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Abstract

This paper concerns the shear capacity of keyed joints, which are transversely reinforced with overlapping U-

bar loops. It is known from experimental studies that the discontinuity of the transverse reinforcement affects

the capacity as well as the failure mode; however, to the best knowledge of the authors, previous theoretical

works and present design equations in standards do not account for this important effect. In this paper, a

detailed model based on finite element limit analysis is introduced to assess the effect of the discontinuous

reinforcement. The model is based on the lower bound theorem and uses the modified Mohr-Coulomb yield

criterion, which is formulated for second-order cone programming. The model provides a statically admissible

stress field as well as the failure mode. Twenty-four different test specimens are modelled and the calculations

are compared to the experimental results. The results of the model show satisfactory agreement with the

experimental observations. The model produces significantly better estimates of the shear capacity than the

design equations of Eurocode 2.

Keywords: shear walls, precast concrete elements, keyed joints, limit analysis, finite element, numerical

modelling, plasticity

1 Introduction

Precast concrete wall units connected by in-situ cast joints are often used to stabilise building structures

against horizontal loads. The efficiency of such wall systems (often referred to as shear walls) is highly
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dependent on the ability of the joints to transfer in-plane shear forces between adjacent precast wall units.

The joints are usually designed as so-called keyed joints where U-bar loops protrude from the ends of the

precast units and overlap each other in a narrow in-situ cast zone (Fig. 1). A continuous reinforcement bar

(locking bar) is typically placed inside the loops to enhance the transfer of tension between pairs of U-bars.

Due to the narrow geometry as well as the discontinuity of the reinforcement layout, the joints are most often

the weakest parts of a shear wall system; hence, in practice, the shear capacity of the keyed joints is often

the governing factor for the load capacity of the entire shear wall.

In-situ cast joints

Precast panels

Details of keyed joint
(indented interface and
overlapping U-bar loops)

Figure 1: Four storey shear wall constructed from precast units connected by in-situ cast joints.

Several papers on the shear capacity of keyed shear joints were published during the 1970s and 1980s [see

e.g. 1–6]. The main body of these works is concentrated on experimental investigations. As a result, only

simple and rather primitive empirical design formulas are available in current design standards, including the

Eurocode 2 [7]. In attempts to establish simplified mechanical models for the ultimate limit state design of

keyed joints, works based on the theory of rigid-plasticity have been presented in the literature. This includes

upper bound solutions derived from analysis of failure mechanisms [8, 9] as well as lower bound solutions

based on strut-and-tie models [9–11], see Fig. 2. Jørgensen et al. [12, 13] also presented several analytical

upper bound solutions for similar problems, namely wire loop connections. Common for these plasticity

models is that the discontinuity of the transverse reinforcement (i.e. the overlapping U-bars) is not taken

into account. This means that depending on the U-bar layout, these models may be too simplified because
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they can neither capture the complex stress field nor the complex failure mechanism developed within the

joint. In the end, this will affect the ultimate capacity of the joint.

Precast
element

Precast
element

Transverse
rebars

P

P

Yield line

(a)

P

P

α

fc

(b)

P

P

α

(c)

Figure 2: (a) Simplified failure mechanism [8, 9] and (b, c) strut-and-tie models [9, 10] for analytical modelling

of shear capacity of keyed joints.

In this paper we present a detailed study of the effects of the discontinuous transverse reinforcement on

the shear capacity of keyed joints. The study has been carried out by use of numerical rigid-plastic limit

analysis. This means that the analysis is based on the same fundamental assumptions as those adopted

for the aforementioned upper and lower bound models; however, in numerical limit analysis, the problem is

discretized using so-called equilibrium finite elements and subsequently solved as an optimization problem

(see Section 2). For this reason, complex stress fields and failure modes can be handled. The results obtained

from this study show that the U-bar configuration and particularly the mutual distance between adjacent

overlapping U-bars play a dominant role for the ultimate shear capacity. It is demonstrated that the effects

captured by the detailed numerical limit analysis correlate well with experimental observations.

