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Abstract

Oil and gas platforms are energy-intensive systems – each facility uses from a few to several hundreds
MW of energy, depending on the petroleum properties, export specifications and field lifetime. Several
technologies for increasing the energy efficiency of these plants are investigated in this work. They include:
(i) the installation of multiple pressure levels in production manifolds, (ii) the implementation of multiphase
expanders, (iii) the promotion of energy and process integration, (iv) the limitation of gas recirculation
around the compressors, (v) the exploitation of low-temperature heat from the gas cooling steps, (vi) the
downsizing or replacement of the existing gas turbines, and (vii) the use of the waste heat from the power
plant. The present study builds on four actual cases located in the North and Norwegian Seas, which differ by
the type of oil processed, operating conditions and strategies. The benefits and practical limitations of each
measure are discussed based on thermodynamic, economic and environmental factors. Significant energy
savings and reductions in CO2-emissions are depicted, reaching up to 15–20 %. However, they strongly differ
from one facility to another, which suggests that generic improvements can hardly be proposed, and that
thorough techno-economic analyses should be conducted for each plant.

Keywords: Energy efficiency, process integration, oil and gas platforms

1. Introduction1

The Norwegian oil and gas offshore sector has contributed for about 20 to 30 % to the total Norwegian2

CO2-emissions in the last decade, and this number is expected to stay in the same magnitude in the coming3

years. These emissions are caused in a large share by the combustion of natural gas in gas turbines to produce4

the power required to drive the compression and pumping operations, and the remaining is associated with5

gas flaring and diesel combustion. A CO2-tax on the offshore sector has been levied by the Norwegian6

government in 1991 and was doubled in 2011 [1] to encourage CO2-mitigation measures. The emissions per7

produced oil equivalent decreased by approximately 19 % from 1990 to 2005 [2], as a result of this incentive8

and global technology improvement. However, the total emissions actually doubled, because of the increased9

gas production and exploitation activities. The extended exploitation of mature fields results in processing10

of higher amounts of water and gas, and therefore in greater power consumption per unit oil.11

The energy use and emissions associated with oil production differ from one field to another, depending12

on the field conditions (e.g. crude oil temperature), export specifications (e.g. purity requirements and13

pressure), and field lifetime (e.g. ‘plateau’ or ‘end-life’ production) [3]. Different strategies can be applied14

to improve the energy performance of oil and gas facilities, which can be classified into two categories [4].15
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The first possibility is to reduce the energy requirements of the processing plant, by increasing the16

efficiency of the most energy-intensive processes, promoting system integration or recovering energy from17

the feed (after the production manifolds) or product (in the gas treatment section) flows.18

Several measures for promoting energy savings were proposed in the works of Svalheim et al. [5,6], such19

as flaring reduction, energy and process integration, as well as re-wheeling of turbomachinery components.20

de Oliveira Jr. and van Hombeeck [7] proposed to focus on the plant energy integration, focusing on the21

separation sub-system. Voldsund et al. [8] and Nguyen et al. [9] suggested to analyse the possibility of22

reducing anti-surge recirculation, reducing losses in the manifolds and increasing the compressors efficiency,23

as significant power savings could be achieved. Subsequent work [10] pinpointed the same findings for two24

other platforms, although the system configurations were highly different. Nguyen et al. [11] extended their25

studies to include the utility plants, showing that about 55 to 60 % of the performance losses take place in the26

gas turbines, but that they are unavoidable. On the contrary, those taking place in the oil separation and gas27

compression operations could be reduced by exploiting high-energy streams, but they require changes in the28

system set-up, replacement of existing components or addition of other processes. Cassetti and Colombo [12]29

evaluated the costs associated with each performance loss within the separation process of an oil platform,30

and they suggested to pay attention to the heat generation and transfer processes.31

The second possibility is to improve the energy conversion processes, by converting the existing gas32

turbines and furnaces into cogeneration plants, importing electricity from the shore, or replacing the existing33

gas turbines by smaller - and more efficient - ones, if possible.34

Combined cycle power plants with steam cycles were installed on the Oseberg, Snorre and Eldfisk35

fields [13,14]. These few examples illustrate that the integration of such plants is uncommon because of36

stringent weight and space constraints, although large fuel savings and reductions of environmental pollu-37

tants are achieved. Designs with once-through heat recovery steam generators may be of interest for offshore38

combined cycle, as they present a lower weight than conventional combined cycles, with the benefits of addi-39

tional flexibility to changes in demand for mechanical and electrical power [15,16]. Proper integration with40

the processing plant is pointed to be crucial for avoiding improper configurations of the steam cycle [17].41

The installation of alternative power systems such as organic Rankine cycles was discussed in subse-42

quent works. Pierobon et al. [18] conducted a multi-objective optimisation for designing ORCs in offshore43

conditions, aiming at minimising the weight of the bottoming cycle while maximising the reductions in44

CO2-emissions. Mazzetti et al. [19,20] analysed as well alternative working fluids such as carbon dioxide,45

and they claimed that CO2-cycles may be much less space-demanding for similar efficiencies and capacities.46

CO2-cycles were analysed thoroughly in Walnum et al. [21] where the performance of these cycles was eval-47

uated at reduced gas turbine loads, and in Skaugen et al. [22], where process optimisations were conducted48

for designing a compact and light cycle under a set of practical constraints. Barrera et al. [23] analysed the49

impacts of varying water, gas and oil flows, and their results suggest that the amounts of injected gas and50

water have a strong impact on the power output of these cycles.51

Downsizing the existing gas turbines or removing the redundant ones, as proposed by Mazzetti et al. [24],52

may also be relevant, as this would result in a reduction in fuel consumption without additional weight and53

volume on-site. As mentioned in Nguyen et al. [25], electrifying the platform may be beneficial both from54

an energy and environmental perspective, since the onshore power plants generally have a higher efficiency55

than offshore ones, because they are often natural gas combined cycles or renewable plants.56

