the play stays in that state forever. The value of
xi for 1 ≤ i ≤ m in the successor state is defined by the values x′1, ..., x′m. The
subformula

∧n
i=m+1 (⟨⟨{i}⟩⟩Xxi ∧ ⟨⟨{i}⟩⟩X¬xi) is clearly true at s0. The same is the

case for
∧m
j=1(AXxj ∨AX¬xj). Next, since γ is true when xi takes the values x′i for

1 ≤ i ≤ m, then no matter which values of xi are chosen by players in {m+ 1, ..., k}
there exists values of xi for players in {k+1, ..., n} such that γ′ is true in the successor
state. Thus, coalition {m+1, ..., k} does not have a strategy to ensure that γ′ is false
in the successor state. Thus,M, s0 |= ψ.
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For the converse direction, suppose that ψ is satisfied by some model M, s0, i.e.
M, s0 |= ψ. For contradiction, suppose that γ is false. Then for all x1, ..., xm there
exists xm+1, ..., xk such that γ′ is false for all xk+1, ..., xn. In particular, this must
be the case when xi take the unique values x′i for 1 ≤ i ≤ m that are true in all
successors of s0. These are unique since s0 satisfies

∧m
j=1(AXxj ∨AX¬xj). In this

case there exists particular values x′i for m + 1 ≤ i ≤ k such that γ′ is false for all
xk+1, ..., xn when xi take the values x′i for m + 1 ≤ i ≤ k. Consider the strategy
for coalition {m + 1, ..., k} that chooses these values for xi in the successor state for
m+ 1 ≤ i ≤ k. This strategy ensures that γ′ is false in the successor state. However,
this contradicts the fact that M, s0 |= ¬⟨⟨{m + 1, . . . , k}⟩⟩X¬γ′ which follows from
M, s0 |= ψ. Thus, γ must be true. This completes the proof. □

Note that the hardness result only requires the use of the temporal operator X
and neither U nor R. This is interesting since this lower bound will be shown to be
an upper bound for the full ATL+

1 in the following section. Thus, the ⟨⟨·⟩⟩X fragment
of ATL1 is as hard as the full ATL+

1 .

7.5.3 Deciding satisfiability in St(ATL∗
1) and ATL+

1

Here we provide algorithms for satisfiability of St(ATL∗
1) and ATL+

1 . However, first
we need a lemma.

Lemma 7.17 Let Φ = ⟨⟨A⟩⟩Ψ be an ATL∗ formula and let AP(Φ) = {p1, . . . pr} be the
set of atomic propositions occurring in Φ. Consider any mapping v : AP(Φ)→ {⊤,⊥}
and let v[Φ] be the result of substitution of all occurrences of pi in Φ which are not
in the scope of a temporal operator by v(pi), for each p1, . . . pr. Further, let

δ(v) :=
∧

v(pi)=⊤

pi ∧
∧

v(pi)=⊥

¬pi

Then, δ(v) ∧ Φ ≡ δ(v) ∧ v[Φ].

Proof. Consider any concurrent gameM and a state s in it. If δ(v) is false at
s then both sides are false. SupposeM, s |= δ(v). ThenM, s |= v(pi)↔ pi for each
p1, . . . pr. Then, Φ and v[Φ] are equally true or false at s, as they only differ in the
occurrences of atomic propositions that are evaluated at s. □

Proposition 7.18 Satisfiability testing is in

1. PSpace for St(ATL∗
1)

2. ΣP3 for ATL+
1 (and ATL1)
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Proof. The decision procedures for both St(ATL∗
1) and ATL+

1 will be essentially
the same, but in their last phases they work in different computational complexities.
First, consider an St(ATL∗

1) formula Φ and let AP(Φ) = {p1, . . . pr}. The formula Φ
is a Boolean combination of atomic propositions and subformulas of the type ⟨⟨A⟩⟩θ
where θ ∈ LTL. By Lemma 7.8, we can assume that each such θ is in a LSNF of
linearly increased length, i.e., is a Boolean combination of atomic propositions and
X-formulas (formulas beginning with X) of LTL. The algorithm now works as follows:

1. Guess a truth assignment τ for the atomic propositions in AP(Φ) at a state s of
a concurrent game satisfying Φ, if any. Consider the unique map v : AP(Φ)→ {⊤,⊥}
for which δ(v) is true under τ . By Lemma 7.17, each maximal subformula ⟨⟨A⟩⟩θ in
Φ can be equivalently replaced by v[⟨⟨A⟩⟩θ], which is ⟨⟨A⟩⟩v[θ].

2. After elementary Boolean simplifications (of the type ⊤ ∧ A ≡ A,⊥ ∧ A ≡ ⊥,
etc.) each v[θ] is transformed to a Boolean combination of X-formulas only. Using the
LTL validities Xη∧Xζ ≡ X(η∧ ζ) and Xη∨Xζ ≡ X(η∨ ζ), it is further equivalently
transformed into an X-formula which is at most as long.

Afterwards, the original formula is (non-deterministically) transformed to an equi-
satisfiable Boolean combination of ATL∗ formulas of type ⟨⟨A⟩⟩Xθ and [[A]]Xθ.

3. Now, assuming that the resulting formula is satisfiable, we further guess the
true disjuncts in every ∨-subformula in a satisfying concurrent game and reduce the
problem to checking satisfiability of a conjunctive formula of the type

Θ = ⟨⟨A0⟩⟩Xθ0 ∧ . . . ∧ ⟨⟨Am−1⟩⟩Xθm−1 ∧ [[B0]]Xη0 ∧ . . . ∧ [[Bn−1]]Xηn−1

Let D(Θ) be the union of the set C(Θ) of conjuncts of Θ and {[[Π]]X⊤}, i.e.

D(Θ) = {⟨⟨A0⟩⟩Xθ0, . . . , ⟨⟨Am−1⟩⟩Xθm−1, [[B0]]Xη0, . . . , [[Bn−1]]Xηn−1, [[Π]]X⊤}

4. By Lemma 7.11, the setD(Θ) is satisfiable iff every subset of distributed control
of it has a satisfiable set of successor components. Since each of them is a set of LTL
formulas, these checks can be done using standard techniques.

Each check in step 4. of the algorithm can be done in PSpace when Φ is a
St(ATL∗

1) formula, since each successor component is an LTL formula. In the case
of ATL+

1 the checks can be done in NP according to [DS02], as in this case each
successor component is an LTL1 formula. Hence, checking that each of the (possi-
bly exponentially many) subsets of distributed control is satisfiable can be done in
coNPPSpace = PSpace for St(ATL∗

1) and in coNPNP for ATL+
1 . Thus, the whole

procedure can be done respectively in NPPSpace = PSpace for St(ATL∗
1) and in

NPcoNPNP
for ATL+

1 , by guessing the true propositions in the initial state and the
true disjuncts in Φ, and then applying resp. a PSpace-oracle and coNPNP-oracle.
Since NPcoNPNP

= ΣP3 the proof is completed. □

This result, combined with Proposition 7.16 and the PSpace-hardness of LTL
satisfiability, yields the following.
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Theorem 7.19 The satisfiability problem of

1. St(ATL∗
1) is PSpace-complete

2. CTL∗
1 is PSpace-complete

3. ATL+
1 is ΣP3 -complete

4. ATL1 is ΣP3 -complete

Here is another consequence of the proof of Proposition 7.18:

Corollary 7.20 Every satisfiable St(ATL∗
1) formula Φ has a centipede modelM with

branching factor O(2|Φ|) in the root. Further, every ultimately periodic path in M
has a prefix of length O(2|Φ|) and a period of length O(|Φ| · 2|Φ|).

7.5.4 PSPACE decision procedure for the satisfiability in ATL∗
1

The decision procedure for St(ATL∗
1) can be extended to a PSpace-complete decision

procedure for the whole ATL∗
1, by combining it with a PSpace decision procedure for

LTL and showing that every path-satisfiable ATL∗
1 formula can be satisfied in a special

type of concurrent games described below. The proof of the latter is rather lengthy
(see brief discussion further), so we only state and prove here the easier case of the
slightly smaller fragment ÂTL∗

1. This is the fragment where no strategic quantifiers
of the form ⟨⟨∅⟩⟩ (i.e, fully universal path quantifiers) are allowed. We only note that
the procedure for the full ATL∗

1 is essentially the same.
First, recall that every satisfiable LTL formula has an ultimately period linear

model with prefix and period that both have length exponential in the size of the
formula [SC85]. Further, according to Corollary 7.20, every satisfiable St(ATL∗

1) for-
mula can be satisfied at the root state of a centipede model of exponentially bounded
number and length of legs. Combining these results leads to a new type of concurrent
games which we call Lasso of Centipedes (LoC) models. Such models consist of an
ultimately periodic path (the lasso) where each state is the root of a centipede model.
An illustration of a model like this is shown in Figure 7.3.

Proposition 7.21 Every satisfiable ÂTL∗
1 formula Φ is satisfied in a LoC model with

size bounded exponentially in |Φ|.

Proof. Given an ÂTL∗
1 formula Φ in NNF we define its LTL skeleton SkLTL(Φ)

as follows: Let the state subformulas of Φ of type ⟨⟨A⟩⟩θ or [[A]]θ be Ψ1, . . . ,Ψn. For
each of them Ψ we introduce a new (not in AP) atomic proposition pΨ. Then we
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Figure 7.3: A Lasso of Centipedes (LoC) model.

produce the LTL formula Φ̂ by replacing every occurrence of such a subformula Ψ in
Φ by pΨ. Now, define

SkLTL(Φ) ::= Φ̂ ∧
n∧
i

G(pΨi → Ψi)

We claim that any concurrent game M and a path π in it on which Φ is true can
be expanded to a concurrent game M̂ and a path π̂ in it satisfying SkLTL(Φ), by
evaluating each new atomic proposition pΨ to be true at exactly those states of π
at which Ψ is true in M. Conversely, for any concurrent game M and a path π in
it on which SkLTL(Φ) is true, the formula Φ is true on π, too, because all atomic
propositions pΨi occur only positively in Φ̂, so replacing them with the respective
Ψi’s will preserve the truth.

Thus, it suffices to show that if SkLTL(Φ) is path-satisfiable then it can be satisfied
on the lasso path in some LoC model of size bounded exponentially in |Φ|. Indeed,
take any concurrent gameM and a path π in it on which SkLTL(Φ) is true. Then, in
particular, the path π alone is a linear model for Φ̂. Now, take an ultimately periodic
linear model π̂ of length bounded exponentially in |Φ̂|, hence in |Φ|. Such a model
can be obtained from π by cutting its tail off at a suitable position and looping back
to a suitable previous state. Thus, every state in π̂ has the label of a prototype state
in π. Now, for every state ŝ on π̂, let s be its prototype in π. We do the following.

• Consider the set Γ(s) of state subformulas Ψ of Φ such that pΨ is in the label
of s in π. Since SkLTL(Φ) is true on π, every formula in Γ(s) is true at s inM.
Thus, Γ(s) is satisfiable, hence by Corollary 7.20, it can be satisfied at the root
state of a centipede model M(Γ(s)) of exponentially bounded in |Φ| number
and length of legs.

• Now, we graft a copy ofM(Γ(s)) at the state ŝ in π̂ by identifying its root with
ŝ and keeping all other states disjoint from π̂.

• Next, we add a special new action for every agent at the state ŝ and define the
successor of the resulting action profile to be the successor of ŝ on the path π̂,
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while every other action profile involving some (but not all) of these special new
actions leads to a successor of ŝ in the grafted copy of M(Γ(s)), chosen so as
not to affect the truth of any of the formulas from Γ(s) at ŝ. We omit the easy
but tedious details of this construction.

After completing this procedure for each state of π̂, the result is a LoC model M̃
which, by construction, satisfies the formula Φ̂ on π̂ and satisfies at each state ŝ on π̂
the set Γ(s). Therefore, M̃, π̃ |= SkLTL(Φ), hence M̃, π̃ |= Φ. □

We briefly indicate the additional complication in extending this result to ATL∗
1:

if a subformula Ψ = ⟨⟨∅⟩⟩θ is true at some state of the path π in the concurrent game
satisfying Φ, its effect cannot be constrained only on the centipede model grafted at
the respective state of M̃, as done above, but it propagates through the path π̃ to
all centipede models grafted at all further states on π̃. So, additional description in
LTL is needed to describe and preserve this effect when converting π into the lasso π̃.
That is why we state the next result relativized to only what we have proved here.

Proposition 7.22 The path-satisfiability problem for ATL∗
1 formulas where only LoC

models of exponentially bounded size are considered is in PSpace.

Proof. The algorithm begins like the PSpace decision procedure for LTL satis-
fiability that guesses the lasso on the fly for an LTL input formula θ [SC85]. First,
the length of the prefix and the length of the period are guessed. At each step
around the lasso, the subformulas that are true from the current state are guessed
non-deterministically and a local consistency check as well as a one-step consistency
check are performed. Further, a set ∆ (of at most polynomial size) of eventuality
formulas is kept to make sure that all eventualities that are needed for θ to be true
are actually true further on the lasso.

The algorithm for ATL∗
1 works in the same way on an ATL∗

1 formula Φ, but treats
strategically quantified subformulas of Φ as atomic propositions and, at each step of
the procedure, the local consistency check includes verifying these subformulas that
have to be true at the current state. This amounts to checking satisfiability of an
St(ATL∗

1) formula and can be done in PSpace, by Theorem 7.19. For the formulas
of the form ⟨⟨A⟩⟩θ where A ̸= ∅ this can be done independently of the rest of the lasso,
by ensuring that when agents in A commit to satisfying θ then the play goes into the
centipede (and stays there). But, when A = ∅ then θ has to be true on all paths from
the current state. This includes both the path around the lasso and those that enter
one of the centipedes at some point. Note that the original set ∆ of formulas we are
keeping only needs to be satisfied around the lasso. To keep track of this we keep,
in addition to ∆, an extra set of formulas Γ which must be satisfied both around
the lasso and on paths that exits to a centipede. Thus, the formulas in Γ must be
included in the St(ATL∗

1) satisfiability check at each step. But since Γ is polynomial
in size at each step, this check can still be performed in PSpace. This means that
the entire procedure can be performed in PSpace. □
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L SAT(L) SAT(L1)

LTL PSpace [SC85] NP [DS02]
CTL ExpTime [Eme90] NP (Cor. 7.15)
CTL+ 2ExpTime [JL03] NP (Prop. 7.14)
CTL∗ 2ExpTime [Eme90] PSpace (Theo. 7.19)
ATL ExpTime [Dri03] ΣP3 (Theo. 7.19)
ATL+ 2ExpTime [Sch08][JL03] ΣP3 (Theo. 7.19)
ATL∗ 2ExpTime [Sch08] PSpace (Theo. 7.19, Cor. 7.23)

Figure 7.4: Complexity of satisfiability. All results are completeness results. In the
case of ATL∗ the results refer to St(ATL∗

1) and ÂTL∗
1.

Corollary 7.23 Satisfiability of ÂTL∗
1 is PSpace-complete.

7.6 Summary

We have developed optimal decision procedures for the satisfiability problems in flat
fragments of ATL∗, and in particular CTL∗ and have obtained exact complexity
results for all of them. A summary of the main complexity results obtained in this
chapter is provided in the table in Fig. 7.4. It shows that these complexities are much
lower than those for the full languages while, in view of Theorem 7.2, they are very
tight with respect to syntactic extensions in terms of nesting depth of formulas.
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Games with partial observation





CHAPTER 8
Introduction and

background
In Part I we have seen how a number of verification and synthesis problems for com-
puting systems can be modelled in a meaningful way using games with full observation.
This includes, in particular, the modelling of open systems.

In many cases the assumption of full observation is too strict to model systems
realistically, however. This includes most distributed systems where it is an inherent
property that different processes have local state which is not immediately available
to the other processes. This also includes a number of open systems where a system
is interacting with the environment and only receives partial information about the
state of the world, for instance by having imprecise sensors. To expand our scope to
such applications we therefore extend our models to incorporate partial observation.

These new applications also lead us to solution concepts that are different from
the antagonistic games considered in Part I. There, the goal of a player was always
the opposite of the opponent. Or, in some cases, the goal of a coalition of players was
the opposite of the goal of the remaining players.

In many multi-agent systems it makes more sense to assume that every player
has his own objectives that he tries to fulfill. This view resembles a more classical
game-theoretical and economical approach [OR94]. This assumption naturally leads
to non-zero sum objectives. In particular, in Chapter 9 we study the well-known
concept of Nash equilibria [Nas50; OR94] which is a strategy profile (containing one
strategy for each player) such that no player can deviate and improve his own payoff,
provided that all the other players stick to the strategy profile.

In Part II we will introduce two new formalisms for modelling systems with partial
observation. In both cases these models are games in which each player has his
own local module with the local states of the player. Further, each player only
partially observes the local states of the other players. The players do have complete
information about the rules of the game and the structure of each of the local modules
of the other players, but during the play of the game they only partially observe what
is going on.

The first model, introduced in Chapter 9, is a special class of concurrent game
with partial observation which is built from local modules. With the goal of modelling
systems with many similar processes we further work with symmetry constraints
on the structure of the game. Indeed, our main focus is the search for a single
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strategy which, when followed by all players, constitute a Nash equilibrium. Such
Nash equilibria where all players follow the same strategy are called symmetric Nash
equilibria.

The second model, introduced in Chapter 10, takes a different direction. In this
model we incorporate continuous time as well as probabilistic transition functions as
used in the paradigm of continuous-time Markov chains and continuous-time Markov
decision processes. In addition, we incorporate explicit handshake-communication
on shared actions as known from CSP [BHR84]. Indeed, every local module is an
interactive Markov chain [Her02] and the game is a result of a composition of such
modules. As these models are quite complex we tackle simpler objectives than in
previous chapters and focus on reachability problems.

The more expressive models of Part II result in a higher computational complexity
of the problems considered. Indeed, there are many undecidability results in games
with partial information (see e.g. [PR90; FS05; BK10]). The title of a classical
paper on distributed synthesis by Pnueli and Rosner says it quite well: ”Distributed
Reactive Systems Are Hard to Synthesize” [PR90].

Remark 8.1 What we call partial observation games in this thesis is also known by
a number of other names in the litterature. For instance, they are called incomplete
information games (see e.g. [AHK02; Rei84]) and imperfect information games (see
e.g. [OR94]).

To be precise, in the partial observation games we consider all players have com-
plete information about the rules of the game and the preferences of the other players
before the game begins. What they do not have is full observation of the state of the
game during the play.



