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Strategic Sizing of Energy Storage Facilities in
Electricity Markets

Ehsan Nasrolahpour, Student Member, IEEE, S. Jalal Kazempour, Member, IEEE,
Hamidreza Zareipour, Senior Member, IEEE, and William D. Rosehart, Senior Member, IEEE

Abstract—-This paper proposes a model to determine the op-
tima size of an energy storage facility from a strategic investor’s
perspective. This investor seeks to maximize its profit through
making strategic planning, i.e., storage sizing, and strategic
operational, i.e., offering and bidding, decisions. We consider the
uncertainties associated with rival generators’ offering strategies
and future load levels in the proposed model. The strategic invest-
ment decisions include the sizes of charging device, discharging
device and energy reservoir. The proposed model is a stochas-
tic bi-level optimization problem; the planning and operation
decisions are made in the upper-level, and market clearing is
modeled in the lower-level under different operating scenarios.
To make the proposed model computationally tractable, an
iterative solution technique based on Benders’ decomposition
is implemented. This provides a master problem and a set of
subproblems for each scenario. Each subproblem is recast as an
Mathematical Programs with Equilibrium Constraints (MPEC).
Numerical results based on real-life market data from Alberta’s
electricity market are provided.

Index Terms—Energy Storage, Planning, Bidding strategy,
Benders’ decomposition, Mathematical Programs with Equilib-
rium Constraints (MPEC).

NOMENCLATURE

A. Indices

d Index of load demands running from 1 to Nd

g Index of generators running from 1 to Ng

l,m Indices of Benders’ iterations
s Index of energy storage systems running from

1 to Ns

t Index of hours running from 1 to Nt

r Index of scenarios running from 1 to Nr

w Index of weeks running from 1 to Nw

B. Parameters

ACdis
s Annual capital cost of energy storage system s

for the storage discharge device, ($/MW-yr)
ACch

s Annual capital cost of energy storage system s
for the storage charge device, ($/MW-yr)

ACres
s Annual capital cost of energy storage system s

for the storage reservoir, ($/MWh-yr)
Eini

s Initial value of stored energy of energy storage
system s, (MWh)
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Kdis,max
s Maximum capacity of available discharging de-

vice of energy storage system s, (MW)
Kch,max

s Maximum capacity of available charging device
of energy storage system s, (MW)

Kres,max
s Maximum capacity of available capacity reservoir

of energy storage system s, (MWh)
MCdis

s Marginal operating cost of energy storage system
s in the discharging mode, ($/MWh)

MCch
s Marginal operating cost of energy storage system

s in the charging mode, ($/MWh)
M ch,Mdis Large positive constants
Pmax
g Capacity of generator g, (MW)
Pmax
d,w,t,r Quantity bid of load demand d at week w at hour

t under scenario r, (MW)
Ud,w,t Price bid of load demand d at week w at hour t,

($/MWh)
αmin Large negative constant
βg,w,t,r Offer price of generator g at week w at hour t

under scenario r, ($/MWh)
ηs Efficiency of energy storage system s
ε Convergence tolerance of Benders’ algorithm
ϕr Probability of scenario r
C. Variables

es,w,t,r Energy stored in energy storage system s at week
w at hour t under scenario r, (MWh)

ginv Storage investment cost, ($)
goprw,r Storage operation profit at week w under scenario

r, ($)
kdiss Discharging device capacity of energy storage

system s, (MW)
kchs Charging device capacity of energy storage sys-

tem s, (MW)
kress Reservoir capacity of energy storage system s,

(MWh)
odiss,w,t,r Price offer of energy storage system s in the

discharging mode at week w at hour t under
scenario r, ($/MWh)

ochs,w,t,r Price bid of energy storage system s in the
charging mode at week w at hour t under scenario
r, ($/MWh)

pdiss,w,t,r Quantity offer of energy storage system s in the
discharging mode at week w at hour t under
scenario r, (MW)

pchs,w,t,r Quantity bid of energy storage system s in the
charging mode at week w at hour t under scenario
r, (MW)
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pg,w,t,r Power produced by generator g at week w at hour
t under scenario r, (MW)

pdiss,w,t,r Power produced by energy storage system s in
the discharging mode at week w at hour t under
scenario r, (MW)

pchs,w,t,r Power stored by energy storage system s in the
charging mode at week w at hour t under scenario
r, (MW)

pd,w,t,r Power consumed by load demand d at week w
at hour t under scenario r, (MW)

udiss,w,t,r Binary decision variable to indicate if energy
storage system s is in the discharging mode at
week w at hour t under scenario r

uchs,w,t,r Binary decision variable to indicate if energy
storage system s is in the charging mode at week
w at hour t under scenario r

uidls,w,t,r Binary decision variable to indicate if energy
storage system s is in the idle mode at week w
at hour t under scenario r

λw,t,r market-clearing price at week w at hour t under
scenario r, ($/MWh)

µ Dual variables corresponding to the lower-level
constraints. See Section (II) for details.

Note: When a symbol takes the hat sign, ∧, it is converted
from a variable in one problem to a fixed parameter in
another problem.

I. INTRODUCTION

WORLDWIDE investments in energy storage grew to
over $675 million by the end of 2014, and is expected

to reach $15 billion by 2024 [1]. This is because despite the
still high capital cost of bulk energy storage, it is seen as a
viable solution to face some of the challenges of modern power
systems, such as adding more flexibility, deferring investments,
and peak load management [2]. Thus, several studies have
focused on energy storage investment planning [3]-[13].