The present work aims to cover and compare all these energy efficiency measures, based on four actual57

facilities which were investigated as well in Voldsund et al. [10]. This work considers the main components58

and sub-systems of an offshore plant, from the production manifolds to the gas compression operations,59

including the power generation system. Utilities such as air conditioning and operations such as drilling60

are excluded from the analysis. The objectives of this work are to (i) evaluate the prospects and challenges61

associated with each energy efficiency effort, (ii) assess the differences in terms of energy savings when62

comparing different facilities, (iii) pinpointing the benefits and limitations of each measure in practice, using63

thermodynamic, economic and environmental criteria.64

The present paper is part of a larger project dealing with the modelling and analysis of oil and gas65

producing platforms and is a continuation of the work presented in Nguyen et al. [26]. It builds on previous66

works conducted by the same authors and is structured as follows. Section 2 describes the system of interest67
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in this work, and on the similarities and differences between the four cases. The improvements investigated68

in this study are presented further, together with the benefits achieved for each platform, with respect to the69

processing (Section 3) and power (Section 4) plants, and are followed by concluding remarks in Section 5.70

2. System description71

2.1. General design72

Oil and gas offshore platforms present similar structural designs (Figure 1) that include separation, com-73

pression and pumping operations, but process fluids with different thermophysical and chemical properties.74

The field characteristics and export specifications differ from one platform to another, and these singularities75

result in different system configurations, operating conditions and strategies. For example, the limitations76

on the maximum water content allowable in the exported gas streams are more stringent in the Gulf of77

Mexico, which explains why a dehydration process is commonly installed on the platforms located in these78

areas. These differences are also relevant for the cases investigated in this work.79

A typical oil and gas platform consists of two main sub-systems: a processing plant, in which which oil,80

gas and water are processed, separated, and rejected (water), exported (oil and gas), and possibly injected81

back into the reservoir (water and gas); a power plant, where a fraction of the gas that is extracted on-site82

is consumed in gas turbines to produce the power and heat required in the processing plant. In some cases,83

the power demand is satisfied by importing power from the shore (electrification) [27].84

Petroleum is extracted through different wells and processed on-site through production manifolds op-85

erating at different pressure levels to ensure optimum production and recovery rates depending on the field86

conditions. Oil, gas and water are then separated by gravity in a certain number of stages operating at87

different pressure and temperature levels, in the separation train. The water recovered from the phase sep-88

arators is then cleaned and discharged/injected, while the oil at low pressure is pumped in an oil treatment89

section, for further export. Recovered gas is then cooled, scrubbed and compressed in one to several stages90

to the initial feed pressure, in a recompression section. It is then compressed, if necessary, to the required91

export or injection pressure, and possibly dehydrated or cleaned in the gas treatment section.92

2.2. Case studies93

The present work deals with the analysis of four actual platforms located in Norway, operating in the94

North Sea, with the exception of Platform D, which operates in the Norwegian Sea. The most impor-95

tant flowrates and operating conditions are presented in Table 1 while the process flowsheets are shown96

in Appendix A.97

Platform A has been in operation for about 20 years (Figure A.10), produces oil, injects gas for pressure98

maintenance, and discharges water into the sea. The field is characterised by a high gas-to-oil ratio (2800),99

high feed temperatures (80–87 ◦C) and pressures (88–165 bar). The power demand is about 25 MW, while100

the heating demand is smaller than 1 MW.101

Platform B has been in operation for about 10 years (Figure A.11), produces gas and condensate, and102

disposes water in another reservoir. The field is characterised by a very high gas-to-oil ratio (3200), high103

feed temperatures (64–111 ◦C) and pressures (123–155 bar). The power demand is the smallest of all case104

studies (5.5 MW), as gas is separated and exported at moderate pressures, while the heating requirements105

are negligible, as for Platform A.106

Platform C has been in production for about 10 years (Figure A.12), processes heavy oil and gas, where107

the term heavy refers to the high density and viscosity of the crude oil. Gas is injected back into the108

reservoir and produced water is discharged. At the year of study, gas was also imported for further injection109

to stimulate the oil production. The power demand reaches approximately 30 MW and the heating needs110

exceed 10 MW. Heat is recovered from the exhausts of the gas turbines and transferred via means of a hot111

water loop at high pressure.112

Platform D has been in operation for about 20 years (Figure A.13), produces volatile oil and gas, and the113

produced water is injected for oil recovery. The petroleum has a low content in heavy hydrocarbons but has114

a propane content of nearly 9 % in volume. The power demand is about 19 MW in normal production days,115
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Figure 1: General system overview of an oil and gas platform. Arrows represent one to several streams while block represent
different subsystems. Solid lines indicate that the corresponding stream or process is present for all the studied platforms and
can generally be found on all typical oil and gas facilities, while dotted ones denote flows or sections that are more uncommon.

while the heating demand is about 5 MW. Heat is also recovered from the turbine exhausts and transferred116

using a hot glycol loop.117

2.3. System modelling118

The measurements were taken for a ‘normal’ production day and are presented in further details in119

Voldsund et al. [28] for Platform A, Voldsund et al. [10] for Platforms B and C, and in Nguyen et al. [9]120

for Platform D. The present analysis was built on a compilation of (i) system information received from the121

platform databases, given for a single time point, or on a hourly to daily basis, (ii) fiscal declarations to the122

Norwegian Petroleum Directorate, (iii) assumptions based on the authors’ experience, discussed with field123

experts, and (iv) data compiled from process flowcharts and literature. The models were developed with the124

commercial flowsheeting software Aspen Plus [29], version 7.2, based on the Peng-Robinson [30], Redlich-125

Kwong with Soave modifications [31–33] (oil and gas processing) and the Schwartzentruber-Renon [34] (gas126
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Table 1: Pressures and temperatures in the oil- and gas processing of the studied oil and gas platforms. The stream numbers
refer to Figure 1.