To emphasize the context in which this study has been undertaken, it is here necessary to mention that the

numerical limit analysis approach has deliberately been chosen instead of a classical incremental non-linear

finite element model. The reason is threefold: First, the chosen approach allows the obtained results to be

placed in the same context as existing analytical models (i.e. the aforementioned upper and lower bound

3



models) and enables direct comparisons. Next, finite element limit analysis is more computationally efficient

than incremental non-linear finite element analysis. This is due to the fact that the former approach is only

concerned with the load carrying capacity, which is the main objective in practical ultimate limit state design.

Finally, the detailed modelling of keyed joints for finite element limit analysis has to be viewed with a long

term research perspective, where the authors are working on development of numerical tools for the ultimate

limit state design of entire precast buildings (see Section 6).

2 Numerical limit analysis

Numerical limit analysis based on the lower bound theorem of plastic theory can be used to determine

statically admissible stress fields, which will give a safe estimate of the load carrying capacity of the structure.

The method assumes a rigid plastic material behaviour, where no deformations occur before yielding. The

mathematical formulation of the problem consists of a set of equilibrium equations, the yield conditions, and

an objective function. Anderheggen and Knöpfel [14] were the first to present the mathematical framework

using linear programming to optimise the load carrying capacity. Since the 1970s several researchers have

contributed and extended the theory and use of the method [15–19]. Numerical limit analysis is a so-called

direct method, i.e. the ultimate load capacity is determined in one step, which is a clear advantage over non-

linear FEM when it comes to practical applications. The general formulation of lower bound load optimisation

can be stated as [17, 20]:

maximise λ

subject to H β = R λ + R0

f(βi) ≤ 0, i = 1, 2, . . . , m

(1)

The linear equality constraints ensure equilibrium, while the yield functions f(βi) ≤ 0 ensure that the state

of stress does not violate the yield criteria in any point. The load acting on the structure consists of a con-

stant part R0 and a scalable part R λ. The global equilibrium matrix, H, comprises the local contributions

from each equilibrium element. β is the stress vector. The lower bound problem (1) has a corresponding

upper bound problem, which is solved simultaneously, and the solution to the upper bound problem gives

the collapse mode of the structure [21].

The yield function f is generally non-linear, but convex; hence, (1) is a convex optimisation problem. In this

paper we use the modified Mohr-Coulomb yield criterion, which can be formulated exact using second-order
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cone programming (SOCP), which can be solved remarkably efficient using interior point methods. The

problem (1) will be solved by use of the commercial solver MOSEK [22]. For a detailed description of SOCP

and interior point algorithms the reader is referred to References [23–25].

3 Keyed joints

Fig. 3 schematically shows the typical design of a keyed joint where the reinforcement and interfaces are

indicated by thick black lines. A local coordinate system (n, t) is used as the reference system. The keys of

the interface are defined by the parameters h1, h2, and d, while the parameters o and b define the overlap of

the U-bars and the width of the joint, respectively. Finally, u is the distance between the two U-bars of a

pair.

Precast panel

Precast panel

U-bars

Locking bar

n

t
u

b

d

o

h2h1

t

Figure 3: Elevation and cross section of a basic design of a keyed joint reinforced with U-bars.

4 Equilibrium elements

Three types of equilibrium elements are required for the detailed model: First, a triangular element with a

linear stress variation (LST element) will represent the precast concrete and joint concrete. In this paper we

use an enhanced version of the plate element originally developed by Sloan [15] and Poulsen and Damkilde

[17]. The enhanced element is developed by Nielsen [26] and a brief description of the element is given in

the appendix. The reinforcement can be represented as one-dimensional bars, which is modelled by a bar

element developed by Poulsen and Damkilde [17]. The bar element only provides dissipation along its axis

and dowel action is neglected. Finally, a suitable interface element is needed to model the casting interface

between the precast panels and the joint concrete.
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In this section we present a one-dimensional interface element developed for the detailed model. The interface

element has to be compatible with the linear stress variation of the LST element; hence, a linear variation of

stresses is also required for the interface element.