The existing literature on storage investment can generally
be divided into two groups. The first group focuses on finding
energy storage sizing in a vertically integrated power system
where the storage is part of the system assets [3]-[9]. In
the second group, the focus is on sizing for-profit merchant
storage facilities in competitive markets [10]-[13]. The main
distinction between the two groups is that in the former, energy
storage is planned for improving power systems performance
through load shifting, peak shaving, transmission congestion
relief, ancillary service provision, renewable energy accommo-
dation and etc. However in the latter, the facility is planned
from an investor’s point of view to compete in electricity
markets through energy arbitrage. The latter is also the main
focus of the present work.

More specifically, in the second group of energy storage
investment planning literature [10]-[13], the fundamental as-
sumption is often to assume the storage facility as a price-
taker facility. The actions and strategies of a price-taker market
participant have a negligible impact on market prices. In
these studies, the storage facility’s operation is optimized
under the assumption that the market prices are known in
advance and are considered as exogenous parameters. While
this assumption holds true for smaller sized facilities, it may

not be necessarily the case when the size of the facility
is relatively large. For example, while a small-scale battery
facility could be easily seen as a price-taker unit in a market,
a large-scale compressed air energy storage facility would
certainly impact market prices. A larger facility, whose actions
and operation strategies impact market prices, is referred to
as a price-maker facility. We focus on a price-maker energy
storage facility in the present paper.

In addition, in modeling competitive markets, the market is
sometimes assumed to be perfect, i.e., market participants do
not play strategically and submit their marginal cost/utility as
their offer/bid prices (e.g., in [14]). However, in reality, elec-
tricity markets are often imperfect, and thus, game-theoretic
complementarity models [15] are reported in the literature for
modeling competition in electricity markets. The present work
takes the imperfect market approach.

This paper proposes a complementarity model for sizing
price-maker merchant energy storage facilities in imperfectly
competitive electricity markets. The developed model has
stemmed from an industry-university collaborative research
project that focused on strategic energy storage sizing in Al-
berta’s competitive market. Rocky Mountain Power Inc. [16],
i.e., the industry partner, is considering to build a merchant
energy storage in Alberta, Canada, whose main source of
revenue is envisioned to be from energy arbitrage. Historical
high price volatilities in Alberta’s market allow for often
large price differentials [17] that would make energy arbitrage
an attractive option. Expanding the model to include other
revenue streams (e.g., from participating in ancillary service
markets) is beyond the scope of this paper and is part of the
authors’ future research. The facility modeled in this paper
would act as a generation facility in discharging mode and
as a load facility in charging mode. Modeling the operation
of storage facilities that are owned by generation companies
and are jointly operated alongside their other generation as-
sets is not the focus of this work. In addition, the impact
of storage investment and operation on short- or long-term
emission displacements, and investments in other conventional
technologies in the market are not within the scope of the
present paper either.

Our work is different from [3]-[9] as we consider a mer-
chant energy storage facility who participates in a competitive
market to maximize its profit. Unlike [10]-[13], the storage
facility is a price-maker in our proposed formulation and thus,
the market prices are obtained as a function of the operation
strategies of the storage facility and those of other market
participants. Our work also differs from [14] in the sense that
we consider an imperfect market model.

The problem of strategic investment planning in imperfectly
competitive markets for price-maker conventional generators
(e.g., [18]) or wind power producers (e.g., [19]) have been
reported in the literature. In those studies, the decision variable
is typically the generation capacity. However, in energy storage
planning, the decision variables are charging, discharging and
reservoir capacities. In addition, the cost of generating power
in a conventional power plant depends on fuel prices; as long
as the market price for electricity is more than the generation
marginal costs, the operation is profitable. In the case of energy
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storage, however, the cost of charging and discharging are
interdependent, and profitability depends on the differences
between selling and buying prices. Our work differentiates
itself from planning conventional generation facilities by mod-
eling and including such fundamental differences that exist
between a large price-maker energy storage facility and a
conventional generation asset. We also include the uncertain-
ties associated with future load and the operation offering
strategy of conventional generation facilities by introducing
a number of plausible scenarios. The advantage of doing so is
that the results are more realistic than a deterministic solution
since they are adapted to different potential realizations of the
uncertain parameters. The challenge, however, is that it makes
the proposed formulation very large for a real-life size case
study. To overcome the potential computational troubles, we
utilize an iterative solution method based on Benders’ decom-
position that makes the problem computationally tractable for
a reasonable number of scenarios.

To summarize, the main contribution of this paper is to
propose and solve a model for strategic sizing of merchant,
price-maker energy storage facilities in imperfect electricity
markets taking into account the uncertainties associated with
the future load and conventional supply offers.

The rest of the paper is organized as follows. The proposed
model and mathematical formulation are provided in Section
II. The proposed solution technique is presented in Section III.
The numerical results are presented and discussed in Section
IV. The paper is concluded in Section V.

II. THE PROPOSED SIZING MODEL

Strategic energy storage planning is about determining the
best values for charging, discharging and reservoir capacities
to return the highest expected profit on investment. However,
for a large merchant energy storage facility, its operation
could affect market prices [9] and thus, its own profit. Fur-
thermore, other market participants’ strategies also impact
market-clearing outcomes and hence, the profit of the storage
facility. Thus, to find the optimal charging, discharging and
reservoir capacity values, the operation of energy storage and
the market-clearing process must be taken into account. Note
that in this work, the storage facility is an independent market
player who is neither part of a storage-wind nor storage-
solar coalition, nor is part of the portfolio of a dominant
generation company. While those are valid cases, modeling
them is beyond the scope of the present work. The proposed
sizing model is presented in (a.1)-(a.23), as follows:

Max. − ginv +
Nw∑
w=1

Nr∑
r=1

ϕr.g
opr
w,r (a.1)

ginv =

Ns∑
s=1

[
ACres

s .kress +ACch
s .kchs +ACdis

s .kdiss

]
(a.2)

goprw,r =

Ns∑
s=1

Nt∑
t=1

[
− (λw,t,r +MCch

s ).pchs,w,t,r

+ (λw,t,r −MCdis
s ).pdiss,w,t,r

]
∀w,∀r (a.3)