Stream number Platform A Platform B Platform C Platform D
(type) p [bar] T [◦C] p [bar] T [◦C] p [bar] T [◦C] p [bar] T [◦C]

1 (reservoir fluids) 88–165 80–87 123–155 64–111 13–111 51–72 15–187 55–74

2 (reservoir fluids) 70 74 120 106
46a 62a

8
49–67

7b 69b 63b

13c 63c

3 (oil/condensate) 2.8 55 2.4 62 2.7 97 1.7 45–55
4 (oil/condensate) 32 50 107 56 99 76 19 61–68
5 (treated gas) 236 78 118 35 184 75 179 81
6 (condensate) - - - - - - 179 68
7 (discharged water) 9 73 - - 7.2 71 1.3 55
8 (injection water) - - 61 78 - - - -
9 (fuel gas) 18 54 37 50 39 61 21 59
10 (gas import) - - - - 110 4.4 - -
11 (inlet seawater) - - - - - - 1 8
12 (injection seawater) - - - - - - 127–147 57

aFrom high pressure manifold
bFrom low pressure manifold
cFrom test manifold

dehydration) equations of state.127

2.4. Performance analysis128

The performance of each plant is analysed based on thermodynamic assessment tools. The aims are129

to (i) map the energy flows, (ii) assess the system inefficiencies, by locating and quantifying the potentials130

for improvements, and (iii) investigate process integration opportunities, by identifying the main energy131

users, sources and sinks. Thermodynamic analyses were performed previously by the same authors (see e.g.132

Refs. [10] and [11]), and the reader is referred to the textbook of Kotas [35] for a detailed introduction to133

these methods. The main findings are recalled as follows:134

• most energy and exergy input to an offshore platform corresponds to the petroleum flows extracted135

through the wells;136

• most energy and exergy output is associated with the streams of oil and gas for export and injection;137

• the exergy consumption of a platform differs from one facility to another, from as low as 30 MW138

(Platform B) to 110 MW (Platform A);139

• the power demand of the processing plant ranges from 5.5 MW (Platform B) to 30 MW (Platform C);140

• the heating needs, on an exergy basis, can be close to null (Platforms A and B) or reach up to 7 MW141

(Platform C);142

• the exergy destroyed in the processing plant is comprised between 11 MW (Platform B) to 22 MW143

(Platform C);144

• the exergy destroyed in the power plant is generally greater because of the irreversibilities associated145

with the combustion phenomena, but is as well unavoidable.146

Hence, the focus of this work is on the evaluation of the following design changes: (i) introduction of an147

additional pressure level in the production manifolds; (ii) implementation of multiphase expanders instead148

of expansion valves; (iii) limitation of the gas recirculation around the compressors, by installing parallel149

trains or rewheeling; (iv) promotion of process and energy integration; (v) exploitation of low-temperature150
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heat (≤ 100 ◦C) from the gas intercooling and aftercooling steps; (vi) downsizing or replacement of the gas151

turbines; and (vii) valorisation of the high-temperature waste heat (≥ 300 ◦C) from the turbine exhausts.152

These suggestions for process modifications are not relevant for all case studies (Table 2) - the points (i)–(v),153

which are related to changes of the processing plant, are presented in Section 3, while the points (vi)–(vii),154

which are related to modifications of the power plant, are described in Section 4.155

Table 2: Investigated improvement scenarios for the four offshore platforms presented in this research. A symbol 3 means that
the proposed improvement is relevant and investigated, a symbol F means that the proposed improvement is pertinent but not
considered in this work because of missing data, and a symbol 7 means that the proposed improvement is neither relevant nor
studied.

Platform A Platform B Platform C Platform D

Multi-level production manifold 7 7 3 7

Multi-phase flow expanders 3 3 3 3

Reduction of anti-surge recirculation 3 3 3 3

Energy integration 3 3 3 3

Low-temperature waste heat recovery F 3 F 3

Downsizing of the gas turbines F F F 3

High-temperature waste heat recovery F F 3 3

3. Processing plant156

3.1. Multi-level production manifold157

3.1.1. Approach158

The integration of an additional pressure level in the production manifolds can allow for extracting and159

processing gas at a higher pressure level, which would result in a lower power demand of the gas compression160

section. A smaller amount of gas would be recovered at lower pressures, and therefore smaller amounts of161

heavy hydrocarbons would be carried over in the gas streams from the separation section. Such a retrofit is162

relevant only for platforms with a large number of producing wells, which excludes Platform A, with a high163

power demand of the gas compression process, which excludes Platform B, and where the reservoir fluid is164

extracted over a large range of pressures, which excludes Platform D. In the case of Platform C (Figure 2),165

a large number of processing wells (10) are producing at a pressure higher than the second stage of the gas166

treatment (94 bar), and the gas fraction of the reservoir fluids extracted through these wells is above 30 %.167

However, the introduction of an additional pressure level is relevant only with another control strategy168

of the compressors on-site, or alternatively with re-wheeling or downsizing of these components. At present,169

gas is recirculated around the compressors to prevent surge, which implies that the power consumption is170

nearly constant. An additional pressure level in the production manifold involves smaller gas flows in the171

gas recompression train, and it is thus necessary to downsize the corresponding compressors, or to evaluate172

possibilities for avoiding gas recirculation.173

The benefits of the scenarios proposed as follows are therefore evaluated against a baseline scenario where174

no gas is recirculated. The first improvement scenario assumes (Scenario 1) that the separation pressures are175

fixed and cannot be optimised. In this case, the very high pressure manifold should operate at the pressure of176

the 2nd stage of the gas treatment section, i.e. at least at 93 bar, and 10 wells may be rerouted. The second177

improvement scenario (Scenario 2) assumes that the separation and production manifold pressures can be178

adjusted. In that case, all the wells currently connected to the high pressure manifold can be rerouted, and179

the compressors at the last recompression and first gas treatment stages should be retrofitted. Scenario 2180

is reformulated as an optimisation problem, for which the decision variables are the production manifold181

pressures, and the objectives the minimisation of the total power consumption, and the maximisation of the182

oil and gas recoveries.183

The two last parameters are evaluated by calculating the fractions of the light rLIG and heavy rHEA184

hydrocarbons contained in the feed that are carried with the produced gas and oil streams, considering that185
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Figure 2: Schematics of the proposed retrofit of Platform C with a very high pressure (VHP) manifold.