CHAPTER 9
Nash Equilibria in

Symmetric Games with
Partial Observation

This chapter is based on the paper

• [BMV14] Patricia Bouyer, Nicolas Markey, and Steen Vester. “Nash Equilib-
ria in Symmetric Games with Partial Observation”. In: Proceedings 2nd In-
ternational Workshop on Strategic Reasoning (SR). Electronic Proceedings in
Theoretical Computer Science. Grenoble, France, 2014, pages 49–55

and, in particular, the longer journal version

• [BMV16] Patricia Bouyer, Nicolas Markey, and Steen Vester. “Nash Equilibria
in Symmetric Graph Games with Partial Observation”. To appear in a special
issue of Information & Computation. 2016

The journal version has been adapted to a form compatible with the other chapters of
the thesis. This includes removing definitions that are already present in the thesis,
moving some examples and adding a few new ones, reorganization and renaming of
sections and subsections and the addition of more in-depth explanation of some of
the content. All results in this chapter are also present in [BMV16].

Some of the contents and ideas of this chapter were developped during a Master
project at LSV, ENS Cachan, France in 2012 with Patricia Bouyer and Nicolas Markey
as supervisors. This work was published in the technical report

• [Ves12] Steen Vester. Symmetric Nash equilibria. Research Report LSV-12-23.
Laboratoire Spécification et Vérification, ENS Cachan, France, December 2012

This report introduced a model containing many of the ingredients of the symmetric
game networks of this chapter, but in a less developed form. In particular, the proofs
of Proposition 9.16 and Theorem 9.19 were originally done for that setting and could
simply be adapted to the setting of this chapter. Also, some of the ideas behind the
algorithms of Theorems 9.21 and 9.25 were presented in that report.
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9.1 Introduction

In games for formal verification there has until recently been most focus on the study
of purely antagonistic games (a.k.a. zero-sum games) which conveniently represent
systems evolving in a hostile environment: the aim of one player is to prevent the
other player from achieving his own objective. This was also the case in the settings
studied in Part I.

Games with non-zero sum objectives are interesting as they allow for conveniently
modelling complex infrastructures where each individual system tries to fulfill its own
objectives, while being subject to uncontrollable actions of the surrounding systems.

As an example, consider a wireless network in which several devices try to send
data: each device can modulate its transmitting power, in order to maximize its band-
width or reduce energy consumption as much as possible. In that setting, focusing
only on optimal strategies for one single device is too narrow.

For another example, consider a server granting access to a printer and connected
to several clients. The clients may send requests to the server, and the server grants
access to the printer depending on the requests it receives. Here, the goal of each
client is to get its own printing jobs processed as quickly as possible while the goal of
the server might be to provide as fair a division of the printing resource as possible.

Game-theoreticians have defined and studied many solution concepts for non-zero
sum settings of which Nash equilibrium [Nas50] is a prominent one. A Nash equilib-
rium is a strategy profile where no player can improve the outcome of the game by
unilaterally changing his strategy.

Focus in this chapter is on handling the special case where many of the interacting
systems have identical abilities and objectives. This encompasses many situations
involving computerized systems over a network. We provide a convenient way of
modelling such situations, and develop algorithms for synthesizing a single strategy
that, when followed by all the players, leads to a global Nash equilibrium. To be
meaningful, this requires symmetry assumptions on the structure of the game. We
also include partial observation of the players which is relevant in such a setting.

Recent works have considered multi-player non-zero-sum games, including com-
putation of constrained equilibria in turn-based and in concurrent games [CMJ04;
UW11; Bou+15] and the development of temporal logics geared towards non-zero-
sum objectives [CHP10; Mog+14; LM15]. None of those works distinguish symmetry
constraints in strategy profiles nor in game description.

Still, symmetry has been studied in the context of normal-form games [Nas51;
DM86]: in such games, each player has the same set of actions, and the utility function
of a player only depends on his own action and on the number of players who played
each action (it is independent on ‘who played what’).

Contribution
We propose a model for representing large interacting systems, which we call a game
network. A game network is made of multiple copies of a one-player concurrent game;
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each player plays on his own copy. As mentioned earlier, the players only partially
observes the global state of the game. For instance, they may have a perfect view on
some of their “neighbours”, but may be blind to some other players.

In symmetric game networks, we additionally require that any two players are in
similar situations: for every pair of players (a, b), we are able to map each player c
to a corresponding player d with the informal meaning that ‘player d is to b what
player c is to a’. Of course, winning conditions and partial observation should respect
that symmetry.

We present several examples illustrating the model, and argue why it is a relevant
model. In these systems, we are interested in symmetric pure Nash equilibria, which
are special Nash equilibria where all players follow the same deterministic strategy.

We show several undecidability results, in particular that the parameterized syn-
thesis problem (aiming to obtain one policy that forms a Nash equilibrium when
applied to any number of participants) is undecidable even for memoryless strategies.
We then characterize the complexity of computing constrained pure symmetric Nash
equilibria in symmetric game networks, when objectives are given as LTL formulas,
and when restricting to memoryless and bounded-memory strategies. This problem
with no memory bound is then proven undecidable.

Outline
In Section 9.2 we introduce Nash equilibria and symmetric game networks. In Section
9.3 we introduce the problems considered and provide reductions among some of
these problems. Several different existence problems in symmetric game networks are
analyzed in Section 9.4 and in Section 9.5 we consider similar problems in succinct
symmetric game networks as well as the parameterized synthesis problem. In Section
9.6 we summarize the contents of the chapter.

9.2 Nash equilibria and symmetric game networks

In this section we introduce the solution concept of Nash equilibria. Further, we
motivate and introduce symmetric game networks and analyze some of their structural
properties.

9.2.1 Nash equilibria
Let G = (S,Π,Σ,Γ, δ) be a concurrent game. Recall that a winning condition for
player j is a set Ωj of plays of G. We say that a play ρ ∈ Ωj yields payoff 1 to player
j, and a play ρ /∈ Ωj yields payoff 0 to player j. Winning conditions are usually
infinite, but will typically be given symbolically as the set of plays satisfying a given
property. For instance, given a formula ϕ of some logic (like LTL) using the set S of
states in G as atomic propositions, we write Ω(ϕ) for the set of plays satisfying ϕ.
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Figure 9.1: Matching pennies game modelled as a concurrent game.

If σ = (σj)j∈A is a strategy for coalition A and σ′
a is a strategy for player a ∈ A

then we write σ[a 7→ σ′
a] to denote the strategy for coalition A where a plays according

to σ′
a and player j plays according to σj for all j ∈ A \ {a}.
A strategy σ of a coalition C is winning for player j from state s if Play(G, s, σ) ⊆ Ωj .

A strategy profile (that is, a strategy for each player in the game) σ is a Nash equilib-
rium from state s if, for every j ∈ Π and every strategy σ′

j , if σ is losing for player j
from s, then so is σ[j 7→ σ′

j ]. In other terms, no player can individually improve his
payoff.

In more general settings where the payoff can take more values than just 0 and
1, a Nash equilibrium is a strategy profile such that no player can improve his payoff
by changing his strategy if the other players stick to the strategies prescribed in the
strategy profile. This can also be generalized to randomized strategies and games with
built-in randomness by requiring that no player can improve his expected payoff.

Remark 9.1 In this chapter, we restrict to pure Nash equilibria. That is, Nash
equilibria where players cannot choose actions according to a probability distribution.
This corresponds to deterministic programs for the players. When we write Nash
equilibria for the rest of the paper we mean pure Nash equilibria.

Considering randomized strategies would clearly be of interest in presence of sym-
metry and would be a natural extension of this work. However, some restrictions will
be required since the existence of a randomized Nash equilibrium in concurrent games
with reachability objectives is undecidable already with three players [BMS14].

In Figure 9.1 the matching pennies game is modelled as a concurrent game where
two players 0 and 1 independently and concurrently choose between actions + and
−. Player 0 wants both to choose the same action whereas player 1 wants both to
choose different actions.

In this game there is no (pure) Nash equilibrium as no matter which player wins
in a given pure strategy profile, the losing player can change his strategy to win. If
the players were allowed to use randomization, they could both player + and − with
probability 1

2 . Then no player would be able to improve their probability of winning
given that the other player sticks to this strategy.
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For another example, consider a similar game, but with three players. All players
can choose either + or − as in the matching pennies game. In this game a player
wins if and only if there is exactly one other player that chooses the same action. Let
(x, y, z) denote a strategy profile where player 1 chooses x, player 2 chooses y and
player 3 chooses z.

First, observe that all players cannot win in this game. Next, observe that the
strategy profiles given by the tuples

(+,+,−), (−,−,+), (+,−,+), (−,+,−), (−,+,+), (+,−,−)

are all Nash equilibria in which two of the players win and no player can improve
his own payoff by deviating. Finally, there are two less desirable Nash equilibria in
which all players lose, namely (+,+,+) and (−,−,−). Here, no player can improve
by deviating given that the other players stick to their strategy.

Even though Nash equilibria are some of the most well-studied solution concepts
both in normal-form games and extensive-form games [OR94], there are situations
where they are not sufficient to prescribe rational behavior, for instance, in situations
with non-credible threats. For a discussion, see e.g. [OR94].

To handle phenomena like this other kinds of equilibria, such as subgame-perfect
equilibria [Osb04], have been defined. Studying such equilibrium concepts in our
setting would also be a natural continuation of our work. Though, despite the issues,
Nash equilibria are still sufficient in many cases. As a practical example, most of
the succesful programs in the AAAI Computer Poker Competition are based on Nash
equilibrium computation [San10].

9.2.2 Game networks
Our aim is to propose a convenient way of modelling situations where all the in-
teracting systems have identical abilities and objectives, and to develop algorithms
for synthesizing symmetric strategy profiles in that setting. Intuitively, a symmetric
strategy profile is a strategy profile where the same single strategy is played by all
the players.

The model we propose is made of a one-player concurrent game (called an arena),
together with an observation relation. Intuitively, each player plays in his own copy
of the one-player arena; the global system is the (synchronous) product of all the
local copies, but each player observes the state of the global system only through an
observation relation. This way of defining partial observation is just like in concur-
rent games with partial observation. It is in particular needed for representing large
networks of systems, in which each player may only observe some of his neighbours.

Example 9.2 Consider a set of identical devices (e.g. cell phones) connected on a
local area network. Each device can modulate its emitting power. In order to increase
its bandwidth, a device tends to increase its emitting power; but besides consuming
more energy, this also adds noise over the network, which decreases the other players’
bandwidth and encourages them to in turn increase their power.
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We can model a device as an n-state arena where state i corresponds to some
power pi, with p0 = 0 representing the device being off. A device would not know the
exact state of the other devices, but would be able to evaluate the surrounding noise;
this can be modelled using our observation relation, where all configurations with the
same level of noise would be equivalent. Based on this information, the device can
decide whether it should increase or decrease its emitting power, resulting in a good
balance between bandwidth and energy consumption.

Despite the global game being described as a product of identical arenas, not
all games described this way are symmetric: the observation relation should also be
symmetric, and we have to impose extra conditions on that relation in order to capture
an adequate notion of symmetry. Moreover, the observation relation relates global
states of the system, and an explicit description of it will most often not be practical.
We thus consider compact representations of this relation, as we now explain.

We first define our notion of an n-player game network, which describes a game
as a product of n identical one-player games.

For every k ∈ N ∪ {∞}, we write [k] for the set {i ∈ N | 0 ≤ i < k} and [∞] = N.

Definition 9.3 An n-player game network G is a tuple (G, (≡i)i∈[n], (Ωi)i∈[n]) such
that

• G = (S, {a},Σ,Γ, δ) is a one-player concurrent game (arena);

• for each i ∈ [n], ≡i is an equivalence relation on Sn extended in a natural way
to sequences of states of Sn. Two ≡i-equivalent elements of Sn are indistin-
guishable to player i. This models partial observation for player i. If ≡i is the
identity, then we say player i has full observation;

• for each i ∈ [n], Ωi ⊆ (Sn)ω is the objective of player i. We require that for all
ρ, ρ′ ∈ (Sn)ω, if ρ ≡i ρ′ then ρ ∈ Ωi if and only if ρ′Ωi.

The semantics of a game network G = (G, (≡i)i∈[n], (Ωi)i∈[n]) is defined in terms
of the concurrent game G′ = (S′, [n],Σ,Γ′, δ′, (≡i)i∈[n]) with partial observation (see
Definition 2.7) where

• S′ = Sn is the set of states

• Γ′((s0, . . . , sn−1), i) = Γ(si, i) for i ∈ [n] specifies the actions available

• and the transition function is defined as

δ′((s0, . . . , sn−1), (mi)i∈[n]) = (δ(s0,m0), . . . , δ(sn−1,mn−1)).

for all (s0, ..., sn−1) ∈ S′ and legal action tuples (mi)i∈[n] in (s0, ..., sn−1)
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An element of Sn is called a configuration of G. Notice that we do not fix an initial
state for the one-player arena as we want to be able to model cases where the players
start in different states. For example, this makes us capable of modelling settings
where not all players start playing at the same time.

Example 9.4 Consider the cell-phone game again. It can be modelled as a game
network where each player observes everything. That is, the equivalence relations ≡i
are the identity. A more realistic model for the system can be obtained by assuming
that each player only gets precise information about his close neighbours, and less
precise information, or no information at all, about the devices that are far away.

9.2.3 Symmetric game networks
If we impose no restriction on the observation relation, n-player game networks do
not fully capture symmetries in a system. Besides playing on similar arenas, we will
add the extra requirement that all the players are in similar situations w.r.t. the
other players.

Given a mapping f : A → B, a ∈ A, and b ∈ B, we write f [a 7→ b] for the
mapping g such that g(a) = b and g(α) = f(α) for all α ∈ A \ {a}. Given a mapping
f : A→ B and a mapping g : B → C, the composition of g and f is the mapping
g ◦ f : A → C defined as g ◦ f(a) = g(f(a)). Seeing a sequence ρ = (ρi)i∈[n] as a
mapping with domain [n], and given a mapping f : [m] → [n], we write ρ ◦ f for the
sequence (ρf(j))j∈[m].

Given a permutation π of [n], for a configuration t = (si)i∈[n] we define t(π) =
(sπ(i))i∈[n]; similarly, for a path ρ = (tj)j∈N, we define ρ(π) = (tj(π))j∈N.

We now refine the previous definition for a game network to capture symmetries in
the system. To do so we introduce permutations πi,j for players i and j to define the
symmetry of the game. The idea is that πi,j(k) = l means that player l plays vis-à-vis
player j the role that player k plays vis-à-vis player i. To be symmetric the game has
be the same from the point of view of every player. Thus, the permutation πi,j can
be used to map every player from the point of view of player i to every player from
the point of view of player j. This intuition is reflected in the following definition.

Definition 9.5 A game network G = (G, (≡i)i∈[n], (Ωi)i∈[n]) is symmetric whenever
there are permutations πi,j of [n] for every two players i, j ∈ [n] such that πi,j(i) = j
and satisfying the following conditions: for every i, j, k ∈ [n],

1. πi,i is the identity, and πk,j ◦ πi,k = πi,j; hence π−1
i,j = πj,i.

2. the observation made by the players is compatible with the symmetry of the
game: for all configurations t and t′, t ≡i t′ if and only if t(π−1

i,j ) ≡j t′(π
−1
i,j );

3. objectives are compatible with the symmetry of the game: for every play ρ,
ρ ∈ Ωi if and only if ρ(π−1

i,j ) ∈ Ωj.

In that case, π = (πi,j)i,j∈[n] is called a symmetric representation of G.
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Figure 9.2: A card-game tournament.

We give the intuition why we apply π−1
i,j in the definition above, and not πi,j .

Assume configuration t = (s0, . . . , sn−1) is observed by player i. The corresponding
configuration for player j is t′ = (s′0, . . . , s

′
n−1) where player-πi,j(k) state should be

that of player k in t. That is, s′πi,j(k)
= sk, so that t′ = t(π−1

i,j ). For a discussion of
the subtleties of the definition of symmetry in the context of normal-form games, see
[Ves12].

These mappings define how symmetry must be used in strategies: let G be a
symmetric n-player game network with symmetric representation π. We say that a
strategy profile σ = (σi)i∈[n] is symmetric for the representation π if it is realizable
(i.e., each player only plays according to what he can observe) and if for all i, j ∈ [n]
and every history ρ, it holds σi(ρ) = σj(ρ(π

−1
i,j )).

Symmetric Nash equilibria are the special kinds of Nash equilibria which are also
symmetric strategy profiles. This means that a symmetric Nash equilibrium is a Nash
equilibrium where all players apply the same strategy.

Example 9.6 Consider a card game tournament with six players, three on each
table (see Figure 9.2). Here each player has a left neighbour, a right neighbour,
and three opponents at a different table. To model this, one could assume player 0
knows everything about himself, and has some information about his right neighbour
(player 1) and his left neighbour (player 2). But he knows nothing about players 3, 4
and 5.

Now, the role of player 2 vis-à-vis player 1 is that of player 1 vis-à-vis player 0 (he
is his right neighbour). Hence, we can define the symmetry as π0,1(0) = 1, π0,1(1) = 2,
π0,1(2) = 0, and π0,1(3, 4, 5) = (3, 4, 5) (any choice is fine here). As an example, the
observation relation in this setting could be that player 0 has perfect knowledge of
his set of cards, but only knows the number of cards of players 1 and 2, and has
no information about the other three players. Notice that other observation relations
would have been possible, for instance, giving more information about the right player.

Example 9.7 Consider again the cell-phone example. In this model, the noise de-
pends on the relative positions of the devices, and in that sense this game is not
symmetric. The model of the cell-phone could include information about the relative
positions of the other devices, by including several disjoints copies of the model, in
which the neighbour devices have different influences over the noise. The initial state
for each player would then depend on the topology of the network.
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Example 9.8 Finally, let us mention that even though it is not fully symmetric, it
is possible to model a client-server architecture in our framework. Let S be a model
for the server and C be a model for the client. The arena G will then be the disjoint
union of S and C, and the equivalence ≡i is defined such that “if player i is in part S,
then he has full observation of all players, and if player i is in part C, then he sees
his own states and the state of players in part S”, having in mind that in the initial
configuration it is ensured the one player starts in part S (being the server player)
and all other players will be clients starting in part C.

9.2.4 Properties of symmetric representations
First note that symmetric representations are not unique in general. We discuss here
the impact of the symmetric representation on Nash equilibria.

We first define for each player a partitioning of the set of all the players, which will
define what the players cannot distinguish. We then prove various indistinguishability
properties, give examples and give conditions over the representations which ensure
identical Nash equilibria.

For every player i ∈ [n], we let ∼=i be the following equivalence relations on the
set of players [n]: j ∼=i k if and only if for every configuration t, t ≡i t(πj↔k), where
πj↔k is the permutation such that πj↔k(j) = k, πj↔k(k) = j and πj↔k(i) = i for
all i ̸∈ {j, k}. It means that player i cannot distinguish between the players j and k.
We then define for every i ∈ [n], the partition Pi of [n] which is induced by ∼=i. We
denote P = (Pi)i∈[n].

