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3Institut supérieur de mécanique de Paris, Saint-Ouen F-93400, France
4Department of Computer Science, University of Copenhagen, Copenhagen DK-2100, Denmark

SUMMARY

Analysis of voice pathologies may require vocal fold models that include relevant features such as vocal
fold asymmetric collision. The present study numerically addresses the problem of frictionless asymmetric
collision in a self-sustained three-dimensional continuum model of the vocal folds. Theoretical background
and numerical analysis of the finite-element position-based contact model are presented, along with
validation. A novel contact detection mechanism capable to detect collision in asymmetric oscillations
is developed. The effect of inexact contact constraint enforcement on vocal fold dynamics is examined
by different variational methods for inequality constrained minimization problems, namely the Lagrange
multiplier method and the penalty method. In contrast to the penalty solution, which is related to classical
spring-like contact forces, numerical examples show that the parameter-independent Lagrange multiplier
solution is more robust and accurate in the estimation of dynamical and mechanical features at vocal
fold contact. Furthermore, special attention is paid to the temporal integration schemes in relation to the
contact problem, the results suggesting an advantage of highly diffusive schemes. Finally, vocal fold contact
enforcement is shown to affect asymmetric oscillations. The present model may be adapted to existing
vocal fold models, which may contribute to a better understanding of the effect of the non-linear contact
phenomenon on phonation.
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2 A. GRANADOS ET AL.

1. INTRODUCTION

A large number of vocal fold models have been studied in the last sixty years; from simplistic
lumped-mass models driven by an incompressible Bernoulli flow [1], to continuum models coupled
to advanced Navier-Stokes turbulent flows [2]. The development of vocal fold models is typically
motivated by voice production or clinical research. For purposes of clinical research, studies on the
mechanical and dynamical conditions that arise during vocal fold contact are of special interest,
specially tissue stresses and reaction forces [3]. In that context, a three-dimensional finite element
model of the vocal folds provides the framework for a detailed deformation analysis [4, 5]. In order
to perform a full investigation of the vocal fold deformation, the model may include flow-structure
interaction to induce vocal fold separation after contact. Furthermore, vocal fold oscillations are not
generally symmetric. Therefore, allowance of asymmetric contact is of great importance.

Previous research on self-sustained vocal fold models typically include collision. In an early
model presented in [6] a simple one-dimensional lumped-mass model of the vocal folds driven
by an incompressible Bernoulli flow simulates collision by spring-like reaction forces. However,
the simplicity of the model does result in it lacking desirable features for pathological vocal fold
investigations, such as highly detailed internal stress estimations and high spatial resolution. Similar
limitations may be argued in relation to the self-sustained lumped-mass model with a symmetric
Hertzian contact model in [7]. In order to overcome these limitations, a finite element continuum
model of the tissue is developed in [4]. The model is used to analyze the mechanics and dynamics at
vocal fold closure. Symmetric vocal fold contact is assumed and the impact forces are orthogonal to
a virtual rigid middle-saggital plane that prevents node interpenetration. Because airflow coupling is
not included in the model, the contact phase of vocal fold separation is not investigated. Furthermore,
the study limits the analysis to the mechanical output of the model, and it does not provide numerical
details of the contact model. Analogous model features are found in [8], where the symmetric
Hertzian contact in [7] is adapted to a continuum model of the vocal folds. Advanced models with
full fluid-structure coupling typically assume symmetric vocal fold vibrations. In these cases, contact
forces are modeled as spring-like forces [9], or computed by means of an Augmented Lagrangian
algorithm [10], with no specific reference to contact model parameters. Furthermore, fully coupled
numerical fluid-structure solvers may present topological limitations in relation to the flow solver.
Hence, a minimum glottal gap is typically enforced to model the contact interaction between the two
vocal folds [11], or the collision phenomenon is simply disregarded [2].

The asymmetric contact problem in self-sustained vibrations of the vocal folds is typically
disregarded in continuum models of the tissue [12], or formulated in simple lumped-mass models
[6, 13]. As pointed out in [9], sophisticated contact detection algorithms are required for asymmetric
oscillations and intricate vocal folds geometries, specially at the upper vocal fold edges where
convex contacting surfaces are present [14]. However, a recent continuum fluid-structure model
is capable of detecting asymmetric contact [15]. The contact interface constitutive equations are
described on a nodal basis following a non-linear, spring-based law. A minimum glottal gap
defines the contact detection zone. However, the node-to-node formulation reported in the study
is not valid for general mesh generators that typically create non-matching meshes, because it
does not allow for tangential and normal decomposition [16]. Furthermore, specific model contact
parameters are necessary to obtain realistic vocal fold collision, but adequate experimental data is
currently unavailable; this may explain the lack of validation of the vocal fold contact model in
[13]. Alternatively, a more general contact model is developed in [17]. In their work, a classical
combinatorial search between mesh elements at the two vocal folds is performed, despite the
computational load of this operations. The contact model could potentially allow for asymmetric
contact and provide detailed simulations of the impact forces. However, these features are not
investigated, and the contact problem lacks validation. Furthermore, the results presented in their
study seem to be inaccurate in terms of displacement, as surface contact nodes penetrate the tissue.
This behavior may be a consequence of the numerical method used to enforce contact; however, the
description of the numerical algorithm is missing in the study. Some vocal fold models enforce the
contact constraint by the penalty method, which is equivalent to adding linear spring forces at contact
[6, 9], or an augmented Lagrangian algorithm [10]. However, all these solution algorithms require a
thoughtful choice of the model parameters, which makes the model output sensitive to arbitrariness.
A recent investigation has shown that the dynamical behavior of a lumped-mass vocal fold model is
highly sensitive to simplifications in the contact formulation [18]. These simplifications might lead
to biased interpretation of the mechanical properties at contact, specially relevant in voice pathology
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diagnose. Finally, accuracy in contact dynamics estimation is of importance in inverse problems for
vocal fold tissue parameters estimation [8].

In this paper, a three-dimensional viscoelastic continuum vocal fold model that includes a finite
element model of vocal fold collision is developed. Vocal fold closure and separation is induced
by an incompressible Bernoulli flow. The collision is modeled by a position-based inequality
constraint, implying a constitutive contact law and a specific mechanical behavior. Different
numerical procedures are adopted from contact mechanics to the vocal fold contact problem. A
contact discretization technique that allows for vocal fold sliding is presented, suitable for non-
matching body meshes. Vocal fold contact is detected by a novel mechanism based on deformable
interface tracking. The algorithm is capable to detect contact in asymmetric oscillations and at
convex surfaces such as the upper glottal boundary, and it avoids classical combinatorial contact
search. Furthermore, it is hypothesized that non-physical vocal fold interpenetration or minimum
glottal gap enforcement affects the predicted dynamical and mechanical behavior of the system.
Hence, the effect on vocal fold dynamics of simplifications in the contact model with regard to
position-based constraints (e.g., see [13, 11]) are investigated via the penalty solution algorithm. The
results are compared with the proposed Lagrange multiplier formulation for exact contact constraint
enforcement. Furthermore, given the high kinetic energy that the vocal folds contain just previous
to collision and the short vocal fold impact time, linear spring-like contact forces are conjecture to
fail at distributing the energy of impact. Hence, the penalty and the Lagrange multiplier solutions
here investigated allow for a deeper understanding of the contact mechanism. Finally, the present
paper investigates the effect of temporal discretization schemes on the numerical solution to vocal
fold mechanics at collision.

The outline of the paper is as follows. In Section 2 the methodology to model the airflow, tissue
and collision between vocal folds is presented, including numerical aspects. Section 3 is devoted to
the setup for the simulation results, followed by Section 4, which includes model validation, results
and discussion of the present contact model. Finally, in Section 5 the conclusions are presented.

2. METHODOLOGY

A three-dimensional self-sustained finite element model of the vocal folds with contact is developed.
The airflow model is based on the one-dimensional models in [1, 19], and it is adapted to the three-
dimensional geometry of the intraglottal region. The material model is based on previous works
[5, 17]. The collision problem between the vocal folds is investigated, including mathematical
formulations, the contact discretization and the collision detection mechanism. Furthermore, an
analysis of the temporal discretization techniques is included to investigate the model performance
at non-smooth contact.