propane should rather be placed in the gas flow, and butanes in the liquid throughout. The thermodynamic186

performance is assessed with the total power consumption Ẇ of the oil and gas processing plant. The187

factors presented above are clearly competing, as a greater recovery of light hydrocarbons would result in188

smaller recovery of heavy ones, and higher power consumption. A multi-objective optimisation is performed189

applying a a genetic algorithm developed by Leyland [36] and Molyneaux [37]. The results are displayed as190

a Pareto-frontier [38], which illustrates the trade-offs between the three conflicting objectives: each solution191

on this front cannot be improved with respect to one objective without a worse-off of another objective. The192

decision variables correspond to the pressures of each level of the production manifolds, which can vary in193

a range of 1.7 bar to the highest well pressure.194

3.1.2. Findings195

Scenario 1. The introduction of a VHP level at a pressure of 93.9 bar results in a net power saving196

of 1.7 MW. The recovery of medium- and heavy-weight hydrocarbons into the oil stream is nearly identi-197

cal. However, the recovery of light-hydrocarbons is slightly worse, by 0.2 %-point, because more methane198

and ethane are entrained with the liquid condensate recovered in the high-pressure scrubber of the last199

compression stage.200

Scenario 2. Greater power savings can be achieved if the pressure levels of the VHP and HP production201

manifolds can be optimised (Figure 3), with a reduction of the power consumption from an original value202

of about 30 MW to only 17 if anti-surge recirculation can be limited as well. The Pareto fronts indicate203
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that the optimal gas and oil recoveries vary in a range of 0.5 %, while the total power consumption varies204

between 17,000 to 26,500 kW.205

95.2 % 95.4 % 95.6 % 95.8 % 96 % 96.2 %

99.74 %

99.76 %

99.78 %

99.8 %

99.82 %

rLIG

r H
E
A

1.5

2

2.5

3
·104

Figure 3: Pareto-optimal solutions for an integrated design of production manifolds with an additional pressure level (VHP)
in the case of Platform C. The colour bar illustrates the power consumption of each solution, expressed in kW.

The decision on allocating a given well to the very-high pressure manifolds depends obviously on the206

well pressure. For example, the 15th well should rather be connected to the HP level because of its low inlet207

pressure (65.4 bar), whilst the 19th well should preferably be linked to the VHP level because of its high208

inlet pressure (83.7 bar).209

However, the initial oil, gas and water contents of each feed stream have an importance, as suggested with210

the case of the 26th well. The associated flow has a high pressure, of about 94 bar, but should optimally be211

placed on the HP level because of the high liquid throughout (oil production of 20.6 Sm3/h). The resulting212

flow at the inlet of the 2nd stage compression level in the gas treatment section (which corresponds to213

the 5th compression level for the whole platform) would then have a higher content of water and heavy214

hydrocarbons than desired, which would cause greater power consumption.215

The optimum pressure levels, with respect to the maximisation of the oil and gas production, as well as216

the minimisation of the power consumption, range between 15 and 44 bar for the high-pressure level, and217

between 34 and 78 bar for the VHP one. However, the recoveries of light and heavy hydrocarbons vary only218

in a range of 0.1 % over the whole optimisation domain, and the results indicate that the optimal pressure219

levels for minimising the total power consumption to around 17 MW, are of 16 and 40 bar. The suggested220

VHP level is in the same order of magnitude as the HP level in the current situation (as of 2012), and the221

proposed HP level is about 8 to 10 bar higher than the LP one.222

3.1.3. Discussion223

The operation of multiple operation levels in the production manifolds may result in significant energy224

savings if the pressure levels and well allocations are selected adequately to minimise the power consumption225

of the processing plant, while ensuring high recoveries of light and heavy hydrocarbons in the gas and oil226

streams, respectively. Processing the feed streams at different levels is commonly done on offshore platforms,227

and implementing an additional one may not face strong technical issues. A drawback would be the higher228

loading of the cooler and separator operating on the stage at which the additional pressure manifold would229

be connected, as well as the greater system complexity. Such an improvement is more easily implemented in230

grassroot designs, when the field pressures are the highest. It can also be performed in retrofit situations, but231
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it is then important to ensure that an extra pressure level will not result in additional power consumption232

of the low-pressure compressors due to higher anti-surge gas recirculation.233

3.2. Multiphase flow expanders234

3.2.1. Approach235

Feed streams from the production manifolds may have a high energy content, if the exploited fields236

are characterised by high temperatures and pressures, and that the feeds have a high gas content. The237

use of multiphase flow expanders could result in additional power production, while the implementation of238

multiphase flow ejectors could enhance higher oil recovery in depleted wells, which is of particular interest for239

mature oil fields. These components may replace the existing multiphase valves installed in the production240

manifold and separation sections. The cases of Platforms A and B are considered, since they both have241

increasing gas-to-oil ratios, which exceed 2500 for both, while the gas-to-oil ratios of the Platforms C and242

D are much lower.243

Estimating the efficiency of multiphase flow expanders is challenging, as there are no practical examples244

of such applications in oil and gas processing. Hydraulic expanders and turbines are well-known technolo-245

gies with hydraulic efficiencies exceeding 90 %, but the current literature suggests that the performance of246

multiphase expanders, using two-phase helico-axial ones, is comprised between 30 and 70 %, depending on247

the initial feed pressure [39–41]. Since the inlet feed pressures range between 70 and 130 bar, the hydraulic248

efficiency may be, with the current state-of-the-art technologies, closer to the lower bound.249

3.2.2. Findings250

A preliminary analysis suggests that energy could efficiently be recovered with such technologies. If the251

valves present in the production manifold are substituted with multiphase expanders, the power production252

would represent about 6.5 and 16 % of the total power consumption of Platforms A and B, assuming an253

efficiency of 30 %. The temperature at the expander outlets would be about 3 to 5 ◦C lower than in the254

current situation, with a drop of the vapour fraction of less than 5 %. These differences would impact to a255

minor extent the downstream separation and recompression sections, because more gas would be recovered256

in the low-pressure stages.257

As for the production manifold, the introduction of multiphase expanders between each separation stage258

may be considered, though with smaller benefits. Smaller liquid flows are processed and they generally259

have lower temperatures and pressures than the reservoir fluid streams entering the separation section. A260

preliminary analysis indicates that the power recovered at the 1st separation stage represents about 11 and261

30 % of the power output of the multiphase expanders that could be integrated in the production manifolds262

of Platforms A and B.263

3.2.3. Discussion264

The implementation of multiphase flow expanders can be interesting for power generation purposes, but265

is relevant only for fields processing high-temperature and high-pressure feeds, with a high gas fraction.266

However, the production of oil, gas and water varies significantly over a field lifetime. An expander designed267

for early or plateau production phases, so when the water extraction is at its minimum, may become268

particularly inefficient when the field enters its end-life conditions, and may therefore be replaced by a269

smaller one. Another issue is that the reservoir fluids may contain significant amounts of impurities and270

sand, and the possible erosion issues complicate the designing task.271

3.3. Reduction of anti-surge recirculation272

3.3.1. Approach273

Gas recirculation around the compressors causes additional power and cooling demands, since the gas274

flows in the compressors and heat exchangers are kept constant to prevent surge. At present, the anti-275

surge recycling rates represent up to 92, 34, 41 and 75 % for the compressors of the recompression train for276