σn1, τ1

1

σn2, τ2

2n

t

Interface element

LST element

LST element
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q+
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τ2
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(b)

Figure 4: Interface element: Geometry, local coordinate system and stress variables (a); generalized nodal

forces (b).

The interface element has four stress variables as shown in Fig. 4(a) and contributes to 8 equilibrium

equations on the global level; see Fig. 4(b). The stresses are simply transferred directly through the interface

as seen in the element equilibrium matrix hel:
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= hel βel (2)

Nielsen and Hoang [10] suggest a suitable yield criterion for interfaces of joints, which corresponds to the

modified Mohr-Coulomb yield criterion for plane strain with one free normal stress parameter. The yield

envelope is illustrated in Fig. 5. Here, we present the general formulation, which include a separation

strength to represent adhesive effects. In practice, the separation strength is not reliable unless the interface

is very rough and treated carefully before casting of the joint. In the calculations presented in this paper,
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the separation strength is taken as zero. In principal stresses the yield criterion can be written as:

σ1 ≤ ft

k σ1 − σ2 ≤ 2 c
√

k

(3)

where σ1 and σ2 are the largest and smallest principal stresses, respectively, ft is the separation strength of

the interface, and c is the cohesion. k is a friction parameter defined as k =
(

√

µ2 + 1 + µ
)2

where µ is the

friction coefficient of the interface. The principal stresses are given as

σ1

σ2







=
σn + σt

2
±

√

1
4

(σn − σt)
2 + τ2 (4)

and σt is the free normal stress. The yield criterion can be formulated as a single quadratic cone and two

linear inequalities by introducing three auxiliary variables [19, 27].

σn

|τ |

ft

c

1

µ

Figure 5: Yield criterion for the interface: The gray region indicates the interior of the yield envelope.

5 Model and analysis

This section will present the numerical model and the results, which will be compared to experimental data

by Hansen and Olesen [5] and Fauchart and Cortini [2] as well as the design formulas of the Eurocode [7].

The geometry of the 16 test specimens by Hansen and Olesen is given by h1 = h2 = 40 mm, d = 6 mm,

b = t = 50 mm, o = 30 mm (see Fig. 3), l = 1200 mm, and 14 keys. The geometry of the 8 test specimens by

Fauchart and Cortini is given by h1 = 167 mm, h2 = 83 mm, d = 20 mm, b = 145 mm, t = 90 mm, o = 115

mm, l = 1200 mm, and 4 keys.

Fig. 6 shows a sketch of the numerical model as well as the meshes for the models of the specimens. The

loads on the model, i.e. the forces F1 and F2, ensure that the moment in the centre of the joint is zero, i.e.

7



l

Joint

x

y

Supports: vx = vy = 0

F1

F1

F2

F2

Precast element

Precast element

(a)

(b) (c)

(d) (e)

Figure 6: a) Sketch of the numerical model including boundary conditions and loading; b) mesh for the

specimens by Fauchart and Cortini (8064 elements); c) zoom of the mesh seen in b) showing the keyed

interface, two pairs of U-bars (thick vertical lines), and two locking bars (thick, straight horizontal lines), d)

half of the mesh for the specimens by Hansen and Olesen (20014 elements); e) zoom of the mesh seen in d)

showing the keyed interface, a locking bar (thick horizontal line), and a pair of U-bars (thick vertical lines).
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pure shear. The joint concrete is modelled using Mohr-Coulomb yield criterion for plane stress conditions.

Near the U-bar loops, the concrete will be in a triaxial stress state; hence, the assumption of plane stress

condition is conservative in those regions. The tensile strength of the joint concrete is neglected (ft = 0)

and the effectiveness factor is chosen as ν = 1, which is the same value adopted for the lower bound strut-

and-tie model by Nielsen and Hoang [10]. It should be mentioned that Jørgensen et al. [12, 13] adopted

a ν-factor smaller than unity for looped joints; however, the models by Jørgensen et al. are upper bound

models which take into account plane strain conditions as well as the triaxial stress state locally at the loops.