2.1. Glottal airflow model

For an incompressible fluid with constant density ρair, the Bernoulli flow at a given time through a
spatially discretized glottal canal along the longitudinal z-axis is described as [19]

p(zi+1) = p(zi) +
ρair
2

U2 ·
(

1

a(zi)2
− 1

a(zi+1)2

)
, (1)

where U is the volumetric flow rate, p(zi) and p(zi+1) are aerodynamic pressures, and average flow
speeds over the transverse cross-sectional areas a(zi) and a(zi+1) have been assumed; see Figure 1.
Note that the aerodynamic pressures implicitly depend on time since cross-sectional areas depend
on the deforming tissue boundary. No energy loss is considered neither at glottal inlet nor at glottal
outlet [20]. Assuming a negligible subglottal kinetic energy, a(zsub) � a(zi), as well as no vocal
tract coupling, that is, the supraglottal aerodynamic pressure is zero, from Eq. (1) the volumetric
flow rate may be approximated as

U =

√
2psub
ρair

a(zdet), (2)

where psub is the subglottal pressure, and a(zdet) is the cross-section where the flow detaches from
the vocal folds boundaries. Previous studies have investigated flow separation in vocal folds [21].
The flow separation point is an important feature for realistic voice simulations. Since the present

This article is protected by copyright. All rights reserved.
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4 A. GRANADOS ET AL.

model aims at resolving vocal fold mechanics, for the sake of simplicity the flow is assumed to
detach from the boundary at the minimum cross-sectional area a(zdet) = amin; downstream that
point, a jet is formed, and aerodynamic forces are zero.

By spatial discretization of the vocal fold boundary, the transversal areas a(zi) in Eq. (1)
are computed by assuming an elliptical shape, as in [17]; see Figure 1. In the present study,
the computations take into account asymmetrical mediolateral deformation of the vocal folds by
allowing for independent minor axis, that is,

a(zi) =
π

2
yi(xi,>0 + xi,<0), (3)

where yi is the major axis in the anteroposterior direction, and xi,>0 and xi,<0 are the positive and
negative minor axes in the mediolateral direction.

2.2. Continuum mechanical model for the vocal folds

2.2.1. Kinematics Under deformation of a body a material particle is displaced from its original
position X ∈ Vsolid ⊂ R

3 (material coordinates) to its current position ϕ(X) = x ∈ vsolid ⊂ R
3

(spatial coordinates) via the deformation mapping ϕ : Vsolid → R
3. The displacement field u(X, t) =

x−X is thereby determined. From basic continuum mechanics, the motion of the body in the
absence of volume forces is described by

∇ · σ = ρ
∂2x

∂t2
in vsolid, (4)

where ρ is the spatial mass density, and σ is the Cauchy stress tensor. In the case of the vocal
folds, the Cauchy stress tensor at the moving airflow boundary ΓN ⊂ ∂vsolid with outward normal n
satisfies the Neumann boundary condition

σ · n = p on ΓN , (5)

where p = p(zi)n from Eq. (1). Furthermore, Dirichlet boundary conditions enforce zero
displacement at the anteroposterior glottal extreme regions ΓD ⊂ ∂vsolid.

It is widely accepted in the voice research community, that vocal folds undertake small
displacements during normal phonation [5]. In the present model, the small deformations assumption
is also made, and linear theory of deformation is applied. The strain tensor is approximated by the
Cauchy’s strain tensor ε. The laryngeal tissue is modeled with a compressible viscoelastic Kelvin-
Voigt model as in [17], with dynamic viscosity η and stiffness matrix [22]

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(E′−ν′ 2E)E
(1+ν)k

EE′ν′

k
(ν′ 2E+νE′)E

(1+ν)k 0 0 0
EE′ν′

k
E′ 2(1−ν)

k
EE′ν′

k 0 0 0
(ν′ 2E+νE′)E

(1+ν)k
EE′ν′

k
(E′−ν′ 2E)E

(1+ν)k 0 0 0

0 0 0 μ′ 0 0
0 0 0 0 μ′ 0
0 0 0 0 0 μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where k = E′(1− ν)− 2ν′ 2E. The constitutive equation is

σ(t) = Sε(t) + η
∂

∂t
ε(t), (7)

where symmetry of the stress and strain tensors is assumed.
For admissible test functions w that vanish on ΓD with square-integrable derivatives [23], the

problem takes the suitable weak form∫
vsolid

ρwT · ∂
2x

∂t2
dv +

∫
vsolid

∇wT : σ dv =

∫
ΓN

wT · p dΓ (8)

used as a starting point for the finite element formulation. In analytic mechanics, the equilibrium
equations or the weak form in Eq. (8) emanate from the Hamilton’s principle, that is, through the
process of minimizing a functional Π(v) that depends on a displacement field v and involves the

This article is protected by copyright. All rights reserved.
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potential and kinetic energies [24, 16],

Π(v) =

∫
vsolid

ρvT ∂2v

∂t2
dv +

∫
vsolid

∇vT : σ dv −
∫
ΓN

vT · p dΓ. (9)

In this sense, Eq. (8) is called the variational equation, and w = δv are the variations of the
displacements or virtual displacements in the engineering literature. This study considers the vocal
folds motion the solution of a minimization problem that has objective function the functional in
Eq. (9).

2.2.2. Contact constraint When vocal fold collision occurs, additional boundary conditions on the
contact surface ΓC ⊂ ∂vsolid arise to avoid body interpenetration, leading to a variational term CC

which must be added to the left-hand side of Eq. (8). As the large displacements take place in the
mediolateral direction [17], large relative tangential movements are not expected to occur in the
contact interface. Therefore, frictionless contact is assumed in this work, even though the following
formulation can be easily extended to frictional contact. The non-penetration constraint may be
expressed in the current configuration vsolid in terms of the normal gap gN in the classical master-
slave configuration as [16]

gN = (xs − xm) · nm ≥ 0. (10)

The superscript s corresponds to the interface slave node that penetrates into the master surface
denoted by the superscript m. The vector nm is the outward normal on the master surface at the
point xm, which is the projection of xs onto the master surface; see Figure 2 for an illustration.
When contact occurs, that is, when gN = 0, a Cauchy traction vector t is active at the contact point.
This reaction force must satisfy the action-reaction principle, and for non-adhesion contact its normal
component rN = t · nm must be compressive. These conditions may be written in a compact form
as

gN ≥ 0, rN ≤ 0, gN rN = 0 on ΓC , (11)

which are referred to as primal feasibility, dual feasibility and complementary slackness,
respectively, in Lagrangian duality theory. Nevertheless, the classical master-slave configuration that
has been described requires two implementation issues to be taken into consideration in the vocal
fold problem. Firstly, collision at the glottal exit may not be detected due to the convexity of the
tissue surface boundary, where non-existent or positive normal gaps may be misleading. Secondly,
the geometrical and mechanical symmetry of the system makes the master and slave choice arbitrary.
As arbitrariness in the master-slave configuration may have a negative effect on the solution, all
slaves nodes must be tested against all surfaces, increasing thereby the computational time. In later
sections, a novel detection mechanism is presented, which arises as a solution to the problems that
classical master-slave implementation may cause.

The branch of mathematics of calculus of variations provides multiple methodologies to solve
a constrained nonlinear minimization problem, such as the present. In this work, the Lagrange
multiplier and the penalty methods based on [16] are investigated. These methods can be applied to
enforce the collision constraints in Eq. (10) in an exact or a relaxed way, respectively. The Lagrange
multiplier solution is here proposed as an alternative to the inexact vocal fold collision solutions
typically found in the existing literature. In the next paragraphs, the new variational equations are
described.