Platforms A–D, and up to 22 and 35 % for the compressors in the gas treatment section for Platforms C277

and D. Avoiding gas recirculation may therefore be an interesting alternative for increasing the amount of278
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gas exported to the shore, increasing the operational benefits, reducing the power consumption and exergy279

destruction in the expansion processes.280

When designing a new offshore compression train, it may be interesting to implement compressors281

that exhibit an acceptable efficiency when they are operated at their maximum capacity and at part-load282

conditions, rather than ones that present a high efficiency at their design point only. The possibility of283

designing smaller but parallel trains, to delay the start of off-design operations, may likewise be considered.284

All trains would be run close to their maximum capacity in peak production; when the production starts285

declining, the gas flows would be split to ensure proper loading of each compression line, and a train may be286

shut down at a later point, when the gas extraction drops sharply. Preliminary simulations are conducted287

in this work to estimate the potential benefits of such solutions, assuming that the gas compressors display288

an efficiency equivalent to the current ones. Finally, tuning of the compressor anti-surge controls may be289

investigated in details if relevant, as previous studies within this topic have shown promising reductions in290

power and fuel gas consumption for a North Sea field [42].291

3.3.2. Findings292

The power consumption of the entire processing plant decreases by 15 to 20 % and the greatest reduction293

is observed for the platforms that operate the furthest from their nominal point, such as Platform D, since294

more gas is recirculated to prevent surge. The cooling demand of the entire processing plant decreases by295

more than 10 % for Platforms A, C and D (Figure 4). The potential savings are smaller for Platform B,296

because the major cooling demand, of about 45 MW, corresponds to the gas aftercooling before export. This297

demand is not impacted by the gas recirculation rates, since there is no compressor operating in the gas298

treatment section of this platform, and the power consumption is nearly constant.299
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Figure 4: Avoided power and cooling demands if no anti-surge recirculation.

In addition, less recycling results in less exergy destruction (Figure 5) because of (i) the elimination of the300

pressure losses through the anti-surge control valves, (ii) the smaller exergy destruction by heat transfer in301

the coolers, and (iii) the smaller exergy destruction in the compression process. The first reduction amounts302

to about 1600, 450, 1700 and 2000 kW, which corresponds to a decrease of 8.3, 3.8, 7.4 and 14.8 % for the303

four platforms. The sums of the second and third ones are roughly equal to the first ones. The reductions304

in exergy destruction due to smaller mixing effects represent less than 50 kW per stage.305

3.3.3. Discussion306

Limiting anti-surge recirculation shows to be beneficial over the field lifetime because of the smaller power307

demand when the field reaches its end-life. However, this can only be achieved by (i) operating several and308
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Figure 5: Absolute changes in exergy destruction if no anti-surge recirculation. The acronyms Cl, Cr and Rc stand for coolers,
compressors and recycle, while Gr and Tr denote the recompression and treatment processes.

parallel compression trains, which implies that additional space is required on the platform, and that more309

weight will be present, (ii) re-wheeling the compressors or implementing smaller ones when the production310

of oil and gas falls under a certain level, which implies additional maintenance operations and extra costs,311

(iii) tuning the control system, which may not be feasible depending on the plant.312

3.4. Energy integration313

3.4.1. Approach314

Process integration techniques aim at minimising the energy use of a given system by promoting internal315

heat exchanges and improving the integration of each individual process with the hot and cold external316

utilities. Higher energy recovery could result in a smaller demand for external cooling, therefore decreasing317

the power consumption associated with the seawater lift operations, while a better match between the318

temperature profiles of the processing and utility plants could open possibilities for cogeneration. The319

assessment of the system energy requirements builds on the pinch analysis concept, which is presented320

in details in Smith [43] and was introduced by Linnhoff [44]. The minimum and individual temperature321

differences (annotated ∆T
2 in the literature) were taken to 2, 4 and 8 ◦C for phase-changing, liquid and322

gaseous streams.323

3.4.2. Findings324

A pinch analysis of each individual sub-system shows that some processes such as the oil separation or325

the condensate treatment require heating or cooling, while others such as the gas treatment and oil pumping326

only have a cooling demand (Figure 6). The interest of the total site integration lies in the matching between327

the heating demands of a given sub-system with the cooling needs of another one. The heat-temperature328

profiles of each plant show that most cooling demand takes place at low temperatures and results from329

the gas cooling processes prior to each compression step. The heating demand is much smaller than the330

cooling demand for all platforms and is significant for Platform C because of the need for heating the viscous331

petroleum feed.332

The benefits of such improvements can be observed by comparing the external utility demands resulting333

from the integration of each sub-system individually to an improved scenario, where the overall site is334
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Figure 6: Grand Composite Curves of four North Sea offshore platforms.

integrated (Figure 7). The benefits are minor for Platforms A and B because of the negligible heating335

demands, which are satisfied by either electrical heating or small energy recovery.336

Improving the integration of the current site is particularly relevant for Platforms C and D (Figure 8),337

but this may be challenging for geographical and operational reasons. The site profiles show that all the site338

cooling demand takes place at temperatures lower than 120 ◦C, which is the temperature of the oil heating339

process. The integration of gas-oil heat exchangers faces two issues. First, all the gas streams should be340

cooled down to 20–50 ◦C, and the oil stream has an initial temperature of 45–55 ◦C. The gas streams should341

therefore be cooled in two steps, by first exchanging heat with the oil, and then with cooling water. Secondly,342

the oil stream cannot be heated by only one gas stream, as the heating demand for the oil can reach up to343

12 MW, while the cooling demand for each individual gas stream does not exceed 4 MW.344

In practice, direct heat exchange between the process streams may not be feasible for operational reasons,345
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Figure 7: External utility demands without integration, with subsystem integration and with site integration.

