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Abstract This paper describes the educational game,

TopOpt Game, which invites the player to solve various

optimization challenges. The main purpose of gamify-

ing topology optimization is to create a supplemental

educational tool which can be used to introduce con-

cepts of topology optimization to newcomers as well as

to train human intuition of topology optimization. The

players are challenged to solve the standard minimum

compliance problem in 2D by distributing material in

a design domain given a number of loads and supports

with a material constraint. A statistical analysis of the

gameplay data shows that players achieve higher scores

the more they play the game. The game is freely avail-

able for the iOS platform at Apple’s App Store and

at http://www.topopt.dtu.dk/?q=node/909 for Win-

dows and OSX.

Keywords Interactive · Topology optimization · Gam-

ification · Smartphones · Tablets · PDE constrained

optimization

1 Introduction

Topology optimization has for the past two and a half

decade made a great impact on the design of struc-
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tures and mechanical elements. The method is used

in many different fields of engineering and can be ap-

plied on many different scales, from designing micro-

structures to large-scale constructions such as ships,

skyscrapers and aircrafts. Topology optimization is usu-

ally performed as a discrete step in the design process

- often integrated with CAD software. Even though

topology optimization algorithms are able to find good

solutions to most problems, it is important for their

users to have a good intuition for the method in or-

der to get a feel of the process and be able to identify

cases where the algorithms clearly get stuck at a lo-

cal minimum. In cases where topology optimization is

not used in the design process, due to time or resource

constraints, the final design relies on performance of the

”human topology optimization”, where a good intuition

is critical.

This article describes how we have transformed the

topology optimization problem into a game in order to

train human intuition for the problem. The game can be

used as an educational game in topology optimization

lectures – or it can be played by people with no ex-

perience in the field. By anonymously tracking players’

progress in the game we are able to estimate people’s

topology optimization intuition and how this intuition

progresses the more times a single user plays.

By gamifying topology optimization we are also aim-

ing at heightening the awareness of the field for a broader

audience.

2 Related work

Gamification, where game elements and game design

are added to non-game contexts, can be used to improve

the user experience and user engagement [4]. Gamifica-
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tion is used in various places, including science, where it

has helped research in protein folding. Computing how

proteins fold is a hard non-convex optimization prob-

lem, and finding good foldings is crucial for understand-

ing, and potentially curing, diseases like Alzheimer’s,

Parkinson’s and some types of cancers. Two famous

gamification projects using protein folding are:

– Folding@home turns consumers’ computers into

one big distributed computer by utilizing the com-

puter’s idle time to perform the heavy computa-

tions. Folding@home uses a scoreboard (both per-

sonal and team-based) as a way to motivate people

to run the software on their computer [2].

– FoldIt has a different take on protein folding. The

creators have turned protein folding into a game by

abstracting the mathematical problem into easily

understandable metaphors. In FoldIt, users compete

(individually or in groups) to come up with the best

folding. In some cases, the player performance can

even beat the solutions found by existing protein

algorithms. User behavior in FoldIt has been studied

in order to extract strategies to improve the protein

folding algorithms [5].

The two protein-folding projects also have the pos-

itive side effect of increasing people’s awareness of the

protein-folding problem and its related diseases.

The work presented here is related to the TopOpt

app [1], where topology optimization is solved in an in-

teractive manner. Some elements of the user interface

have been reused as well as parts of the topology opti-

mization kernel. One feature that has not been reused is

the multiresolution topology optimization scheme MTOP

[6], since this method does not penalize solutions which

are not watertight. This had the implication that so-

lutions where the material was separated by an empty

row or column on the fine grid were evaluated as if they

were connected.

The TopOpt Game app was launched for iOS and

PC on the 28th of August 2014.