The Lagrangian approach consists of enforcing non-penetration by appending a functional

Π(v, λ)LM =

∫
ΓC

λ gN (v) dΓ (12)

to the energy functional Π(v) in Eq. (9), with λ being a scalar parameter called the Lagrange
multiplier or dual variable, and gN is the normal gap in Eq. (10). The resulting functional is called
the Lagrangian function. The Lagrange multiplier can be seen as the non-positive reaction pressure
rN necessary to avoid body interpenetration, that is, rN = λ < 0. Variation of the functional leads
to the variational term

CLM
C =

∫
ΓC

λ (ws −wm) · nm dΓ +

∫
ΓC

δλ (xs − xm) · nm dΓ (13)

This article is protected by copyright. All rights reserved.
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where δλ refers to the virtual Lagrange multiplier. The above term must be combined with
Eq. (8), and together with conditions in Eq. (11), they constitute the Kuhn-Tucker-Karush necessary
conditions for optimality [25]. One of the drawbacks of the Lagrange method is the increase of the
dimension of the system by addition of unknowns in the form of Lagrange multipliers. Furthermore,
necessary conditions for the solution to be optimal lead to an indefinite system matrix, that is, critical
points occur at saddle points [25].

In contrast to the exact contact boundary condition enforcement method previously described,
allowance of the vocal fold interpenetration at collision is widely used in vocal fold models [6, 17, 9].
This interpenetration is a consequence of a penalty method approach to the constrained minimization
problem, which corresponds to spring-like reaction force. The method consists of the approximation
of the Lagrange multiplier, or reaction pressure, as λ ≈ κgN , with κ a positive scalar that controls
how severely the constraint is violated. The energy functional related to the contact interface is

Π(v)P =

∫
ΓC

1

2
κ
(
gN (v)

)2
dΓ. (14)

Variation of this functional yields

CP
C =

∫
ΓC

κ (ws −wm) · (xs − xm) dΓ, (15)

which must be combined with Eq. (8). The penalty method maintains the dimension of the collision-
free problem. Enforcing the non-penetration constraint by increasing the penalty parameter κ derives
in an ill-conditioning of the global matrix, and collision forces with no physical sense. Therefore,
the user is required to make a thoughtful choice of the penalty parameter. Numerical solutions of the
Lagrange multiplier and penalty approaches for vocal fold contact are investigated in Section 4.2.

2.3. Discretizations

2.3.1. Spatial discretization The solid spatial discretization is performed in a simple way typically
found in the literature (e.g., see [5]). Considering the spatial finite element discretization of the solid
domain in nel elements and nnp nodal points, the equilibrium Eq. (8) yields the matrix form

Mẍ+Cẋ+K (x−X) = F, (16)

where M, C, and K are the mass, damping, and stiffness 3nnp × 3nnp matrices, respectively, F is
the 3nnp-vector of applied aerodynamic forces, and x and X are the 3nnp-vectors that contain the
current and the original positions of the nodal points, respectively; dots indicate time derivatives. By
decomposition of the test functions w in a finite number of linear interpolation functions defined in
a tetrahedral mesh, the system matrices in Eq. (16) can be easily derived by means of isoparametric
transformations [23].

The aerodynamic forces in Eq. (16) are derived from the extension of the airflow spatial
discretization of the one-dimensional problem in [6] to the present three-dimensional solid boundary.
The linear aerodynamic forces below the flow separation point acting on the three vertices of a
triangular element face ∂vesolid ⊂ ΓN with current positions xi = (xi, yi, zi), xj = (xj , yj , zj), and
xk = (xk, yk, zk) satisfy

Fl = −n · Fl ·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Δe

6

(
p(zi) +

p(zj)
2 + p(zk)

2

)
if l = i

Δe

6

(
p(zi)
2 + p(zj) +

p(zk)
2

)
if l = j

Δe

6

(
p(zi)
2 +

p(zj)
2 + p(zk)

)
if l = k

(17)

where p(zl) correspond to the pressure derived from Eq. (1) applied to each nodal point xi, xj

and xk, and Δe stands for the area of the triangular element face with outward normal vector n.
Downstream the flow separation point, aerodynamic forces are zero

When collision occurs, the finite element discretization of Eq. (13) or Eq. (15) must be calculated.
A node-to-surface contact element may be described by a master element surface, defined by
target vertices x1, x2 and x3, and a contactor slave node xs, belonging to the opposite vocal fold;
see Figure 2 (right). The triangular interface geometry can be parametrized by an isoparametric

This article is protected by copyright. All rights reserved.
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transformation with linear functions NI(ξ, ζ) and local variables (ξ, ζ) defined on a reference
triangular element with vertices (0, 0), (1, 0) and (0, 1). Hence, the displacement constraint in
Eq. (10) yields (

xs −
3∑

I=1

NI(ξ, ζ)xI

)
· nm ≥ 0, (18)

with (ξ, ζ) satisfying (
xs −

3∑
I=1

NI(ξ, ζ)xI

)
· (xk − x1) = 0 (19)

for k = 2, 3, which corresponds to the equations to find the projection xm of xs onto the master
surface. Consequently, prescribed position constraints can be expressed by a contact element matrix

ge =

(
nm −N1(ξ, ζ)n

m −N2(ξ, ζ)n
m −N3(ξ, ζ)n

m

)
∈ R

1×12, (20)

with ge · (xs x1 x2 x3)
T ≥ 0. Note that for linear shape functions the outward normal is independent

of the projection point. For nce contact elements with negative normal gap, a finite element assembly
algorithm can be used to build a global constraint contact nce × 3nnp matrix G.

Enforcing the contact displacement constraint with the Lagrangian approach in a finite element
formulation, requires the spatial discretization of the variational term in Eq. (13). Interpretation of
the Lagrange multipliers as reaction forces, makes it possible to remove the surface integrals in
Eq. (13). Hence, the equations that provide the current equilibrium position with nce active contact
elements are

Mẍ+Cẋ+K (x−X) +GTΛ = F

Gx = 0, (21)

where Λ = (λ1, · · · , λnc)
T is a nnc-vector that contains non-positive reaction forces, and the 3nnp-

vector GTΛ contains the applied contact force at each degree of freedom under contact. For positive
Lagrange multipliers, the corresponding contact element must be removed from the global constraint
contact matrix to allow for contact surface separation.

By spatial finite element discretization of the variation in Eq. (15), the equilibrium position x that
fulfills the contact constraint in a relaxed way via a penalty formulation satisfies

Mẍ+Cẋ+K (x−X) +GTκGx = F, (22)

where the penalty parameter κ accounts for the area of the master surfaces, so that the surface
integral in Eq. (15) is neglected. The penalty term can be interpreted as a reaction force normal
to the master surface and proportional to the contact element volume interpenetration. From this
observation, computations can be simplified, as will be shown in Section 2.4.

Enforcement of Dirichlet boundary conditions at nd nodal points on ΓD may be expressed in
terms of a global solid boundary nd × 3nnp matrix D as

D (x−X) = 0. (23)

Since the constraint matrix has to be assembled only once, the Lagrangian approach with a nd-vector
of unknowns ΛD can be used to modify the equilibrium equation in Eq. (16) as in Eq. (21) to enforce
Dirichlet boundary conditions. For equality constraints as in Eq. (23), the Lagrange multipliers can
take on both positive and negative values.

2.3.2. Temporal discretization To solve for the equilibrium current position x, attention has to be
paid to temporal discretization schemes, since instabilities and accuracy problems may arise. The
accuracy analysis found in most of the literature assumes smoothness of the system, as well as small
Rayleigh damping [23]. However, vocal fold contact modeling results in a non-smooth system.
Simple lumped-mass models of the vocal folds include a smooth contact activation function [6],
which makes classical accuracy analysis of the temporal integration schemes valid. The present
finite element vocal fold model is highly non-linear and non-smooth, and due to its complexity
the use of smooth activation functions requires alternative contact detection mechanism. Hence, the

This article is protected by copyright. All rights reserved.
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effect of the temporal schemes in the present system requires computer evaluation. In this section,
temporal integration algorithms and its basic features are summarized and adapted to the vocal fold
contact equations.