Lemma 9.9 For every symmetric representation π of G, for every i, j ∈ [n], for
every P ∈ Pi, it holds πi,j(P ) ∈ Pj.

Proof. Assume for contradiction that it is not the case. As Pj is a partition there
are two possibilities. Either πi,j(P ) is a proper subset of some Q ∈ Pj . Otherwise,
there are two different sets Q,Q′ ∈ Pj such that there are elements of πi,j(P ) in both
of them. The two cases are handled separately below.

• First, suppose πi,j(P ) ⊊ Q for some Q ∈ Pj . Take kj ∈ Q \ πi,j(P ) and
pj ∈ πi,j(P ). For every configuration t, we have that t ≡j t(πkj↔pj ). We define
pi = π−1

i,j (pj) (which is then in P ) and ki = π−1
i,j (kj) (which is then not in P ).

As π is a symmetric representation of G, we have that t(π−1
i,j ) ≡i t(π

−1
i,j ◦πkj↔pj ).

We can now notice that t(π−1
i,j ◦ πkj↔pj ) = t(πki↔pi ◦ π−1

i,j ), which then implies
t(π−1

i,j ) ≡i t(πki↔pi ◦ π−1
i,j ). For every t′, we therefore get t′ ≡i t′(πki↔pi). This

contradicts the fact that pi ∈ P and ki /∈ P . This case is not possible.

• Second, suppose there exists two setsQ,Q′ ∈ Pj such thatQ ̸= Q′, and πi,j(P )∩
Q ̸= ∅ and πi,j(P ) ∩Q′ ̸= ∅. The reasoning is similar to above.

□
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Example 9.10 We now consider an example where players cannot observe which
players are in what states, but where players can see how many players are in a
certain state. Such an assumption is realistic for example in a setting such as in
the cell-phone example. Here it might be possible to tell how many other phones are
turned on by measuring the surrounding noise. However, it is not possible to decide
which phones are turned on.

For a configuration t = (si)i∈[n] and a subset P of players, we define tP as
the subsequence (si)i∈P , and its Parikh image Parikh(tP ) as the function mapping
each state s to its number of occurrences in tP . Now, we define the observation
relation Parikh(P ) as follows:

(t, t′) ∈ Parikh(P ) if and only if Parikh(tP ) = Parikh(t′P ).

Similarly, we define the observation relation Id(P ) as

(t, t′) ∈ Id(P ) if and only if t[i] = t′[i] for all i ∈ P.

Using these relations and the fact that the intersection of two equivalence relations
is an equivalence relation, we can define various observation relations, for instance
the relation ≡i defined by

Id({i}) ∩ Parikh({i+ 1, i+ 2, i+ 3}) ∩ Parikh({i+ 3, i+ 4, i+ 5})

where all indices are taken modulo n. With such an observation, player i has perfect
information about his own state, and knows the Parikh images for players i+1, i+2
and i+ 3 and for players i+ 3, i+ 4 and i+ 5. One can check that the partition Pi
is then ({i}, {i+1, i+2}, {i+3}, {i+4, i+5}) where player i+3 plays a special role
as he appears in the two Parikh conditions.

There are two reasons why a symmetric game network may admit several sym-
metric representations. For instance, in a three-player game where each player only
observes the Parikh image of the other two players, mappings π can either be defined
as π0,1(1) = 2 and π0,1(2) = 0, or π0,1(1) = 0 and π0,1(2) = 2. Such distinctions are
harmless in general, and those will generate the same symmetric behaviours. More
precisely:

Lemma 9.11 Let G be a symmetric n-player game network. Take two symmetric
representations π and π̃ for G. Assume that for every i ∈ [n], for every part P ∈ Pi,
πi,j(P ) = π̃i,j(P ). Then, a strategy profile σ is symmetric for π if and only if it is
symmetric for π̃.

Proof. It is sufficient to show that for every configuration t, t(π−1
i,j ) ≡j t(π̃

−1
i,j ).

Let π be a permutation of [n] that preserves partition Pi such that π̃i,j = πi,j ◦ π.
Let t be a configuration. As π preserves Pi, t ≡i t(π−1). This implies, if we apply
the symmetry condition for πi,j : t(π−1

i,j ) ≡j t(π−1 ◦ π−1
i,j ), that is, t(π−1

i,j ) ≡j t(π̃
−1
i,j ).
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Therefore the symmetry condition for the strategy profile does not depend on the
choice of the symmetry mappings. □

Symmetric representations might however differ more ‘dramatically’. Assume for
instance that n = 6, and that ≡i is defined for every i ∈ [6] as ‘Id({i}) ∩ Parikh({i+
1, i+2})∩Parikh({i+3, i+4})’ (taken modulo 6). Then the partition Pi is equal to
({i}, {i+ 1, i+ 2}, {i+ 3, i+ 4}, {i+ 5}), and the mappings πi,j(i+ k) = j + k mod 6
properly define the symmetry. But there are other mappings that define the symmetry,
for instance:

π′
2i,2i+1 : 2i 7→ 2i+ 1

2i+ 1 7→ 2i+ 4
2i+ 2 7→ 2i+ 5
2i+ 3 7→ 2i+ 2
2i+ 4 7→ 2i+ 3
2i+ 5 7→ 2i

π′
2i+1,2i+2 : 2i 7→ 2i+ 1

2i+ 1 7→ 2i+ 2
2i+ 2 7→ 2i+ 5
2i+ 3 7→ 2i
2i+ 4 7→ 2i+ 3
2i+ 5 7→ 2i+ 4

The other mappings are obtained by composition. This also properly represents
the symmetry, but generates different symmetric strategy profiles. Under additional
technical conditions, we can prove that Nash equilibria coincide for two symmetric
representations of a given symmetric game network. First we realize that a symmetric
strategy profile is fully determined by an ≡0-realizable strategy for player 0 (recall
that a strategy is realizable if it is compatible with the observation relation).

Lemma 9.12 Fix a symmetric representation π for G. If σ0 is an ≡0-realizable
strategy for player 0, then the strategy profile σ defined by σi(ρ) = σ0(ρ(π

−1
i,0 )) defines

a realizable and symmetric strategy profile.

Proof. Symmetry is straightforward:

σj(ρ(π
−1
i,j )) = σ0(ρ(π

−1
j,0 ◦ π

−1
i,j )) = σ0(ρ(π

−1
i,0 )) = σi(ρ).

Assume that σi is not ≡i-realizable: this means that there are two runs ρ ≡i ρ′
such that σi(ρ) ̸= σi(ρ

′). By the symmetry of the game, it holds that ρ(π−1
i,0 ) ≡0

ρ′(π−1
i,0 ), which implies that σ0(ρ(π−1

i,0 )) = σ0(ρ
′(π−1

i,0 )). However this precisely means
σi(ρ) = σi(ρ

′). Hence strategy σi is ≡i-realizable. □

We can now show the following result which says that under mild assumptions,
the choice of symmetric representation does not affect which Nash equilibria are
symmetric.

Lemma 9.13 Assume that a symmetric representation π of game network G =
(G, (≡i)i∈[n], (Ωi)i∈[n]) satisfies the following additional constraint: if there exist per-
mutations (κi)i∈[n] of [n] such that:
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(i) κi(i) = i for every i

(ii) for every two configurations t and t′,

t ≡i t′ ⇔ t(κi ◦ πj,i ◦ κ−1
j ◦ πi,j) ≡i t

′(κi ◦ πj,i ◦ κ−1
j ◦ πi,j)

(iii) for every run ρ, we have ρ ∈ Ωi if and only if ρ(κi ◦ πj,i ◦ κ−1
j ◦ πi,j) ∈ Ωi

then for every configuration t, t ≡i t(κi ◦ πj,i ◦ κ−1
j ◦ πi,j). Under that additional

constraint, the choice of the representations does not affect Nash equilibria. More
precisely: if π and π̃ are two symmetric representations of game G that satisfy the
above hypothesis, then a realizable strategy profile σ is a symmetric Nash equilibrium
from t in G for representation π if and only if it is a symmetric Nash equilibrium
from t in G for representation π̃.

Proof. Let (πi,j)i,j and (π̃i,j)i,j be two different representations (for the pieces
of the canonical partitioning). Following Def. 9.5, those mappings are uniquely char-
acterized by (π0,i)i and (π̃0,i)i. Assume κi is the permutation of [n] such that
π̃0,i = κi ◦ π0,i (in particular w.l.o.g. κi swaps pieces of Pi). We notice that
π̃i,j = κj ◦ πi,j ◦ κ−1

i , again applying the properties listed in Def. 9.5.
It is not difficult to prove all the conditions for the κi’s:

• using π̃0,i = κi ◦ π0,i, we get π̃0,i(0) = κi ◦ π0,i(0), which implies κi(i) = i.

• it holds t ≡i t′ if and only if t(π̃−1
i,j ) ≡j t′(π̃

−1
i,j ), which in turn is equivalent to

t(π̃−1
i,j ◦ π

−1
j,i ) ≡i t′(π̃

−1
i,j ◦ π

−1
j,i ). This directly implies the second property of the

lemma.

• the third property is proven by applying the same argument: ρ ∈ Ωi is equiva-
lent to ρ(π̃−1

i,j ◦ π
−1
j,i ) ∈ Ωi, from which the property follows.

We therefore get that t ≡i t(κi ◦ πj,i ◦ κ−1
j ◦ πi,j) for every i and j, and in particular,

taking j = 0, we get that t ≡i t(κi) (since κ0 is the identity).
Fix a strategy σ0 for player 0 (which is ≡0-realizable). It defines two strategy

profiles σ and σ̃. For every i, we compute:

σ̃i(ρ) = σ0(ρ(π̃
−1
i,0 )) = σ0(ρ(κi ◦ π−1

i,0 )) = σi(ρ(κi)) = σi(ρ) (since ρ ≡i ρ(κi))

In particular, σ̃ and σ yield the same payoff to all players. Now if one of the players
can improve his payoff, say player i can use strategy σ′

i to get better payoff than with
his strategy σi, then he can also improve his payoff by playing the same strategy σ′

i

in place of strategy σ̃i. □

In the sequel, we always assume that the symmetric representation is given. Note
however that a symmetric representation can be computed in space polynomial in
the number of players, by just enumerating the permutations and checking that they
satisfy the constraints. As we show later, the problems we consider have higher
complexity (when decidable), so that this assumption does not alter our results.
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Encoding of symmetric game networks. One motivation for the definition of
this model is to represent large networks of identical systems in a rather compact
way. To this aim, we need a succinct representation of game networks, in particular
for the relations ≡i. Notice that representing those equivalence relations explicitly as
|S|n×|S|n tables is not practical. We therefore allow equivalence relations to be given
symbolically, for instance as a polynomial-time program (or Turing machine) taking
two integers i ≤ n and two configurations t and t′ in Sn, and returning 1 if and only if
t ≡i t′. Examples of such functions are Parikh(P ) and Id(P ) defined previously.

9.3 Problems and reductions

We are interested in the computation of Nash equilibria and symmetric Nash equilibria
in symmetric game networks. More precisely, we are interested in the following two
problems:

Problem 9.14 (Existence of a symmetric NE) Given a symmetric game net-
work G, a symmetric representation π, and a configuration t, the existence problem
asks whether there is a symmetric Nash equilibrium in G from t for the representa-
tion π.

Note that there might not exist a pure Nash equilibrium in a symmetric game
network. Figure 9.3 shows how one can simulate the matching penny game, which is
known not to have pure Nash equilibria. We assume there are two players, and they
both have full observation. Player 0 starts from p0 whereas player 1 starts from q0.
The objective is the same for player 0 and for player 1 and is written:(

p0 ⇒ (F((p+ ∧ q+) ∨ (p− ∧ q−)))
)
∧
(
q0 ⇒ (F((p+ ∧ q−) ∨ (p− ∧ q+)))

)
.

This reads as follows: “if you are in p0, then you have to eventually visit both p+
and q+, or both p− and q−, and if you are in q0, you have to eventually visit both p+
and q−, or both p− and q+”. It is not hard to be convinced that it is symmetric, and
that there is no pure Nash equilibrium from (p0, q0) in that game network.

..p0.

p+

.

p−

.
+

. −. q0.

q+

.

q−

.
+

. −

Figure 9.3: Matching pennies as a symmetric game network. Self-loops in p+, p−, q+
and q− are omitted.

Problem 9.15 (Constrained existence of a symmetric NE) Given a symmet-
ric game network G, a symmetric representation π, a configuration t, a set L ⊆ [n]
of losing players, and a set W ⊆ [n] of winning players, the constrained existence
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problem asks whether there is a symmetric Nash equilibrium σ in G from t for the
representation π, such that all players in L lose and all players in W win. If W = [n],
the problem is called the positive existence problem.

Note that for the constrained problem, the input sets L and W do not need to
cover the entire set of players. Thus, L and W constitute a partial specification of
which players should win and lose.

9.3.1 From Nash equilibria to symmetric Nash equilibria
In this section we show that even though symmetric Nash equilibria are Nash equi-
libria satisfying special properties, they are in some sense at least as hard to find as
Nash equilibria. This unfortunately means that we cannot in general hope to have
an algorithm with better complexity for the symmetric problem by using properties
of symmetry. Furthermore, it allows us to infer hardness results from the framework
with standard Nash equilibria to the framework with symmetric Nash equilibria. The
result is formalized in the following proposition which will be proved in this section.

Proposition 9.16 From a symmetric game network G, we can construct in polyno-
mial time a symmetric game network H such that there exists a symmetric Nash
equilibrium in H if and only if there exists a Nash equilibrium in G. Furthermore the
construction only changes the arena, but does not change the number of players nor
the objectives or the resulting payoffs.

The overall idea of the proof is to take the arena in G that each player plays in
and combine n disjoint copies of this arena to obtain the arena of H. Then we will
show that deciding whether there exists a Nash equilibrium in G can be reduced to
deciding whether there exists a symmetric Nash equilibrium in H where each player
starts in different disjoint copies of the arena. This construction, in practice, makes
it possible for players to play differently even in a symmetric strategy profile as they
all start in different states.

The overall idea is thus quite simple, but the execution of it is a bit technical due
to the nature of the symmetry constraints and the partial observation.

Let G = (G, (≡i)i∈[n], (Ωi)i∈[n]) be a symmetric game network with symmetric
representation π = (πi,j)i,j∈[n] and (s0, ..., sn−1) be an initial configuration.

We show how to build a symmetric game network H which has a symmetric Nash
equilibrium from some particular configuration if and only if G has a Nash equilibrium
from (s0, ..., sn−1). The construction is as follows.

First, let G = (S, {a},Σ,Γ, δ). We define H = (H, (∼i)i∈[n], (Θi)i∈[n]). Here,
H = (SH , {a},Σ,ΓH , δH) is defined by

• SH = S × [n]

• ΓH((s, j), a) = Γ(s, a) for all (s, j) ∈ SH
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• δH((s, j), a) = (δ(s, a), j)

We define∼i such that for all i ∈ [n], for all configurations (u0, ..., un−1), (v0, ..., vn−1)
in G and for all m0, ...,mn−1, j0, ..., jn−1 ∈ [n], it holds that:

((u0,m0), ..., (un−1,mn−1)) ∼i ((v0, j0), ..., (vn−1, jn−1))

if and only if
(u0, ..., un−1) ≡i (v0, ..., vn−1) ∧mi = ji.

That is, none of the players can observe which copy the other players are in, but can
observe which copy they are in themselves.

The objectives are defined such that for every player i and every infinite play
ρ = (s10, ..., s

1
n−1)(s

2
0, ..., s

2
n−1)... in G and all j0, ..., jn−1 ∈ [n] we define

((s10, j0), ..., (s
1
n−1, jn−1))((s

2
0, j0), ..., (s

2
n−1, jn−1))... ∈ Θi ⇔ ρ ∈ Ωi

That is, the objectives do not distinguish between which copy a player is in.
Finally, we let the initial configuration of H be ((s0, 0), ..., (sn−1, n− 1)). That is,

all players starts in different copies of G.
The rest of the proof is done by showing that

1. ∼i is an equivalence relation for every i ∈ [n] implying that H is a game network

2. π is also a symmetric representation of H implying that H is a symmetric game
network

3. There exists a Nash equilibrium in G from (s0, ..., sn−1) if and only if there
exists a Nash equilibrium in H from ((s0, 0), ..., (sn−1, n− 1))

The first two points can be shown directly from the construction of H and the
definition of a symmetric representation. For the third point there are two directions
which are quite similar.

For the first direction, the idea is to show that for a strategy profile σ in G and
an initial configuration (s0, ..., sn−1) one can construct a strategy profile σ′ in H that
plays similarly starting in configuration ((s0, 0), ..., (sn−1, n− 1)).

Moreover, one can show that such a strategy profile σ′ can be defined which
is symmetric. This is possible since the players start in different states in H and
therefore do not need to play in the same way in order to be symmetric (symmetry
only requires players to play similarly when they are in similar situations).

Finally, it is shown that if σ is a Nash equilibrium then so is σ′. The idea is
that for every deviation a player can make from σ′ in H with initial configuration
((s0, 0), ..., (sn−1, n− 1)) there is a similar deviation for the same player from σ in G
with initial configuration (s0, ..., sn−1). When σ is a Nash equilibrium this implies
that σ′ is also a Nash equilibrium since no player can gain anything by deviating from
σ in G.
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For the other direction a similar proof is done, but a strategy profile in G is
constructed from a strategy profile in H.

The details of the proof are omitted here, but can be found in the journal paper
[BMV16].

There are n times as many states in the arena H as in the arena G. In addition,
there are n times as many equivalence classes, which implies that the size of H is
polynomial in the size of G. This concludes the proof of Proposition 9.16.

The trick used in the proof where one makes several copies of the arena and let
the players start in different copies is very similar to the trick we used in Example
9.8. There each arena consists of two disconnected parts: a server part and a client
part. Then, the server player starts in the server part and the client players start in
the client part. Then, in a symmetric strategy profile only the clients are required to
behave in the same way as only the clients face the same situations.

9.3.2 From positive existence to existence
Before turning to our decidability and undecidability results, we begin by showing
that existence of positive Nash equilibria (i.e. Nash equilibria where all players win)
is not harder than existence when the objectives of the players are given by LTL
formulas. This is quite natural as all players have to win and there is no need to look
for improvements: positive existence is equivalent to finding a path along which all
objectives are fulfilled.

Proposition 9.17 Deciding the symmetric existence problem in symmetric game
networks is at least as hard as deciding the positive symmetric existence problem.
The reduction doubles the number of players and uses LTL objectives, but does not
change the nature of the strategies (memoryless, bounded-memory, or general).

