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Abstract 9 

A flexible multi-generation system (FMG) consists of integrated and flexibly operated facilities that provide 10 

multiple links between the various layers of the energy system. FMGs may facilitate integration and 11 

balancing of fluctuating renewable energy sources in the energy system in a cost- and energy-efficient way, 12 

thereby playing an important part in smart energy systems.  13 

The development of efficient FMGs requires systematic optimization approaches. This study presents a 14 

novel, generic methodology for designing FMGs that facilitates quick and reliable pre-feasibility analyses. 15 

The methodology is based on consideration of the following points: Selection, location and dimensioning of 16 

processes; systematic heat and mass integration; flexible operation optimization with respect to both 17 

short-term market fluctuations and long-term energy system development; global sensitivity and 18 

uncertainty analysis; biomass supply chains; variable part-load performance; and multi-objective 19 

optimization considering economic and environmental performance. 20 
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Tested in a case study, the methodology is proved effective in screening the solution space for efficient 21 

FMG designs, in assessing the importance of parameter uncertainties and in estimating the likely 22 

performance variability for promising designs. The results of the case study emphasize the importance of 23 

considering systematic process integration when developing smart energy systems. 24 

Keywords: Design optimization, energy efficiency, flexible operation, multi-generation, polygeneration, 25 

smart energy systems 26 

Nomenclature 27 

Latin letters 28 

   Area size    [km2] 29 

  Number of parameter value levels in Morris screening [-] 30 

     Heat exchanger network investment cost   [Euro] 31 

       Process investment cost    [Euro] 32 

        Process reference investment cost   [Euro] 33 

   Marginal biomass cost   [Euro] 34 

    Reference biomass cost   [Euro] 35 

      Marginal biomass logistics cost  [Euro] 36 

    Operating cost   [Euro] 37 

   Uncertainty distribution of parameter    [-] 38 

      Mean transportation distance from area    [km] 39 

    Thermal energy flow   [kW] 40 

   Elementary effect   [-] 41 

  Model output function 42 

   CHOP group 43 

      Sum of enthalpy flows in temperature interval   [kW] 44 
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  Annual discount rate   [-] 45 

  Number of uncertain model parameters  [-] 46 

   Investment scaling constant   [-] 47 

    Mass flow    [kg/s] 48 

      Estimated standard error of the mean  [-] 49 

          Maximum number of CHOP groups  [-] 50 

   Number of characteristic parameter intervals [-] 51 

   Operating point 52 

  Parameter 53 

   Annual biomass cultivation in area    [ton] 54 

      Annual biomass demand   [ton] 55 

  Product or service market 56 

    Thermal energy market 57 

   Local biomass market 58 

   Maximum transportation distance, area    [km] 59 

     Number of temperature intervals  [-] 60 

  Temperature     [◦C] 61 

   CHOP group, duration    [h] 62 

   Operating point, duration    [h] 63 

      CHOP group, present value factor   [h] 64 

  Number of repetitions in Morris screening  [-] 65 

   Operating point, year of occurrence  [-] 66 

   Installation delay of process    [years] 67 

    Facility lifetime   [years] 68 

   Global warming potential   [tCO2] 69 
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     Global warming potential of investments  [tCO2] 70 

    Global warming potential of operation  [tCO2] 71 

Greek letters 72 

  Perturbation factor in Morris screening  [-] 73 

     Process load of process   in period    [-] 74 

     Operation of process   in period    [-] 75 

   Dimension of process     [-] 76 

    Process   reference dimension  [-] 77 

    Utility process dimension   [-] 78 

   Installation decision for process    [-] 79 

Subscripts 80 

  Biomass cultivation area index 81 

  Biomass flow index 82 

  Thermal and mass flow index 83 

  Period index 84 

  Operating point index 85 

  Process index 86 

  Layer index, used in the Mixed Integer-Linear Programming model 87 

  Characteristic parameter interval index 88 

  Parameter index 89 

  Market index 90 

  Temperature interval index 91 

  Reference 92 

Abbreviations 93 
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AD Combined anaerobic digester and biogas upgrading facility 94 