The most common schemes to temporally discretize the hyperbolic problem belong to the
Newmark family of implicit one-step methods [26], as used in [17]. These schemes consist of the
equations

xn+1 = xn + hẋn +
h2

2
(1− 2β)ẍn︸ ︷︷ ︸

x̃n+1

+βh2ẍn+1, (24a)

ẋn+1 = ẋn + (1− γ)hẍn︸ ︷︷ ︸
˜̇xn+1

+γhẍn+1, (24b)

where now the subscript n indicates that the function is approximated at time tn, h is the time
step, γ and β are the algorithm parameters associated to the quadrature scheme, and x̃n+1 and
˜̇xn+1 are the so-called predictors. The algorithm parameters control accuracy and stability of the
scheme, which can be studied by spectral analysis of the amplification matrix [23]. For smooth
systems, and if Rayleigh damping is assumed, the conditions 2β ≥ γ ≥ 1

2 (if equality, it corresponds
to an undamped Newmark scheme, as used in e.g., [9]) and β = (γ + 1/2)2/4 with γ > 1/2 assures
unconditional stability. The latter values introduce numerical dissipation in all frequency range,
specially at higher modes, where typically finite element solution seems to deteriorate. Therefore,
the scheme may be considered advantageous. However, the accuracy of the algorithm drops to first
order.

An alternative method with second-order accuracy and numerical damping at high frequencies is
the Hilber-Hughes-Taylor α-method [27]. The scheme consists of a weighted mean of the Newmark
approximations in Eqs. (24) as (1 + α)xn+1 − αxn and (1 + α) ẋn+1 − αẋn, respectively. When
α is zero, the scheme is equivalent to the Newmark family of methods. The weight parameter α
controls the amount of numerical dissipation; the smaller, the wider mode damping is introduced,
keeping a higher low mode damping. It has been shown that for α ∈ [−1/3, 0], γ = 0.5− α and
β = (1− α)2/4, the scheme is unconditionally stable with second-order accuracy. Nevertheless, the
scheme introduces a phase error larger than the one produced by an undamped Newmark rule, with
increases as the parameter α is decreased.

In the case of the Lagrange multiplier formulation of the constrained problem, the temporal
integration scheme leads to the system of linear equations⎡

⎣ A DT GT
n+1

(1 + α)h2βD 0 0
(1 + α)h2βGn+1 0 0

⎤
⎦ ·

⎡
⎣ ẍn+1

ΛD
n+1

Λn+1

⎤
⎦ =

⎡
⎣ Fn−C

(
(1 + α)˜̇xn+1−αẋn

)
−K ((1 + α)x̃n+1−αxn−X)

−D ((1 + α)x̃n+1 − αxn −X)
−Gn+1 ((1 + α)x̃n+1 − αxn)

⎤
⎦ , (25)

with
A = M+ (1 + α)γhC+ (1 + α)h2βK. (26)

The global contact constraint matrix Gn+1 is built from active contact elements at time tn+1, and
Fn is the vector of aerodynamic forces at time tn. The other matrices are kept constant, since
small volume element variations are assumed in relation to the small displacement assumption. In
Section 4.3 a numerical study of the temporal integration schemes is presented.

2.4. Deformable interface tracking for contact detection

Collision detection mechanism is a non-trivial problem in transient contact mechanics. Generally
based on the normal gap sign in Eq. (10), detection mechanisms require the calculation of the
projection of the slave node onto the master surface. For a piecewise linear finite element surface,
this projection may lead to existence or misdetection problems, especially for slave nodes situated at
glottal exit, where the convexity of the vocal fold surface is noticeable and asymmetry of contacting
surfaces may become apparent [14]. In vocal fold modeling, it is important to successfully detect
contact at glottal exit, as collision forces acting in that specific area can be responsible for damages
[4]. Furthermore, the choice of master faces and slave nodes cannot be made a priori due to the vocal

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
FRICTIONLESS MODEL OF ASYMMETRIC VOCAL FOLD COLLISION 9

fold geometry and a combinatorial search must be performed with the corresponding computational
cost [17]. In vocal folds collision, the contact detection problem is therefore typically simplified
by enforcing contact at the mid-saggital plane [10, 4, 9]. However, it is important to avoid this
assumption, since asymmetries in the vocal fold dynamics play a role in abnormal phonation [28].
In the present work, a new vocal fold collision detection mechanisms is implemented within the
Deformable Simplicial Complex (DSC) framework [29]. The DSC method is a topology-adaptive
method for tracking deformable interfaces represented as a set of triangular faces separating a
tetrahedral unstructured mesh in different mediums. The detection mechanism makes use of the
airway mesh, as will be described next. It allows for asymmetric collision and it supports both
the penalty and the Lagrange multiplier formulations. For the sake of simplicity, the tissue mesh
topology is fixed during the deformation, and only the vertices are advected.

The proposed contact detection mechanism is based on oriented volume inversion of an
intraglottal conforming tetrahedral mesh, connecting the two sides of the vocal folds, as shown
in Figure 2. Once a conforming airway tetrahedron is inverted, the nodes xs, xk=1,2,3 of a node-
to-surface contact element can be defined, by making use of nodes labeling. As a consequence of
the simplicity of the flow model, a criterion to stop the flow is defined. Hence, the flow is zero
whenever any of the inverted airway tetrahedra has barycentric coordinates (xbc, ybc, zbc) such that
|ybc| ≤ yi · τ , where τ is a zero flux parameter and yi is the length of the major axis in Figure 1.
By enforcing this condition, the Bernoulli airflow is assumed to be independent of variations in the
anteroposterior dimension below a certain threshold defined by τ .

The constrained contact problem can be solved by the Lagrange multiplier method in Eqs. (25). In
order to avoid projection existence problems that may arise at glottal exit, the domain in which the
algorithm seeks xm can be expanded. For a given relaxation parameter δ with area units, the slave
node projects onto the master surface if

1

2

( ∑
k=1,2,3

∑
l=1,2,3

‖ (xk − xm)× (xl − xm) ‖2 − 2 · ‖ (x2 − x1)× (x3 − x1) ‖2
)

≤ δ, (27)

where ‖ · ‖2 is the 2-norm distance. Since the condition is related to the geometry illustrated in
Figure 2, the relaxation parameter is expected to depend on the tetrahedral mesh used for the
computations. Therefore, a general value cannot be given, and only a trial and error approach can
provide a good parameter.

As pointed out earlier, the penalty formulation in Eq. (22) can be simplified. Once a negative
element volume V e is found, the compressive reaction force on a colliding element may be
approximated numerically as

− (ge)Tκge · (xs x1 x2 x3)
T ≈ (−n n n n)Tκ

V e

4
, (28)

where n = nm is the outward normal in Figure 2. Assembly may be performed to approximate the
contact force vector −GTκGx in Eq. (22), to be added to the external force vector F. The algorithm
safely avoids the classical master-slave paradigm, in which normal gap computations and projections
are required. The contact algorithm is presented in Table I.

The collision approach is based in a coarse airway mesh that cannot present inner vertices.
Therefore, an obvious drawback of the algorithm is the incompatibility with a numerical Navier-
Stokes model of the flow.

2.5. Numerical Solver

Earlier in the paper, it was noted that the mechanical equilibrium of a system with position-
based constrains described by the Lagrange function occurs at a saddle point. This means that the
system matrix in Eq. (25) is indefinite. Consequently, gradient methods, which are effective to solve
symmetric positive definite linear systems of equations, cannot be employed in the present model.
As described in [29], the iterative generalized minimum residual method [30] is used in this study.

To improve the performance of the method, the preconditioning technique based on [31, 29] is
well-suited for the present investigation. Hence, the system is preconditioned by multiplication of
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the inverse of a diagonal matrix

P =

⎛
⎜⎝

diag (A) 0

0
(1 + α)h2β · diag( {DT GT

n+1}T ·
· [diag (A)]

−1 {DTGT
n+1})

⎞
⎟⎠ (29)

at both sides of Eq. (25), where diag(·) is a diagonal matrix with the diagonal elements in the
argument, and {·} indicates an assembled matrix.

