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Abstract—The electrical demand forecasting problem can be
regarded as a nonlinear time series prediction problem depending
on many complex factors since it is required at various ag-
gregation levels and at high temporal resolution. To solve this
challenging problem, various time series and machine learning
approaches have been proposed in the literature. As an evolu-
tion of neural network-based prediction methods, deep learning
techniques are expected to increase the prediction accuracy by
allowing stochastic formulations and bi-directional connections
between neurons. In this paper, we investigate a newly devel-
oped deep learning model for time series prediction, namely
Factored Conditional Restricted Boltzmann Machine (FCRBM),
and extend it for electrical demand forecasting. The assessment
is made on the EcoGrid dataset, originating from the Bornholm
island experiment in Denmark, consisting of aggregated electric
power consumption, local price and meteorological data collected
from 1900 customers. The households are equipped with local
generation and smart appliances capable of responding to real-
time pricing signals. The results show that for the short-term (5
minute to 1 day ahead) prediction problems solved here, FCRBM
outperforms the benchmark machine learning approach, i.e.
Support Vector Machine.

Index Terms—Demand Forecasting, Deep Learning, Factored
Conditional Restricted Boltzmann Machine, Support Vector Ma-
chine.

I. INTRODUCTION

The electrical demand forecasting problem, at various ag-
gregation levels, can be regarded as a highly nonlinear time
series prediction problem. The complexity of the consumers’
energy producing and consuming technologies and the uncer-
tainty in the influencing factors, yield frequent fluctuations.
Traditionally, the short-term forecasting problem is referring to
1 hour and 15 minutes resolutions, but higher resolutions make
the problem even more complicated. Moreover, urbanization
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and electrification trends show that the total energy demand
will increase in the future, and the penetration of energy
from renewable sources is increasing as well. Future smart
grids need a system that can monitor, predict, schedule,
learn and make decisions regarding local energy consumption
and production in real time. Modeling and predicting energy
consumption in smart buildings can provide valuable infor-
mation to facilitate Demand Response (DR) or Demand Side
Management(DSM) programs.

The short-term (electrical) energy demand forecasting prob-
lem was extensively pursued in the literature over decades by
various traditional time series and machine learning methods.
Some of these methods are used to predict consumption by
correlating it with influencing variables, such as climate condi-
tions or energy prices. Interested readers are referred to [1]–[4]
for a more comprehensive discussion about building modeling
with focus on electrical demand forecasting. Moreover, to ac-
count for the evolution of future building energy management
systems, there are also some representative approaches which
combine some of the above modeling methods to optimize
predictive performance, such as semi-parametric regression
models used to forecast the contribution of load from some
non-linear variable [5], exponential smoothing [6], multivariate
state-space models and seasonal time series models [7]–[9]. On
the other hand, it is worth noting that some of the most widely
used machine learning methods for energy prediction are
Artificial Neural Networks (ANNs) [10] and Support Vector
Machines (SVMs) [5], [11], [12].

This paper focuses on Deep Learning methods [13] for
electrical energy demand prediction, with an application to the
aggregated profiles collected from the Danish Island Bornholm
within the EcoGrid project [14]. Due to the fact that energy
consumption can be seen as a time series problem, it investi-
gates the application of Factored Conditional Restricted Boltz-
mann Machines (FCRBM) [15], recently introduced stochastic
machine learning methods which were used successfully until
now to model highly non-linear time series (e.g. human motion
style, structured output prediction) [15]–[17]. Consequently,



we adapt the FCRBM architecture for demand forecasting
problems by merging the style and feature labels into one, and
by rewriting the equations and the derivatives of the learning
rules according to the new configuration of the model. As a
secondary contribution, we analyze how external factors (e.g.
weather conditions, electricity prices) can be used to improve
the forecasting accuracy and we propose the use of a Gaussian
Restricted Boltzmann Machine to perform feature extraction in
a fully automated manner and to reduce their dimensionality.

The remainder of this paper is organized as follows. Section
II provides some background knowledge on unsupervised
learning with Restricted Boltzmann Machines and Section III
presents our proposed method using the FCRBM, including
the adaptions necessary for demand prediction. Section IV
describes the methodology and data description, followed by
Section V where the experiment and results are detailed.
Finally, SectionVI concludes the paper and presents directions
for future research.