0 ≤ kchs ≤ Kch,max
s ∀s (a.4)

0 ≤ kdiss ≤ Kdis,max
s ∀s (a.5)

0 ≤ kress ≤ Kres,max
s ∀s (a.6)

uchs,w,t,r + udiss,w,t,r + uidls,w,t,r = 1 ∀s,∀w,∀t,∀r (a.7)

0 ≤ pchs,w,t,r ≤ kchs ∀s,∀w,∀t,∀r (a.8)

0 ≤ pchs,w,t,r ≤ uchs,w,t,r.M
ch ∀s,∀w,∀t,∀r (a.9)

0 ≤ pdiss,w,t,r ≤ kdiss ∀s,∀w,∀t,∀r (a.10)

0 ≤ pdiss,w,t,r ≤ udiss,w,t,r.M
dis ∀s,∀w,∀t,∀r (a.11)

ochs,w,t,r ≥ 0 ∀s,∀w,∀t,∀r (a.12)

odiss,w,t,r ≥ 0 ∀s,∀w,∀t,∀r (a.13)

0 ≤ es,w,t,r ≤ kress ∀s,∀w,∀t,∀r (a.14)

es,w,t,r = Eini
s + ηs.p

ch
s,w,t,r − pdiss,w,t,r ∀s,∀w, t = 1,∀r

(a.15)

es,w,t,r = es,w,(t−1),r + ηs.p
ch
s,w,t,r − pdiss,w,t,r

∀s,∀w,∀t > 1,∀r (a.16)

es,w,t,r = Eini
s ∀s,∀w, t = Nt,∀r (a.17)

pchs,w,t,r, p
dis
s,w,t,r, λw,t,r ∈

arg minimize
{ Ng∑

g=1

βg,w,t,r.pg,w,t,r −
Ns∑
s=1

ochs,w,t,r.p
ch
s,w,t,r

+

Ns∑
s=1

odiss,w,t,r.p
dis
s,w,t,r −

Nd∑
d=1

Ud,w,t.pd,w,t,r (a.18)

Ns∑
s=1

[pchs,w,t,r − pdiss,w,t,r]−
Ng∑
g=1

pg,w,t,r +

Nd∑
d=1

pd,w,t,r = 0 : λw,t,r

(a.19)

0 ≤ pg,w,t,r ≤ Pmax
g : µmin

g,w,t,r, µ
max
g,w,t,r; ∀g (a.20)

0 ≤ pd,w,t,r ≤ Pmax
d,w,t,r : µmin

d,w,t,r, µ
max
d,w,t,r; ∀d (a.21)

0 ≤ pchs,w,t,r ≤ pchs,w,t,r : µch,min
s,w,t,r , µ

ch,max
s,w,t,r ;∀s (a.22)

0 ≤ pdiss,w,t,r ≤ pdiss,w,t,r : µdis,min
s,w,t,r , µ

dis,max
s,w,t,r ;∀s (a.23)}
∀w,∀t,∀r.

The formulated problem is a stochastic bi-level model in
which, two optimization problems interact. The upper-level
problem, i.e., (a.1)-(a.17) models the planning and operation
decisions of the storage facility from the owner’s perspective.
The lower-level problems, i.e., (a.18)-(a.23), represent the
market-clearing process, for each hour of a week and for each
scenario. The storage facility with fixed decisions competes in
the market with other participants to buy/sell energy.

The objective function (a.1) is composed of storage in-
vestment costs (a.2) and expected weekly operation profit
(a.3). Term (a.2) includes investment costs associated with
the charging component, the discharging component, and the
reservoir capacity. We have defined charging and discharging
capacities independently to make the model applicable to all
technologies [20]. Note that for the sake of simplicity, the
components’ sizes are considered as continuous variables.
Terms (a.3), one per scenario per week, imply the cost of
charging and the profit from discharging. The storage facility
makes strategic sizing decisions including kchs , kdiss and kress .



1949-3029 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2016.2555289, IEEE
Transactions on Sustainable Energy

4

In addition to such strategic planning decisions, it is able to
strategically make offering and bidding decisions in terms of
quantity and price, i.e., pchs,w,t,r, pdiss,w,t,r, ochs,w,t,r, and odiss,w,t,r.

Constraints (a.4)-(a.6) bind the available capacity for each
storage facility component. Three operation modes for the
storage operation are considered in (a.7) consisting of dis-
charging, charging, and idling, i.e., when the storage facility
is operating in neither discharging nor charging. While it is
possible to exclude this constraint in this particular formula-
tion, we have decided to include it as it will be applicable
and useful in future models where more than one revenue
stream (e.g., arbitrage and ancillary services) are considered.
Constraints (a.8)-(a.9) and (a.10)-(a.11) impose the upper and
lower bounds for quantity bids and quantity offers regarding
to charging and discharging modes, respectively. Constraints
(a.12) and (a.13) enforce the non-negativity of storage facility
bid and offer prices, respectively. Constraint (a.14) refers to
bounds for the storage energy reservoir. In this paper in line
with [12], weekly horizons are considered for energy facility
operation. Constraints (a.15) and (a.16) represent the storage
facility state of charge for the first hour of a week and rest of
hours, respectively. Constraint (a.17) is to define the balance
of stored energy at the end of each week. In this work, without
loss of generality, we force the stored energy at the start and
end of the weekly planning horizon to be the same.