3. SIMULATION SETUP

The layered tissue geometry used in the simulations is adapted from [17], where elliptical shaped
cross-sections are assumed, as stated earlier in Section 2.1; see Figure 1. The larynx is discretized
into 51 cross-sections with constant major axis yi = 0.7 cm and minor axis shown in Table II, and
it is embedded into a cylinder of radius 0.8 cm and length 2 cm. The geometrical description of
the vocal folds correspond to a parallel and symmetric prephonatory profile, a glottal gap of 0.05
cm, and vocal fold vertical thickness and lateral depth of 0.9 cm and 0.77 cm, respectively. No false
vocal folds are included. For an average height of the intraglottal interface triangles of 0.02 cm,
discretization of the narrow intraglottal airway in 9 sections (see S8 to S26 in Table II) is chosen to
keep low resolution Bernoulli flow while self-sustained oscillations are assured.

The tissue properties can be found in Table III. The values ρ = 1.02 g/cm3 and ρair = 1.23 ·
10−3 g/cm3 are chosen for the tissue and air density, respectively. The driving subglottal pressure is
set to psub = 0.8 · 104 dyn/cm2. The initial tissue velocity is set to zero.

The value τ = 0.5 is chosen for the zero flow parameter, with the aim of not favoring extreme
cases. The relaxation parameter for projection is set to δ = 0.2 by trial and error, leading to a
condition in Eq. (27) that successfully detects inverted tetrahedral at glottal exit for the tetrahedral
mesh used in the simulations. The default temporal discretization scheme for calculations is the
implicit, second-order accurate Hilbert-Hughes-Taylor α-method. The parameters employed are
α = −0.3 and time step increment h = 50 μs.

The finite element mesh consists of 24584, 12754 and 17646 tetrahedra for body, ligament and
cover, respectively. With regard to the labeling, the tissue layers are labeled differently for the left
(x < 0) and right (x > 0) vocal folds. Furthermore, linear shape functions are used for the spatial
finite element discretization. The relative tolerance of the iterative generalized minimum residual
algorithm is 10−8 in all simulations.

4. RESULTS AND DISCUSSION

4.1. Model validation

Validation of the present vocal fold model is done by comparison of typical outputs with published
numerical results in [5, 17, 6, 4, 10, 32] and experimental results in [33, 34]. In this section, the
contact model to be validated is solved by the Lagrange multiplier approach, and further validated
by comparison with the commercial software ANSYS� Academic Research, Release 16.1.

The spatial coordinates of selected interface nodes placed on the mid-coronal plane are shown in
Figure 3. The trajectories projected on a coronal plane are shown in Figure 3a, where circles indicate
the initial configuration, making the initial transient apparent. The gray dashed line illustrates the
initial superficial state of the vocal fold. The amplitude of oscillation in the vertical direction
increases as the nodes approach the glottal exit, in agreement with the results in [17]. However,
notice that the trajectories slightly differ from the paths measured on excised larynges [34]. In
the present collision study, the choice of the vocal fold tissue parameters is made to simulate
significant vocal fold contact to the detriment of highly realistic trajectories. Furthermore, Figure 3b
shows the waveforms of the x spatial coordinates of nodes 6157 and 6390 in Figure 3a with initial
material coordinates (0.0250, 0,−0.1077) and (0.0500, 0,−0.3519), respectively. The oscillations in
the first 0.02 s are omitted for clarity reasons. The nodes present admissible theoretical amplitudes
of oscillation [5]. The fundamental frequency of oscillation is about 219 Hz, which is an acceptable
value for female phonation voices. Node 6157 placed in the narrow glottal region is affected by
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collision, which is apparent from the waveform near the mid-saggital plane (x = 0). Compared to
the results in [17], in the present model collision forces act to avoid body interpenetration. Figure 4
shows a coronal view of the glottal shape during a glottal cycle. The model has the ability to capture
the alternate convergent-divergent shapes [35, 36]. A diverging shape can be observed during the
closing phase (Figure 4a), followed by a converging one at collision (Figure 4b), which is maintained
throughout the opening phase (Figures 4c-d). Notice in Figure 4b the significant contact region.

In Figure 5 the volumetric flow rate during transient and steady oscillations is shown. The
maximum flow is between 500 and 600 cm3/s. For a Bernoulli flow and similiar initial cross-sectional
areas [6], this is a feasible value. Furthermore, the open quotient in the simulations is about 0.87,
slightly lower than the value reported in the computational model of [5]. Nevertheless, this value is
above typical experimental data reported in the literature [32]. High open quotients have been shown
to be related to high fundamental frequencies [32], and low subglottal pressures [17]. In the present
model, a decrease of the subglottal pressure from 0.8 kPa to 0.6 kPa produces an increase of the
open quotient from 0.87 to 0.89, and a frequency increase from 219 Hz to 222 Hz, in agreement with
the results in [17]. Hence, with regard to the closing time, the present model is capable to simulate
a similar trend as observed in previous studies. Finally, the open quotient highly depends on the
solution method, as will be shown in the following section.

The performance of the proposed collision method is firstly examined by comparison to numerical
solutions obtained with the commercial software ANSYS�. A simple impact problem is defined as
two solid cylinders with the same dimensions and initial velocities 35 m/s, placed at a distance
of 0.007 m; see Figure 6a. The material of the two cylinders is considered linear elastic with
complete isotropy. The Young’s modulus is E = 2 · 109 and the Poisson’s ratio ν = 0.3. Frictionless
contact is assumed. For comparison reasons, the contact problem in the commercial software is
formulated in a Lagrangian form, and the contact searching algorithm is based on a master-slave
configuration (target-contact in ANSYS terminology) with normal direction from the master surface,
which corresponds to the cylinder at the left of Figure 6a. However, given the symmetry of the
problem, the auto-symmetric behavior option in ANSYS� is activated. This means that the slave
and master surface can be reversed locally. In the proposed collision model, the coarse conforming
mesh for contact detection is generated in a region of possible contact defined a priori, in this
case between the two cylinders in the cube [0, 2.7]× [−1, 1]× [−1, 1]. Notice that some boundary
elements of the conforming mesh are partially visible in Figure 6b to illustrate the region of possible
contact. Figure 6b shows the deformation of the colliding cylinders at times t = 0.0011 s (top) and
t = 0.003 s (bottom) obtained with the proposed contact model (left) and ANSYS� (right). Only
the boundary triangles are shown in the custom simulations for clarity reasons. The deformations
are reasonable and show good agreement between the two simulations. Furthermore, the contact
searching algorithm based on tetrahedral volume inversion seems to successfully detect contact.
The selected times correspond to peak values of the total contact force, as Figure 7 shows. In
Figure 7a the magnitude of the total contact force applied to each of the cylinders is shown. The
similarity between the two curves seems to be in agreement with the action-reaction principle. In
Figure 7b the total contact force applied to one of the cylinders is compared to the results obtained
with ANSYS�. The difference between the two simulations is between 2.8% and 6% for extreme
values. This deviation may be explained by the relaxation of the projection condition in Eq. (27),
which can lead to slight overestimation of the reaction forces. Furthermore, the results obtained with
the proposed collision methodology show a compressive stress peak of about 4.89 · 105 kPa, which
is 1.2% lower than the maximum compressive stress 4.95 · 105 kPa computed in ANSYS. Therefore,
the proposed contact model provides numerical solutions similar to the results obtained with the
cited commercial software for simple impact problems.

In regard to vocal fold collision, Figure 8 shows a saggital view of the vocal folds and the
magnitude of the x component of the contact and aerodynamic forces acting on the right vocal
fold (x > 0) during vocal fold separation, at contact times t = 0.0371, 0.0372 s, from top to bottom.
The contact force at each of the interface triangle is computed from the summation of contact forces
applied to the vertices. Above the contact region the force is zero, since no vocal tract coupling is
considered in this model. From the figure, the contact detection mechanism seems to successfully
detect contact at glottal exit. In agreement with the studies presented in [10], maximum contact
force occurs at the mid-coronal plane. With regard to the pressure distribution in the anteroposterior
direction, for a minimum prephonatory glottal half widths of 0.025 cm between z = −0.25 and
−0.03 cm, collision occurs along approximately 40% of the whole length of the vocal fold, which
is similar to the results obtained in [10]. As in [4], values are of order of magnitude 10−4 in N.
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Finally, the relation between peak contact stress values and subglottal pressures is demonstrated in
Table IV. The mediolateral component of the contact stress appears to increase as a function of
the suglottal pressure, in agreement with the normal stress measurements in [33]. A simple linear
regression reveals a slope of 1.72 and a coefficient of determination R2 of 0.989. Furthermore, the
estimated values belong to the interval [0.4 1.5] kPa. All these values are similar to the ones reported
in [33].