and a central utility system may be used, such as a cold water loop. In this case, the potential for heat346

recovery is limited to less than 2 to 3 MW. However, the use of a central utility system is not beneficial from347

a process integration perspective, because (i) most heating demands take place at temperatures higher than348

the temperature of the cooling water utility system; (ii) most cooling demands take place at temperature349

lower than the temperature of the hot glycol utility system; (iii) two temperature differences should be350

considered: from the heat source (e.g. hot gas) to the utility stream (e.g. hot water), and from the utility351

stream to the heat sink (e.g. cold oil). The present findings illustrate therefore that improving the energy352

integration of these facilities is challenging despite the large temperature gaps between some hot and cold353

streams because of operational issues.354

3.4.3. Discussion355

Higher degree of system integration presents clear benefits with respect to fuel consumption, energy use356

and environmental impacts, especially if the heating and cooling demands of the process streams can be357

matched. The implementation of internal heat exchangers is not uncommon, with the examples of oil-oil358

or oil-condensate heat exchangers in the separation processes. However, a too close integration may be359

problematic in case of system failure or too large variations of the production flows with respect to the360

equipment design points. It is therefore necessary, in such cases, to ensure that a backup solution is present361

on-site or that redundant equipment are installed to accommodate fluctuations of the oil, gas and water362

flows, temperatures and pressures.363

3.5. Waste heat recovery364

3.5.1. Approach365

Waste heat is available at low temperatures from the gas recompression and treatment sections, because366

gas is cooled at each compression stage (intercooling) or after the last step before export (aftercooling),367

to reduce the power demand of the processing plant, to improve the dehydration process, and to avoid368

too high temperatures at the pipeline inlets. The implementation of low-temperature cycles is discussed369

only for Platforms B and D, since gas needs to be cooled prior to export, while it is used only for lift and370

field injection on Platforms A and C. Steam Rankine cycles are not relevant in such cases because heat is371

available at too low temperatures, and organic Rankine cycles operating with the working fluids presented372

in the study of Rohde et al. [45] (e.g. propane, carbon dioxide, ethane-propane mixture) are considered373

instead.374
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Figure 8: Total site profiles of four North Sea offshore platforms. The solid and dotted lines correspond to the heat-temperature
profiles of the process and utility streams, respectively.

3.5.2. Findings375

Platform B. The quantity of heat discharged in the gas aftercooler for Platform B currently exceeds376

40 MW, and the results suggest that the most efficient solution is to implement a bottoming organic Rankine377

cycle with a mixture of ethane and propane operating in transcritical conditions. The performance of the378

low-temperature power cycle is directly correlated to a few design parameters, such as the condensation379

and production levels, the temperature after superheating and the ethane fraction. More than 2.5 MW of380

power can be produced, which represents more than half of the total power consumption (5.5 MW) of the381

processing plant. The thermal efficiency of this organic Rankine cycle is particularly low, because the gas382

temperature is around 100 ◦C at the aftercooler inlet and should be reduced to about 32 ◦C to satisfy the383

pipeline export specifications. These requirements restrict severely the evaporation level on the organic fluid384
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side and the maximum power output.385

Platform D. As for Platform B, the most effective solution is the integration of ORCs with a hydrocarbon386

mixture. Although these cycles display a thermal efficiency as low as 10 %, 1.5 to 3.5 MW can be generated,387

depending on the rate of the produced gas. The optimal low-temperature power cycles operate between 20 ◦C388

and 170 ◦C and recover heat from the gas streams in the treatment process prior to each compression stage.389

However, the design of such a cycle is challenging and costly, as the working fluid should be evaporated and390

superheated in several heat exchangers. A more cost-efficient alternative is to utilise the waste heat from391

one single hot stream as done for Platform B, using the heat from the gas to be exported in the final heat392

exchanger. The system would then be relatively compact and light, including only four components. The393

cycle should then operate between 23 ◦C (19.5 bar) and 144 ◦C (56 bar) and can provide a net supplement of394

power of 590 kW, which corresponds to a thermal efficiency of 8.3 %. However, setting the low-temperature395

power cycle only on the aftercooler placed at the outlets of the gas treatment process may not be viable,396

because the gas flow through this heat exchanger is already small (lower than 2 kg/s) and is expected to397

decrease with time, as the gas production currently decreases on this field.398

3.5.3. Discussion399

At present, the integration of organic Rankine cycles has never been proven in an offshore environment400

and may be particularly challenging for heat recovery from the gas cooling steps. The power savings may401

reach up to 3.5 MW for the case studies of this work. However, a main issue is the variability of the gas402

flows over time, and a proper design and control strategy of the bottoming cycle are thus essential to avoid403

severe off-design conditions.404

4. Power plant405

4.1. Gas turbines406

4.1.1. Approach407

At present, the main energy efficiency efforts on offshore platforms are related to the reduction of flaring408

and installation of steam bottoming cycles, and the latter is discussed later in this work. A possibility409

for decreasing the fuel consumption, as proposed in Section 3, is to reduce the additional power demand410

associated with the gas recirculation in the gas compression operations, by having smaller compressors in411

parallel, and by switching them on/off depending on their loads. The compressors will be operated closer412

to their maximal efficiency, which contributes to a higher site performance.413

The same reasoning can be applied for the gas turbines installed offshore. The total power demand of414

the platform generally reaches a maximum in ‘plateau’ conditions, which often corresponds to the nominal415

operating conditions of the gas turbines, and decreases over time, which implies that the gas turbines operate416

far from their optimal point for a long period of the field lifetime. As mentioned by Mazzetti et al. [24],417

many offshore gas turbine run in the load range of 60 to 70 % to ensure constant operation.418

Three possibilities can then be followed and the same conclusions can be drawn for the present case419

studies: downsizing the power plant system, by replacing existing gas turbines by smaller ones; removing420

one gas turbine and adding a bottoming cycle, if no possibility of power export; adding smaller gas turbines421

completed with bottoming cycles. The first possibility is investigated as follows, considering only the case422

of Platform D, since detailed gas turbine data and information on the control strategy were not available423

for the others.424

4.1.2. Findings425

The three gas turbines installed on Platform D (Siemens SGT-500) are characterised by an exhaust426

temperature lower than 350 ◦C and a nominal capacity of 19 MW. Two other gas turbines (Siemens SGT-427

200) are used for water injection but are usually not operating. At present, these engines are run far428

from their nominal design point because a common operating strategy on offshore platforms is to share the429

demands between several gas turbines run in parallel. For example, two of the gas turbines installed on430

Platform D operate at about 45 % load, while the third one is on standby. Their current electrical efficiency431
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ranges below 25 % while it exceeds 33 % in nominal conditions. For the current power demand of 19 MW,432

two SGT-500 gas turbines running in parallel consume about 15 MW of additional fuel than a single one433

operating near its nominal point.434

A comparison of several gas turbines of the same category (SGT-200 to SGT-800) suggests that three435