The uncertainty associated with future market demand and
other market participants’ offers is reflected in the market-
clearing problem through a set of scenarios, in line with
[21]. We recognize that there are other methods available
for modeling uncertainty such as robust optimization [4].
Exploring those alternatives is beyond the scope of the present
work. To this end, the quantity bids of demands, i.e., Pmax

d,w,t,r

and the offering prices of generators, i.e., βg,w,t,r are assumed
as uncertain parameters, and thus indexed by r. For each hour
of the week and for each scenario, the market is cleared by
(a.18)-(a.23).

Note that several strategic market players may exist either in
the generation- or demand-side. However, this paper solves the
strategic storage sizing problem from an investor point of view.
From its perspective, the market behavior of all other market
participants, e.g., their investment and operational decisions,
is fixed but generally uncertain.

For wind power plants, we have considered the uncer-
tainty associated with net demand in the market, i.e., non-
dispatchable wind generation subtracted from the future load.
Our future work is to model the interactions of several strategic
players including strategic generators, wind power producers,
and storage facilities, which leads to an equilibrium analysis.

The objective function of each lower-level problem is to
minimize the negative of social welfare, i.e., (a.18). The
market operator clears the market based on submitted players’
bids and offers. The market operation constraints are modeled
in (a.19)-(a.23). The dual variables pertaining to lower-level
constraints are indicated following a colon within each one.
Constraint (a.19) represents the energy balance, whose dual
variable provides the market-clearing price. Constraints (a.20)
and (a.21) bind production and consumption levels, respec-
tively. Constraints (a.22) and (a.23) refer to upper and lower

bounds for the storage facility’s charging and discharging
components, respectively. To avoid an unmanageable large
problem, we have ignored transmission network limits.

In conventional generation planning problems in the liter-
ature, load duration curves are typically used (e.g., [18] and
[22]) because the level of energy consumption matters as op-
posed to the time sequence of energy consumption. However,
in the case of energy storage, because charging provides fuel
for discharging, the timing of consumption is as important
as its level. Compared to an individual load or generator,
energy storage could participate in the market as a load or as
a generator and switches between charging, discharging, and
idle modes regularly depending on market conditions. Also,
buying and selling decisions are not entirely independent as the
overall profit would depend on the sale price difference with
respect to the purchase price. This dependency would make
the decision-making problems of an energy storage facility
more complex than a load or a generator. These fundamental
differences are reflected in the proposed model, e.g., in (a.15)
and (a.16) where those inter-temporal constraints link energy
storage bidding and offering quantities in different hours.

While this problem could be directly solved for very small
test cases using existing solvers, implementing this problem
for a real-life test system will lead to extreme computational
issues and eventual intractability. For example, considering
Alberta’s electric system with 300 market participants, the
resulting matrix to be solved for this problem only for
one week has more than 200,000 rows and columns for
a deterministic case. Considering uncertainties and defining
scenarios and extending the problem for a full year would
make the problem much larger and harder to solve. Thus, we
apply a decomposition algorithm for solving the formulated
problem in the next section to mitigate the computational
issues associated with the proposed problem for real-life case
studies.

III. THE SOLUTION ALGORITHM

We apply an algorithm based on Benders’ decomposition
to solve the formulated model. Benders’ decomposition is
suitable for solving this problem because (i), sizing variables,
i.e., kchs , kdiss and kress , are complicating variables [23] and
(ii), the objective function (a.1) is convex with respect to each
of these variables. The well-functioning of Benders’ decom-
position in non-convex problems, e.g., a bi-level problem, is
generally not guaranteed. However, there are several studies
in the literature, e.g., [24]-[26], that efficiently applied this
technique into “stochastic” non-convex problems providing
that a sufficient number of scenarios is considered. The reason
for this is that the objective function of the non-decomposed
model convexifies with respect to the complicating variables
as the number of scenarios and their diversity increases.
The sizing decisions are considered as complicating variables
because fixing these variables provides a decomposed model
per scenario per week. Briefly, the algorithm is composed of
the following steps. More details will follow.

• Step 1: Decompose the problem (a.1)-(a.23) through
fixing sizing decisions into a single master problem and
several subproblems, one per scenario per week.
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• Step 2: In each Benders’ iteration, solve the linear
master problem and update the values for complicating
variables. Fix the values of the complicating variables
in the subproblems of that iteration. Each subproblem,
one per scenario per week, is itself a bi-level problem.
Recast each subproblem as a Mathematical Programs
with Equilibrium Constraints (MPEC) [27]. Each MPEC
provides the strategic operation decisions of the storage
facility for the week and scenario under study.

• Step 3: Linearize the non-linear terms in the MPECs
and convert each MPEC into a Mixed-Integer Linear
Programming (MILP) problem.

• Step 4: Determine the continuous equivalent of each
MILP subproblems and derive sensitivities.

• Step 5: Check the Benders’ convergence criterion; if
satisfied the optimal solution is obtained; otherwise, go
to the next iteration and generate a new Benders’ cut in
the master problem based on sensitivities obtained in the
previous iteration.

In Step 1, we decompose the problem into a master problem
based on its investment term, i.e., (a.2) and the operation term,
i.e., (a.3) of the objective function (a.1). The resulting master
problem is as follows:

Max. − α(m) − ginv,(m) (b.1)

(a.2), (a.4)− (a.6) (b.2)

α(m) ≥ αmin (b.3)

α(m) ≥ −
Nw∑
w=1

Nr∑
r=1

ϕr.ĝ
opr,(l)
w,r

+

Nw∑
w=1

Nr∑
r=1

ϕr.

Ns∑
s=1

πch,(l)
s,w,r .(k

ch,(m)
s − k̂ch,(l)s )

+

Nw∑
w=1

Nr∑
r=1

ϕr.

Ns∑
s=1

πdis,(l)
s,w,r .(k

dis,(m)
s − k̂dis,(l)s )

+

Nw∑
w=1

Nr∑
r=1

ϕr.