This result is a consequence of the following lemma, which we prove below.

Lemma 9.18 Let G be an n-player symmetric game network and t0 be an initial
configuration in G. We can construct in polynomial time a (2n)-player symmetric
game network G′ and a configuration t′0 in G′ such that there is a Nash equilibrium
from t0 along which all players win in G if and only if there is a Nash equilibrium
from t′0 in G′. Moreover, this equivalence also holds for memoryless and bounded-
memory equilibria.

Proof. Let G = (G, (≡i)i∈[n], (Ωi)i∈[n]) be a symmetric game network with n
players and assume the symmetric representation (πi,j)i,j∈[n]. Let t0 = (s0, ..., sn−1)
be the initial configuration.

The overall idea is that players in {0, ..., n − 1} still play in the same arena G,
but before entering G each player i in this set plays a matching pennies game against
player i + n. Players in {n, ..., 2n − 1} only play the matching pennies game. This
is accomplished by using disconnected parts of the arena as shown in Figure 9.4.
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Thus, the initial configuration t′0 in G′ is given the initial state (si, p0) for player
i ∈ {0, ..., n− 1} and the initial state q0 for player i ∈ {n, ..., 2n− 1}.

The objectives of each player i ∈ {n, ..., 2n − 1} is simply to win the matching
pennies game he plays against player i−n. The objectives of each player i ∈ {0, ..., n−
1} is to either win the matching pennies game or accomplishing the same objective
as he has in G. Note that this transformation of objectives can easily be done using
a slightly larger LTL formula than the one expressing the objective in G.

..s, p0.
s, p+

.
s, p−

..

G

. s.
+

.
−

.
∗

.
∗

. q0.
q+

.
q−

.
+

.
−

Figure 9.4: The arenaG′. Each player i ∈ {0, ..., n−1} will start in a module like the
one to the left with initial state (si, p0). Each player i ∈ {n, ..., 2n− 1}
will start in the module to the right in q0..

It can be shown that there exists a symmetric representation for G′ that extends
π. For details see the journal paper [BMV16].

We are now ready to show that there is a positive Nash equilibrium in G from t0
if and only if there is a Nash equilibrium in G′ from t′0.

For the first direction suppose that there is a positive Nash equilibrium σ in G from
t0. Then there is a (positive) Nash equilibrium σ′ in G′ where players in {0, ..., n− 1}
play like in σ when the play reaches G and all players play in the matching pennies
game such that every player i ∈ {n, ..., 2n−1} wins his matching pennies game against
player i− n. As all players win in σ′ it is a positive Nash equilibrium.

For the other direction suppose that there is a Nash equilibrium σ′ in G′ from t′0.
First suppose for contradiction that there is a player i that has payoff 0 in σ′ from

t′0. Then this player can deviate in the initial matching pennies game and receive
payoff 1 if all other players play according to σ′. This is a contradiction since σ′ is a
Nash equilibrium. Thus, every player has payoff 1 in σ′ from t′0.

As every player has payoff 1 this means that all players in {n, ..., 2n−1} win their
matching pennies game and thereby all players in {0, ..., n − 1} lose their matching
pennies game. Thus, as players in {0, ..., n− 1} all win in σ′ from t′0 this means that
they play in a way in the G modules such that they all win. They can use that same
strategy to obtain a positive Nash equilibrium in G from t0.

□



142 9 Nash Equilibria in Symmetric Games with Partial Observation

9.4 Existence in symmetric game networks

Recent works have considered the computation of Nash equilibria in standard concur-
rent or turn-based games. In particular, the abstraction of suspect games described
in [Bou+12] has allowed the development of efficient algorithms for computing Nash
equilibria in concurrent games, for various classes of objectives. However those algo-
rithms cannot be applied to our framework for the following reasons:

• each player has only partial observation of the global state of the game;

• the symmetry requirement induces non-local constraints in the concurrent game
resulting from the product of the one-player arenas.

Notice that even in the case of symmetric games with full observation, an approach
using Strategy Logic [MMV10], which can express Nash equilibria and impose several
players to play the same strategy, would not work out-of-the-box, as in our setting
strategies are equal up to a permutation of the states.

We now list the results we have obtained about computing Nash equilibria in
symmetric game networks. We begin with undecidability results for the following
cases:

• non-regular objectives (for two players, full observation)

• partial observation (for three players, LTL objectives)

• parametrized number of players (LTL objectives, partial observation, memory-
less strategies)

We prove decidability when the number of players is given in the input and there is
a restriction to bounded memory strategies.

9.4.1 Undecidability with non-regular objectives
Our games allow for arbitrary Boolean objectives, defined for each player as a set of
winning plays. We prove that it is too general to get decidability of our problems
even with full observation.

Theorem 9.19 The existence of a symmetric Nash equilibrium for non-regular ob-
jectives in two-player symmetric game networks is undecidable (even with full obser-
vation).

Proof. We do a reduction of the halting problem for a deterministic two-counter
machine, which is known to be undecidable [Min61]. Let M be a deterministic
two-counter machine and let (q0, c0, d0) be an initial configuration. From this we
create a symmetric game network with two players G = (G, (≡i)i∈[2], (Ωi)i∈[2]) where
(s0, s1) ≡i (s′0, s′1) if and only if s0 = s′0 and s1 = s′1 for i = 0, 1. The arena G consists
of two disconnected parts. It is shown in Fig. 9.5, but without G′.
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Figure 9.5: Illustration of G where G′ simulates the two-counter machine M .

The idea is that player 0 starts in s0,0 and player 1 starts in s1,0. They first play
a matching pennies game and then player 1 plays in G′ which simulates the counter
machine M . We design the objectives so that player 1 wins if he acts according to
the rules of the counter machine and reaches a halting state. If he does not reach
a halting state, he wins if he chose an action different from that of player 0 in the
initial matching pennies game; otherwise player 0 wins. This way, if there is a legal,
halting run of the counter machine, then there is a Nash equilibrium where player 1
wins and player 0 loses. If there is no legal halting run then the game is essentially
reduced to a matching pennies game which has no Nash equilibrium.

We do this by letting G′ have the control states of M as states with the state
connected to s1,+ and s1,− being the initial control state q0 of M . Then for all
control states qi, qj such that there is a transition from qi to qj increasing counter C
in M there is an action C+ in G′ taking the play from qi through an intermediate
state C+

ij to qj as illustrated in Figure 9.6 to the left.
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. ∗ ..qi..
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∗
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Figure 9.6: Constructions of the incrementation and decrementation modules.

Similarly, for a transition in M that goes from state qi and

• decreases counter C if the value is positive and changes control state to qj

• leave counter C unchanged if the value is 0 and changes control state to qk

we have actions C− and C0 in G′ respectively taking the play from qi through inter-
mediate states C−

ij to qj and C0
ik to qk as shown in Figure 9.6.

Additionally, we add a self-loop to the halting state qF in G′. For a finite path ρ
and a counter C we now define its value by the end of ρ by

Cρ =
∣∣{k | ρk = C+

ij for some i, j}
∣∣− ∣∣{k | ρk = C−

ij for some i, j}
∣∣
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When given an initial value c0 and d0 of the two counters of M we then define the
objectives such that player 1 loses in all plays ρ that contains a prefix ρ≤k such that
state ρk = C−

ij and C0 − Cρ≤k
< 0 for some C, i and j to make sure player 1 plays

according to the rules of the counter machine and does not subtract from a counter
with value zero. In addition, he loses in all plays ρ that contains a prefix ρ≤k such
that ρk = C0

ij and C0 − Cρ≤k
̸= 0 to make sure player 1 does not follow the true

branch of a zero test when the value of the counter being tested is not zero. Finally,
player 1 wins if he does not violate any of these restrictions and reaches qF . He also
wins if he wins the matching pennies game initially, no matter whether he violates
the restrictions or not. Player 0 simply wins whenever player 1 does not win.

In total this means that there is a Nash equilibrium where player 1 wins and
player 0 loses if M halts with initial counter values c0 and d0. If M does not halt
with initial values c0 and d0 the game is reduced to a matching pennies game which
has no Nash equilibrium. Thus, there is a Nash equilibrium in G if and only ifM halts,
implying that the existence problem is undecidable.

The partially defined strategies specified for the two players in the reduction can
trivially be extended to symmetric strategies which makes the symmetric existence
problem undecidable as well. □

9.4.2 Undecidability with partial observation
We already mentioned an undecidability proof in Theorem 9.19 for two players and
full observation. However, the objectives used for achieving the reduction are quite
complex. We explain here how partial observation also leads to undecidability, but
for LTL objectives, and with only three players.

To show this, we can slightly alter a proof from [PR90]. There, synthesis of
distributed reactive systems with LTL objectives is shown undecidable in the presence
of partial observation. The situation used in that proof, where two processes (players 0
and 1) with an LTL objective φ play against a hostile environment (player 2), can be
modelled in our framework. The idea is that φ is built from a deterministic Turing
machine M in such a way that the processes can win if and only ifM halts on the
empty input tape.

On top of this reduction, we add an initial matching-pennies module between
player 0 and 1, and slightly change the LTL objectives as follows:

• Players 0 and 1 still win if φ is true, but each player can also win by winning
the initial matching-pennies game.

• Player 2 still wins if φ is not true.

Now, ifM halts on the empty input tape, then there is a Nash equilibrium where
players 0 and 1 play in such a way that φ is true; they both win, while player 2 loses
and has no winning deviation.
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On the other hand, suppose M does not halt on the empty input tape. Let
σ = (σ0, σ1, σ2) be a given strategy profile. If player 2 is losing along the play of σ,
then he can change his strategy and improve, since M does not halt on the empty
input tape; thus σ is not a Nash equilibrium. On the other hand, if player 2 is winning
along the play of σ, then one of players 0 and 1 is losing. But then, this player can
improve by changing his strategy in order to win the initial matching pennies game.
Thus, σ is not a Nash equilibrium in this case either. This implies that there exists
a Nash equilibrium if, and only if,M halts on the empty input tape.

Theorem 9.20 Deciding the existence of a symmetric Nash equilibrium for LTL
objectives in symmetric game networks is undecidable for n ≥ 3 players.

9.4.3 Decidability for memoryless strategies
In this section we prove that the existence of a memoryless symmetric Nash equi-
librium is decidable for LTL objectives, and that this problem is PSpace-complete.
Notice here that the input of the observation relations ≡i are already of size |S|n×|S|n.
In the next section we consider more succinct encodings for these relations.

We first observe that PSpace-hardness is a direct consequence of the proof of
PSpace-hardness of model-checking of LTL in finite-state transition systems [SC85].

We now explain our algorithm for deciding the (constrained) existence of symmet-
ric Nash equilibria restricted to memoryless strategies. The algorithm is as follows:
it first guesses a memoryless strategy for one player, from which it deduces the strate-
gies to be played by the other players. It then looks for the players that are losing,
and checks if they alone can improve their payoff.

More formally, we fix a symmetric game network G = (G, (≡i)i∈[n], (Ωi)i∈[n]) with
symmetric representation π = (πi,j)i.j∈[n] and an initial configuration t0. We assume
that each objective Ωi is given by an LTL formula ϕi.

The first step is to guess and store an ≡0-realizable memoryless strategy σ0 for
player 0. Such a strategy is a mapping from Sn to the set Σ of actions in G; following
our remark above about the size of the input, such a strategy has size polynomial
in the size of the input. We intend player 0 to play according to σ0, and every
player i to play according to σ0(π−1

i,0 (s0, ..., sn−1)) for every configuration (s0, ..., sn−1).
From Lemma 9.12, we know that all symmetric memoryless strategy profiles can be
characterized by such an ≡0-realizable memoryless strategy for player 0.

The algorithm first checks which players are winning and losing in the unique play
ρ induced by the strategy profile σ from t0. Since all players use memoryless strategies
ρ is an ultimately periodic path, i.e. of the form α · βω for two finite sequences α, β
of states which are both polynomial in the size of the input. For the constrained
problem it is checked whether the constraints on which players should win and lose
are satisfied.

Next, the algorithm checks if σ is a Nash equilibrium. This is done by checking
that no player can improve his payoff. The way to do this is, for each player i losing
in ρ, to build a transition system T representing all the possible plays starting in
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t0 given that all players except player i play according to σ. That is, T represents
exactly the different ways that player i can deviate given that all other players play
according to σ.

It is now checked whether there is a play in this transition system which is winning
for player i using the standard model-checking algorithm for LTL. If there is, he can
deviate and improve his payoff. If there is no such play he cannot deviate and improve.
If none of the losing players can deviate and improve then σ is a Nash equilibrium,
otherwise it is not.

As the state space Sn is polynomial in the size of the input, this procedure can
be performed in polynomial space.

Theorem 9.21 The constrained existence of a memoryless symmetric Nash equilib-
rium for LTL objectives in symmetric game networks is PSpace-complete.

Notice that this algorithm can be extended to bounded-memory strategies. The
algorithm would then require exponential space if the bound on the memory is given
in binary, and still polynomial space otherwise.

Notice also that the algorithm above could be adapted to handle non-symmetric
bounded-memory equilibria in non-symmetric game networks: it would just guess
all the strategies, and check the satisfaction of the LTL objectives in the product
automaton obtained by applying the strategies.

The algorithm could also be adapted, still with the same complexity, to handle
richer objectives as in the semi-quantitative setting of [Bou+12], where players have
several preordered objectives. Instead of guessing the winners, the algorithm would
guess, for each player, which objectives are satisfied, and check that no individual
improvement is possible. This can be done by listing all possible improvements and
checking that none of them can be accomplished.

9.5 Succinct symmetric game networks

As our goal is to represent large networks of components it is not feasible to store
the entire observation relation explicitly for all players since this can be very large.
In this section we investigate a succinct representation for symmetric game networks
that can be represented symbolically in a succinct way.

A succinct symmetric game network is a tuple P = (G, (αj)j∈[k],≡, ϕ) where G
is a one-player arena with the set S of states, αj : N → (N → N) indicate the k
neighbours of each player, and ≡ and ϕ are templates for defining ≡i and ϕi for each
player. We now explain how a symmetric game network G = Pn can be obtained
from a succinct symmetric game network P and an integer n ≥ k.

For a given n, the state space of Pn is Sn. Then each αj(n) is a mapping [n]→ [n];
the integer αj(n)(i) represents the j-th neighbour of player i. We require that the
mappings αj are represented symbolically, e.g. as arithmetic expressions involving j
and the arguments n and i. We explain below how this partially defines the symmetric
representation for Pn.
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The equivalence relation ≡ is a relation over (Sk×NS): the first component deals
with the k neighbours of each state, while the second component contains information
about the Parikh image of the configurations1. That is, information about how many
players are in certain states (but not about which players are in those states). For
any i ∈ [n], and for any two configurations t and t′ in Sn, we let

t ≡i t′ ⇔ (tαj(i))j∈[k] × (#s(t))s∈S ≡ (t′αj(i)
)j∈[k] × (#s(t

′))s∈S .

where #s(t) is the number of occurences of s in the configuration t.
For instance, in order to define exact observation of the left- and right neighbours,

we would define α1(n)(i) = i−1 (mod n), α2(n)(i) = i+1 (mod n), and let ≡ relate
any two tuples as soon as their first two items (t1, t2) and (t′1, t

′
2) match.

Similarly, ϕ is an LTL formula from which the objectives of the players can be
derived: the formula is built on two types of atomic propositions:

• For each atomic proposition p appearing in G, and for any j ∈ [k], pk is an
atomic proposition;

• Formulas of the form #s ∼ c and #s −#s′ ∼ c are atomic propositions, where
∼ ∈ {<,≤,=,≥, >}, c ∈ N and s and s′ are states.

For each i ∈ [n], formula ϕi is then obtained by replacing pk with pαk(n)(i). The
semantics of these atomic propositions is defined as follows:

• pαk(n)(i) holds true in configuration t if the label of state t(αk(n)(i)) contains p;

• #s−#s′ ∼ c holds true in t if, writing ns for the number of occurrences of s in t
and ns′ for the number of occurrences of s′ in t, it holds ns−ns′ ∼ c. Similarly
for #s ∼ c.

It remains to be seen under which conditions the resulting game network (G, (≡i
)i∈[n], (ϕi)i∈[n]) is a symmetric game network: for this, we need to prove the exis-
tence of a symmetric representation π. This puts contraints on (αj)j∈[k], depending
on ≡ and ϕ. In the general case (omitting trivial cases where e.g. ≡ is the identity
relation, or ϕ is always true), the condition t ≡i t′ ⇔ t(π−1

i,j ) ≡j t′(π
−1
i,j ) might give

rise to conditions πi,j(αl(n)(i)) = αl(n)(j) on the symmetric representation. This
corresponds to our intuition that the role of player αl(n)(j) w.r.t. j (namely, being
his l-th neighbour) is the same as the role of αl(n)(i) w.r.t. i. In particular, this in
general implies that if αl(n)(i) = αl′(n)(i) for some i, then αl(n)(j) = αl′(n)(j) for
all j ∈ [n].

Finally, the initial configuration of a succinct game network is given as a function
mapping each integer n ≥ k to a configuration in Sn. This can for instance be given
as a sequence of pairs (sj , ψj) where sj ∈ S and ψj is a boolean valued function

1Notice that this slightly differs from the Parikh condition we used in Example 9.10: there several
conditions would be imposed on Parikh images of different subsets of neighbours. The setting defined
here could easily be extended to this case.
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taking n and i as argument. Then, in Pn, player i would have initial state sj for the
smallest j for which ψj(n, i) is true (requiring that ψl ≡ ⊤ for some l, so that such
a j always exists).

9.5.1 Undecidability of parameterized existence
In this section we study the problem of deciding whether a succinct symmetric game
network admits a symmetric Nash equilibrium when the number of players is large
enough. More precisely, we aim at deciding the existence of a one-player strategy σ0,
and of an integer n0, such that the strategy profile obtained by making all n0 players
follow strategy σ0 (each player having its own observation) is a Nash equilibrium.
This is called the parameterized existence problem. We show that this problem is
undecidable for LTL objectives, even when considering only memoryless strategies.

Theorem 9.22 The parameterized existence problem for LTL objectives in succinct
symmetric game networks is undecidable (even for memoryless strategies).

We first give a proof for undecidability of the parameterized existence problem for
positive symmetric Nash equilibria and then describe how to do a similar construction
without the positivity constraint.

The proof is done by reduction from the halting problem for deterministic Tur-
ing machines. Let M = (QM, q0,ΣM, δM, qF ) be a deterministic Turing machine.
We build a succinct symmetric game network P that captures the behaviour of M.
We intend to enforce thatM halts if, and only if, there exists n such that Pn has a
positive symmetric Nash equilibrium from some initial configuration. Moreover, we
will show that there is a positive Nash equilibrium in Pn if and only if there is a
memoryless one.