II. BACKGROUND

Literature provides a wide range of techniques that can
solve the demand forecasting problem. The electrical demand
has a non-linear and non-stationary profile, which favours a
probabilistic approach. In general, we attempt to model the
probability of a data point, x using a function of the form
f(x; θ), where θ is a vector of model parameters. Learning the
model parameters, θ, can be done by maximizing the proba-
bility of a training set of data, or equivalently and often more
convenient, by minimizing the negative log p(xi; θ). This is not
always a trivial task. In the context of our proposed method, we
used another common method to learn the parameters of the
model by minimizing the Kullback-Leibler (KL) divergence
between the empirical and the approximated distributions of
the model, as follows:

minΘ[KL(pmodel(V|Γ; Θ)||pempirical(V|Γ))] (1)

where Γ represents the total input set and V is the total output
set. The rest of this section presents the background knowledge
useful to the reader to understand the remaining of the paper.

A. Restricted Boltzmann machine

Restricted Boltzmann Machines (RBMs) [18] have been
applied in different machine learning fields including, multi-
class classification [19], collaborative filtering [20], among
others. They are energy-based models for unsupervised learn-
ing. These models have stochastic nodes and layers, making
them less vulnerable to local minima [15]. Further, due to
their multiple layers and neural configurations, RBMs possess
excellent generalisation capabilities [13]. Formally, an RBM
consists of visible and hidden binary layers. The visible layer
represents the data, while the hidden one increases the learning
capacity by enlarging the class of distributions that can be
represented to an arbitrary complexity [15]. This paper follows
a standard notation where i represents the indices of the
visible layer, j those of the hidden layer, and wi,j denotes the
weight connection between the ith visible and jth hidden unit.

Further, vi and hj denote the state of the ith visible and jth

hidden unit, respectively. According to the above definitions,
the energy function1 of an RBM is given by:

E(v, h) = −
∑
i,j

vihjwij −
∑
i

viai −
∑
j

hjbj (2)

where, ai and bj represent the biases of the visible and
hidden layers, respectively. The joint probability of a state
of the hidden and visible layers is defined as: P (v, h) =
exp(−E(v,h))

Z with Z =
∑
x,y exp (−E(x, y)). To determine

the probability of a data point represented by a state v, the
marginal probability is used. This is determined by summing
out the state of the hidden layer as: p(v) =

∑
h P (v, h) =∑

h(exp(−
∑

i,j vihjwij−
∑

i viai−
∑

j hjbj))
Z . Parameters are fit-

ted by maximising the likelihood function. In order to max-
imise the likelihood of the model, the gradients of the energy
function with respect to the weights have to be calculated. Usu-
ally, in RBMs maximum likelihood can not be simply applied
due to intractability problems. To deal with these problems,
Contrastive Divergence, explained next, was introduced.

B. Contrastive Divergence

In Contrastive Divergence (CD) [21], learning follows the
gradient of:

CDn = DKL(p0(x)||p∞(x))−DKL(pn(x)||p∞(x)) (3)

where, pn(.) is the distribution of a Markov chain run-
ning for n steps. Since the visible units are condition-
ally independent given the hidden units and vice versa,
learning can be performed using one step Gibbs sampling,
which is carried in two half-steps: (1) update all the hidden
units, and (2) update all the visible units. Thus, in CDn

the weight updates are done as follows: wτ+1
ij = wτij +

α
(〈
〈hjvi〉p(h|v;W)

〉
0
− 〈hjvi〉n

)
where τ is the iteration, α is

the learning rate,
〈
〈hjvi〉p(h|v;W)

〉
0

= 1
N

∑N
k=1 v

(k)
i P (h

(k)
j =

1|v(k); W) and 〈hjvi〉n = 1
N

∑N
k=1 v

(k)(n)
i P (h

(k)(n)
j =

1|v(k)(n); W) with N being the total number of input instances,
and the superscript (n) indicates that the states are obtained
after n iterations of Gibbs sampling from the Markov chain
starting at p0(·).

III. FACTORED CONDITIONAL RESTRICTED BOLTZMANN
MACHINE

This section presents the adapted mathematical details of
the proposed method, namely Factored Conditional Restricted
Boltzmann Machine (FCRBM) [15], to achieve an accurate
and robust prediction at the low aggregation level of electrical
energy demand profiles.