3 Problem formulation

The optimization problem we ask the player to solve

in the TopOpt Game is the standard minimum compli-

ance design problem for linear elasticity [3]. Following

a finite element (FE) discretization, the classical topol-

ogy optimization problem can be stated in a discrete

form using the density approach [8] as

Figure 1: Gameplay: While the user paints a solution

the game provides feedback in terms of a score and by

visualizing the strain energy density using the jet color

scheme.

min
ρ∈Rn

φ(u,ρ) = F Tu

s.t. K(ρ)u = F

V (ρ)/V ∗ − 1 ≤ 0

ρi ∈ {ρmin, 1} , i = 1, . . . , n

(1)

where φ = F Tu is compliance, ρ is a vector of n ele-

ment densities (design variables), u and F are the nodal

displacement and force vectors, respectively, K(ρ) is

the global stiffness matrix, and V (ρ)/V ∗− 1 ≤ 0 is the

volume constraint. Finally, ρmin is a lower bound on

the design variables.

During level design, a baseline compliance is found

using the solver from [1], where each design variable can

have a value between ρmin and 1. The baseline compli-

ance is used for rating the player performance in terms

of 0-3 stars. The actual rating mapping is adjusted to

the difficulty of each problem during level design.

4 Game design and implementation

TopOpt Game is inspired by puzzle-games (a genre of

computer games), which constantly challenge the play-

ers and give rewards when progress is made. This en-
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Figure 2: Score graph: Sliding the handle left or right

allows easy backtracking.

gagement loop will take the player on a journey start-

ing with simple problems with few supports and a sin-

gle load and gradually increases the difficulty by adding

more loads, restrictions on the design domain, distributed

loads and multiple load cases.

The goal of the game is to distribute a constrained

amount of material in a design domain in order to min-

imize compliance (and hence maximize stiffness). The

player must find the best material distribution which

connects all the loads with the relevant support regions

before a timer runs out. Figure 1 shows a typical game-

play. If too much material has been used, the player is

penalized by setting the score to zero.

The way material is distributed is inspired by brush

strokes in painting programs; The player selects the add

or remove material state and a brush type, and then

makes a drag-gesture in the design domain. There also

exist two specialized tools which add or remove ele-

ments only on the boundary of the structure. As a vi-

sual cue, a particle effect helps illustrate how elements

are constructed or dissolved when using the draw tools.

Note that the design elements within the design domain

either have material or are void; ”graylevel” elements

are not allowed in order to simplify the user interaction.

To ensure a good responsiveness of the user inter-

face, we use multiple threads. The main thread is re-

sponsible for updating the user interface, listening for

events, and rendering the game. Another thread evalu-

ates the compliance of the current structure in an asyn-

chronously way. When the compliance has been evalu-

ated, the value is displayed to the player as well as

a score (a scaled multiplicative inverse of the compli-

ance). We found that maximizing a value (score) is a

much more intuitive goal than minimizing a value.

The score is the most important user interface ele-

ment and it is very important that the player is able to

see if a change has a positive or negative consequence.

For this reason the score is visualized in two compli-

mentary ways:

– A score label which shows the score to the player

as an integer number with a dot delimiter for easy

reading. This makes it straightforward to compare

the current score with the highscore (also shown as

a label).

– A score graph which allows the player to see the

development of the score over time, as shown in 2.

Changes to the graph are smoothly animated, which

makes it easy to grasp when the score increases.

The score graph also shows three important score

milestones as horizontal lines for a two-star rating,

a three-star rating and previous highscore (if any).

Besides visualizing the score, the score graph also

serves two other purposes: It works as the game timer,

showing the player how much time remains, and the

handle below the graph allows the player to easily back-

track the solution to any previous evaluated state by

dragging the handle to a previous time point.

When the player is out of time, or is submitting the

level, the score is compared to a baseline score and the

player’s solution is rated from 0 to 3 stars. We use this

simplified rating system to give a clear indication of the

player performance.

The player is also able to compete against himself or

herself, trying to beat his/hers best score. In addition,

the game is on iOS integrated with GameCenter. Using

GameCenter, a detailed leaderboard for each level is

available as well as the option of challenging friends if

a good solution to a level is found.

When a level has been played, gameplay informa-

tion is sent to a server. The gameplay information con-

tains all information about the player performance dur-

ing gameplay, including every evaluated action that the

player performs as well as score and compliance of each

action.

5 Level editor

One of the biggest challenges in creating the game was

how to create interesting and fun topology optimization

problems. One option would be to create procedurally

generated levels containing topology optimization prob-

lems created by parameters such as difficulty and time

complexity. However, we found that this idea would be

a too hard problem to solve and instead decided to man-

ually craft the levels.