Ns∑
s=1

πres,(l)
s,w,r .(kres,(m)

s − k̂res,(l)s )

∀l = {1, 2, ...,m− 1}. (b.4)

The goal of the master problem, which is a linear problem, is
to determine the strategic size of the charging component, the
discharging component, and the energy reservoir in each Ben-
ders’ iteration, indexed by m. The parameters including su-
perscript l are fixed values obtained in the previous iterations.
In particular, k̂ch,(l)s , k̂dis,(l)s , and k̂res,(l)s are sizing decisions
obtained from the master problem in the previous iterations,
while π

ch,(l)
s,w,r , πdis,(l)

s,w,r and π
res,(l)
s,w,r are sensitivities obtained

from the subproblems in the previous iterations. Auxiliary
variable α(m) represents the minus expected operation profit
of the storage facility. Constraint (b.2) is related to the sizing
decisions in the original problem. Constraint (b.3) imposes a
lower bound on α(m) to accelerate convergence. Constraints
(b.4) are Benders’ cuts. Note that in each iteration, a new cut is
generated. The solution of master problem (b.1)-(b.4) updates
the values of complicating variables, i.e., sizing decisions, to
be included in the subproblems [28].

The resulting subproblem corresponding to week w and
scenario r in iteration m is as follows:{

Max. gopr,(m)
w,r (c.1)

kch,(m)
s = k̂ch,(m)

s : πch,(m)
s,w,r ∀s (c.2)

kdis,(m)
s = k̂dis,(m)

s : πdis,(m)
s,w,r ∀s (c.3)

kres,(m)
s = k̂res,(m)

s : πres,(m)
s,w,r ∀s (c.4)

(a.3), (a.7)− (a.23) (c.5)
}
∀w,∀r.

Note that constraints (c.2)-(c.4) fix the values of complicating
variables to those obtained from master problem (b.1)-(b.4).
Also, the dual variables associated with constraints (c.2)-(c.4)
provide sensitivities to generate Benders’ cuts within master
problem (b.1)-(b.4) in the next iterations.

As for Step 2, the subproblem above is a bi-level problem by
itself given that (a.18)-(a.23) introduce another optimization
problem within the subproblem. To solve this optimization
problem, each lower-level problem (a.18)-(a.23) is replaced by
its Karush-Kuhn-Tucker (KKT) optimality conditions, which
renders some complementarity conditions. Such an optimiza-
tion problem is referred to an MPEC [29]. The interested
reader can refer to [29] for further details on MPEC formula-
tion.

The MPEC formulation includes non-linear terms due to the
product of price and quantity variables and complementarity
conditions. To convert each MPEC into an MILP, the strong
duality condition [30] and disjunctive constraints [31] are used
in Step 3.

In order for Benders’ decomposition to provide optimal
solutions, the subproblem must be continuous [23]. However,
the MILP subproblems include binary variables introduced by
storage operation’s modes and disjunctive constraints. Step
4 is to overcome this challenge, in line with [25]. One can
solve the mixed-integer linear version of the subproblem to
obtain the optimal values of the following variables in iteration
m: uchs,w,t,r, udiss,w,t,r, uidls,w,t,r, ochs,w,t,r, odiss,w,t,r, µch,max

s,w,t,r , and
µdis,max
s,w,t,r . Then, each subproblem is reformulated, one per

scenario per week, as a continuous and linear problem.
The following convergence criterion is checked in Step 5

for each Benders’ iteration:∣∣∣∣∣α(m) +

Nw∑
w=1

Nr∑
r=1

ϕr.g
opr,(m)
w,r

∣∣∣∣∣ ≤ ε (f.1)

If the above holds, the optimal solution is achieved. If not,
Benders’ cut is generated and added to the master problem
and another Benders’ iteration is repeated. This is done by
passing the new values of πch,(l)

s,w,r , πdis,(l)
s,w,r , and πres,(l)

s,w,r to (b.4).
More details on Benders’ decomposition method can be found
in [23].

IV. NUMERICAL RESULTS

The numerical studies of this paper are divided into two
sections, i.e., an illustrative example and a real-life case study.
Both sections refer to cases related to the Alberta electricity
market, however, different supply curves for rival genera-
tors are considered. In the cases included in the Illustrative
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TABLE I
PUMPED-STORAGE HYDRO FACILITY’S CHARACTERISTICS

MCch
s MCdis

s ACch
s = ACdis

s ACres
s η

($/MWh) ($/MWh) ($/MW-yr) ($/MWh-yr)
0.9 0.6 54720 4,560 0.75

Example, the rival generators offer based on their actual
production costs. This assumption builds a basis to observe
the impacts of the non-strategic or strategic behavior of the
storage facility on its investment decisions. The non-strategic
cases refer to a perfectly competitive market since all market
players such as storage and rival producers offer truthfully
based on their actual operation costs. However, the strategic
cases refer to an imperfectly competitive market in which the
storage facility behaves strategically. Unlike the cases in the
Illustrative Example, we use the real data, i.e., the hourly
supply curves of year 2013, as the rival generators’ offers in
Case Study.

A. Illustrative Example

Typical parameters, including operation and investment
costs, for a pumped-storage hydro facility, are borrowed from
[32] and [33]. The life of pumped-storage hydro facility is con-
sidered to be 50 years [32], and the capital cost is annualized
using a Weighted Average Cost of Capital (WACC) of 9% over
this period [34]. The WACC is calculated base on the cost of
equity and debt [35]. Thus, as long as the utility’s revenue is
higher than its amortized cost, it is a profitable investment.
The amortized capital costs including fixed operation and
maintenance costs and marginal operating costs are shown
in Table I. The maximum available charging/discharging and
energy reservoir of pumped-storage hydro are 1000 MW and
20,000 MWh.