1Please note that the energy function of RBM should not be confused with
the aggregated electrical energy demand.
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Figure 1. The general architecture of FCRBM, where v<t is the conditional
history layer (input), h is the hidden layer, y is the style layer and v is the
visible layer (output). Where G# denotes binary neurons, # represent the real
values and the others are Gaussian value.

A. Total energy for FCRBM

The total energy function, E(vt,ht|v<t, yt) for FCRBM, is
computed as the sum of the first and third order energy terms
as follows:

E(vt,ht|v<t, yt) = EI + EIII (4)

where EI and EIII are defined as:

EI =
1

2

n1∑
i=1

(vi,t − âi,t)2 −
n2∑
j=1

b̂j,thj,t

EIII = −
F∑
f=1

[ n1∑
i=1

W v
ifvi,t

n2∑
j=1

Wh
jfhj,t

n3∑
p=1

W y
pfyp,t

]

= −
F∑
f=1

[ n1∑
i=1

[ n2∑
j=1

[ n3∑
p=1

W v
ifW

h
jfW

y
pfvi,thj,typ,t

]]]
where F , n1, n2, and n3, represent the total number of factors,
and the number of units in each of the visible, hidden, and
label layers, respectively. The terms âi,t and b̂j,t are called
dynamic biases, which are defined as:

âi,t = ai +
∑
m

Avi,m
∑
k

Av<t

k,mvk,<t
∑
p

Ayp,myp,t (6a)

b̂j,t = bj +
∑
n

Bhj,n
∑
k

Bv<t

k,n vk,<t
∑
p

Byp,nyp,t (6b)

with Avi,m, Av<t

k,m, Ayl,m, Bhj,n, Bv<t

k,n , Byl,n, are dynamic biases
of each of the layers.

B. Probabilistic inference in FCRBM

Inference in FCRBM is conducted in parallel, since there
are no connections between the neurons in the same layer.
Specifically, this means determining two conditional distri-
butions. Firstly, the conditional probability distribution of
the hidden neurons, p(hj,t = 1|vt, v<t, yt), is given by
a sigmoidal function evaluated on the total input to each
hidden unit,h∗j,t =

∑
f

Wh
if

∑
i

W v
ifvi,t

∑
p
W y
pfyp,t, via the

factors. Secondly, the probability of the visible neurons,

p(vi,t|ht, v<t, yt), is given by a Gaussian distribution over
the total input, v∗i,j =

∑
f

W v
if

∑
j

Wh
jfhj,t

∑
p
W y
pfyp,t, to each

visible unit via the factors. Therefore, for each of the jth
hidden and ith visible unit, inference is performed using:

p(hj,t = 1|vt, v<t, yt) = sigmoid(b̂j,t + h∗j,t) (7)

p(vi,t = x|ht, v<t, yt) = N (âi,t + v∗i,j , σ
2
i ) (8)

where N (µ, σ2
i ) denotes the Gaussian probability density

function with mean µ and variance σ2
i .

C. Learning & Update Rules in FCRBM

The general update rule for all the hyper-parameters θ is
given by:

θτ+1 = θτ + ρ∆θτ + α(∆θτ+1 − γθτ ) (9)

where τ , ρ, α and γ represent the update number, momentum,
learning rate, and weights decay, respectively. More details
regarding the the choice of this parameters are described in
[22]. The update rules for each of the weights matrices and
biases can be computed by deriving the energy function from
(2) with respect to each of these variables (i.e., the factored vis-
ible weights, factored label weights, factored hidden weights,
and the biases of each of the layers), yelding:

1) Weights update: Three update rules corresponding to
each of Wv , Wh, Wy need to be derived. Firstly, the factored
visible weights W v

if is computed by derivaiting the total energy
function, provide in (4), with respect to W v

if is:

∂ E(vt,ht|v<t, yt)
∂W v

if

= −vi,t
n2∑
j=1

Wh
jfhj,t

n3∑
p=1

W y
pfyp,t (10)

Secondly, the factored hidden weights Wh
jf are update. Fol-

lowing the same reasoning we obtain:

∂ E(vt,ht|v<t, yt)
∂Wh

jf

= −hj,t
n1∑
i=1

W v
ifvi,t

n3∑
p=1

W y
pfyp,t (11)

Thirdly, by deriving the total energy function with respect to
W y
pf , we obtain the update rule for the factored label weights:

∂ E(vt,ht|v<t, yt)
∂W y

pf

= −yp,t
n1∑
i=1

W v
ifvi,t

n2∑
j=1

Wh
jfhj,t (12)

2) Biases update: The derivatives to find the update rules
for the parameters which compose the dynamic biases of the
present layer (i.e. Avim, Av<t

k,m, Ayl,m) are:

∂ E

∂Avim
= vi,t

∑
k

Av<t

k,mvk,<t
∑
p

Ayp,myp,t (13a)

∂ E

∂Av<t

k,m

= vk,<t
∑
i

Avi,mvi,t
∑
p

Ayp,myp,t (13b)

∂ E

∂Ayl,m
= yp,t

∑
i

Avi,mvi,t
∑
k

Av<t

k,mvk,<t (13c)



Further, the derivatives to find the update rules for the param-
eters which compose the dynamic biases of the hidden layer
(i.e. Bhj,n, Bv<t

k,n , Byl,n) are presented as:

∂ E

∂Bhj,n
= −hj,t

∑
k

Bv<t

k,n vk,<t
∑
p

Byp,nyp,t (14a)

∂ E

∂Bv<t

k,n

= −hj,tvk,<t
∑
j

Bhj,n
∑
p

Byp,nyp,t (14b)

∂ E

∂Byl,n
= −hj,typ,t

∑
j

Bhj,n
∑
k

Bv<t

k,n vk,<t (14c)

Using the energy derivative of the hyper parameters and
the Contrastive Divergence expression shown in (3), we can
calculate the delta rule leading to:

∆W ∝ 〈∂ E

∂W
〉0 − 〈

∂ E

∂W
〉k, using eq. (10), (11), (12) (15a)

∆A ∝ 〈∂ E

∂A
〉0 − 〈

∂ E

∂A
〉k, using eq. (13) (15b)

∆B ∝ 〈∂ E

∂B
〉0 − 〈

∂ E

∂B
〉k, using eq. (14) (15c)

with k being a Markov chain step running for a total number
of K steps and starting at the original data distribution.

IV. METHODOLOGY AND DATA DESCRIPTION

In this section, we describe the metrics chosen for prediction
accuracy assessment, followed by a brief description of the
dataset. Finally, we propose and describe an automatic method
for feature extraction enforced by our dataset characteristics.

A. Metrics for prediction assessment
To quantify the performance of the prediction methods,

we used a variety of standard metrics. Firstly, the prediction
accuracy is evaluated using three popular metrics capable
to put a different penalty on the same error, namely the
root mean square error, RMSE =

√
1
n

∑n
i=1(vi − v̂i)2,

the normalized root-mean-square error, NRMSE[%] =√
1
n

∑n
i=1(vi − v̂i)2/(vmax−vmin) ·100, and the mean abso-

lute percentage error, MAPE = 1
n

∑n
i=1 |vi − v̂i|/max(vi) ·

100, where n represents the total number of predicted steps, vi
represents the true values for the time-step i and v̂i represents
the value predicted by the model at the same time-step.
Secondly, the Pearson Correlation Coefficient (PCC) is used
to indicate the degree of the linear dependence between the
real and the predicted values, as follows:

PCC(v, v̂) =
E[(v − µv)(v̂ − µv̂)]

σvσv̂

where E[·] is the expected value operator with means µv
and µv̂ , and standard deviations σv and σv̂ , for the true and
estimated values, respectively. The PCC value is within the
range [-1,1]. The sign of the correlation coefficient defines
the direction of the relationship, either positive or negative.
Besides using PCC in the demand forecast evaluation process,
in the second part of the experiments, the PCC values were
used to highlight the most influential factors for the electrical
energy demand profiles.

B. Dataset description

In this work we have used the EcoGrid dataset collected
from the Danish Island Bornholm in the first seven months of
2014. The dataset includes the aggregated energy consump-
tion, the real-time price (RTP), forecast prices (DA, HA) and
meteorological data [23]. Altogether, this dataset has 50677
records at 5 minutes resolution, each record containing 16
different features, leading to more than 800000 data points.
Table I summarizes some basic statistical information about
the entire dataset used in the experiments, such as mean
and standard deviation for each feature. Furthermore, the last
column of Table I shows the correlation coefficient between
the electrical energy demand values and the additional infor-
mation available in the EcoGrid database. Figure 2 shows the

TABLE I. SUMMARY OF THE METEOROLOGICAL AND PRICE DATA

CORRELATED WITH THE AGGREGATED ELECTRICAL ENERGY DEMAND.