To make level design easy, we have included a level

editor similar to the user-interface of the TopOpt app

[1]. The level editor has been used to design the pre-

defined levels but can also be used by the players to

experiment with new challenges.

A user can create a level by defining a rectangu-

lar size of the design domain followed by removing or

adding elements to allow non-rectangular design do-

mains.

The level is then augmented with loads and sup-

ports, which are inserted onto the nodes of the grid and
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(a) Defining the design domain (size and excluded
elements). The checkerboard shows the actual ele-
ment size.

(b) Adding loads and supports

Figure 3: Besides solving predefined levels, the players

can also design new levels using the built-in level editor.

Apart from the design domain and location of loads

and supports shown here, additional information, such

as volume constraint and time, need to be defined.

optionally distributed horizontally or vertically. Figure

3 shows the steps of designing a level.

When a level has been designed and some additional

properties (time, name, category, volume fraction) have

been specified it can be play-tested to find out if it

works as intended.

User-generated levels are private and only visible to

the player who created them. However, the user has the

option to suggest a custom level as a global level, and

in time this will increase the number of global levels.

Members of the DTU TopOpt group created the ini-

tial global levels in the game. The levels include classic

topology optimization problems such as the cantilever

and L-shaped cantilever. The levels have been designed

such that they are all unique and do not exist in mir-

rored or rotated versions. A recent addition to the set

of levels is the Zhou-Rozvany problem [9], which is in-

teresting since it is one of the few cases where we know

the global optimum and where many numerical TopOpt

approaches fail.

The global levels are sorted by their estimated diffi-

culty, such that easy levels are first in the list presented

to the player. The level difficulty is estimated by the

level designer based on the design domain, loads and

support as well as playtesting of the level during de-

sign. The level designer is also responsible for adjusting

which score gives a one, two or three-star rating. The

actual level difficulty is hard to quantify due to the

complexity of topology optimization problems and due

to differences in player skills and experiences.

6 Results

6.1 Data analysis

To evaluate whether playing the game actually improves

players’ intuition about topology optimization, we have

analyzed the gameplay data to find a relationship be-

tween the number of games a person has played and the

score he or she achieves. Since the analysis is performed

on data from uncontrolled usage, we make the following

assumptions:

1. Each player (registered or unregistered) corresponds

to a single person.

2. In each completed gameplay the player strives for

the maximum score.

3. There is a correlation between obtaining a high score

in the game and having a good intuition about topol-

ogy optimization. Hereby we neglect the performance

gain of both learning the user interface, as well as

known solutions from previous gameplays of the same

or similar kind.

The following analysis is based on gameplay data

from the global levels. It consists of gameplay observa-

tions with the variables listed below:

– Player ID

– Level ID

– Experience (number of games the player has played

prior to current gameplay).

– Score (The score is the reciprocal of compliance. We

have chosen to normalize this with the maximum
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score achieved at the current Level ID for the sta-

tistical analysis).

A gameplay sometimes has the final score of 0. This

usually means that the player broke the volume con-

straint at end of the game and did not have time to

undo the action. We found that these cases do not tell

us much about the player’s topology optimization in-

tuition and therefore removed such observations from

the analysis. However, the analysis does contain cases

where the score is close to 0, which occurs when a load

is not fully supported.

In a controlled experiment where all players had

played an equal amount of gameplays the analysis of

score improvement would be easier. In our experiment

players play as long as they want to and though pre-

sented with a fixed list of levels, they also decide the

order of and which levels they play individually. Due to

this we set up some conditions for observations that we

include in our analysis. We only include observations

from levels that have been played more than 50 times.

Furthermore, we disregard observations from players

that in total have 5 or less gameplays. At the time

of writing only 11 out of 708 registered players have

more than 100 gameplays. This leaves Experience lev-

els above 100 with higher uncertainty and we therefore

also exclude these observations from our analysis.

Out of 12467 collected gameplays this leaves us with

6962 observations where almost 4000 gameplays were

removed by the 0 score constraint.