Intuitively, the idea is to have each player control a cell of the Turing machine.
Thus, in each state of the game each player can alter the contents of the cell. Each
player can in each step also claim that the tape head currently points to his cell and
that the current control state of the Turing machine is some state q.

Each player can observe the local states of the two players controlling the cell to
the left and right respectively. This information is enough to be able to update the
cell correctly according to the rules of the Turing machine (assuming that the other
players play according to the rules of the Turing machine as well).

Using LTL objectives for the players it can be expressed how a player should play
in order to follow the rules of the Turing machine. Included in this objective is also
that from some point onwards each player will keep playing the same action forever.
If all players follow the rules of the Turing machine this can only be accomplished if
the Turing machine has an accepting run.

If M halts on the empty input tape then the smallest number n of players such
that there exists a symmetric positive Nash equilibrium in Pn can be shown to be
equal to n1+2, where n1 is the number of cells used byM during the halting run. If
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M does not halt it can be shown that there is no symmetric positive Nash equilibrium
for any n.

We first define the one-player arena G = (S, {A},Σ,Γ, δ), which is depicted on
Fig. 9.7, as follows:

• S = ((QM × ΣM) ∪ ΣM ∪ {qF })× {L,#, R}

• Σ = ΣM ∪QM

• For q ∈ QM, a ∈ ΣM and • ∈ {L,#, R} let

– Γ(((q, a), •), A) = ΣM if q ̸= qF

– Γ((a, •), A) = QM ∪ {a}
– Γ(((qF , a), •), A) = Γ(qF ) = {qF }

• For q ∈ QM, a, b ∈ ΣM and • ∈ {L,#, R} let

– δ(((q, a), •), b) = (b, •) if q ̸= qF

– δ((a, •), q) = ((q, a), •)
– δ((a, •), a) = (a, •)
– δ(((qF , •), a), qF ) = δ((qF , •), qF ) = (qF , •)

Each state in the arena is marked with a special symbol in {L,#, R}: letters L
and R are used to indicate the left-most and right-most cells of the tape, while
# identifies all other cells.

In this reduction, we let k = 3 (each player observes two neighbours plus himself),
with α1(n)(i) = i − 1 (mod n), α2(n)(i) = i, and α3(n)(i) = i + 1 (mod n). The
observation relation ≡ is the identity on S3, with no condition on the Parikh images.
This defines a ring topology where each player has full observation of himself and of
his left and right neighbours.

We now define the objectives of the players, by describing an LTL formula φ.
For the sake of readability, we use atomic propositions p−1, p and p+1 (instead of
p1, p2 and p3, respectively), representing the value of atomic proposition p for play-
ers α1(n)(i), α2(n)(i) and α3(n)(i). The LTL formula φ is given in Fig. 9.8.

The formula describes how the player should update the content of his cell accord-
ing to what is observed about the right and left neighbour and the current content
of his own cell. Next, it is described that eventually the player will keep playing the
same action forever. Finally, the two cells at the left border and right border of the
tape must always be blank.

All cells of the tape initially contains the blank symbol ♭, we set the initial con-
figuration of the network to be (♭,#) for all players, except for players 0, 1 and 2,
starting respectively in states (♭, R), (♭, L) and ((q0, ♭),#). We write γn for this initial
configuration.
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Figure 9.7: The one-player arena (with transitions for one 4-tuple (q, q′, a, b)). Note
that the second component • ∈ {L,#, R} of the states are omitted.

Lemma 9.23 If M halts, then there exists n and a memoryless strategy σ that
induces a positive symmetric memoryless Nash equilibrium in Pn from γn.

Proof. Suppose M halts. Then the unique finite run ρ of M uses only a
finite number of tape cells. Let this number be n1, and consider the game Pn, for
any n ≥ n1 + 2.

In this game, define a memoryless strategy such that action ♭ is always chosen
from states (♭, L) and (♭, R) (since the tape head never points to these positions). For
states with second component #, let the choice of action for player i ∈ {1, ..., n1} in
round k of the game correspond to the content of cell i in the k-th step of the run ρ.
It also means playing the control state ofM when the tape head in ρ moves to cell i.
As player i can see the contents of the two cells i+1 and i−1, as well as cell i, he can
derive from the current state what to play next in this strategy profile. Thus, this
can be done using a memoryless strategy. As every player can use this strategy, this
induces a symmetric memoryless strategy profile.

As φi expresses that player i plays exactly according to the rules of the Turing
machine, that some player eventually reaches the qF state (because it requires all
players to eventually stay in the same state), and that the state of players beginning
in (♭, L) and (♭, R) never change states, this strategy profile ensures that every player
wins as ρ is a halting run.

Thus, the strategy profile defined is a memoryless positive symmetric Nash equi-
librium in Pn. □
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φ =
∧

(q,a)∈Q×Σ s.t.
δ(q,a)=(q′,b,r), c,d∈Σ
γ1,γ2,γ3∈{L,#,R}


G

 (((q, a), γ1) ∧ (c, γ2)r ∧ (d, γ3)−r

)
⇒

X
(
(b, γ1) ∧ ((q′, c), γ2)r ∧ (d, γ3)−r

) 
∧

G

 ((c, γ1) ∧ (d, γ2)r ∧ ((q, a), γ3)−r

)
⇒

X
(
((q′, c), γ1) ∧ (d, γ2)r ∧ (b, γ3)−r

) 


∧ ∧

a,b,c∈Σ
γ1,γ2,γ3∈{L,#,R}

G
[(

(a, γ1)−1 ∧ (b, γ2) ∧ (c, γ3)+1

)
⇒ X(b, γ2)

]

∧ F
∨
s∈S

Gs ∧
∧

γ∈{L,R}

(
(♭, γ)⇒ G(♭, γ)

)

Figure 9.8: Formula φ. It expresses that a player should play according to the rules
of the Turing machine and that eventually it should keep staying in
the same state forever. Finally, the left-most and right-most cell should
always contain the blank symbol ♭.

Lemma 9.24 If M does not halt, then there exists no n for which there is a positive
Nash equilibrium in Pn from γn.

Proof. We do the proof by contraposition. Suppose that there exists n such that
there is a positive symmetric Nash equilibrium σ in Pn from γn. Then the unique
play ϱ of the associated strategy profile from γn satisfies φi for all 0 ≤ i ≤ n − 1.
In particular, player 0 and player 1 always choose action ♭ and stay in the states (♭, L)
and (♭, R) respectively.

Further, as φi is satisfied in ϱ for all other players, the topmost conjuncts in the
definitions of the formulas imply that the players must play according to the unique
run ρ ofM. The truth of the formula also implies that one of the players eventually
plays the halting state as all players eventually keep staying in the same state. This
means thatM does in fact halt. □

Theorem 9.22 now follows from Lemmas 9.23 and 9.24. In particular, note that
they imply undecidability both with and without the restriction to memoryless strate-
gies.
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Note also that the proof above is only for the restriction to positive equilibria.
However, using techniques similar to the proof of Proposition 9.17, the proof can be
adapted to handle unconstrained Nash equilibria.

9.5.2 Decidability with bounded memory
In this section, we keep the setting of succinct representations for the observation
relation and for the LTL objectives, but fix the number of players. We prove that the
existence of a memoryless (or even bounded-memory) symmetric Nash equilibrium is
decidable, and that it is ExpSpace-complete. Notice that we assume that the number
of players is given in binary, so that the state space Sn is actually doubly-exponential
in the size of the input.

We first notice that ExpSpace-hardness is a direct consequence of the proof of
Theorem 9.22; the only difference is that we have to consider exponential-space Turing
machines. The reason that the size of the tape is exponential in this reduction is that
there is one cell for each player. Here, the crucial point is that the number n of
players is given in binary in the succinct representation.

The algorithm follows the same line as in Section 9.4.3: it guesses a memoryless
strategy to be stored on the tape, and checks that no player has a profitable deviation
by guessing paths step-by-step. The strategy maps each observation set to an action.
The number of observation sets is the number of different equivalence classes in ≡:
the number of different Parikh images of size n over S is bounded by nS , and the
number of different configurations for the k neighbours is Sk. Here k can be assumed
to be given in unary, since the input contains one function αj for each 0 ≤ j ≤ k− 1.
Hence the number of observation sets is exponential, and the strategy can be guessed
and stored using exponential space.

Checking whether a player meets his objective or has an incentive to deviate from
the guessed strategy can be achieved in exponential space, following the same ideas
as in Section 9.4.3.

Theorem 9.25 Deciding the constrained existence of a memoryless symmetric Nash
equilibrium for LTL objectives in succinct symmetric game networks is ExpSpace-
complete.

As for the case of non-succinct symmetric game networks, this algorithm can
be lifted to handle finite-memory strategies. Here, the problem remains ExpSpace-
complete, even when the memory bound is given in binary.

The algorithm can also be adapted to handle non-symmetric equilibria, by guess-
ing and storing exponentially many memoryless strategies (one for each player).

9.6 Summary

In this chapter, we have proposed a model of games for large networks of identical
devices. This model of games is composed of a single arena, which is duplicated (one
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copy for each player), and each player only partially observes the global state of the
system. To fully represent large networks of identical devices, we added symmetry
constraints, which yields non-local constraints in the system.

For this model, we have studied several problems related to the computation of
symmetric pure Nash equilibria where the objective of each player is given by an LTL
formula. We have fully characterized the complexity of the existence and constrained
existence problems for bounded-memory strategies. That is, to decide respectively
whether there exists a bounded-memory symmmetric Nash equilibrium and whether
there exists a bounded-memory symmetric Nash equilibrium where certain players are
constrained to be winning and certain players are constrained to be losing. Further,
we have proved several undecidability results when the memory of the strategies is
unbounded.

This work opens many interesting directions of research. Besides solving the
questions left open in this chapter, these directions include the study of randomized
Nash equilibria in such networks of games. Other possibilities for further work include
extended quantitative objectives, or stronger solution concepts, like sub-game perfect
equilibria [Osb04] or secure equilibria [CHJ06]. Restriction to interesting subclasses
of observation relations and network topologies is also important to find meaningful
special cases with lower complexity.

Finally, it would be interesting to investigate whether the symmetry reduction
technique of Chapter 6 could be adapted to this setting. Indeed, there are some chal-
lenges with respect to partial observation and the symmetry constraints on strategies
in symmetric strategy profiles. Also, it is not clear how to deal with Nash equilibria
rather than winning strategies .
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CHAPTER 10
Distributed synthesis in

continuous time
This chapter is an adapted version of the paper

• [HKV16] Holger Hermanns, Jan Krcál, and Steen Vester. “Distributed Synthe-
sis in Continuous Time”. In: Foundations of Software Science and Computation
Structures (FOSSACS) - 19th International Conference. 2016, pages 353–369

It has been updated to be compatible with the other chapters of the thesis. In
particular, the introduction has been updated and extended with more explanation
of the semantics of the modelling formalism. Some of the more technical proof details
have been relegated to the appendix or left out for increased readability. In these
cases proof sketches are included in the main text.

10.1 Introduction

Distributed systems interact in real time, and one very general way to reason about
their timing behaviour is to assume that arbitrary continuous probability distributions
govern the timing of local steps as well as communication steps. We are interested
in how foundational properties of such distributed systems differ from models where
timing is abstracted away as was the case in all previous chapters.

We also model communication explicitly in this chapter. As principal means of
communication we consider symmetric handshake communication, since it can embed
other forms of communication faithfully [Mil83; BK08] including asynchronous and
input/output-separated communication.

As an example, consider the problem of leaking a secret from a sandboxed mal-
ware to an attacker. The behaviour of attacker and malware (and possibly other
components) are prescribed in terms of states, private transitions, labelled synchro-
nization transitions, and delay transitions which model both local computation times
and synchronization times. The delays are governed by arbitrary continuous probabil-
ity distributions over real time. Handshake synchronization is assumed to take place
if all devices able to do so agree on the same transition label. Otherwise the compo-
nents run fully asynchronously. The sandboxing can be thought of as restricting the
set of labels allowed to occur on synchronization transitions.
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Figure 10.1: Possibility of synchronizing on both a and b.

The question we focus on is how to synthesize the component control strategies
so that they reach their target almost surely or with at least a given probability p.
In this example, by synthesizing control strategies for malware and attacker with a
high probability of leaking the secret.

In this chapter we consider a parallel composition of n modules synchronizing via
handshake communication. The modules are modelled by interactive Markov chains
(IMCs) [Her02; HK09], a generalization of labelled transition systems and of continu-
ous time Markov chains, equipped with a well-understood compositional theory. Each
module may in each state enable private actions, as well as synchronization actions.

It is natural to view such a distributed IMC as a game with n+ 1 players, where
the last player (the scheduler) controls the interleaving of the modules. Each of the
other n players controls the decisions in a single module, only based on its local timed
history containing only transitions that have occurred within the module.

On entering a state of its module, each player selects and commits to executing
one of the actions available. A private action is executed immediately while a syn-
chronization action requires a CSP-style handshake [BHR84], it is executed once all
modules able to perform this action have committed to it.

For representing delay distributions, we make one decisive and one technical re-
striction. First, we assume that each distribution is continuous. This for instance
disallows deterministic delays of, say, 3 time units. It is an important simplification
assumed along our explorations of continuous-time distributed control. Second, we
restrict to exponential distributions. This is a pure technicality, since (a) our results
can be developed with general continuous distributions, at the price of excessive no-
tational and technical overhead, and (b) exponential distributions can approximate
arbitrary continuous distributions arbitrarily close [Neu81]. Together, these assump-
tions enable us to work in a setting close to interactive Markov chains.

Example 10.1 Consider the example in Figure 10.1. Here there are three players
i, j and k each with their own module. Initially, j has to commit to action a and k
has to commit to action b. However, i has the possibility to choose either a or b. If
i chooses a then the next configuration of the system is (s1, t1, u0). It is not possible
for player k to take a transition, because all players with the action b in their alphabet
must synchronize on b for the transition to be taken.
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Figure 10.2: A distributed interactive Markov chain G.

Example 10.2 In Figure 10.2 we show a distributed IMC with two players i and j.
In this example there are, in addition to synchronization transitions labelled a also
an internal transition labelled τ . Finally, there are several delay transitions labelled
with rates.

Initially, j commits to a, but nothing happens as i is not yet ready to synchronize.
Then, a random length delay occurs according to an exponential distribution with
rate 2, say after time 1.42 has passed. Then the configuration becomes (s1, t0). Now,
player i must commit to the internal transition which must occur immediately yielding
configuration (s2, t0). Next, player i can only choose action a and immediately the
two players synchronize on a resulting in configuration (s3, t1).

After this sequence, two numbers are chosen randomly according to exponential
distributions both with rate 1, since both the delay transitions from s3 to s3 and t1 to
t2 have rate 1. The lowest number d decides which transition occurs. Say, this is the
transition from t1 to t2. The length of the delay until this transition occurs is then d.
The history played so far is then

(s0, t0)(⊥, a)
i,1.42→ (s1, t0)(τ, a)

τ,1.42→ (s2, t0)(a, a)
a,1.42→ (s3, t1)(⊥,⊥)

j,1.42+d→ (s3, t2)

Note that the history contains both information about the actions committed to by
players (and ⊥ when no action is available) and the absolute time of transitions.
Also, arrows are labelled with an action if an action occured and labelled with a player
if a delay transition occured.

Finally, each player only observes the timed history of the behavior in his own
module. Thus, for the history above, player j observes the following sequence

t0 a
a,1.42→ t1⊥

j,1.42+d→ t2

Thus, while he cannot observe it, he can deduce that the delay transition in the module
of player i occured at time 1.42.
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In this example the interleaving scheduler did not have any choices since at no
point were several different actions enabled during this history. We will see such
examples later.

Apart from running in continuous time, the concepts behind distributed IMCs are
rather common. Closely related are models based on probabilistic automata [Seg95]
and (partially observable) Markov decision processes [Paz71; Ber+02]. In these set-
tings, the power of the interleaving scheduler is a matter of ongoing debate [Che+06;
Can+08; PD12]. The problem is that without additional (and often complicated)
assumptions this player is too powerful to be realistic, and can for instance leak in-
formation between the other players. This is a problem, e.g. in the security context,
making model checking results overly pessimistic [GDF14].

In sharp contrast to the discrete-time settings, in our distributed IMCs the inter-
leaving scheduler does not have decisive influence on the resulting game. The reason
is that the interleaving scheduler can only affect the order of transitions between two
delays, but neither which transitions are taken nor what the different players observe.
This is rooted in the common alphabet synchronization and especially the continuous-
time nature of the game: the probability of two local modules changing state at the
same time instant is zero, except if synchronizing.

Example 10.3 We consider the model displayed in Figure 10.3 where the delay tran-
sitions are labelled by some rate λ. It displays a very simplistic malicious App trying
to communicate a secret to an outside attacker, despite being sandboxed. Innocently
looking actions login, logout and lookup synchronize App and Att, while the unlabelled
transitions denote some private actions of the respective module.

Initially, the App can only let time pass. The attacker player has no other choice
than committing to handshaking on action login. A race of the delay transitions
will occur that at some point will lead to either state (t1, c̄1) or (b1, c̄1), with equal
probability. Say in (t1, c̄1), the App player can only commit to action login. The
synchronization will happen immediately since the attacker is committed to login
already, leading to (t2, c̄2). Now the App player either has to commit to action
lookup or logout. The latter will induce a deadlock due to a mismatch in players’
commitments. Instead assuming the earlier, the state synchronously and immediately
changes to (t3, c̄3). The attacker player can now use its local timed history to decide
which of the private actions to pick. Whatever it chooses, an interleaving of private
actions of the two modules follows in zero time. Unless the reachability condition
considers transient states such as (t3, t̄4) where no time is spent, the player resolving
the interleaving has no influence on the outcome.

Now, assume the reachability condition is the state set {(t4, t̄4), (b4, b̄4)}. This
corresponds to the attacker player correctly determining the initial race of the App,
and can be considered as a leaked secret. However, according to the explanations
provided, it should be obvious that the probability of guessing correctly (by committing
properly in state c̄3) is no larger than 0.5, just because the players are bound to decide
only based on the local history.
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Figure 10.3: Model of malicious app and outside attacker.

Contribution
This chapter presents a new approach to explore distributed cooperative reachability
games with continuous-time flow modelled explicitly. The formalism we study is based
on interactive Markov chains and is called distributed interactive Markov chains.

We aim at synthesizing local strategies for the players to reach a specified set
of goal states with at least a given probability. If this probability is 1 we call the
problem qualitative, otherwise quantitative. We consider existential problems, asking
for the existence of strategies with these properties, and value problems, asking for
strategies approximating the given probability value arbitrarily close.