The marginal cost and capacity of existing types of gener-
ators in Alberta are borrowed from [36].

As given in Table II, five cases with different market
conditions are considered. Cases A1, A2 and A3 refer to a
perfect market condition while Cases A4 and A5 correspond
to an imperfect market condition. Further details are provided
below:

• Case A1 refers to a perfectly competitive market in
which, all market players such as storage facility and rival
generators offer based on their actual installed capacity
and marginal cost to the market. In this case, the expan-
sion and operational decisions are made centrally by a
single entity, e.g., the market operator, and the obtained
results are optimal for every player.

• Case A2 is similar to Case A1, however, the future load
uncertainty is modeled by five load growth scenarios.

• Case A3 is similar to Case A2, however, the rival gener-
ators’ supply curve uncertainty is also modeled by three
scenarios. Given three rival generators’ supply curve and
five load growth scenarios, 15 scenarios are considered
in this case.

• Unlike Cases A1 to A3, Case A4 refers to an imperfectly
competitive market. In this case, the storage facility be-
haves strategically, while it perfectly knows the submitted
offers of rival generators. This case is comparable with

TABLE III
ILLUSTRATIVE EXAMPLE: THE SIZING AND EXPECTED PROFIT OF

STORAGE FACILITY ACROSS CASES A1 TO A5

Case kchs = kdiss kress

Change in the storage
facility’s expected profit

(MW) (MWh) compared to that in Base
Case, i.e., Case A1 (%)

Case A1 (Base case) 661 6522 -
Case A2 753 7755 +21.88
Case A3 764 7794 +22.29
Case A4 861 4061 +42.18
Case A5 882 4147 +44.36

Case A2 because of the same source of uncertainty and
scenarios considered.

• Case A5 is similar to Case A4 while considering the
uncertainty in submitted offers of rival generators. This
case is comparable with Case A3 because of the same
sources of uncertainty and scenarios considered.

The results for these five cases are given in Table III. Based
on the results, a number of observations are made, as follows.
A comparatively larger storage facility is determined in Case
A2 compared to that in Case A1. The reason is that more
investment on the storage facility in Case A2 compared to
Case A1 reduces the future operation cost under load growth
uncertainty. This larger capacity leads to an increase in the
storage facility’s expected profit. Compared to Case A2, the
storage facility’s size and expected profit are slightly increased
in Case A3 since there is more uncertainty in this case.
In Cases A4 and A5 referring to the imperfect market, the
storage facility’s expected profit is significantly increased with
respect to that in perfect market cases, i.e., Cases A1 to
A3. These results highlight the impacts of storage facility’s
behavior on its planning decisions and its profit. Another
interesting observation is that in the imperfect market cases,
i.e., Cases A4 and A5, the strategic storage facility decides
to build a comparatively larger charging/discharging device,
but a comparatively smaller energy reservoir. The reason for
this is that the storage facility is dispatched in more hours
within the perfect market cases compared to Cases A4 and
A5. For example, in Case A2, the storage facility operates
in the discharging mode in 28% hours of a year, compared to
17% in Case A4. Thus, the storage facility’s energy reservoir is
smaller in Cases A4 and A5 compared to Cases A1 to A3. On
the other hand, the strategic storage charges/discharges more
energy in its operating hours to maximize its profit. Thus, a
larger charging/discharging component is determined. Similar
to the perfect market cases, the strategic storage facility gains
higher profit if more uncertainties are considered. However,
this depends on the evaluated scenarios.

B. Case Study

We apply the proposed model and the solution methodology
considering the real-life data from Alberta’s electricity market
to decide the strategic sizing of a pumped-storage hydro
facility in Alberta.

Alberta electricity market is an energy-only wholesale
market [37]. We consider Alberta electricity market as an
imperfect market since the suppliers in this market are not
forced to submit their actual marginal costs as offer prices
[38]. In other words, they are allowed to submit their capacity
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TABLE II
ILLUSTRATIVE EXAMPLE: MARKET CONDITIONS ACROSS CASES A1 TO A5

Case Behavior of Model Source of uncertainty Description
storage facility needed Load growth Generators’ offer prices

Case A1

Non-strategic Single optimization

No No
These three cases refer to a perfect market, in which the market
operator centrally makes all sizing and operational decisions.
These decisions are optimal for every player.

Case A2 Yes No All players offer their actual installed capacity at actual
marginal costs.

Case A3 Yes Yes

Case A4 Strategic Bi-level Programming Yes No

These two cases refer to an imperfect market, in which the
storage facility behaves strategically, i.e., it offers/bids at quan-
tities and prices that might be different than its actual installed
capacity and marginal costs.

Case A5 Yes Yes All conventional generators offer their actual installed capacity
at actual marginal costs. The storage facility is the leader
while market clearing under different operating conditions are
followers.

at any price between $0/MWh and $999.99/MWh, i.e., the
market price cap [37]. An analysis on Alberta market-clearing
outcomes from 2008 to 2014 has been carried out in [38],
which shows exercising significant market power during this
period of study.

The interest in integrating energy storage facilities into Al-
berta’s market has grown considerably over the past few years
[39]. Reasons include the funding provided by the Climate
Change and Emissions Management Corporation (CCEMC)
[40] and the potential benefits of energy storage in facilitating
higher penetration of wind power into the system [41]. In
2014, Alberta Innovates-Energy and Environment Solutions
(AI-EES) announced $2 million to assist developing the most
promising energy storage technologies for Alberta [42]. A
number of energy storage interconnection applications, includ-
ing one for pumped-storage hydro and one for a compressed
air energy storage, are filed with the Alberta Electric Sys-
tem Operator (AESO) [39]. The value proposition of these
projects is mainly around energy arbitrage through internal and
inter-market transactions considering the high volatility and
sometimes significant price differentials in Alberta’s market.
In the case study here, we consider the same storage facility
characteristics as explained in Illustrative Example.