4.2. Contact constraint enforcement

The vocal fold contact problem is here solved by the Lagrange multiplier method, and a penalty
method with the approximation in Eq. (28), which takes advantage of the conforming airway mesh.
The penalty method is applied to investigate the effect of inexact position-based contact constraint
enforcement [9] and spring-like contact forces on the dynamics and mechanics at vocal fold contact.
These results are compared to the proposed Lagrange multiplier solution for vocal fold contact.

Figure 9 shows the results obtained with the Lagrange multiplier method (solid line), and the
results obtained with a penalty method with κ = 107 (dotted line). In Figure 9a waveforms of
the x spatial coordinate of two opposite interface nodes placed at initial material coordinates
(0.024,−0.136,−0.037) and (−0.024,−0.136,−0.037) are shown. The figure illustrates how the
Lagrange multiplier solution is capable to simulate realistic displacements, while the penalty
solution exhibits a noticeable volume interpenetration. In Figures 9b and 9c the x component of
the tissue velocity and the nodal contact force applied to an interface node with initial position
(0.024,−0.136,−0.037) is shown, respectively. It is noted a spurious non-smooth behavior that
arises at collision in the Lagrange multiplier solution. It may be argued that the abrupt changes
in nodal contact force calculation are a consequence of the non-smoothness introduced by the
contact conditions in Eq. (11). Regularization of the exact impact solution is common practice
in numerical mechanics, which can be performed by several techniques. For instance, in [37] the
Lagrange multipliers are computed at a time prior to collision instead, with a contact matrix built
from the collision positions. Physically, the resulting smoothing effect may be explained by the
compressibility of the air previous to collision modeled by the Lagrange multipliers. Nevertheless,
an explicit scheme has to be used to temporally discretize the problem, as explained in [37]. These
schemes are not unconditionally stable, which is not a desirable feature for complex mechanical
problems as the present one. Alternatively, the solution may be regularized by means of other
methods such as the Augmented Lagrange method [25], or Nitsche’s method [38]. However, notice
in Figure 9c that temporal integration of the two solutions give similar results. This observation
suggests that the spatially integrated Lagrange contact force may show a different trend. This is
supported by the results in Figure 10 that shows the mediolateral component of the impact stress
computed with the Lagrange multipliers and the penalty methods, for a subglottal pressure of 0.8
kPa. The strong non-smooth behavior of the nodal contact force in Figure 9c is less apparent. In
contrast to the penalty solution, the resulting Lagrange stress curve presents a sudden increase at
first moment of impact, followed by a quick decrease. Then, the pressure decreases gradually, with
a small positive increment which precedes the final contact phase. This behavior is in very good
agreement with the impact pressure measurement results in [33], that show a sharp pressure pulse at
the impact phase, and a pressure buildup in the preopen phase. This final impact pressure increase is
also apparent in the results for the cylinders problem in Figure 7. The penalty solution, however, fails
at reproducing the peak stress consequence of the high kinetic energy previous to collision; notice
the high tissue velocities previous to impact in Figure 11b. This reveals the limitation of linear
spring-like vocal fold contact forces to quickly dissipate the large kinetic energy at impact. Previous
studies on collision forces and tissue stresses [4] have shown that large collision forces may be a
cause of tissue damage. Hence, a penalty vocal fold contact model may lack relevant information
related to damage, and discrete vocal fold models may consider the use of non-linear spring models
of contact.

The impact stress in Figure 10 show a large vertical gap between the two curves. Comparison
with the results in Figure 9c makes apparent that contact area calculations are significantly affected
by the solution method. Furthermore, as mentioned earlier in this paper, accurate contact dynamics
estimation, such as contact area, is of importance in inverse problem formulations [8]. In addition,
contact areas and collision forces have been shown to be dependent on uncertain parameters, such
as the subglottal pressure [4]. Therefore, robust and good estimates of the dynamical behavior at
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contact are necessary for voice pathology analysis. The numerical study that follows investigates the
performance of different theoretical models of the vocal folds with regards to features estimation.

The importance of enforcement of the position-based collision constraint is illustrated in
Figure 11. In Figure 11a the maximum contact area computed from the summation of triangular
interface areas with vertex loaded by a collision force is shown; the horizontal axis corresponds to the
interpenetration volume normalized to the maximum intersection volume when the effect of contact
forces is neglected. Furthermore, the results are shown for a subglottal pressure of psub = 0.8 kPa in
black marks, and psub = 0.6 kPa in white marks. The general increasing trend of the values suggests
that overestimation of the contact area may occur as the non-penetration condition relaxes. In the
same figure, circles correspond to the results of the Lagrange multiplier method; downward triangles,
squares, and upward triangles correspond to the penalty formulation with κ = 107, 106 and 105,
respectively. The maximum value of the penalty parameter shown in the results is constrained to the
ill-conditioning of the system matrix and physical meaning of contact forces. The results show that
the penalty parameter has a direct influence on contact area prediction. Furthermore, open quotients
values of 0.85, 0.76 and 0.7 are predicted for the reported penalty parameters, respectively, with
a subglottal pressure of psub = 0.8 kPa. This means that inexact position-based contact constraint
enforcement has an effect on the temporal distribution of the transfer of kinetic energy at impact.
Furthermore, in [17] it is argued that high kinetic energy is related to low open quotients. Inspection
of Figure 11a reveals slight larger amplitudes of the penalty solution compared to the Lagrange
multipliers solution, which gives an open quotient of 0.87. Hence, increasing interpenetration leads
to a spurious increase of the kinetic energy and contact areas, and decreasing open quotients, in
agreement with [17]. Finally, note that small subglottal variations do not have a strong effect on
contact area estimations, as large contact area variations in the penalty solution may be explained by
spurious kinetic energy variations. Therefore, the contact area is dependent to subglottal pressures,
as predicted in [4], but also highly dependent to the contact constraint enforcement.

In regard to contact force estimation, Figure 11b shows the maximum x component of the total
contact force. The observed general trend indicates an effect of the vocal fold interpenetration,
as expected from Eq. (28); hence, the value of the penalty parameter is crucial. Furthermore,
comparison of collision forces with psub = 0.8 kPa (black marks) and psub = 0.6 kPa (white marks),
shows that contact forces decrease with subglottal pressure, regardless of the method used to enforce
the contact constraint. Finally, note that the peak impact stress in Figure 10 does not correspond to
the ratio between maximum total contact force and maximum contact area in Figure 11 as peak
values do not occur at the same time, in agreement with [4].

Due to the difficulties in extracting experimental model parameters, arbitrary choice of the
input contact parameters is generally made [6]. Hence, the number of unknown input parameters
introduces uncertainty in the model output, as demonstrated earlier. In this sense, the Lagrange
multiplier method appears to be a solution to reduce model uncertainties by reducing the number
of unknowns and introducing robustness. Finally, notice that the solution obtained by the Lagrange
multiplier method reduces the non-physical interpenetration volume by a factor of 103, but still it is
not zero as one may expect from the theory. This can be explained as a consequence of numerical
errors and the relaxed definition of slave node projection in Eq. (27).

In summary, inexact contact constraint enforcement has a clear effect on vocal fold dynamics.
The proposed Lagrange vocal fold contact solution is capable to successfully replicate the temporal
distribution of the impact stress in contrast to linear spring-like contact forces. Furthermore, it is able
to introduce robustness and reduce uncertainties in the model output. Nevertheless, the Lagrange
approach may lead to under and overestimation of the instantaneous nodal contact force and the
tissue velocity at contact.