SGT-200 engines could replace the two SGT-500 models. Moreover, the Siemens SGT-200 turbines have436

an exhaust temperature between 400 and 475 ◦C in the load range of 90–95 %, which may open more437

possibilities for implementing a steam bottoming cycle than with the current gas turbines, for which the438

exhaust temperature falls below 350 ◦C. These smaller turbines have a capacity of about 7 MW each and439

are slightly less efficient at their nominal point than the bigger ones. However, they would be operated at440

a much higher operating load, between 90 and 95 %, and with an electrical efficiency of 32 to 33 %. This441

scenario would result in a fuel demand smaller by 10 to 15 MW, which corresponds to a rough reduction in442

the total platform CO2-emissions of 10 %.443

4.1.3. Discussion444

The changes are significant because of the much higher loads and efficiencies of the gas turbines consid-445

ered in the current and improved scenarios. It is difficult to evaluate the effects over the remaining field446

lifetime as these depend on the production profile and power demand, and on the part-load performance of447

each gas turbine. The installation of smaller turbines seems promising and may be a viable option both448

from a thermodynamic, economic and environmental perspective - the energy savings result in greater gas449

production and smaller CO2-emissions, which in turn lead to higher gas sales and lower CO2-taxes. The450

installation of smaller turbines may not require additional space and volume on-site, but the capital costs451

of these engines should be evaluated carefully and compared against the operational benefits.452

4.2. Waste heat recovery453

4.2.1. Approach454

The integration of Rankine cycles allows for combined production of heat and electricity, increasing the455

efficiency of the power system, offering more flexibility, and opening possibilities for power export if the456

platforms are connected to the onshore grid or to other facilities. These cycles may be integrated to exploit457

medium- and high-temperature waste heat from the gas turbine (power plant) exhausts. At present, the458

fumes are directly discharged into the atmosphere at moderate to high temperatures.459

The integration of waste heat recovery cycles may be beneficial for all platforms, but sufficient data were460

available only for Platforms C and D, which are taken as case studies. The three gas turbines implemented461

on Platform C (General Electric LM-2500 engine) are characterised by an exhaust temperature greater than462

500 ◦C and have a nominal capacity of 25 MW each. As mentioned previously, three turbines on Platform463

D provide the main share of the mechanical and electrical loads. The possibility of electrifying Platform D464

and connecting it to other facilities and to the power grid was discussed by the platform stakeholders, and465

the production of additional power for export may be beneficial. On the contrary, such studies were not466

conducted for Platform C, and this work considers that the power produced by a bottoming cycle is used467

to substitute the power produced by the other engines present on-site.468

The integration of waste heat recovery cycles is complex in practice because of the large number of oper-469

ating parameters to consider. The problem is hence formulated as a mixed integer non-linear programming470

optimisation problem, built on a system superstructure to include all possible system configurations (with or471

without reheating, with or without extraction, etc.). The objectives are to maximise the power production472

or thermal efficiency, and to minimise the installation costs and CO2-emissions. The waste heat recovery473

operating parameters (e.g. pressure) and strategy (e.g. thermal intermediate loop), as well as the selection474

of the cold and hot utilities (e.g. seawater), are defined as decision variables which are emulated by a genetic475

algorithm. The working fluid considered in this work is steam. The complete list of the variables with their476

optimisation range is presented in Nguyen et al. [17].477

4.2.2. Findings478

Platform C. The introduction of a steam network for combined heat and power may be of interest, since479

the external heating demand, at present, is of about 15 MW. The utility plant on that platform consists480
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of two main gas turbines of the LM-2500 type, and the total flow rate of exhaust gases amounts to about481

119 kg/s, with a temperature at design point of 566 ◦C, and at the simulated current conditions of 516 ◦C.482

The optimal and most feasible configurations are the following (Figure 9):483

• the flue gases from both gas turbines are mixed and run first through the gas-water loop heat exchanger,484

followed by the heat recovery steam generator. This layout results in a gas temperature of about 240 ◦C485

at the HRSG inlet, which severely limits the steam production pressure;486

• part of the exhaust gases is processed through the heat recovery steam generator to satisfy the power487

demand, and is mixed with the remaining flue gases at high temperature, before entering the gas-water488

loop heat exchanger. In such a configuration, the splitting ratio at the design point is fixed to avoid489

water condensation in the flue gases, and the final discharge temperature is set to match a temperature490

approach of 12 ◦C.491

Other configurations are not feasible or interesting in practice, because the large heating demand of the492

processing plant (15 MW) at high temperature (above 200◦C) constraints both the minimum flow rate of493

exhaust gases to process through the heating system and the minimum temperature at the inlet of the heat494

recovery steam generator.495

Steam cycle

Turbine Pump Heat exchanger

Water loop

Exhaust
gases

Cooling 
water

Optimal configuration (1)

Steam cycle

Water loop

Exhaust
gases

Cooling 
water

Optimal configuration (2)

Figure 9: Optimal configurations of the steam cycle integration for Platform C.

The maximum power production of the steam turbine reaches about 5.5 and 5.8 MW for the first and496

second optimal configurations. The latter may be preferable from an economic perspective, since a smaller497

flow of gases is processed through the HRSG, and the costs of the steam cycle are smaller. The reductions498

in fuel consumption and CO2-emissions range between 11 and 14.5 %.499

Platform D. At the difference of Platform C, the integration of a combined heat and power plant may not500

be relevant, as the current heat demand is smaller than 5 MW, while the power demand exceeds 16 MW in501

normal operating conditions. The net power capacity at the platform operating conditions can be increased502

by up to about 4.5 MW if the waste heat from one gas turbine is recovered, and up to 9.2 MW if from the503

two sub-systems. Each gas turbine has a nominal capacity of about 19 MW, and one of them can therefore504
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be removed and replaced with a steam bottoming cycle, the third one still being on-site for power backup. In505

this scenario, the combined cycle efficiency increases from 23.3 % (current GT efficiency, at about 40 % load)506

up to 32.4 %. The reductions in CO2-emissions from the gas turbines reach about 9.5 %, which corresponds507

to an absolute decrease from 450 to about 390-400 tons per day.508

Another possibility is to implement a steam cycle on both gas turbines and to operate them on lower509

capacity, and this results in a reduction of the fuel consumption by about 20.2 %, and this corresponds510