Mean Std.dev. PCC w.r.t
(µ) (Σ) energy

Price RTP 236.17 92.04 -0.0319
Price DA 233.10 98.34 0.0113
Price HA 234.84 86.67 -0.0231

cloud base height 2117.7 2832 -0.1635
water vapor 0.0053 0.0018 -0.7451

relative humidity 0.8413 0.1181 0.3486
temperature 6.9421 5.5756 -0.8384

global irradiance 521.40 806.29 -0.5832
diffuse irradiance 214.65 365.56 0.4031

wind speed 5.6202 2.8643 0.2598
cloud cover 0.6583 0.3869 0.3109

rain 0.0507 0.2035 0.0724
wind gust 9.5449 4.5317 0.2105

atmospheric pressure 1010.8 8.3686 -0.1970

aggregated electrical demand composition with a 5 minutes
sampling rate which is the basis of our analysis. This ag-
gregated electrical demand involves 1900 customers equipped
with local generation. The decreasing trend of the demand
with time, observed in Figure 2 is mainly due to the negative
correlation with the temperature, i.e. PCC=-0.83, but also
suggests that a load shifting may have occurred in the presence
of a large renewable energy penetration.
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Figure 2. Electrical demand profile at low aggregation level between 1 January
2014 until 25 June 2014



C. Feature extraction

The growth of distributed energy resources (DERs), together
with smart appliances, capable of responding to real-time pric-
ing signals yields poor correlations with energy consumption
at low time resolutions, as it can be observed in Table I.
Thus, constructing a proper combination of the additional
information needed in order to improve the forecast accuracy
is not a trivial task. Moreover, the extracted information aims
to be a non-redundant generalization of the price and weather
data. Besides that, from a computational perspective we want
to have a lower dimensional data set. One traditional way to
perform feature extraction is based on statistical hypothesis
testing in order to determine if the distributions of values of a
feature for two different classes are distinct. Still this solution
creates results which are hard to interpret. A simpler solution
is to use Principal Component Analysis (PCA), which is part
of a wide area of clustering methods. However, PCA loses its
information-theoretic optimality as soon as the data becomes
dependent [24].

visible 
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Price  
and 

Meteorological 
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demand 

Electrical  
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Figure 3. General architecture of a Gaussian restricted Boltzmann machine
(GRBM) as input to the FCRBM.

More recently, it was shown that restricted Boltzmann
machines are capable to learn low-dimensional codes that work
much better than PCA as a tool to reduce the dimensionality
of the data [25]. Consequently, we propose a combination
between a Gaussian Restricted Boltzmann Machine (GRBM)
and a FCRBM to perform dimensionality reduction and time
series prediction, as depicted in Figure 3. The RBM mathe-
matical details were previously described in Section II-A. This
is further enhanced with Gaussian neurons in the visible layer
in order to transform the RBM into an GRBM [25].

V. NUMERICAL RESULTS

To assess the performance of the proposed method we have
conducted five sets of experiments, over a wide range of time
horizons, as summarized in Table II. The experimental vali-
dation was done in two steps. Specifically, we have looked to
the forecast problem in a traditional versus a price-responsive
environment.

A. Implementation details

We made the implementation of FCRBM in Matlab R© using
the mathematical details described in Section III. The number

TABLE II. SUMMARY OF THE EXPERIMENTS.

Time horizon Resolution
Scenario 1 5 minutes 5 minutes
Scenario 2 15 minutes 5 minutes
Scenario 3 1 hour 5 minutes
Scenario 4 6 hours 5 minutes
Scenario 5 1 day 5 minutes

of hidden neurons and the number of factors were set to 50.
The learning rate was set to 10−4, the momentum to 0.9, and
the weight decay to 0.0002. These parameters were chosen
carefully by performing a small cross-validation experiment
and they were kept constant in all the experiments for a fair
comparison. In the first set of experiments, the “traditional”
forecast problem, we used in the class layer 10 neurons with
the default value 1 and the number of history neurons was
set to 864, corresponding to a historical time window of 3
days. In the second set of experiments, which includes the
price-responsive environment, we used in the class layer of
FCRBM the features extracted by GRBM from the price
and meteorological data corresponding to each specific time
window. More exactly, these features were a binary vector of
10 values. Besides that, we set the number of history neurons
to 72, corresponding to a historical time window of 6 hours.