4.3. Temporal integration

Earlier in Section 2.3.2, the importance of temporal integration schemes with respect to system
dynamics was emphasized. A numerical study of a number of schemes that are unconditionally
stable and second-order accurate under certain of premises (see Section 2.3.2) is here presented.
Due to the complexity of the system, methods with stability conditions such as the α-method with
α = −0.41421 used in [39] are not considered.

In regard to nodal force collision calculations, the temporal integration scheme appears to have an
influence as Figure 12 shows. In the figure, circles correspond to the undamped Newmark scheme in
Eq. (24) with γ = 1

2 and β = 1
4 , similar to e.g., [9]; triangles indicate the α-method with α = −0.3;
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solid and dotted lines indicate the results with the Lagrange multiplier and the penalty methods
(κ = 107), respectively. The spurious non-smooth behavior worsens for an undamped Newmark
method. It might be argued that the lack of negative numerical damping leads to an increase of
inertial forces and large amplitude of oscillation, and thereby a worsening of the non-smoothness. As
expected, large amplitudes of vocal fold oscillation have been observed with the undamped temporal
scheme, although the results are not shown here for the sake of brevity. Notice that the increase
of amplitude has a clear a effect on the estimation of the penalty nodal contact force solution, in
agreement with the results in Figure 11. Furthermore, no noticeable phase error can be seen from
the temporal discretization simulations. Finally, the numerical solutions have a stable behavior with
a time step of 50μs, which supports the unconditional stability condition.

In summary, the results suggest that α-methods are superior to Newmark schemes as numerical
damping appears to be advantageous in vocal fold contact simulations.

4.4. Asymmetric collision study

Asymmetric vocal fold oscillations are typically observed in several voice pathologies such as mass
lesions, intracordal scarring or vocal fold paralysis [28]. This has motivated numerical studies on the
effect of abnormal oscillations on phonation [12, 15]. In contrast to previous studies on collision-
free asymmetric oscillations [12], the proposed contact detection algorithm allows for the study of
the effect of asymmetric collision on vocal fold mechanics. Similarly to [12, 15], the present work
limits to asymmetric vibration induced by a tension imbalance between left and right cover layer.
Thus, structural asymmetries typical of mass lesions are not included, which would possibly require
the modeling of frictional contact. All simulations use a constant subglottal pressure of 0.8 kPa.

A tension mismatch 100 · (Eright − Eleft)/Eright of 20% and 40% between left and right
longitudinal Young’s modulus of the cover layer is enforced. This means that the right vocal fold is
stiffer than the left vocal fold. Figure 13 compares the left and right vocal fold mechanical response
averaged over 4 oscillatory cycles immediately after the initial transient response (see Figure 5).
The results with symmetric mechanical properties are shown for comparison reasons. All values
correspond to the arithmetic mean. To illustrate the asymmetric oscillations, solid horizontal lines
indicate the x coordinate of the collision point of node 6157, normalized to the x coordinate of its
initial material coordinate for clarity reasons. From the results, the collision point appears to be
successfully detected by the contact detection algorithm. Furthermore, black dot clips correspond to
the ratio between peak-to-peak x displacement of node 6157 and the opposite node laying on the
left vocal fold; this is equivalent to a classical measure of asymmetry in clinical research [28]. In
the figure, the ratio seems to increase with the tension mismatch, indicating increasing asymmetries
in the amplitude of vibration. In dashed lines, the collision-free solution is shown by neglecting
the effect of surface contact forces. These results indicate that the collision forces, and thereby the
energy distribution, play a role on asymmetric vocal fold self-oscillations. In connection with the
results in Figure 11b, inexact contact constraint enforcement, widely accepted in the vocal fold
modeling community, has an effect on asymmetric dynamics.

With regard to internal and reaction forces, gray and white bars in Figure 13 show the maximum
compressive stress and the x component of the Lagrange solution of the contact force integrated over
a collision interval, respectively. As the stiffness asymmetry increases, an increasing compressive
stress is apparent. It can be hypothesized that asymmetric oscillations increase the risk of damage
since large compressive stress may be related to vocal fold damage [3]. Nevertheless, impact forces
do not appear to be correlated with the degree of asymmetry. Previous studies have related mass
lesions with impact forces at vocal fold collision [40]. Hence, from the present results asymmetric
collision can not be considered a sufficient factor for increasing risk of damage.

Furthermore, note in Figure 13 that the same mediolateral total contact force is applied to each
vocal fold, and similarly, the small anteroposterior component, which is of order 10−6 N. This
contradicts a number of results in [15], where asymmetry in the vocal fold oscillation is related
to asymmetry in the anteroposterior component of the contact force. However, the action-reaction
principle predicts equal forces, and hence, the present simulations validate the contact model
proposed in this work. Finally, it is noteworthy that variances increase with tension imbalance, which
may indicate unstable oscillation, as investigated in [6].
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5. CONCLUSIONS

The asymmetric collision problem of a three-dimensional continuum model of the vocal folds
driven by Bernoulli aerodynamic forces has been formulated in terms of position-based inequality
constraints. In contrast to existing symmetric vocal fold contact models [17, 10, 15], the present
contact model has been developed within a finite-element contact mechanics framework, providing
mathematical details and a numerical analysis. This work covered the entire contact modeling
process, which includes definition of contact boundary condition, contact detection methodology,
validation and numerical analysis.

A novel contact detection mechanism has been developed to solve the problems of symmetric
contacting bodies, non-smooth boundaries, and asymmetric contact detection posed in [9] for the
general case of non-matching tissue meshes. Firstly, the algorithm safely eliminates the need of
predefinition of the master and the slave bodies, which poses a problem for vocal folds with a
symmetric geometry. Secondly, it deals with the projection point problem at convex boundaries such
as the upper vocal fold surfaces. Hence, the algorithm successfully detects contact at glottal exit
where collision forces may be responsible for tissue damage [4]. Thirdly, the models successfully
detects asymmetric contact induced by tissue property asymmetries. However, the model may
show limitations in voice pathologies investigations related to geometrical irregularities as frictional
contact is expected to play a role. Nevertheless, the proposed node-to-surface contact model with the
novel contact detection mechanism is extensible to frictional contact with relative ease. Therefore,
future developments of the model will be devoted to vocal fold contact in asymmetric geometries.

Numerical analysis has been included in this study to assure a good performance of the vocal fold
model. The effect of inexact collision constraint enforcement [9, 15, 11] and temporal integration
schemes on vocal fold mechanics and dynamics has been investigated, the results showing that
vocal fold contact is highly sensitive to non-physical energy variations. Different variational
methodologies for constrained minimization problems have been applied to the vocal fold contact
problem. It has been shown that linear spring-based contact models poorly replicate the time
evolution impact phase observed in vocal fold measurements [33]. Furthermore, the penalty solution
is highly sensitive to subglottal pressure variations and model parameter-choice. In an effort to
reduce uncertainties in the model output and spurious energy variations, a vocal fold contact model
based on the Lagrange multiplier method has been proposed. To reduce the computational cost
of the Lagrange solution, a preconditioner to increase the convergence ratio of the iterative solver
has been designed. The solution showed realistic contact stress simulations, robustness in terms of
subglottal pressure variations, and accuracy in vocal fold contact dynamics estimation. However, the
method is not suitable for predicting instantaneous nodal contact forces, which showed a spurious
non-smooth behavior. Finally, the non-smooth vocal fold collision problem benefits from highly
dissipative temporal discretization schemes. A Hilber-Hughes-Taylor α-method with α = −0.3
seems to provide satisfactory results.

The present contact model is capable to predict specific mechanical behavior at asymmetric
contact induced by stiffness mismatch enforcement, in contrast to the collision-free study in [12].
In contrast to the trend observed in impact force estimations, an increasing maximum compressive
stress seems to correlate with the degree of asymmetry, which may contribute to additional damage.