In line with [18] and [25], this study is performed for a
single target year, i.e., static investment analysis. To represent
the offering strategies of other market participants, we use the
offering data for more than 300 suppliers in Alberta’s market
for year 2013 as the base scenario [43]. Based on actual market
data, we build market supply curves for every single hour
of the year. The load is inelastic and is considered as one
single bid at Alberta market’s price cap, which is a realistic
assumption in this market.

We generate scenarios in order to include the uncertainties
associated with future market net load and other market
participants’ offering strategies. Net load refers to electrical
demand minus the non-dispatchable supply. In many markets,
non-dispatchable units do not participate in the market and
as such, their expected supply is deducted from the pure
load to calculate net load. We characterize each scenario
by two factors, i.e., a net load growth/drop factor and an
upward/downward shift in offer prices of other market partici-
pants. We recognize that other sources of uncertainties may
exist in the market (e.g., market structural changes in the
future, generation mix evolution, and environmental policies).

However, including such sources of uncertainty in a single test
case makes the problem intractable and is left to be explored
in the authors’ future work.

We have applied the proposed methodologies for seven case
studies, i.e., Cases B1 to B7. The cases are generated based on
year 2013 data. In year 2013, non-dispatchable units, including
wind power producers did not participate in the market and
thus, the market net load was the basis of clearing the market.
In three of the case studies, namely Cases B1, B2 and B3,
we consider an increase in net load, i.e., more growth in
consumption than in adding renewables. Alberta has had a net
load growth over the past few years while wind development
in the province was picking up. With a growth in net load,
it is reasonable to assume an upward movement in supply
offers in response to increased demand in the market. Hence,
we have considered an upward movement between 0% to 20%
for these cases. Note that the higher load or higher offer prices
may motivate not only the storage investor but also the rival
generators to expand their current capacities. In this case, the
rival generators’ investment decisions can be considered as an
additional source of uncertainty. For simplicity, this additional
uncertainty is not considered in this paper, however, it is
straightforward to model it by additional scenarios.

In Case B4, we alter the base data slightly to model business
as usual. The slight changes are to generate scenarios and
enable the solution method to work. In other words, Case B4
is to see if we were to build the facility based on year 2013
data, what the solutions would have been.

In the three other cases, i.e., Cases B5 to B7, we consider a
drop in future net load in the system- see Table IV for details.
A drop in net load is something possible given the large-scale
integration of wind and solar in power systems. If the net load
in the market has dropped, it is reasonable to assume that it
could put a downward pressure on generators offers. Thus,
in Cases B5 to B7, we consider alternative values for such
downward pressure, between 0% to 20%.

It is worth mentioning that only one source of uncertainty,
either load growth scenarios or offer price scenarios of rival
generators, is changed over these cases, except Case B4. This
allows us to gain insight into impacts of each source of
uncertainty on results. For example, in Case B2 compared
to Case B1, rival generators’ offer prices are identical while
considering a comparatively lower load growth. This way, we
observe the impacts of load growth uncertainty on the results.
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Similarly, in Case B3 compared to Case B2, identical load
growth scenarios are considered while rival generators offer
at comparatively lower prices. This allows concluding the
impacts of rival generators’ offer prices on the results. Similar
distinctions can be made for Cases B5 to B7.

The numerical results of strategic sizing along with the
facility’s expected profit, the mean price impact of the facility’s
operation during charging and discharging hours, program run
time and the number of Benders’ iteration for each case study
are presented in Table IV. Price impact here refers to how
actions of the facility impact hourly market prices.

To investigate the impact of higher system net load on sizing
decisions, let compare Case B2 to Case B1 where the net load
has gone up from one to another. The resulting strategic size
has also gone up from 577 MW (6115 MWh) to 662 MW
(9853 MWh). This is reasonable because, with the same supply
curves, higher demand generally leads to higher market prices,
improving the economics of energy storage arbitrage operation
and justifying higher capacities. The same observation is true
for Case B7 compared to Case B6.

Higher offer prices in the market would have a similar
impact on strategic sizing. Comparing Case B3 to Case B2,
with the same net load scenarios, higher offer prices have led
to higher sizes. It is reasonable to think that higher offer prices
would generally lead to higher market prices and improve the
facility’s economy even at higher sizes. The same observation
is true for Case B6 compared to Case B5.

Note also from Table IV that the expected profit has grown
with higher size values. This indicates that despite the higher
downward pressure that the facility’s size puts on market prices
during the discharging hours, its profit grows. This reason lies
in the fact that the profit is a function of quantities traded and
the market prices.

From Table IV, and for all cases, the actions of the storage
facility has a significant price impact. However, the mean price
impact during charging hours is lower than that for discharging
hours. This is not an unexpected finding because charging
typically occurs during low-demand hours where the supply
curves are flatter. In opposite, discharging typically occurs
during high-price hours where the supply curve is very steep
and small supply movements have a higher impact on prices.