Most probably, the best estimate of the ν-factor would be somewhere between unity and the value used by

Jørgensen et al. Determination of such an estimate would require development of a 3D numerical model

that can be calibrated with tests, which are heavily reinforced with U-bars. As mentioned in Section 4, the

capacity of the interface is defined by the cohesion, the friction coefficient, and the separation strength. For

smooth surfaces, the cohesion is very sensitive to curing and may be taken as c = 0.55
√

fc provided that

cracking (e.g. due to shrinkage) has not taken place [10]. For the numerical model, a cohesion of 0 to 0.5 MPa

gives the best results indicating that shrinkage cracking indeed has taken place. The interface is assumed to

be smooth and a friction coefficient of µ = 0.75 can be used here [10, 28]. Finally, a separation strength of

ft = 0 is used for the interface elements in all models.

5.1 Comparison and analysis

The experimental results by Hansen and Olesen [5] and Fauchart and Cortini [2] are compared to the numerical

model and the Eurocode 2 [7]. We define the mechanical reinforcement ratio Φ as follows:

Φ =
∑

AsU fy

t l fc

i.e. the total yield force in the U-bars over the total area times the compressive strength of the joint concrete.

According to the Eurocode 2, the shear capacity of a keyed joint can be computed as

τ = min







c ft Akey/(t l) + µ Φ fc

1

2
ν fc Akey/(t l)

(5)

where Akey is the total area of the keys, ft is the tensile strength, and c is a parameter that relates the tensile

strength to the cohesion. For keyed joints the following values are used; µ = 0.9 and c = 0.5. The tensile

strength is taken as ft = 0.21 f
2/3
c . In Eurocode 2, the effectiveness factor ν used for beam shear problems
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is also used for shear in joints, i.e. ν = 0.7 − fc/200 (fc in MPa).

It is important to emphasise that mean values of material parameters have been used for the comparison.

When the numerical model is used for design, however, relevant partial safety coefficients prescribed by codes

(e.g. the Eurocodes) must be introduced. In this context, it may be useful to mention that the design value

for the cohesion of the interfaces should be determined by adopting a partial safety coefficient, γc, that is

related to the tensile strength of the concrete (and not the compressive strength).

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

τmodel/f
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τ
t
e
s
t
/f

c

Figure 7: Numerical results compared to a total of 24 experiments by Hansen and Olesen [5] and Fauchart

and Cortini [2].

Fig. 7 shows that the numerical model is capable of predicting a good estimate of the load carrying capacity for

a wide range of experiments. In average, the model predicts shear capacities slightly below the experimental

results, but for a single experiment (specimen 29, indicated by a circle in Fig. 7) the model overestimates

the capacity by a significant margin. It is worth noting that specimen 29 is the only specimen for which the

Eurocode overestimates the shear capacity (see Fig. 8(a) and Tab. 1).

Fig. 8(a) shows that the Eurocode generally underestimates the capacity of the joint; in some cases by almost

60 %. The numerical model predicts a higher shear capacity than the Eurocode formulas as seen in Fig. 8(b).

It is important to emphasise that the difference in the two adopted values for ν only affects a minority of the

experiments, namely specimens 28 and 29 by Hansen and Olesen [5] and specimens 8 and 12 by Fauchart
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Figure 8: (a) Design formulas of the Eurocode compared to experimental results; (b) design formulas of the

Eurocode compared to the results of the numerical model.

and Cortini [2], where the second equation in (5) is governing. All results as well as compressive concrete

strength, reinforcement ratio, and distance between the U-bars are given in Tab. 1 and 2. The average error

for the numerical model is -4.3 %, while the average error is -37.9 % for the Eurocode. The error shown in

the tables are computed as:

ǫmodel =
τmodel − τtest

τtest
, and ǫEC2 =

τEC2 − τtest

τtest

Specimens 01, 02, 03, 04, 05, 12, 13, 14, 18, and 29 listed in Tab. 1, did not have any transverse reinforcement

(U-bars); instead external confinement pressure was applied: For these tests, a reinforcement ratio equivalent

to the confinement is listed in the table. It is worth noting that specimen 29 is the only specimen in that

group with an equivalent reinforcement ratio larger than 0.10, but the specimen has a rather low capacity;

similar to the capacity of specimens 12 and 13, which have equivalent reinforcement ratios of 0.43 and 0.95,

respectively.