We have three main results:

1. We show that, under mild assumptions on the winning condition, in continuous-
time distributed synthesis the interleaving scheduler has no power.

2. In general, we establish that the quantitative problems are undecidable for two
or more players, the qualitative value problem is undecidable for two or more
players and the qualitative existence problem is EXPTIME-hard for two players
and undecidable for three or more players.

3. However, when focusing on the subclass of 2-player non-urgent distributed IMCs,
the quantitative value problem can be solved in exponential time. Non-urgency



160 10 Distributed synthesis in continuous time

enables changing the decisions committed to after some time. Thus, it em-
powers the players to reach a distributed consensus about the next handshake
to perform by observing the only information they jointly have access to: the
advance of time.

The qualitative undecidability comes from a novel result we provide about de-
centralised partially observable Markov decision processes (DEC-POMDP), a multi-
player extension of partially observable Markov decision processes (POMDP).

While qualitative existence is decidable for POMDP [BGB12], we show that qual-
itative existence is undecidable for DEC-POMDP already for 2 players.

By a reduction from DEC-POMDP to distributed IMCs that adds one player, we
get undecidability of qualitative existence for 3 or more players in distributed IMCs.

Outline
In Section 10.3 we introduce the new formalism of distributed interactive Markov
chains. Schedulers are shown not to have too much power in Section 10.4. In Section
10.5 we show several undecidability results for distributed IMCs and a new undecid-
ability result for DEC-POMDPs. Decidability of the value problem is shown for the
subclass of 2-player non-urgent models in Section 10.6. A summary of the chapter
can be found in Section 10.7.

10.2 Preliminaries

We denote by R≥0 and Q>0 the sets of non-negative real numbers and positive rational
numbers respectively. Furthermore, for a finite set X, we denote by ∆(X) the set
of discrete probability distributions over X, i.e. functions f : X → [0, 1] such that∑
x∈X f(x) = 1. Finally, for a tuple x from a product space X1 × · · · ×Xn and for

1 ≤ i ≤ n, we use functional notation x(i) to denote the ith element of the tuple.

10.2.1 Markov decision proces (MDP)
A discrete-time Markov decision proces (see e.g. [Put09]) is a formalism for modelling
systems with decision making and stochastic behavior. It can be seen as a one-player
concurrent game where the transition function is randomized. In this thesis we only
deal with finite-state Markov decision processes and therefore just refer to these as
Markov decision processes.

Definition 10.4 A Markov decision processes MDP is a tuple M = (S,Σ, P, sin)
where

• S is a finite set of states

• Σ is a finite set of actions
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• P : S × Σ→ ∆(S) is a partial probabilistic transition function

• sin ∈ S is an initial state

A play in M is an infinite sequence ρ = s0a0s1a1 . . . of states and actions such
that s0 = sin and P (si, ai)(si+1) > 0 for every i ≥ 0. A history is a prefix of a play. A
strategy is a function σ that to every history h assigns a probability distribution over
actions such that if an action a is assigned a non-zero probability, then P (last(h), a)
is defined. A strategy σ is pure memoryless if for any history it assigns probability
1 to some action and its choice depends only on the last state of the history. When
we fix a strategy σ, we obtain a probability measure Prσ over the set of plays. For
further details, see [Put09].

10.2.2 Decentralized POMDP (DEC-POMDP)
A decentralized partially-observable Markov decision process (DEC-POMDP) [Ber+02]
is a multi-player extention of MDPs that incorporates partial observation of the play-
ers. The one-player case of DEC-POMDP is simply called a partially-observable
Markov decision process.

Definition 10.5 A DEC-POMDP is a tuple (S,Π, (Σi,Oi)1≤i≤n, P,O, sin) where

• S is a finite set of global states with initial state sin ∈ S,

• Π = {1, ..., n} is a finite set of players,

• Σi is a finite set of local actions of player i with Σi ∩ Σj = ∅ if j ̸= i, (by
Σ = Σ1 × · · · × Σn we denote the set of global actions),

• Oi is a finite set of local observations for player i,
(by O = O1 × · · · × On we denote the set of global observations),

• P : S × Σ → ∆(S) is the transition function which assigns to a state and a
global action a probability distribution over successor states, and

• O : S × Σ × S → ∆(O) is the observation function which assigns to every
transition a probability distribution over global observations.

A DEC-POMDP starts in the initial state sin. Assuming that the current state
is s, one discrete step of the process works as follows:

• First, each player j chooses an action aj .

• Then the next state s′ is chosen according to the probability distribution P (s, a)
where a = (a1, . . . , an).

• Finally, each player j receives an observation oj ∈ Oj such that the observations
o = (o1, ..., on) are chosen with probability O(s, a, s′)(o).
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Repeating this indefinitely, we obtain a play which is an infinite sequence ρ =
s0a0o0s1a1o1 · · · where s0 = sin and for all i ≥ 0 it holds that si ∈ S, ai ∈ Σ, and
oi ∈ O.

Note that the players can only base their decisions on the sequences of observations
they receive rather than the actual sequence of states which is not available to them.
For a more complete coverage of DEC-POMDPs, see [Ber+02].

10.3 Distributed Interactive Markov Chains

We first give a definition of a (local) module based on the formalism of interactive
Markov chains (IMC) [Her02]. Then we introduce (global) distributed IMC.

IMCs are extensions of continuous-time Markov chains that incorporates composi-
tion in a similar way to in process algebra. The explicit actions, the continuous-time
nature and stochastic behavior of IMCs are important ingredients for us when we
model distributed settings using distributed IMCs.

Definition 10.6 An IMC (module) is a tuple (S,Σ, ↪→,⇝, sin) where

• S is a finite set of states with an initial state sin,

• Σ is a finite set of actions,

• ↪→ ⊆ S × Σ× S is the action transition relation,

• ⇝ ⊆ S ×Q>0 × S is the finite delay transition relation.

We write s a
↪→ s′ when (s, a, s′) ∈ ↪→ and s λ⇝ s′ when (s, λ, s′) ∈⇝ (λ being the rate

of the transition). We say that action a is available in s if s a
↪→ s′ for some s′.

Definition 10.7 A distributed IMC is a tuple

G = ((Si,Σi, ↪→i,⇝i, s
in
i ))1≤i≤n

of modules for players Π = {1, ..., n}. Furthermore, by Σ =
∪
i Σi we denote the set

of all actions, and by S = S1 × ...× Sn the set of (global) states.

Intuitively, a distributed IMC moves in continuous-time from a (global) state to
a (global) state using transitions with labels from L = Σ ∪Π:

• An action transition with label a ∈ Σ corresponds to synchronous communica-
tion of all players in Move(a) = {j ∈ Π | a ∈ Σj} and can only be taken when it
is enabled, i.e. when all these players choose their local transitions with action
a at the same time. It is called a synchronization action if |Move(a)| ≥ 2 and a
private action if |Move(a)| = 1.
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• A delay transition of any player j ∈ Π is taken independently by the player
after a random delay, i.e. the set of players that synchronize over label j is
Move(j) = {j}.

Formally, the (local) choices of player j range over Cj = ↪→j ∪{⊥}. When in
(local) state s, the player may pick only a choice available in s. That is, either
an action transition of the form s

a
↪→ s′ or ⊥ if there is no such action transition.

We define global choices as C = C1 × · · · × Cn. A global choice c induces the set
En(c) = {a ∈ Σ | ∀j ∈ Move(a) : c(j) = (·, a, ·)} of actions enabled in c.

To avoid that time stops by taking infinitely many action steps in zero time, we
pose a standard assumption prohibiting cycles [HKK13; HJ08; Guc+12; Kat+11;
KKN09]: we require that for every action a ∈ Σ there is a player j ∈ Move(a) such
that the labelled transition system (Sj , ↪→j) does not have any cycle involving action
a.

The behaviour of a distributed IMC is given by a play which is an infinite sequence

ρ = s0c0
a1,t1→ s1c1

a2,t2→ s2c2 · · ·

where each si ∈ S is the state after i moves, ci ∈ C is the choice of the players in
the state si, and ai+1 ∈ L and ti+1 ∈ R≥0 are the label and the absolute time of the
next transition taken. By Play we denote the set of all plays. Which play is taken
depends on the strategies of the players, on the scheduler which resolves interleaving
of communication whenever multiple actions are enabled, and on the rules (involving
randomness) given later.

10.3.1 Schedulers and strategies
First we define strategies and schedulers basing their decision on the current local
and global history, respectively. A (global) history is a finite prefix

h = s0c0
a1,t1→ · · · ai,ti→ si

of a play ending with a state. For given h, we get the local history of player j as

πj(h) = s′0(j)c
′
0(j)

a′1,t
′
1→ · · · a

′
ℓ,t

′
ℓ→ s′ℓ(j)

where s′0c′0
a′1,t

′
1→ · · · a

′
ℓ,t

′
ℓ→ s′ℓ is the subsequence of h omitting all steps not visible for

player j, i.e. all am,tm→ smcm with j ̸∈ Move(am). The set of all global histories is
denoted by Hist; the set of local histories of player j by Histj .

Example 10.8 Consider again Example 10.3. Let App be controlled by player 1 and
Att by player 2. For the following history we get corresponding local histories

h = (c0, c̄1)(⊥, login)
1,0.42→ (t1, c̄1)(login, login)

login,0.42→ (t2, c̄2),

π1(h) = c0⊥
1,0.42→ t1login

login,0.42→ t2, π2(h) = c̄1login
login,0.42→ c̄2
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Note that the attacker can neither observe the Markovian transition nor the local
state of the App. The App cannot observe the local state of the attacker either, but
it can be deduced from the local history of the App.

A strategy for player j is a measurable function σ : Histj → ∆(Cj) that assigns
to any local history h of player j a probability distribution over choices available in
the last state of h. We say that a strategy σ for player j is pure if for all h we have
σ(h)(c) = 1 for some c; and memoryless if for all h and h′ with equal last local state
we have σ(h) = σ(h′).

A scheduler is a measurable function δ : Hist×C → ∆(Σ)∪{⊥} that assigns to any
global history h and global choice c a probability distribution over actions enabled in
c; or a special symbol ⊥ again denoting that no action is enabled.

Example 10.9 The available local choices in (t2, c̄2), the last state of h from above,
are {(t2, lookup, t3), (t2, logout, t1)} for App and solely {(c̄2, lookup, c̄3)} for Att. Let
the strategy of App select either choice with equal probability. If (t2, lookup, t3) is
chosen, lookup is enabled and must be picked by the scheduler σ. If (t2, logout, t1) is
chosen, no action is enabled and δ must pick ⊥, waiting for a delay transition.

10.3.2 Probability of plays
Let us fix a strategy profile σ = (σ1, . . . , σn) for individual players, and a scheduler
δ. The play starts in the initial state s0 = (sin1 , . . . , s

in
n ) and inductively evolves as

follows. Let the current history be h = s0c0
a1,t1→ · · · ai,ti→ si.

• For the next choice ci, only players Pi = Move(ai) involved in the last transition
freely choose (we assume P0 = Π). Hence, independently for every j ∈ Pi, the
choice ci(j) is taken randomly according to σj(πj(h)). All remaining players
j ̸∈ Pi stick to the previous choice ci(j) = ci−1(j) as for them, no observable
event happened.

• After fixing ci, there are two types of transitions:

1. If En(ci) ̸= ∅, the next synchronization action ai+1 ∈ En(ci) is chosen
randomly according to δ(h, ci) and taken immediately at time ti+1 = ti.
The next state si+1 satisfies for every j ∈ Π:

si+1(j) =

{
target(ci(j)) if j ∈ Move(ai+1),
si(j) if j ̸∈ Move(ai+1).

where target(ci(j)) denotes the target of the transition chosen by player
j. In other words, players involved in synchronization move according to
their choice, the remaining players stay in their previous states.
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2. If En(ci) = ∅, a local delay transition is taken after a random delay, chosen
as follows. Each delay transition si(j) λ⇝ · outgoing from the current local
state of any player j is randomly assigned a real-valued delay according
to the exponential distribution with rate λ. This results in a collection
of real numbers. The transition si(ℓ)

λ⇝ s with the minimum delay d in
this collection is taken. Hence, ai+1 = ℓ (denoting that player ℓ moves),
ti+1 = ti + d, and the next state si+1 satisfies for every j ∈ Π:

si+1(j) =

{
s if j ∈ Move(ai+1) = {ℓ},
si(j) if j ̸∈ Move(ai+1).

All these rules induce a probability measure Prσ,δ over the set of all plays by a
standard cylinder construction. For details, see Appendix 11.

10.3.3 Distributed synthesis problems
We study the following two fundamental reachability problems for distributed IMCs.
Let G be a distributed IMC, T ⊆ S be a target set of states, and p be a rational
number in [0, 1]. Denoting by ⋄T the set of plays ρ that reach a state in T and stay
there for a non-zero amount of time, we focus on:

Existence Does there exist a strategy profile σ s.t. for all schedulers δ,

Prσ,δ(⋄T ) ≥ p ?

Value Can the value p be arbitrarily approached, i.e. do we have

sup
σ

inf
δ
Prσ,δ(⋄T ) ≥ p ?

We refer to the general problem with p ∈ [0, 1] as quantitative. When we restrict to
p = 1, we call the problem qualitative.

Note that the existence and value problems are related in the following way. If
there exists a strategy σ′ such that for all schedulers δ′ we have

Prσ
′,δ′(⋄T ) ≥ p

then we also have
sup
σ

inf
δ
Prσ,δ(⋄T ) ≥ p

An implication does not hold in the opposite direction though. We call the expression
supσ infδ Prσ,δ(⋄T ) the value of a distributed IMC with target T . In some cases there
might not be any strategy that ensures the value of the distributed IMC no matter how
the scheduler behaves. But, there are strategies that can ensure getting arbitrarily
close to the value of the distributed IMC. This phenomenon also occurs in concurrent
games. For further details see [AHK98].
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Figure 10.4: Distributed IMC where the scheduler can affect the order of transi-
tions.

10.4 Schedulers are not that powerful

The task of a scheduler is to choose among concurrently enabled transitions, thereby
resolving the non-determinism conceptually caused by interleaving. In this section,
we address the impact of the decisions of the scheduler. We show that despite having
the ability to affect the order in which transitions are taken in the global play, the
scheduler cannot affect what every player observes locally. Thus, the scheduler affects
neither the choices of any player nor what synchronization occurs. As a result, for
winning objectives that are closed under local observation equivalence, the scheduler
cannot affect the probability of winning.

Example 10.10 Consider the distributed IMC in Figure 10.4. After the delay transi-
tion is taken in C1 and there is synchronization on action a, the scheduler can choose
whether there will be synchronization on b or c first. However, it can only affect the
interleaving, not any of the local plays.

For a play ρ = s0c0
a1,t1→ s1c1

a2,t2→ s2c2 · · · we define the local play πj(ρ) of player
j analogously to local histories. We define local observation equivalence ∼ over all
plays ρ, ρ′ by setting ρ ∼ ρ′ if πj(ρ) = πj(ρ

′) for all j ∈ Π. Let us stress that two
local observation equivalent plays have exactly the same action and delay transitions
happening at the same moments of time; only the order of action transitions happen-
ing at the same time can differ. Finally, we say that a set E of plays is closed under
local observation equivalence if for any ρ ∈ E and any ρ′ such that ρ ∼ ρ′ we have
ρ′ ∈ E.



10.5 Undecidability Results 167

It is now possible to show that the scheduler cannot affect the probability of events
closed under local observation equivalence.

Theorem 10.11 Let E be a measurable set of plays closed under local observation
equivalence. For any strategy profile σ and schedulers δ and δ′ we have

Prσ,δ(E) = Prσ,δ
′
(E).

The proof of Theorem 10.11 is a bit technical and therefore moved to the appendix,
it can be found in Appendix 11.

The proof can be divided into three main parts. The overall idea of the three
parts are

1. showing that for pure strategy profiles, the schedulers cannot affect anything
but the interleaving in a maximal 0-duration sequence of actions;

2. showing that 1. can be lifted to all events E closed under observation equiv-
alence. This is done in two steps. First, it is shown to be the case for all
interleaving abstract cylinders by induction using 1. Second, standard results
from measure theory imply the result for all measurable sets of plays closed
under local observation equivalence;

3. extending 2. from pure strategies to arbitrary strategies can be done reusing
ideas from classical game theory on mixed and behavioural strategies in extensive-
form games [Kuh53].

As a result, for the rest of the chapter we write Prσ(E) instead of Prσ,δ(E) since
the scheduler cannot affect the probability of the events we consider. Indeed, the
reachability objectives defined in the previous section are closed under local observa-
tion equivalence.

10.5 Undecidability Results

In this section, we put distributed IMCs into context of other partial observation
models. As a result, we show that reachability quickly gets undecidable:

Theorem 10.12 For distributed IMCs we have that

1. the qualitative value, quantitative value, and quantitative existence problems are
undecidable with n ≥ 2 players; and

2. the qualitative existence problem is ExpTime-hard with n = 2 players and
undecidable with n ≥ 3 players.

This theorem is obtained from the following two fundamental results.
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POMDPs DEC-POMDPs Distributed IMCs
Qual. Existence Dec. [BGB12] Und. ≥ 2 players Und. ≥ 3 players

Value Und. [GO10] Und. ≥ 1 player [GO10] Und. ≥ 2 players
Quant. Existence Und. [Paz71] Und. ≥ 1 player [Paz71] Und. ≥ 2 players

Value Und. [BMT77] Und. ≥ 1 player [BMT77] Und. ≥ 2 players

Table 10.5: Undecidability results for reachability. Unreferenced results are shown
in this chapter.

• First, we show that distributed IMCs are not only more expressive (w.r.t. reach-
ability) than POMDPs but also more expressive than DEC-POMDPs. We show
it by reducing reachability in DEC-POMDPs with n players to reachability in
distributed IMCs with n+ 1 players (Proposition 10.13).

• Second, we provide a novel (and somewhat surprising) result for DEC-POMDPs.
We show that the qualitative existence problem for DEC-POMDPs is undecid-
able already for 2 players (Theorem 10.14).

Combining these two results and known results about POMDPs [Paz71; BMT77;
GO10] the theorem follows. For an overview, see Table 10.5.

10.5.1 Reduction from DEC-POMDP
First we present the reduction from a DEC-POMDP P to a distributed IMC G. In this
subsection, we write PrσP or PrσG instead of Prσ to distinguish between the probability
measure in the DEC-POMDP from the probability measure in the distributed IMC.

Proposition 10.13 For a DEC-POMDP P with n players and a target set T of
states of P we can construct in polynomial time a distributed IMC G with n + 1
players and a target set T ′ of global states in G where:

∃σ : PrσG(⋄T ) = p ⇐⇒ ∃σ′ : Prσ
′

P (⋄T ′) = p.