For an arbitrary scenario in Case B4, the bidding/offering
decisions of the storage facility in two typical hours, referred
to here by charging hour and discharging hour, are presented in
Figs. 1 and 2, respectively. For the charging hour, the storage
facility bids to buy 257 MW at $22.15/MWh- see Fig. 1. This
bid along with that of the inelastic market demand makes
the demand curve for this particular hour. Because of the
increased demand, the market-clearing price would increase
to $22.15/MWh from $19.22/MWh, compared to when there
is no storage bid. Note that a number of new supply offers
are also accepted for this hour to cover the storage charging
demand. For a typical discharging hour, as per Fig. 2, the
storage facility offers to sell 224 MW at $31.6/MWh. This
offer would be integrated into the supply curve, as in Fig.
2, and shifts the curve to the right, which leads to the lower
market-clearing price of $31.6/MWh down from $50/MWh.
Observe from Fig. 2 that the storage facility could submit a

Fig. 1. Case Study: the supply offers, demand curves and storage offer at
charging mode in a typical hour and for a particular scenario in Case B4

Fig. 2. Case Study: the supply offers, demand curves and storage offer at
discharging mode in a typical hour and for a particular scenario in Case B4

comparatively higher quantity offer (e.g., 260 MW), but at the
cost of clearing the market at a comparatively lower price,
which results in a lower profit for the storage facility. Thus,
the most profitable strategy for the storage facility is to submit
an offer to sell 224 MW at $31.6/MWh in this typical hour,
which is the best combination of quantity and price offer for
that player. Note that since physical withholding is not allowed
in Alberta’s market [44], the storage facility offers the rest of
its production capacity at offer price cap, i.e., $999.99/MWh
[45].

To verify the optimality of the obtained results, we per-
formed an ex-post numerical analysis by varying the size of the
storage reservoir for different charging/discharging capacities
for Case B7, and the results are presented in Fig. 3. As
illustrated in this figure, the value of the objective function,
i.e., the expected profit of the storage facility, projected on the
subspace of the complicating variables has a convex envelope.
This validates the successful implementation of Benders’
decomposition. As the figure demonstrates, the maximum
expected profit is achieved at the optimal values determined
by the model, as presented in Table IV.

Comparing Case B4 to other cases, there is a little un-
certainty in this case. Thus, one can consider this case as
“deterministic” case. It is clear from the resulting sizing
values for this case, compared to other cases, that inclusion
of plausible uncertainties in future market development has a
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TABLE IV
CASE STUDY: THE RESULTS

Case
Load Gen. offers

kchs = kdiss kress
Expected Mean price im- Mean price im- Running Benders’

change change profit pact during cha- pact during discha- time iteration
(%) (%) (MW) (MWh) (M$) rging hours (%) rging hours (%) (h) numbers

Case B1 +3,+4,+5 0,+5,+10,+15,+20 662 9853 28.31 +19.71 -22.30 5:45 8
Case B2 +1,+2,+3 0,+5,+10,+15,+20 577 6115 19.41 +14.98 -19.83 5:36 8
Case B3 +1,+2,+3 0,+2.5,+5,+7.5,+10 457 5627 14.24 +13.99 -18.41 5:30 8
Case B4 -0.01,0,+0.01 -0.02,-0.01,0,+0.01,+0.02 328 3177 8.04 +10.21 -15.96 4.12 8
Case B5 0,-1,-2 0,-2.5,-5,-7.5,-10 233 2005 4.64 +8.51 -14.04 3:46 9
Case B6 0,-1,-2 0,-5,-10,-15,-20 141 1167 2.08 +7.22 -10.94 3:54 8
Case B7 -1,-2,-3 0,-5,-10,-15,-20 85 830 0.76 +4.33 -8.74 3:21 7

Fig. 3. Case Study: the expected profit for various storage components’ sizes
in Case B7

direct and sometimes significant impact on sizing decisions.
Thus, similar to any other long-term investment planning, the
problem of storage sizing is highly dependent upon how close
the generated scenarios would resemble market conditions and
the assumptions around how the facility would play in the
market. Hence, one needs to gather all available information to
produce scenarios that are as educated as possible, and make
modeling assumptions with care. One other point is that in
the planning model presented in this paper, the only source
of revenue is coming from energy arbitrage. Including other
sources of revenue would also impact the sizing and operation
decisions, and add to the complexity and uncertainty of this
planning problem.

We solved the formulated problems using CPLEX solver
under General Algebraic Modeling System (GAMS) [46] on
a Core i7 CPU and 32GB RAM computer. From Table IV, note
that despite the relatively low number of Benders’ iterations,
the run time could be as high as six hours. This is because
the number of subproblems in each iteration is large, which is
driven by the number of weeks of study and scenarios.

V. CONCLUSIONS

This paper proposes a bi-level model for strategic sizing
of a storage facility considering market uncertainties. The
upper-level problem models the planning and operation de-
cisions of the storage facility. Accordingly, the strategic size
of storage components, including the charging device, the
discharging device, and the energy reservoir are determined
in the upper-level. In addition, the operation decisions of the
storage facility, i.e., its bids/offers in terms of both price and
quantity, are strategically made in the upper-level problem. The
market-clearing process under different operating conditions is

modeled in the lower-level problems, which is to maximize the
social welfare. Uncertainties associated with rival generators’
offering strategies and future net load are considered through a
number of plausible scenarios. Due to the computational com-
plexity of the proposed model, implementing this problem for
a real-life test system may lead to extreme computation bur-
den and eventual intractability. To make the proposed model
computationally tractable, an efficient solution technique based
on Benders’ decomposition is utilized, rendering a master
problem and a number of subproblems, one per scenario per
week. This makes the proposed model computationally more
manageable.

The proposed model was applied to obtain the strategic sizes
of a pumped-storage hydro facility’s components based on
real data from Alberta’s electricity market. The actual supply
and demand curves considering more than 300 generators for
each hour of a year were used to generate future scenarios
for the uncertainties in the model. We also investigated the
sizing problem under the assumptions of perfect competition
and the facility being a price-taker. The results showed that
the sizing values are highly dependent upon the assumptions
and the employed scenarios and one needs to approach the
sizing problem with care. The future work of the authors
includes investigating the impacts of adding other sources of
uncertainty, including other sources of revenue for the facility
(e.g., ancillary services or real-time markets) and considering
the impact of the joint operation of storage facilities with
wind/solar farms on optimal storage sizing.
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