As Tab. 1 shows, two of the specimens, 24 and 26, have a large value of u. It is seen that the numerical model

produces a very good estimate of the shear capacity for these two specimens compared to the Eurocode.

Specimen 25 is identical to specimen 26 except for the reinforcement layout; Fig. 9 and 10 shows the
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distribution of the lowest principal stress and the collapse mode of the two specimens.

The thick blue lines in Fig. 9(a) and 10(a) indicate the interface between the precast panels and the joint

concrete, and the thick red lines indicate the reinforcement, i.e. U-bars and locking bar. The deformed

reinforcement is plotted by interpolating the placement of the nodes in the deformed mesh. The reinforcement

is indicated in Fig. 9(b) and 10(b) by thick gray lines.

(a)

 

 

σ 2 [M
P

a]

−20

−15

−10

−5

0

(b)

Figure 9: Collapse mode (a) and lowest principal stress (b) for specimen 25 by Hansen and Olesen [5].
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σ 2 [M
P

a]

−20

−15

−10

−5

0

(b)

Figure 10: Collapse mode (a) and lowest principal stress (b) for specimen 26 by Hansen and Olesen [5].

Hansen and Olesen reported that specimen 23, 25, and 27 failed by shearing off the keys of the joint concrete,

while for specimen 24 and 26 the core of the joint was almost completely destroyed. The numerical model

captures this as illustrated in Fig. 9(a) and 10(a): The keys are partially sheared off for specimen 25, while

specimen 26 fails by a diagonal yield zone through the core of the joint. Fig. 9(b) and 10(b) show likewise

that the reinforcement layout has a significant influence on the distribution of stresses within the joint: The

model of specimen 25 shows distinct diagonal struts throughout the entire core of the joint, while this pattern
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is disrupted by the reinforcement layout in the model of specimen 26. It is noted that the collapse mode and

the stress field observed in Fig. 9 are similar to the simplified failure mechanism and the strut-and-tie models

shown in Fig. 2; however, this is not the case for specimen 26 (Fig. 10) where the large distance between the

overlapping U-bars alters the load path and collapse mode. In both cases, the diagonal struts tend to end

and start at the corners of the shear keys. This indicates that direct strut action carries the majority of the

load and the shear capacity is not that sensitive to the interface friction coefficient.
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0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.10

0.20

0.30

Φ

τ
/
f c

Model
Test

(b) Specimens 01, 02, 03, 04, 05, 12, 13, 14, 18, and 20; Hansen

and Olesen [5]

0.00 0.01 0.02 0.03 0.04
0.00

0.02

0.04

0.06

0.08

0.10

Φ

τ
/
f c

Model, spec. 23
Model, spec. 24
Test, spec. 23
Test, spec. 24

(c) Specimens 23 and 24; Hansen and Olesen [5]
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Figure 11: Capacity curves for various specimens and reinforcement layouts.
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Fig. 11 shows the shear capacity as a function of the mechanical reinforcement ratio for the different speci-

mens: In the calculations, the reinforcement ratio of the transverse reinforcement is simply varied by adjusting

the yield strength of the U-bars. The detailed model provides an excellent estimate of the capacity of the

experiments by Fauchart and Cortini [2] as illustrated in Fig. 11(a). Likewise, Fig. 11(b) shows that the

model gives a reasonable estimate for the specimens without transverse reinforcement by Hansen and Olesen

[5] despite the somewhat scattered data. Fig. 11(c) and (d) clearly illustrate the effect of the reinforce-

ment layout; namely that the shear capacity decreases, even for low reinforcement ratios, when the distance

between overlapping U-bars increases.