Proof. Let us fix n and P = (S,Π, (Σi,Oi)1≤i≤n, P,O, sin) where Π = {1, ..., n}.
Further, let Σi = {ai1, ..., aimi} and Oi = {oi1, ..., oiℓi} for player i ∈ Π. The dis-
tributed IMC G has n + 1 modules, one module for each player in P and the main
module responsible for their synchronization. Intuitively,

• the module of every player i stores the last local observation in its state space.
Every step of P is modelled as follows: The player outputs to the main module
the action it chooses and then inputs from the main module the next observa-
tion.
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Figure 10.7: Input encoding to the left and output encoding to the right. In the
input encoding, every transition not labelled with an action is a delay
transition. All these delay transitions have the same rate λ.

• The main module stores the global state in its state space. Every step of P
corresponds to the following: The main module inputs the actions of all players
one by one, then it randomly picks the new state and new observations according
to the rules of P based on the actions collected. The observations are lastly
output to all players, again one by one.

We construct the distributed IMC so that only the outputting player chooses what
action to output whereas the inputting player accepts whatever comes. The construc-
tion of modules for player i is illustrated in Figure 10.6 along with constructions for
input and output in Figure 10.7.

Outputting an action a ∈ {a1, . . . , ar} in a state s is simple - this is modelled in
s by standard action transitions for all these actions.

The interesting part is how an action from the set {a1, . . . , ar} is input in a state s.
Instead of waiting in s, the player travels by delay transitions in a round-robin fashion
through a cycle of r states, where in the i-th state, only the action ai is available.
Thus, the player has no influence and must input the action that comes. By this
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3 each the play either goes to s1, s2 or s3. If the play
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3 each the play either goes back to
s2, goes to s3 or goes to s4. From s1 the play continues in P ′, from s3
the play continues in P ′′′ and from s4 the play continues in P ′′.

construction, the main module has at most one action transition in every state such
that the player cannot influence anything; other modules get no insight by observing
time and thus the players have the same power as in the DEC-POMDP. □

10.5.2 Undecidability of qualitative existence in DEC-POMDP
Next, we show that the qualitative existence problem for DEC-POMDPs even with
n ≥ 2 players is undecidable. The proof has similarities with ideas from [BK10]
where it is shown that deciding existence of winning strategies in concurrent games
with 3 players, partial observation and safety objectives is undecidable. Using the
randomness of DEC-POMDPs we show undecidability of the qualitative existence
problem for reachability in 2-player DEC-POMDPs.

Theorem 10.14 It is undecidable whether for a DEC-POMDP P with n ≥ 2 players
and a set T of target states in P if there exists a strategy profile σ such that PrσP(⋄T ) =
1.

Proof sketch. We do a reduction from the non-halting problem of a determin-
istic Turing machine M that starts with a blank input tape. From M we construct a
DEC-POMDP P with two players Π = {1, 2} such that M does not halt if and only
if players 1 and 2 have strategies σ = (σ1, σ2) which ensure that the probability of
reaching a target set T is 1. Figure 10.8 shows the overall structure of P without
details of sub-modules P ′,P ′′ and P ′′′.

Both players have two possible observations, black and white. We depict the
observation of player 1 in the top-half and of player 2 in the bottom-half of every
state. The play starts in s0 and with probability 1, every player receives the black
observation exactly once during the play. If the play goes to s1 or s4 the players will
receive the observation at the same time and if the play goes to s3 then player 2 will
receive the observation in the step after player 1 does. The modules P ′,P ′′ and P ′′′

are designed so that:

• In P ′, a target state is reached if and only if the sequence of actions played by
both players encodes the initial configuration of M .
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• In P ′′, a target state is reached with probability 1 if and only if both players
play the same infinite sequence of actions. Note that randomness is essential to
build such a module.

• In P ′′′, the target set is reached if and only if the sequences of actions played by
player 1 and 2 encode two configurations C1 and C2 ofM , respectively, such that
C1 is not an accepting configuration and C2 is a successor configuration of C1.
This can be done since a finite automaton can be constructed that recognizes if
one configuration is a successor of the other when reading both configurations
at the same time [BK10]. Note that it is possible because such configurations
can only differ by a constant amount (the control state, the tape head position
and in symbols in cells near the tape head).

It can be shown by induction that if there are strategies σ1, σ2 that ensure reaching
T with probability 1 then every σi has to play the encoding of the jth configuration
of M when it receives the black observation in the jth step. Further, it can be shown
that these strategies do ensure reaching T with probability 1 if M does not halt on
the empty input tape and do not ensure reaching T with probability 1 if M halts. □

10.6 Decidability for non-urgent models

In this section, we turn our attention to a subclass of distributed IMCs, called non-
urgent. In this subclass the players have the possibility to keep redeciding after they
have committed to actions. They also have the possibility to wait and not commit
to any action and just let time pass. This is done without timeouts, so while waiting
to choose which action to commit to or while redeciding they can be sure that their
current local state does not change. We show how such situations can be modelled
in our framework.

In this subclass we obtain decidability for both the qualitative and quantitative
value problems for 2 players.

Definition 10.15 A distributed IMC G = ((Si,Σi, ↪→i,⇝i, s0i))1≤i≤n is non-urgent
if for every 1 ≤ j ≤ n:

1. Every s ∈ Sj is of one of the following forms:

a) Synchronisation state with at least one outgoing synchronization action
transition and exactly one outgoing delay transition which is a self-loop.

b) Private state with arbitrary outgoing delay transitions and private action
transitions.

2. Player j has an action ∅j ∈ Σj enabled in every synchronization state from Sj
that allows to “do nothing” and thus postpone the synchronization. To this end,
∅j is also in Σk for every other player k ̸= j but ∅j does not appear in ↪→k.
As a result, j does not take part in any synchronization while choosing ∅j.
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Figure 10.9: A non-urgent distributed IMC.

In a non-urgent distributed IMC, s ∈ S is called a (global) synchronization state
if it is the initial state or all s(j) are synchronization states. We denote global
synchronization states by S′. All other global states S \ S′ are called private.

Example 10.16 Consider the non-urgent variant of Example 10.3 on the right. The
“do nothing” actions are a natural concept; the only real modelling restriction is that
one cannot model a communication time-out any more, the delay transitions from
synchronization states need to be self-loops.

Surprisingly, in this model, the secret can be leaked with probability 1 as follows. As
before, the players reach the states (t2, c̄2) or (b2, c̄2) with equal probability. Now, the
App player can arbitrarily postpone the lookup by committing to action ∅1. Whenever
the delay self-loop is taken, the player can re-decide to perform lookup. Since the self-
loop is taken repetitively, the App player is flexible in choosing the timing of lookup.
Thus, leaking the secret is simple, e.g. by performing lookup in an odd second when
in t2 and in an even second when in b2.

For two players, we construct a general synchronization scheme that (highly prob-
ably) shows the players the current global state after each communication.
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Theorem 10.17 The quantitative value problem for 2-player non-urgent distributed
IMCs where the target set consists only of synchronization states is in ExpTime.

Being a special case, also the qualitative value problem is decidable. In essence,
the problem becomes decidable because in the synchronization states, the players can
effectively exchange arbitrary information. This resembles the setting of [Gen+13].
The insight that observing global time provides an additional synchronization mech-
anism is not novel in itself, but it is obviously burdensome to formally capture in
time-abstract models of asynchronous communication, and thus usually not consid-
ered. For distributed IMC, it still is non-trivial to develop; here it hinges on the
non-urgency assumption. The results of [Gen+13] also indicate that for three or more
players, additional constraints on the topology may be needed to obtain decidability.

In the rest of the section we prove Theorem 10.17, fixing a 2-player non-urgent
distributed IMC G = ((Si,Σi, ↪→i,⇝i, s0i))1≤i≤2, a probability p ∈ [0, 1], and a set
T ⊆ S′ of target states. We present the algorithm based on a reduction to a discrete-
time Markov decision process and then discuss its correctness.

10.6.1 The algorithm
We provide an algorithm based on a reduction to the value problem for a discrete-time
MDP. The idea is that by using a certain communication scheme explained below,
the players can use the knowledge of the global clock and the non-urgent nature of
the synchronization states to approximate having full observation.

The algorithm takes a distributed IMC G as input and from this creates a discrete-
time MDPMG which, informally, assumes full observability of the players in the game.
As such, they can be treated as the one player in the MDP.

Formally, we constructMG = (S′,Σ, P, s0) where

• S′ ⊆ S is the set of global synchronization states;

• Σ = (C × χ1 × χ2) ∪ {⊥} where χj is the set of pure memoryless strategies of
player j in G that choose ∅j in every synchronization state;

• For an arbitrary state (s1, s2), we define the transition function as follows:

– For any (c, σ1, σ2) ∈ Σ, the transition P ((s1, s2), (c, σ1, σ2)) is defined if
c is available in (s1, s2) and the players agree in c on some action a, i.e.
En(c) = {a}. If defined, the distribution P ((s1, s2), (c, σ1, σ2)) assigns to
any successor state (s′1, s

′
2) the probability that in G the state (s′1, s

′
2) is

reached from (s1, s2) via states in S \ S′ by choosing c and then using the
pure memoryless strategy profile (σ1, σ2).

– To avoid deadlocks, the transition P ((s1, s2),⊥) is defined iff no other
transition is defined in (s1, s2) and it is a self-loop, i.e. it assigns probability
1 to (s1, s2).
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The MDPMG has size exponential in |G| due to the number of pure memoryless
strategies in χ1 and χ2. Note that all target states T are included in S′. Slightly
abusing notation, let ⋄T denote the set of plays in MG that reach the set T . From
standard results on MDPs [Put09], there exists an optimal pure memoryless strategy
π∗ inMG , i.e. satisfying Prπ

∗
(⋄T ) = supπ Prπ(⋄T ). Furthermore, such a strategy π∗

and the value v = Prπ
∗
(⋄T ) can be computed in time polynomial in |MG |. Finally,

the algorithm returns TRUE if v ≥ p and FALSE, otherwise.

10.6.2 Correctness of the algorithm
Below we give a proof sketch for the correctness of the algorithm above. This boils
down to showing that the value of G is equal to the value of the MDP.

Proposition 10.18 The value of G is equal to the value of MG, i.e.

sup
σ

Prσ(⋄T ) = sup
π

Prπ(⋄T ).

Proof sketch. As regards the ≤ inequality, it suffices to show that any strategy
profile σ can be mimicked by some strategy π. This is simple as the player in MG
has always knowledge of the global state. Much more interesting is the ≥ inequality.
We argue that for any strategy π there is a sequence of strategy profiles σ1, σ2, . . . in
G such that

lim
i→∞

Prσ
i

(⋄T ) = Prπ(⋄T ).

The crucial idea is that a strategy profile communicates correctly (with high prob-
ability) the current global state in a synchronization state by delaying as follows. The
time is divided into phases, each of |S′

1| ·2|S′
2| slots (where S′

i are the synchronization
states of player i). We depict a phase by the table in Figure 10.10 where the time
flows from top to bottom and from left to right (as reading a book).

Players 1 and 2 try to synchronize in the row and column, respectively, correspond-
ing to their current states (3 and 1 respectively as marked by the circles) and in each
slot take the optimal choice ci(s1, s2) given the current global state is (s1, s2); in the
remaining slots they choose to do nothing. Since the players can change their choice
only at random moments of time when the self-loop is triggered, their synchronizing
choice can always stretches a bit into the successive silent slot (in a ¬sync column).

The more we increase the duration of each slot, the lower is the chance that a
synchronization choice of a player stretches to the next synchronization slot. Thus,
the lower is the chance of an erroneous synchronization.

We define the duration of the slot to increase with i and also along the play so that
for any fixed i the probability of at least one erroneous synchronization is bounded
by κi < 1 and for i→∞, we have κi → 0. □

Note that in Example 10.16 the App and Att players can use a communication
scheme just like suggested in the proof sketch above. Doing this the players can ensure
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Figure 10.10: A communication phase with 12 time slots is illustrated in the figure.
Player 1 is in state 3 and player 2 is in state 1 which is illustrated
by the circles. This means that player 1 tries to synchronize in sync
time slots in the bottom row, whereas player 2 tries to synchronize in
time slots in the left-most column. Since a player does not know the
state of the other player, the choice made in each time slot depends
on the particular time slot, not only on the state of the player him-
self. For instance, player 2 is ready to synchronize on three different
actions in the three different time slots in the left-most column, each
corresponding to the optimal choice if player 1 is in state 1, 2 or 3
respectively. As the players do not synchronize with probability 1
during a phase, the players continue a sequence of phases like this
until synchronization occurs. This is because the players can only
redecide when self-loops are triggered and this is done in a stochastic
fashion. Thus, a player might not get a chance to redecide within a
given time slot.

winning with probability arbitrarily close to 1 by choosing appropriate durations of
the time slots. Thus, they can leak the secret by using the global time.

10.7 Summary

This chapter has introduced a foundational framework for modelling and synthesizing
distributed controllers interacting in continuous time via handshake communication.
The continuous time nature of the model induces that the interleaving scheduler has
in fact very little power.

Distributed IMCs can be considered as an attractive base model especially in the
context of information flow and other security-related studies. This is because in
contrast to the discrete time setting, the power of the interleaving scheduler is no
matter of debate, it can leak no essential information.
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We studied cooperative reachability problems in distributed IMCs for which we
presented a number of undecidability results. In addition to undecidability results
for distributed IMCs, we have sharpened the undecidability border in decentralized
POMDPs by showing undecidability of the qualitative existence problem already for
two players. That is, undecidability of deciding whether there exist strategies for the
two players that ensure reaching the set of target states with probability 1.

For non-urgent models we have established decidability of both quantitative and
qualitative problems for the two-player case by using a particular synchronization
scheme between the players. Whether this technique can be extended to more players
and whether the exponential-time complexity is optimal are left open.



CHAPTER 11
Conclusion

We now give a summary of the main results presented in this thesis, evaluate on the
goals and give some pointers to future work.

Highlights

In Chapter 4 we introduced the novel concept of winning cores in parity games
and showed interesting properties of these. They provide new knowledge about the
structure of winning regions and strategies in such games. Further, we presented a
polynomial-time under-approximation algorithm based on winning cores. Experimen-
tal results on benchmark games and random games are very promising with respect
to quality of approximation and efficiency compared to existing approaches. In most
cases the algorithm performed better than the current state of the art.

In Chapter 5 we obtained precise computational complexities of model-checking
for quantitative extensions of CTL∗, ATL and ATL∗ in one-counter games. Model-
checking games were used to obtain optimal complexity in each of the cases considered.
Tight lower bounds were found for all cases considered. We also found the precise
complexity of solving one-counter games with LTL objecties. The complexity results
ranged from PSpace-completeness to 2ExpSpace-completeness.

In Chapter 6 we extended the well-known technique of symmetry reduction to
be able to handle turn-based games with finite branching. It was shown how this
technique is applicable for reducing the state space both when solving parity games
and when model-checking ATL∗.

In Chapter 7 the satisfiability problem for various flat fragments of ATL∗ was
considered. We showed that for all the logics considered, satisfiability of formulas
with a nesting depth of 2 of strategic quantifiers is already as hard as satisfiability
for the full logic. Precise complexity results were shown for all fragments considered.
The complexity results ranged from NP-complete to PSpace-complete with several
problems being complete for the class ΣP3 in the polynomial hierarchy.

In Chapter 9 we introduced the new game-based formalism symmetric game net-
works for modelling distributed and reactive systems in settings with several identical
players. We studied the computational complexity of the existence of symmetric Nash
equilibria in these models and showed several undecidability results. Decidability re-
sults were obtained when restricting to finite-memory Nash equilibria.

In Chapter 10 we introduced the formalism of distributed interactive Markov
chains to model distributed and reactive systems using continuous time and prob-
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ability distributions over the length of delays. We first showed that the interleaving
scheduler has no real power in this model. Next, we showed undecidability of the exis-
tence of strategies to ensure reaching a target with probability 1 already for 3 players.
As part of the proof we showed undecidability of the same question already for 2
players in the well-established model of decentralized partially-observable Markov
decision processes (DEC-POMDPs). We finally obtained decidability of the value
problem in the restricted class of non-urgent models with 2 players.

Evaluation

In Section 1.7 we stated three main categories of goals. Briefly, these categories are:

1. Improving the efficiency of existing techniques for game-based verification and
synthesis.

2. Deciding the computational complexity of foundational problems in model-
checking, satisfiability and synthesis.

3. Developing new formalisms for game-based modelling of distributed and reactive
systems.

Our results on parity games in Chapter 4 fall in the first category in two different
ways. First, we have provided a new polynomial-time underapproximation algorithm
with very promising performance compared to the state of the art algorithms. Second,
with winning cores we have provided new structural insights into the workings of
parity games. This has opened up a new direction for attacking the problem of
deciding whether solving parity games (and equivalently, model-checking µ-calculus)
can be done in polynomial time. This problem has currently been unsolved for more
than 30 years [Koz83; EL86].

The extension of the symmetry reduction technique in Chapter 6 makes it possible
to solve various questions about games more efficiently by reducing the state space,
thus falling in the first category as well. It has yet to be seen how large an impact
this will have in practice, but similar techniques in model-checking of transition sys-
tems [ID96; Cla+96; Cla+98], real-time systems [Hen+03] and probabilistic systems
[KNP06] are promising.

The complexity results obtained in Chapter 5 and Chapter 7 falls in the second cat-
egory of goals. Here, we determined the precise computational complexity for several
model-checking and satisfiability problems in ATL∗ and fragments. In particular, the
results in Chapter 5 are, together with results from [MP15; CSW16], some of the first
known decidability results for ATL and ATL∗ model-checking in infinite-state games.
Another important result was the 2ExpSpace-completeness shown for one-counter
games with LTL-objectives.

In Chapter 9 and 10 we also presented computational complexity results on basic
questions in the new models introduced. However, there are still many open ques-
tions to consider for these models. We also showed in Chapter 10 that almost-sure
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reachability in DEC-POMDPs is already undecidable for 2 players. This is currently
the strongest undecidability result for this formalism.

Regarding the third goal we have introduced two new modelling formalisms for
distributed settings in Chapter 9 and 10. The first extends existing formalisms by
making it possible to explicitly model several players that are identical. It also makes
it possible to reason about several players applying the same strategy. The sec-
ond extends the continuous-time formalism of interactive Markov chains [Her02] to a
game-based setting appropriate for synthesis of strategies. It is the first game-based
formalism for modelling distributed settings with continuous time and probability
distributions over length of delays.

Future directions and open problems

Some of the more interesting directions for future work that originates from our results
are the following:

• To investigate whether the new concept of winning cores in parity games can
provide a succesful approach for resolving the question of whether parity games
can be solved in polynomial time.