Several approaches to show the relationship between

score and experience can be taken, but if fitting a linear

model to the observations it is important to take into

account that players cannot be assumed to have equal

skills prior to playing this game. Another fact is that

individual levels have different difficulty and this might

affect the rate at which score increases.

A Linear Mixed-Effect (LME) model is one way

of coping with the fact that some variables might be

sources of random variation. Figure 4a shows a plot

of all observations (gameplays) across levels and of all

players that fulfil our conditions. A LME model fit is

also shown in the figure with a slope of 0.0024. Alterna-

tively, we could look at observations from a single level

alone and leave out the variation introduced by level

difficulty. This is shown in Figure 4b for the level with

the most gameplays. The LME model gives a higher

slope fitted to these data, but the reason for this level

having the most observations is likely to be that it is

one of the first on the list of levels a player is introduced

to and thereby also one of the easier levels.

Even though we achieve significant parameters (<0.001)

in the model for both slope and intercept, it is visually

clear that the data is somewhat noisy. This is due to the
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(a) 6962 observations plotted. Linear Mixed-Effect model fit
(Blue line).
slope = 0.0024(pvalue < 0.001)
intercept = 0.39(pvalue < 0.001)
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(b) 1708 observations plotted from the Level with most game-
plays. Linear Mixed-Effect model fit (Blue line).
slope = 0.0048(pvalue < 0.001)
intercept = 0.39(pvalue < 0.001)

Figure 4: Plots of Score relative to Experience. Figure

a: observations across all levels. Figure b: observations

from the single level with most gameplays.

fact that, even though players averagely improve with

experience, they tend to still have occasionally “bad”

gameplays with low score (see plots on Figure 4).

It could therefore be relevant to look at the abso-

lute mean curve of Score versus Experience. In Figure

5 these numbers are plotted along with a linear regres-

sion fit.

Table 1 shows the values plotted in Figure 5 along with

the variance and number of observations for each inter-

val of Experience.

The fact that the data is so unevenly distributed

across experiences (seen from the ”Observations” col-

umn in Table 1) together with the fact that 1984 out

6962 observations have been played on a single level

out of the 20 levels included in this analysis leads to
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Figure 5: Linear Regression on averaged data with 95%

confidence intervals. The data points on this plot can

be seen in Table 1.

slope = 0.0024(pvalue = 0.001)

intercept = 0.40(pvalue < 0.001)

R2 = 0.60

Experience Mean Score Variance Observations
0-10 0.38 0.08 2802

10-20 0.44 0.10 1747
20-30 0.48 0.10 898
30-40 0.47 0.10 493
40-50 0.45 0.11 333
50-60 0.50 0.11 229
60-70 0.55 0.10 171
70-80 0.60 0.10 113
80-90 0.59 0.09 92

90-100 0.52 0.11 84

Table 1: Normalized score averaged across all players

and all levels. Observations are from 611 players across

20 different levels.

some uncertainty. From this data we do not believe we

can tell the exact learning rate of solving the topology

optimization tasks presented, but we can conclude that

there is a positive correlation between how many games

one play and the score that is achieved.

6.2 Classroom evaluation

The game has been used in the undergraduate course

”Mechanics and Materials” at the Technical University

of Denmark in order to evaluate its use as a learning

aid. The learning objectives of using the game was for

the students to be able to understand the basic con-

cepts of topology optimization. The game was intro-

duced shortly after the students’ first acquaintance with

topology optimization. After a short 5-minutes intro-

duction to the user interface, the students played the

game for 30 minutes as seen in Figure 6.

During the 30 minutes of gameplay some of the

students tried to complete as many levels as possible

whereas others strove to get a three-star ranking for

each level.

Afterwards the students were asked to complete a

short anonymous questionnaire which 46 of the (ap-

proximately) 50 attending students answered. Most im-

portantly the questionnaire revealed that the students

in general found that the game was a good supplemen-

tal teaching aid (Table 2) and that it has an appropriate

difficulty (Table 3).

Figure 7 shows the data gathered in the classroom

evaluation. The result is in line with the overall results

shown in section 6.1.