6 Future work

A detailed model for numerical limit analysis provides unique insights into the ultimate behaviour of keyed

joints and may in practice be used to optimise the joint layout, i.e. the geometry of shear keys and the

position of overlapping U-bars. Such a task is important and relevant for producers of precast concrete

elements, for whom optimisation of design details is often motivated by the fact that any benefits gained will

be accumulated over time because of mass production. On the other hand, for consulting engineers working

with design and calculations of entire building structures, it is not feasible to aim for a level of detail similar

to the model presented in this paper. It is simply too time consuming to work with global models of entire

structures (e.g. the four storey shear wall shown in Fig. 1) where all joints are modelled in details. In global

finite element models, each of the precast wall units should only be modelled by use of a limited number of

the aforementioned LST elements in order to reduce computational memory requirements and CPU time.

This has the consequence that the keyed joints have to be modelled by one-dimensional equilibrium elements

that are compatible with the LST element. Hence, to enable numerical limit analysis of entire structures

in the future, it is necessary to develop a one-dimensional element to model the keyed shear joints. This,

in fact, is an ongoing task by the authors and the primary challenge here is to develop a computational

efficient element, which is able to reflect some of the important features of a keyed shear joint. Thus, in this

context, the detailed model presented in this paper will be used for benchmarking and comparison. Finally,

the authors are currently using the detailed numerical model to carry out an extensive parameter study with

the aim of developing a set of simple design equations which will make it possible to account for the effect
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of the discontinuous reinforcement. These design formulas are thought of as an extension of the formulas of

the Eurocode.

7 Conclusions

The mathematical framework for limit analysis of keyed shear joints based on a rigid plastic material model

has been presented. A new equilibrium element representing concrete-concrete interfaces was proposed and

a detailed finite element limit analysis model for keyed joints between precast concrete panels has been

introduced. The model is formulated for second-order cone programming; a class of convex optimisation

problems that can be solved efficiently using interior point methods. The numerical model has been compared

to experimental results as well as the design formulas of the Eurocode. A satisfactory correlation between

the numerical model and experiments was found with an average error of -4.3 %. The model provides a

much better estimate of the load carrying capacity than the design formulas of the Eurocode, which had an

average error of -37.9 %. Most importantly, the model also captures the effects of the discontinuous layout

of the transverse reinforcement. The results showed that the critical mechanisms and the stress fields within

the joint are highly dependent on the mutual distance between overlapping U-bars. The approach presented

in this paper may with benefit be used to optimise the shear key layout at the boundaries of mass produced

precast wall units as well as the position of the U-bars in the units.
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Appendix: Enhanced linear stress triangle

The formulation presented here is based on the work of Nielsen [26]. The enhanced linear stress triangle

incorporates three subelements, each with a linear stress variation. Several of the variables can be eliminated

which reduces the problem size significantly.

A center node divide the element into three subelements as seen in Fig. 12 and βS
1 is the stress vector

associated with this center node. βi contains the stress variables associated with corner i, and βC collects

15



x

y
Sub el. 1

Sub el. 2
Sub el. 3

β1

β2

β3

βS
1

t

n
t

n

t

n

Figure 12: Subelements, stress variables, and local coordinate systems of the enhanced plate element. Dashed

lines indicate subelement boundaries.

all stress variables of the corners:

βC =
[

βT
1 βT

2 βT
3

]T

,

βi =
[

σni τnti σ−

ti σ+
ti

]T

, i = 1, 2, 3

βS
1 =

[

σS
x σS

y τS
xy

]T

The tractions on two opposing boundaries must be in equilibrium; thus, only four stress variables are necessary

to describe the stress state in a corner since they are given in local coordinates of the subelement boundary:

Only the normal stress in the t-direction is discontinuous. Equilibrium on the local level can be stated as

qel = helσel = helTelβel

where

Tel =





TC

TS



 and βel =





βC

βS
1



 (6)

hel is the local equilibrium for the basic linear stress triangle [see 15, 17], and qel is the generalised nodal forces,

i.e. the contribution to the global equilibrium equations. σel contains 27 stress variables in global coordinates,

9 for each subelement. TC transforms the local stress variables of the corners to global coordinates, which

can be written as:

σx = σn n2
x + σ±

t n2
y − 2 τnt nx ny

σy = σn n2
y + σ±

t n2
x + 2 τnt nx ny

τxy = σn nx ny − σ±

t nx ny + τnt

(

n2
x − n2

y

)

(7)
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where n =
[

nx ny

]T

is the normal to the subelement boundary through the given corner. Eq. (7) gives

the contributions to TC . In the central node S, equilibrium across the boundaries between the subelements

gives the following equations:

T
xy
1

(

βS
3 − βS

1

)

= 0, T
xy
2

(

βS
1 − βS

2

)

= 0, T
xy
3

(

βS
2 − βS

3

)

= 0

where T
xy
i is the stress to traction transformation matrix defined as:

T
xy
i =





nx 0 ny

0 ny nx





These equations can be organised as a linear system








−T
xy
1 0 T

xy
1

T
xy
2 −T

xy
2 0

0 T
xy
3 −T

xy
3

















βS
1

βS
2

βS
3









=
[

T1 T23

]









βS
1

βS
2

βS
3









= 0 (8)

(8) also implicitly defines T1 and T23 as:

T1 =









−T
xy
1

T
xy
2

0









, T23 =









0 T
xy
1

−T
xy
2 0

T
xy
3 −T

xy
3









βS
2 and βS

3 can now be written as:




βS
2

βS
3



 = −T −1
23 T1 βS

1

and TS (see Eq. (6)), can be defined as follows:








βS
1

βS
2

βS
3









=





I

−T −1
23 T1



 βS
1 = TS βS

1
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Table 1: Data and results of experiments by Hansen and Olesen [5], the numerical model, and Eurocode 2.

fc Φ u Experimental Numerical Eurocode 2

Specimen [MPa] [-] mm τ/fc τ/fc Error [%] τ/fc Error [%]

01 29 0.013 - 0.064 0.053 -17.2 0.029 -55.0

02 32 0.030 - 0.095 0.079 -16.8 0.044 -54.2

03 32 0.055 - 0.105 0.102 -2.9 0.066 -37.1

04 16 0.061 - 0.087 0.107 23.0 0.076 -13.0

05 53 0.018 - 0.068 0.064 -5.9 0.030 -55.6

12 25 0.043 - 0.140 0.092 -34.3 0.057 -59.9

13 23 0.095 - 0.146 0.133 -8.9 0.104 -28.8

14 25 0.039 - 0.099 0.088 -11.1 0.053 -46.4

18 27 0.049 - 0.073 0.097 32.9 0.062 -15.6

29 17 0.188 - 0.137 0.203 48.2 0.150 9.5

23 31 0.025 10 0.080 0.083 3.8 0.040 -50.5

24 26 0.030 150 0.072 0.068 5.6 0.045 -37.3

25 24 0.076 10 0.161 0.131 -18.6 0.087 -45.9

26 24 0.076 70 0.124 0.128 3.2 0.087 -29.8

27 15 0.139 10 0.213 0.189 -11.3 0.147 -31.0

28 13 0.235 10 0.286 0.230 -19.6 0.150 -47.6

Table 2: Data and results of experiments by Fauchart and Cortini [2], the numerical model, and Eurocode 2.

fc Φ u Experimental Numerical Eurocode 2

Specimen [MPa] [-] mm τ/fc τ/fc Error [%] τ/fc Error [%]

5 20 0.049 10 0.106 0.088 -17.0 0.057 -46.3

6 20 0.049 10 0.085 0.088 3.5 0.057 -33.0

7 20 0.096 10 0.120 0.126 5.0 0.099 -17.3

8 20 0.246 10 0.197 0.206 4.6 0.100 -49.4

9 20 0.047 10 0.104 0.086 -17.3 0.055 -47.0

10 20 0.096 10 0.148 0.126 -14.9 0.099 -32.9

11 20 0.096 10 0.148 0.126 -14.9 0.099 -32.9

12 20 0.191 10 0.208 0.186 -10.6 0.100 -52.2
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