• To apply the symmetry reduction technique in practical applications of game-
based verification and synthesis. Recall that there are no guarantees on systems
without symmetry, but that the technique has had a large impact in other areas
of verification.

• To analyze the models introduced in Chapters 9 and 10 more in-depth. In
particular, to search for applicable subclasses with decidable problems and a
lower computational complexity than the problems considered in this thesis.
Hopefully, these can be used in practice to synthesize real distributed systems
that are correct-by-construction.
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Appendix for Chapter
10

Definition of the probability measure

First, we pose an assumption on the module of each player j to avoid that a play
stops because no further steps are possible. More precisely, we assume that every
state has at least one outgoing delay transition or it only has outgoing private action
transitions (that cannot be blocked by other modules).

One can see that this is no real restriction as follows. For states without any
transition, we can add a delay self-loop; states with synchronisation transitions are
transformed as depicted in Figure 1. Note that in the second case, simply adding
delay self-loops would change the behaviour because taking a delay self-loop allows
the player to change the choice.

As common for continuous-time systems, the definition is based on cylinder sets
generated from interval-timed histories. An interval-timed history is a sequence

H = s0c0
a1,I1→ s1c1 · · ·

ak,Ik→ sk

where each Ii+1 is a real interval bounding the time spent waiting in si. We further
require that Ii = [0, 0] whenever ai ∈ Σ and that the set of histories that conform to
H is non-empty. We say that a history s0c0

a1,t1→ s1c1 · · ·
ak,tk→ sk conforms to H if

ti − ti−1 ∈ Ii for each 1 ≤ i ≤ k (where t0 = 0).
Slightly abusing notation, we interpret an interval-timed history H also as the set

of histories that conform to H. We define the cylinder Cyl(H) = {ρ ∈ Play | ∃i.ρ≤i ∈

...

s0

..

s1

.

...

..

sn

..

s0

..

s1

.

...

..

sn

..

...

..

a1

.

an

.

b1

.

bn

.

a1

.

an

.

λ

.

λ

Figure 1: Transformation for states with synchronisation transitions that adds new
private actions b1, . . . , bn.
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H} as the set of plays which have a prefix in H. We define the measurable spaces
(Play,F) and (Hist,H) where F and H are the σ-algebra generated from all cylinders
and interval-timed histories, respectively:

F = σ ({Cyl(H) | H is an interval-timed history})
H = σ ({H | H is an interval-timed history})

Analogously, we can define measurable spaces (Histj ,Hj) over local histories (by
allowing also Ii for action transitions to have non-zero length).

For a given strategy profile σ, i.e. a tuple of strategies σ = (σ1, . . . , σn) of indi-
vidual players, a given scheduler δ and initial state s0, we obtain a purely stochastic
process and we can define a probability measure Prσ,δs0 over Play. The probability
measure is uniquely determined by fixing probabilities for cylinder sets Cyl(H) for
any interval-timed history

H = s0c0
a1,I1→ s1c1 · · ·

ak,Ik→ sk.

Let α1, ..., αv be the indices of delay transitions, i.e. for each αj we have aαj ∈ Π;
and β1, ..., βu be the indices of action transitions, i.e. for each βj we have aβj ∈ Σ.
For 1 ≤ i ≤ v, let ℓi = inf(Iαi) and ui = sup(Iαi). Then Prσ,δs0 (Cyl(H)) is defined as∫ u1

ℓ1

...

∫ uv

ℓv

∏
1≤i≤v

Deαi(di) ·
∏

0≤i<k

Sti ·
∏

1≤i≤u

Scβi ddv · · ·dd1

where the terms Dei(d), Sci, and Sti express the contribution of the ith transition to
the overall probability caused by the delays, decisions of the scheduler, and decision
on the strategies, respectively (see below). The variables di denote the delay at ith
delay transitions and induce a history

h = s0c0
a1,t1→ s1c1 · · ·

ak,tk→ sk

such that ti =
∑
ℓ,αℓ≤i dαℓ

. Finally, we set

Dei(d) = Q(si, si+1) · e−E(si)d,

where Q(s, s′) =
∑
s
λ,j⇝s′

λ and E(s) =
∑
s′ ̸=sQ(s, s′), and

Sti =
∏

j∈Move(ai)

σj(πj(h≤i))(ci(j)),

Sci = δ(h≤i−1, ci−1)(ai).

When s′0 ̸= s0 then Prσ,δs′0 (CylG(H)) = 0.
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Proof of Theorem 10.11

Before we prove Theorem 10.11 we need a few definitions and lemmas.
For an interval-timed history let πj(H) = {πj(ρ) ∈ Play | ρ conforms to H}.

Further, Let ∼ be an equivalence relation on interval-timed histories defined such
that H ∼ H ′ for two interval-timed histories H and H ′ if and only if πj(H) = πj(H

′)
for every j ∈ Π. We write [H] for the set of histories h such that there exists H ′ ∼ H
with h ∈ H ′.

Now, for an interval-timed history H = s0c0
a1,I1→ s1c1 · · ·

ak,Ik→ sk such that the
last action ak ∈ Π if k > 0 we define the interleaving-abstract cylinder as the set of
plays with a prefix conforming to interval-timed histories H ′ assuring H ∼ H ′:

Cylia(H) = {ρ ∈ Play | ρ≤k ∈ [H]}

Note that the interleaving-abstract cylinders are contained in the σ-algebra F gener-
ated by the cylinder sets. We can therefore define a sub-σ-algebra I of F generated
by interleaving-abstract cylinders

I = σ({Cylia(H) |H is an interval-timed history
s.t. the last action is not in Σ})

Since this is a sub-σ-algebra of F it inherits the probability measures defined earlier
restricted to I. Note that interleaving-abstract events are also 0-time abstract. That
is, they are events which are invariant under reordering of 0-time interactions. Indeed,
if no player can distinguish two histories h and h′, then the delay transitions must
be the same in the two histories. Further, since all players have access to global
time it must be the same actions that are performed in h and h′ in every 0-duration
sub-history Now, the only way in which h and h′ can differ is in the interleaving of
these 0-duration subhistories.

Lemma .1 Let σ = (σ1, ..., σn) be a pure strategy profile and let δ, δ′ be two schedulers.
Further, let H = s0c0

a1,I1→ s1c1 · · ·
ak,Ik→ sk be an interval-timed history such that

ai ∈ Σ for all 1 ≤ i < k and ak ∈ Π. Then

Prσ,δs0 (Cylia(H)) = Prσ,δ
′

s0 (Cylia(H))

Further, this probability is either 0 or 1.

Proof. First note that before a delay transition happens there can be no loops
in any of the local histories πj(H). When we restrict to histories up to the first delay
transition, a pure strategy for player j can be considered to be simply a maximal
sequence (aj1, s

j
1)...(a

j
ℓj
, sjℓj ) of choices of player j. This is because for any strategy σj

of player j, the j-play moves along the unique path in the module of player j that is
chosen by player j at each step. The only thing player j can observe is whether the
transition (that he chose) is taken or not.
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Assume now that we have a pure strategy profile σ = (σ1, ..., σn). This induces
such a sequence of choices for each player. The longest possible j-play that can

occur under σ before the first delay transition is ρj = s0(j)(a
j
1, s

j
1),

aj1,0→ sj1...
ajℓj

,0

→ sjℓj .
Further, all possible j-plays are prefixes of ρj . We now suppose for contradiction that
there are two histories h, h′ consistent with σ ending after the first delay transition
such that there exists a player j with |πj(h)| ̸= |πj(h′)|. Since πj(h) and πj(h′) are
both prefixes of ρj either πj(h) is a proper prefix of πj(h′) or the other way around.
Without loss of generality let u = |πj(h)| < |πj(h′)|.

Suppose σj(πj(h)) = (b0, s). Now, player j has not been able to synchronize on
b0 ∈ Σ in the last state of h. However, he has been able to synchronize on it along
h′ due to different choices of the scheduler. Note that at earlier points on h he might
have synchronized on b0 a number of times already. Let this number of times be
c0 ∈ N. This means that all players capable of synchronizing on b0 must have done so
exactly c0 times along h. At least one of these players, let us call him j1, must have
stopped before committing to synchronize on b0 the (c0+1)th time, because otherwise
the play would have progressed since no action can be enabled when a delay transition
takes place. Note that each of these players are willing to perform b0 at least c0 + 1
times at some point since this happens in h′. Let j1 be committed to synchronize
on action b1 ̸= b0 when the play stops in h and suppose he has already synchronized
c1 times on b1 before this point. We can now perform the same reasoning again to
find a player j2 that has stopped in h before reaching the point where he is ready to
synchronize on b1 for the (c1+1)th time. At this point he is committed to performing
the action b2 for the (c2 + 1)th time. This reasoning gives us an infinite sequence ji
of players committed to actions bi in the last state after having performed the action
bi exactly ci times before.

We now introduce a partial order ⪯⊆ (Σ×N)2 on elements (a, d) ∈ (Σ×N) such
that there exists j so action a occurs at least d times in h′. The relation is defined
such that (a, d) ⪯ (a′, d′) if there is a player j such that a occurs d times on h′ before
a′ occurs d′ times on h′ (and a′ actually does occur d′ times at some point on h′).
It is reflexive and transitive because all players that has an action in their alphabet
must commit in order to synchronize on it. Anti-symmetry follows from this and the
fact that ρj is linear for every j.

Now, we have that (bi+1, ci+1) ≺ (bi, ci) for all i ≥ 0. This is the case firstly
because πji(h) is a prefix of πji(h′) for the players giving rise to the sequence of bi’s.
Secondly, because bi+1 ̸= bi. This means that

(b0, c0) ≻ (b1, c1) ≻ (b2, c2)...

is an infinite strictly decreasing sequence. Since ≻ is only defined on a finite
number of elements this gives a contradiction. Thus, |πj(h)| = |πj(h′)|. Further,
πj(h) = πj(h

′) since one is a prefix of the other. Since j was chosen arbitrarily, this
means that the local history πj(h) before the delay transition cannot be changed
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by any scheduler and is uniquely determined by the pure strategies. From this, the
lemma follows. □

We now extend to arbitrary events in I by applying the result above. However,
first we need some notation. If H = s0c0

a1,I1→ s1c1 · · ·
ak,Ik→ sk is an interval-timed

history then the set of histories h ∈ [H] with specific delays d1, ..., dv on the delay
transitions is denoted [H]d1,...,dv . Note that this set is finite.

Lemma .2 Let E ∈ I, s0 ∈ S, σ = (σ1, ..., σn) be a pure strategy profile and δ, δ′ be
two schedulers. Then

Prσ,δs0 (E) = Prσ,δ
′

s0 (E)

Proof. We show this by showing that for every time-abstract cylinder Cylia(H)

for an interval-timed history H = s0c0
a1,I1→ s1c1 · · ·

ak,Ik→ sk such that ak ∈ Π if k > 0,
every pure strategy profile σ and every pair δ, δ′ of schedulers we have

Prσ,δs0 (Cylia(H)) = Prσ,δ
′

s0 (Cylia(H))

First, for any scheduler δ we have

Prσ,δs0 (Cylia(H)) =
∑
H′∼H

Prσ,δs0 (Cyl(H ′))

since these cylinder sets are disjoint.
Suppose that ai ∈ Π for the indices α1, ..., αv and ai ∈ Σ for the indices β1, ..., βu.

For 1 ≤ i ≤ v, let ℓi = inf(Iαi) and ui = sup(Iαi). Next, consider fixed delays
d1, ..., dv and let [H]d1,...,dv = {h1, ..., hr}. For 1 ≤ m ≤ r we denote

hm = sm0 c
m
0

am1 ,t1→ sm1 c
m
1 · · ·

amk ,tk→ smk

where the timestamps ti are induced by the delays d1, ..., dv on the delay transi-
tions. Now, since every interval-timed history H ′ ∼ H contains the same intervals
and same delay transitions we have

Prσ,δs0 (Cylia(H))

=
∑
H′∼H

Prσ,δs0 (Cyl(H ′))

=

∫ u1

ℓ1

...

∫ uv

ℓv

∏
1≤i≤v

Q(smαi
, smαi+1) · e−E(di)

·
∑

hm∈[H]d1,...,dv

( ∏
1≤i≤u

δ(hm≤βi−1, c
m
βi−1)(a

m
βi
)
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·
∏

0≤i<k

∏
j∈Move(ami )

σj(πj(h
m
≤i))(c

m
i (j))

)
ddv · · ·dd1

We will now show by induction on v that for any fixed delays d1, ..., dv

pd1,...,dv =
∑

hm∈[H]d1,...,dv

( ∏
1≤i≤u

δ(hm≤βi−1, c
m
βi−1)(a

m
βi
)

∏
0≤i<k

∏
j∈Move(ami )

σj(πj(h
m
≤i))(c

m
i (j))

)
either equals 0 or 1 independently of the scheduler δ. This implies that Prσ,δs0 (Cylia(H))

is independent of the scheduler and thus proves the lemma.
For the base case suppose that v = 0. Then the only possibility is H = s0 since H

cannot end with an action transition. In this case it is immediate that pd1,...,dv = 1.
For the inductive case suppose that v > 0 and that it holds for all H ′ with less

than v delay transitions. Note that sαv−1 is the same state for every h ∈ [H]d1,...,dv .
Thus, we have [H]d1,...,dv = {h · h′ | h ∈ [H≤αv−1 ]

d1,...,dv−1 and h′ ∈ [H≥αv−1 ]
dv}.

That is, the set of histories in [H]d1,...,dv is obtained by gluing together every prefix
up to sαv−1 with every suffix starting in sαv−1 . For two histories hm and hn in these
two sets we denote their concatenation (where final state of hm is merged with initial
state of hn) by hmn. This gives us

pd1,...,dv =
∑

hm∈[H≤αv−1
]d1,...,dv−1

∑
hn∈[H≥αv−1

]dv

(
∏

i:βi<αv−1

δ(hm≤βi−1, c
m
βi−1)(a

m
βi
)

∏
0≤i<αv−1

∏
j∈Move(ami )

σj(πj(h
m
≤i))(c

m
i (j))

∏
i:βi>αv−1

δ(hmn≤βi−1, c
mn
βi−1)(a

mn
βi

)

∏
αv−1≤i<αv

∏
j∈Move(amn

i )

σj(πj(h
mn
≤i ))(c

mn
i (j))

)
=

∑
hm∈[H≤αv−1

]d1,...,dv−1

·
∏

i:βi<αv−1

δ(hm≤βi−1, c
m
βi−1)(a

m
βi
)

·
∏

0≤i<αv−1

∏
j∈Move(ami )

σj(πj(h
m
≤i))(c

m
i (j))
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·
∑

hn∈[H≥αv−1
]dv

( ∏
i:βi>αv−1

δ(hmn≤βi−1, c
mn
βi−1)(a

mn
βi

)

∏
αv−1≤i<αv

∏
j∈Move(amn

i )

σj(πj(h
mn
≤i ))(c

mn
i (j))

)
If we can show that the second sum is either 0 or 1 independently of the scheduler

then we can apply the induction hypothesis on the remaining part. Note that no
player can distinguish between the prefixes hm since they are in the same equivalence
class. Thus, using pure strategies the players can only base their decision on what
happens after reaching smnαv−1

. Now, using the same technique as in the proof of
Lemma .1 the result follows. □

From Lemma .2 we know that the probabilities of events in I are independent
of the scheduler when the strategy profile is pure. Using this we can show that this
is also the case for non-pure strategy profiles. The idea of the proof is similar to
the proof of Kuhn’s Theorem [Kuh53] behavioural strategies are shown equivalent
in perfect recall extensive-form games. This intuition is applied in the 0-duration
subhistories.

Theorem 10.11. Let E ∈ I, let s0 ∈ S be a state, let σ = (σ1, ..., σn) be a strategy
profile and δ, δ′ be two schedulers. Then

Prσ,δs0 (E) = Prσ,δ
′

s0 (E)

Proof. We show this by showing that for every time-abstract cylinder Cylia(H)

for an interval-timed history H = s0c0
a1,I1→ s1c1 · · ·

ak,Ik→ sk such that ak ∈ Π if k > 0,
every strategy profile σ and every pair δ, δ′ of schedulers we have

Prσ,δs0 (Cylia(H)) = Prσ,δ
′

s0 (Cylia(H))

We use the same notation as in the proof of Lemma .2. Again we have

Prσ,δs0 (Cylia(H))

=

∫ u1

ℓ1

...

∫ uv

ℓv

∏
1≤i≤v

Q(smαi
, smαi+1) · e−E(di)

·
∑

hm∈[H]d1,...,dv

( ∏
1≤i≤u

δ(hm≤βi−1, c
m
βi−1)(a

m
βi
)

·
∏

0≤i<k

∏
j∈Move(ami )

σj(πj(h
m
≤i))(c

m
i (j))

)
ddv · · ·dd1

For fixed delays d1, ..., dv we will show that a discrete probability distribution
over a finite set of pure strategies gives rise to the same probability as above. As
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this is independent of the scheduler by Lemma .2 so is the probability for the mixed
strategies. As this holds for all delays, the Theorem follows.

Now, for each history hm ∈ [H]d1,...,dv we define a pure strategy profile σhm that
plays according to hm as well as a probability phm defined by

ph
m

=
∏

0≤i<k

∏
j∈Move(ami )

σj(πj(h
m))(cmi (j))

If p =
∑
hm∈[H]d1,...,dv p

hm

< 1 then define a pure strategy σ′′ that plays such that
a history h ∈ [H]d1,...,dv is not possible. Further, define pσ′′

= 1 − p. Now, consider
the experiment of using scheduler δ and picking either one of the strategy profiles
σh

m with probability phm or σ′′ with probability pσ′′ and applying these strategies.
The probability that a prefix of the play is in [H]d1,...,dv in this experiment is inde-
pendent of the scheduler because of Lemma .2. We will show that it is in fact equal
to Prσ,δs0 (Cylia(H)). Indeed, the probability is∑

σhm

ph
m ∑
hm∈[H]d1,...,dv

·
( ∏

1≤i≤v

Q(smαi
, smαi+1) · e−E(di)

·
∏

1≤i≤u

δ(hm≤βi−1, c
m
βi−1)(a

m
βi
)

·
∏

0≤i<k

∏
j∈Move(ami )

σh
m

j (πj(h
m
≤i))(c

m
i (j))

)
=

∏
1≤i≤v

Q(smαi
, smαi+1) · e−E(di)

·
∑

hm∈[H]d1,...,dv

(
ph

m

·
∏

1≤i≤u

δ(hm≤βi−1, c
m
βi−1)(a

m
βi
)

)
By inserting the expression for phm the result follows. □
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