Strongly disagree 2.17 %
Disagree 2.17 %
Neither agree nor disagree 19.57 %
Agree 60.87 %
Strongly agree 15.22 %

Table 2: Survey question: ”I find that TopOpt Game

works well as a supplemental teaching aid when learning

about topology optimization”

Way too easy 2.17 %
Easy 0.00 %
Have an appropriate difficulty 50.00 %
Hard 47.83 %
Way too hard 0.00 %

Table 3: Survey question: ”Progression: I find that the

increasing challenges from the first to the later levels

is”

7 Conclusion

In this paper, we have presented the TopOpt Game, an

educational game which allows players to learn topology

optimization by finding good solutions to given prob-

lems. The game shows a new way of teaching topology

optimization, by which the students get familiar with

the overall concepts. Using the game as a supplement

to traditional MATLAB-based teaching allows students

to compete against each other and to get a feel for how

hard a problem topology optimization is.

We have shown that players averagely increase their

score as they become more experienced. We encoun-

tered difficulties analyzing high experience due to lack
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Figure 6: Classroom evaluation
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Figure 7: 820 gameplays from the classroom evaluation.

Data is collected from 48 players across 17 different

levels. Blue line is Linear Mixed Effect model fit with

players and levels as random effects.
slope = 0.0037(pvalue < 0.001)

intercept = 0.49(pvalue < 0.001)

of observations here. The trend of increasing score with

increasing experience seems clear though.

Other than lack of observations our problems in the

analysis might be found in the assumptions we state.

Referring to the Results section, assumptions 1 and 2

are critical, but probably not always met. We have no

guarantee that a player corresponds to a single person

and this leads to another source of uncertainty in our

analysis. Also, that players may not always perform, or

strive, their best in every single gameplay can mislead

the analysis. Players might be distracted during playing

or try a silly solution out of curiosity.

We have also shown that students find that the game

is a good supplemental learning aid for topology opti-

mization with an appropriate difficulty.

One future simplification of the game is to let the

game enforce the volume constraint. This should make

the gameplay slightly easier, since players have one less

thing to think about and it should have a positive effect

on the learning rate when the data is analyzed.

When more gameplay data has been gathered, it

could be interesting to investigate the data more thor-

oughly to unveil the underlying strategies humans use

to solve topology optimization. Potentially, this could

lead to improvements of existing topology optimization

algorithms. It would also be interesting to analyze the

data to see if some types of problems are particular hard

to solve for humans in order to identify typical pitfalls

to be aware of. This includes a further investigation of

the Zhou-Rozvany problem where the global optimum

is known.

In relation to this, a new experiment could involve a

test group of 10-20 persons. Letting these players play

the game in a controlled environment would improve

the chances of the first two assumptions in section 6 to

be true. By testing statistically whether the test groups’

performance deviates significantly from the other data,

it could help reveal whether the assumptions are right.

Furthermore, the group could get a set of different topol-

ogy optimization tasks before and after playing the

game in order to see whether it improved their skills

in this.

The topology optimization game could also be ex-

tended to 3D (similar to TopOpt App 3D [7]), where

voxels could be added or removed by using a paint-

ing gesture on existing material similar to the popular

game, Minecraft. Moving to 3D does add some addi-

tional challenges, such as visualizing strain energy den-

sity inside a volume.
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Popović, Z., Baker, D., Players, F.: Algorithm discovery by
protein folding game players. Proceedings of the National
Academy of Sciences 108(47), 18,949–18,953 (2011). DOI
10.1073/pnas.1115898108

6. Nguyen, T., Paulino, G., Song, J., Le, C.: A computa-
tional paradigm for multiresolution topology optimization
(mtop). Structural and Multidisciplinary Optimization
41(4), 525–539 (2010)

7. Nobel-Jørgensen, M., Aage, N., Nyman Christiansen, A.,
Igarashi, T., Andreas Bærentzen, J., Sigmund, O.: 3d
interactive topology optimization on hand-held devices.
Structural and Multidisciplinary Optimization pp. 1–7
(2014)

8. Sigmund, O., Maute, K.: Topology optimization ap-
proaches. Structural and Multidisciplinary Optimization
48(6), 1031–1055 (2013)

9. Zhou, M., Rozvany, G.: On the validity of eso type meth-
ods in topology optimization. Structural and Multidisci-
plinary Optimization 21(1), 80–83 (2001)