Additionally, we made use of LibSVM library [26] to
conduct a comparison of the FCRBM performance with a
benchmark machine learning algorithm, namely the support
vector machine with radial kernel function (SVM). To train
both models, FCRBM and SVM, in the general forecast
problem we have used the data from 1 January 2014 to 21 May
2014, while to test them we used the data from 21 May up to
25 June 2014. In the case of the price-responsive environment,
we utilized 66% of the available data to train the models, and
the rest of 34% to test them.

B. Electrical energy demand forecast

To quantify the performance of the proposed method, we
used the four metrics described in Section IV-A. The results
obtained with FCRBM have been further compared with other
forecasting methods, such as SVM and persistence. Tradition-
ally, the persistence method is recommended especially for
very short-term forecasting [27], as it simply assumes that a
constant value occurs over the forecast horizon.
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Figure 4. The prediction error of the aggregated demand with mean (straight
line) and standard deviation (shaded area) for 6 hours, using FCRBM, SVM
and persistence methods.



Figure 5 shows an example of aggregated energy demand
prediction error for a max lead time of 72 time steps (6 hours
ahead) averaged over the five weeks of the testing period,
from 21 May 2014 to 25 June 2014. Therein, a slightly better
accuracy with a lower variation is visible for FCRBM versus
SVM in terms of the MAPE metric. Furthermore, Table III
shows the performance of the proposed models for all five
scenarios. Overall, FCRBM outperforms the other methods in

TABLE III. AGGREGATED ELECTRICAL DEMAND FORECASTING USING

SUPPORT VECTOR MACHINE, FACTORED CONDITIONAL RESTRICTED
BOLTZMANN MACHINE AND THE PERSISTENCE METHODS.

Methods NRMSE [%] RMSE MAPE PCC
Persistence 0.73 27.31 0.85 0

Scenario SVM 1.69 62.90 1.95 0.13
1 FCRBM 0.71 25.21 0.84 0.15

Persistence 1.27 47.24 1.34 0
Scenario SVM 2.07 77.30 2.28 0.29

2 FCRBM 1.23 45.95 1.31 0.31
Persistence 3.02 112.38 3.03 0.01

Scenario SVM 2.91 108.44 3.07 0.45
3 FCRBM 2.50 93.06 2.59 0.46

Persistence 12.26 456.10 11.66 -0.01
Scenario SVM 4.48 166.55 4.43 0.87

4 FCRBM 4.30 160.10 4.18 0.88
Persistence 11.76 437.35 10.39 0.01

Scenario SVM 5.64 209.90 4.70 0.91
5 FCRBM 5.19 193.14 4.49 0.91

all metrics, while SVM performs better than persistence for
longer time horizons, and persistence perform better than SVM
for the short-term scenarios 1 and 2. For a pictorial view of the
short-therm forecast accuracy of the three methods we depict
in Figure 5 an example of the true and forecast aggregated
electrical energy demand over 6 hours horizon, with 5 minute
resolution.
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Figure 5. An example of true predicted aggregated electricity demand for
six hours ahead, with five minutes resolution, using FCRBM, SVM and
persistence methods.

C. Demand forecast in a price-responsive context

This second set of experiments investigates the possibility
to increase the forecast accuracy by using fusion data from the
environment in a price-responsive context, over a short period
of time (approximately three days).

The price-responsiveness of the electricity demand is ob-
served during a visual analysis of the entire dataset, and
highlighted by the differences in the correlations observed
in Table I and Table IV in terms of price values. So, we

TABLE IV. SUMMARY OF THE METEOROLOGICAL AND PRICE DATA

CORRELATED WITH AGGREGATED ENERGY CONSUMPTION FOR A SHORT
PERIOD

PCC w.r.t
Mean(µ) Std.dev.(Σ) energy

RTP 289.17 368.92 0.4912
DA 289.19 406.55 0.5144
HA 289.15 261.04 0.3051

cloud base height 904.42 1067 0.3089
water vapor 0.0049 3.5e-04 0.0597

relative humidity 0.8839 0.06 0.2300
temperature 5.6133 0.99 -0.1794

global irradiance 359.25 714.71 -0.2987
diffuse irradiance 115.31 162.28 -0.2432

wind speed 5.3913 1.8962 -0.4091
cloud cover 0.6494 0.40 0.4199

rain 0.1259 0.1756 0.14
wind gust 8.8503 3.0534 -0.4187

atmospheric pressure 1007.21 8.4877 0.1244

enhanced the FCRBM model with additional information and
we analyzed the accuracy of the predictor. More exactly, fol-
lowing the method proposed in Section IV-C, we performed a
fully automatic feature extraction computation using a GRBM
model from the day-ahead price and cloud cover data. Then
this encoded information is placed into the class layer of the
FCRBM model.