to an absolute decrease of the CO2-emissions from 450 to about 360-370 tons per day. The equipment511

weight will increase on the platform, which may be problematic depending on the plant, and additional512

space may be required if the bottoming cycle cannot be placed on the top of other equipment, as suggested513

in Bothamley et al. [3]. None of the optimised design set-ups include reheating or extraction, because the514

moderate temperature of the heat source does not favour the use of more than one production (evaporation515

and superheating) and utilisation (condensation) level. The production of steam takes place at pressures516

between 10 and 20 bar.517

4.2.3. Discussion518

Integrating a waste heat recovery cycle results in a greater power capacity, if required, or in a lower fuel519

gas consumption and smaller CO2-emissions. The introduction of these processes is a complex design task,520

as many layouts can be suggested, depending on the energy requirements of the platform and on the plant521

layouts. It may be beneficial, as such cycles present a satisfying behaviour at design and part-load conditions,522

if they are properly designed and integrated within the offshore system. The heating demand, if any, can523

be met by recovering the waste heat from the exhaust gases, either by direct or indirect exchange through524

a heating medium loop. However, despite the additional flexibility and higher efficiency, the integration525

of waste heat recovery systems results in greater space and weight requirements, unless the Rankine cycle526

replaces one of the existing gas turbines. This substitution would lead to fuel savings and CO2-emission527

reductions in all cases, since the efficiency of the resulting combined cycle would then be higher than the528

efficiencies of the gas turbines alone.529

5. Conclusion530

Several energy saving scenarios were analysed. The proposed measures were of different types. They531

aim at reducing the electrical or thermal energy use, by re-designing some sections of the processing plant532

(production manifolds), re-dimensioning the compressors (gas recompression and treatment), promoting533

energy and process integration (heat exchanger network), implementing expanders and waste heat recovery534

cycles. The savings potentials differ significantly from one platform to another. The implementation of535

an additional pressure level is, for instance, irrelevant for facilities where the export pressure is below the536

feed pressure, and the substitution of throttling valves by multiphase expanders is challenging because of537

technological limitations. Site-scale integration can result in a significant decrease of the external heating538

demand if the plants are fully-integrated, but this may be difficult because of additional operational issues.539

The greatest energy saving improvement is associated with the limitation, if possible, of anti-surge recycling,540

by, for example, adding parallel trains or re-wheeling them. The installation of smaller gas turbines and541

waste heat recovery systems would result in a more efficient power generation system, and thus in better542

use of the fuel energy, higher operational profits and lower CO2-emissions. All in all, the total power543

and fuel gas consumptions can be reduced by up to 20 %, and this pinpoints the importance of designing544

and operating adequately each processing section. The findings of this research may be used for screening545

possible improvements and estimating qualitatively their potential. Caution should be exercised when546

analysing the feasibility of a given technology, as different design layouts and feed properties would greatly547

impact its benefits. Each platform should be assessed individually to depict the ‘low-hanging fruits’, and548

the most relevant solutions, with respect to aspects such as energy efficiency, economic profitability and549

environmental impact, should be analysed.550
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Appendix A. Process Flowsheets559

The process flowsheets of each platform are shown in Figs. A.10 – A.13.560
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Figure A.10: Process flow diagram of the processing plant of Platform A. Gas streams are shown with orange arrows, water
streams with blue arrows, and oil, condensate and mixed streams are shown with brown arrows.
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Figure A.11: Process flow diagram of the processing plant of Platform B. Gas streams are shown with orange arrows, water
streams with blue arrows, and oil, condensate and mixed streams are shown with brown arrows. Symbol explanations can be
found in Fig. A.10.
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Figure A.12: Process flow diagram of the processing plant of Platform C. Gas streams are shown with orange arrows, water
streams with blue arrows, and oil, condensate and mixed streams are shown with brown arrows. Symbol explanations can be
found in Fig. A.10.

21



Vented gas

Export oil

Export gas

Lift gas

Export condensate

Injected water

Compressor Valve Pump Hydrocyclone Separator Heat exchanger Scrubber Degasser Column Kettle 

To flare headers

To GTs

Discharged water

Filter

Produced water Recovered oil

Discharged water Cooling water

Figure A.13: Process flow diagram of the processing plant of Platform D. Gas streams are shown with orange arrows, water
streams with blue arrows, glycol is shown with purple arrows, and oil, condensate and mixed streams are shown with brown
arrows.
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[17] Nguyen TV, Tock L, Maréchal F, Elmegaard B. Oil and gas platforms with steam bottoming cycles: Retrofit integration599

and thermo-environomic evaluation. Applied Energy 2014;131:222–37.600

[18] Pierobon L, Benato A, Scolari E, Haglind F, Stoppato A. Waste heat recovery technologies for offshore platforms. Applied601

Energy 2014;136:228–41.602

[19] Mazzetti M, Neks̊a P, Walnum H, Hemmingsen A. Novel Energy Efficiency Technologies for Reduction of Offshore CO2603

Emissions. In: Offshore Technology Conference. Houston, United States: Offshore Technology Conference; 2013, p. 1–12.604

[20] Mazzetti M, Ladam Y, Walnum H, Hagen B, Skaugen G, Neks̊a P. Flexible combined heat and power systems for offshore605

oil and gas facilities with co2 bottoming cycles. In: ASME 2014 Power Conference. American Society of Mechanical606

Engineers; 2014, p. V002T08A003–.607

[21] Walnum H, Neks̊a P, Nord L, Andresen T. Modelling and simulation of CO2 (carbon dioxide) bottoming cycles for offshore608

oil and gas installations at design and off-design conditions. Energy 2013;59:513–20.609

[22] Skaugen G, Walnum H, Hagen B, Clos D, Mazzetti M, Neks̊a P. Design and optimization of waste heat recovery unit610

using carbon dioxide as cooling fluid. In: ASME 2014 Power Conference. American Society of Mechanical Engineers; 2014,611

p. V001T03A006–.612

[23] Barrera J, Bazzo E, Kami E. Exergy analysis and energy improvement of a Brazilian floating oil platform using Organic613

Rankine Cycles. Energy 2015;88:67–79.614

[24] Mazzetti M, Neks̊a P, Walnum H, Hemmingsen A. Energy-Efficient Technologies for Reduction of Offshore CO2 Emissions.615

Oil and Gas Facilities 2014;3(1):89–96.616
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