Finally, the present finite-element vocal fold contact model may be adapted to advanced fluid-
structure models with simplified symmetric contact (e.g., see [9, 11, 2]) to provide more insights
into the effect of collision on phonation.
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Figure 1. Schematic representation of the larynx assuming elliptical shaped cross-sections. Subscripts
indicate spatial discretization along the longitudinal axis. p(zi), v(zi) and a(zi) are the aerodynamic pressure,
average flow velocity and cross-sectional area. yi is the major axis in the anteroposterior direction, and xi,>0
and xi,<0 are the positive and negative minor axes in the mediolateral direction, respectively. ΓN and ΓD

indicate the Neumann and Dirichlet boundary, respectively.
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Figure 2. Schematic representation of the conforming interface mesh for collision detection; transverse view
before collision (left), after collision (right). Γe

C indicate the surface boundary of the node-to-surface contact
element.

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d
A

rt
ic

le
FRICTIONLESS MODEL OF ASYMMETRIC VOCAL FOLD COLLISION 19

(a)

(b)

Figure 3. (a) Projected trajectories of selected interface nodes on the mid-coronal plane during the first
0.04 s. Circles corresponds to the initial configuration. Labels of two nodes, 6157 and 6390, with initial
material coordinates (0.0250, 0,−0.1077) and (0.0500, 0,−0.3519), respectively, are shown. (b) Waveform
of x coordinate (mediolateral direction). Solid line corresponds to node 6157, and dashed line to node 6390.
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Figure 4. Vibration pattern for a subglottal pressure 0.8 kPa at times t = 0.0353, 0.0366, 0.0367, 0.0375 s
from left to right, respectively.
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Figure 5. Volumetric flow rate U approximated as in Eq. (2). Approximate steady oscillatory behavior follows
an initial transient of duration about 0.02 s.
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Figure 6. (a) Geometry of the impact problem. The origin is located at the center of the cylinder at the left
of the illustration. All values in the SI of units. (b) Simulation of two colliding cylinders using the custom
collision mechanism (left) and the commercial software ANSYS (right) at times t = 0.0011 s (top) and

t = 0.003 s (bottom).
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Figure 7. Magnitude of the contact force computed from the summation of all nodal contact forces applied to
each of the cylinders (a); comparison to the contact force calculations obtained with the commercial software

ANSYS (b).
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Figure 8. Sagittal view of the superficial layer of the right vocal fold (x > 0) during collision, from top
to bottom at t = 0.0371, 0.0372 s. In grayscale, the magnitude of the x component of the contact and
aerodynamic forces acting on interface triangles. Downstream the lowest contact node zero aerodynamic
forces are considered due to the no vocal tract coupling and the flow stop criterion defined by the zero flux

parameter τ = 0.5 (see Section 2.4 and Table I).
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(a)

(b)

(c)

Figure 9. From top to bottom: x coordinate of spatial position, velocity, and nodal contact force
for an interface node at initial material coordinates (0.024,−0.136,−0.037). For comparison reasons,
the top figure includes the spatial position of the opposite interface nodes at material coordinates
(−0.024,−0.136,−0.037). Solid lines indicates the results for the Lagrange formulation; dotted lines

indicate the results for a penalty formulation with κ = 107.
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Figure 10. Mediolateral component of the contact stress with a subglottal pressure of 0.8 kPa for a Lagrangian
and a penalty (κ = 107) solution.
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Figure 11. (a) Maximum contact area computed from the summation of interface triangles with any vertex
loaded by a collision force. (b) Maximum x component of the total contact force. The horizontal axis
corresponds to the intersection volume normalized to the maximum intersection volume when the effect
of contact forces is neglected. Circles indicate results for the Lagrange multiplier method (LM); downward
triangles, squares, and upward triangles correspond to a penalty formulation with κ = 107, 106 and 105,
respectively. Black and white marks indicate results for psub = 0.8 kPa and psub = 0.6 kPa, respectively.
The selected collision time interval is [0.036, 0.037], and the right vocal fold (x > 0) has been used for

calculations.
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Figure 12. Contact force of a interface node at initial material coordinates (0.024,−0.136,−0.037), as in
Figure 9c. Circles correspond to an undamped Newmark with γ = 1

2 , and triangles to the α-method with
α = −0.3. Dotted line indicates a penalty method with κ = 107, and the solid line, the Lagrange multiplier

method, as in Figure 9. Time step is h = 50μs.
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Figure 13. For each vocal fold, total contact force in N (white bar), maximum compressive stress in kPa
(gray bar) and ratio between right and left vocal fold vibration amplitude (dot clip) for 0%, 20% and 40%
longitudinal Young’s modulus mismatch of the cover layer. Solid horizontal line indicates the x spatial
coordinate of the collision point of the node 6157, normalized to the initial material coordinate. Dashed
lines indicate that the effect of surface contact forces is neglected. Values are obtained from the average over

4 cycles after transient oscillations.
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Table I. Contact algorithm with the Lagrange multiplier method (II.3.A) and a penalty method (II.3.B). The
penalty κ, relaxation δ, and zero flow τ parameters control the heuristics of the algorithm.

n ← 0
I. Initialization: get collision data:

find labels L of nodes (xi>0, 0, zi) and (xi<0, 0, zi) define xs, xk=1,2,3

build matrices M, C, K and D II.3.A. Lagrange method:
save material coordinates X if Eq. (27) then save xs, xk=1,2,3

set initial velocity v0 II.3.B. Penalty method:
collision mid = false compute contact force by Eq. (28)

II. while n < number of time steps do update Fn

II.1. compute aerodynamic forces, build Fn: compute barycentric coordinates (xbc, ybc, zbc)
for all nodes in L do compute areas for Eq. (3) if |ybc| ≤ yi · τ then collision mid = true
find a(zdet) = amin. end if
compute volumetric flow rate: end for

if collision mid then stop flow if collision
else use Eq. (2) re-solve for current positions xn:

for all interface nodes do II.3.A. Lagrange method:
below zdet, find closest node in L; use Eq. (17) build Gn+1 using Eq. (20)
above zdet, jet solve Eqs. (25)

end for if λ > 0
II.2. solve for current positions xn: remove contact element and rebuild Gn+1

collision mid = collision = false resolve Eqs. (25)
set Gn+1 to zero end if
solve Eq. (25) II.3.B. Penalty method:

II.3. check for collision: solve Eqs. (25)
for all intraglottal tetrahedra do end if

if volume intraglottal tetrahedra V e < 0 then n ← n+ 1
collision = true end while
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Table II. Larynx geometry adapted from [17], parallel symmetric prephonatory intraglottal profile (in cm).
Spatial discretization of the vocal fold boundary assumes 51 elliptical shaped cross-sections; see Figure 1
and Eq. (3). For the sake of brevity, some relevant sections are shown. yi = 0.7 cm for all i, and cover and

ligament has a thickness of 0.05 cm between section S17 and S27.

zi |xi,<| = |xi,>| zi |xi,<| = |xi,>|

S0 −2 0.7
...

S7 −0.78 0.6 S26 −0.04 0.025
S8 −0.45 0.25 S27 −0.02 −0.05
S12 −0.42 0.16 S36 0.03 0.3
S17 −0.35 0.05 S43 0.11 0.5
S18 −0.31 0.025 S51 2 0.7
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Table III. Tissue parameters used in the finite element simulation for a normal larynx, adapted from
[17]. (E, ν), transversal Young’s modulus and Poisson’s ratio; (E′, μ′, ν′), longitudinal Young’s and shear
modulus, and Poisson’s ratio. η indicates viscosity. All values are specified in the centimeter-gram-second

system of units.

E ν E′ μ′ ν′ η
Cover 1 · 104 0.66 10 · 104 10 · 104 0.66 4
Ligament 3 · 104 0.58 20 · 104 40 · 104 0.58 10
Body 20 · 104 0.45 40 · 104 30 · 104 0.45 10
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Table IV. Peak mediolateral contact stress for different subglottal pressures. For comparison reason, units
are in kPa [33].

contact stress [kPa] 0.54 1.17 1.21
psub [kPa] 0.6 0.8 1

{slope , R2} {1.72 , 0.989}
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