TABLE V. IMPROVED ACCURACY OF THE AGGREGATED ELECTRICAL

DEMAND FORECASTING USING PRICE AND METEOROLOGICAL DATA

Methods NRMSE RMSE MAPE PCC
Scenario 1
Persistence 3.08 46.10 1.75 0.01
SVM (energy) 7.31 109.19 4.15 0.09
FCRBM (energy) 2.42 36.26 1.38 0.09
FCRBM (energy+weather) 2.60 38.95 1.48 0.08
FCRBM (energy+price) 2.28 34.08 1.30 0.12
FCRBM (energy+weather+price) 2.52 37.62 1.43 0.14
Scenario 2
Persistence 3.74 55.78 1.89 0.01
SVM (energy) 8.09 120.82 4.48 0.34
FCRBM (energy) 3.37 50.36 1.75 0.33
FCRBM (energy+weather) 3.29 49.19 1.68 0.38
FCRBM (energy+price) 3.09 46.19 1.57 0.41
FCRBM (energy+weather+price) 2.79 41.74 1.39 0.47
Scenario 3
Persistence 7.05 105.33 3.38 0.01
SVM (energy) 11.65 174.93 6.21 0.36
FCRBM (energy) 6.21 92.81 3.10 0.39
FCRBM (energy+weather) 5.88 87.84 2.92 0.32
FCRBM (energy+price) 5.76 86.08 2.80 0.45
FCRBM (energy+weather+price) 5.49 81.98 2.71 0.30
Scenario 4
Persistence 23.08 344.63 10.73 -0.01
SVM (energy) 24.96 372.79 12.42 0.37
FCRBM (energy) 11.24 167.85 5.28 0.66
FCRBM (energy+weather) 11.09 165.73 5.50 0.80
FCRBM (energy+price) 8.42 125.76 4.45 0.95
FCRBM (energy+weather+price) 5.51 82.40 2.67 0.96

Figure 6 shows the best performer from Scenario 4 (6 hour
ahead with 5 minute resolution) together with the correspond-
ing FCRBM forecasting without any additional information,
benchmarked by the persistence method, in terms of MAPE
metric. The overall results are presented in Table V. There is



presented the performance of the forecasting methods analyzed
for various combinations of input data which include, next to
historical values for aggregated electrical demand, also prices
and weather conditions. Although our data is multidimensional
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Figure 6. An example of aggregated electrical demand forecasting for six
hours in therms of MAPE, with five minute resolution, using persistence,
FCRBM (energy) and FCRBM with energy, weather and price data.

we have avoided the scalability problems by performing the
feature extraction procedure. This leads to a light approach
able to generalize over any other time series. It is worth
highlighting, that we observed that by adding more external
information we can slightly improve the overall accuracy for
this real dataset.

VI. CONCLUSION

This paper proposes a powerful stochastic machine learning
method to forecast the electricity demand at low aggregation
levels, namely the Factored Conditional Restricted Boltzmann
Machine. FCRBM has good generalization capabilities and
it can be used to accommodate large sets of data, while its
exploitation time in real-world settings is on the order of few
milliseconds. Secondary, we propose the use of GRBM to
extract features from external information and to reduce the
dimensionality for the FCRBM. We validate our approach on
a real dataset, consisting of 1900 households originating from
the Danish island of Bornholm, collected within the EcoGrid
project. In order to compare alternative approaches we used
four different metrics and two benchmark forecasting methods,
namely Support Vector Machine and persistence. On the one
hand, the results show that FCRBM outperforms the other
two methods, and on the other hand, they suggest that by
adding more weather and price information to the FCRBM,
its performance may be improved further. This promising
method can in the future be applied to a fully automatic
real-time prediction and optimal control of electrical energy
consumption via demand response in a smart grid context.
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