BB Biomass boiler 95 

CCHP Combined cooling, heating and power 96 

CHOP Characteristic operating pattern 97 

CHP Combined heat and power 98 

DESS Distributed energy supply system 99 

FMG Flexible multi-generation system 100 

GB Gas boiler 101 

GT Gas turbine 102 

GWP100a 100-years global warming potential 103 

HP Ground-based district heating heat pump 104 

LCA Life cycle assessment 105 

MILP Mixed integer-linear programming 106 

MINLP Mixed integer-nonlinear programming  107 

NPV Net present value 108 

SMG Static multi-generation plant 109 

SR Steam Rankine cycle 110 

  111 
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1. Introduction 112 

Flexible multi-generation systems (FMGs) are integrated, dynamic facilities that convert one or several 113 

energy resources into multiple energy services and other valuable products, e.g. electricity, heating, cooling, 114 

bio-fuels, and bio-chemicals [1]. FMGs are characterised by their ability to adjust operation in response to 115 

fluctuating demand patterns and varying price schemes. In the present work, the following definition of an 116 

FMG is introduced: 117 

 A flexible multi-generation system (FMG) is a system of integrated facilities that provide multiple 118 

links between layers of the energy system, enabling adjustable operation in response to changes in 119 

prices and demands of the consumed and delivered services.1 120 

The main advantages of FMGs are: The embedded possibility for optimizing operation by altering feedstock, 121 

products and services depending on demand and market price [2][3][4]; the possibility of integrating and 122 

balancing generation from intermittent renewable energy resources such as wind, solar, wave and tidal in a 123 

cost-efficient way [5][6][7], and the possibility of achieving high aggregated conversion efficiencies through 124 

process integration [8][9][10][11]. Through the conversion, conditioning and storing of multiple energy 125 

vectors, FMGs integrate the various layers of the energy system and are capable of providing supply-126 

demand flexibility that can counteract energy system imbalances induced by e.g. intermittent renewable 127 

energy sources. In principle, FMGs can therefore be seen as efficient energy system valves that may play an 128 

important part in the development and operation of smart energy systems [12][13]. The generic FMG 129 

concept is illustrated in Figure 1. 130 

                                                           
1
 In specific cases, the definition of an FMG may be overlapping with the terms ‘polygeneration’ and ‘energy hubs’. In a recent 

review, Adams and Ghouse [75] have defined ‘polygeneration’ as a thermochemical process which simultaneously generates 

electricity and produces at least one type of chemical or fuel without being a co- or tri-generation unit. ‘Energy hubs’ may refer to 

homes, large energy consumers, power plants or regions [76] as well as integrated facilities [4][77]. The FMG definition is 

introduced here in order to characterize integrated facilities that may actively contribute to the balancing of the energy system.  
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By definition, FMGs may be either centralized facilities or distributed systems, as long as the various 131 

facilities are integrated. The present manuscript differentiates between a plant, in which all considered 132 

facilities are co-located, and a system, in which facilities are distributed on several locations. It should be 133 

emphasized that FMGs may include static processes, e.g. cellulosic ethanol production [14] as well as 134 

intermittent processes that are not fully dispatchable, e.g. wind turbines and solar heating, as long as the 135 

combined system has a degree of operational flexibility. 136 

The issues to be considered when designing FMGs comprise: The selection of processes and technologies 137 

from many alternatives; geographical location, dimensioning, and integration of processes with respect to 138 

thermal and mass flows; operation optimization with respect to hourly demand and price fluctuations and 139 

long-term energy system development; determination of local resource availability; investment planning; 140 

systematic evaluation of design uncertainties; and consideration of both economic and environmental 141 

objectives. All of these issues must be considered simultaneously as they affect one another. To cope with 142 

this complexity, a systematic optimization approach is needed for the design of FMGs [8]. 143 

One branch of multi-generation plants treated in the literature combines the generation of power and 144 

production of chemicals. Gassner and Maréchal [15] presented a combined mixed integer-nonlinear 145 

programming (MINLP)/mixed integer-linear programming (MILP) methodology for the synthesis of facilities 146 

producing fuel from biomass through thermochemical conversion. The methodology considered the 147 

selection and dimensioning of processes, systematic process integration using pinch analysis, and 148 

assessment of multiple objectives including thermo-economic performance. In a second work the 149 

methodology was enhanced to allow for the systematic inclusion of life cycle assessment (LCA) in the 150 

design evaluation [16]. The methodology was later applied in a case study of a static multi-generation plant 151 

(SMG) generating fuel and electricity from biomass [17]. The developed methodology did not consider 152 

flexible operation and input parameter uncertainties. 153 

Liu et al. studied SMGs generating power and methanol. In five related works, the group first presented a 154 

multi-period MILP model for the design and investment planning optimization of such SMGs whilst 155 
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considering static operating conditions over periods of 5 years [18]. The model was later upgraded to an 156 

MINLP model [19] and extended to allow for multi-objective optimization [20] and stochastic programming 157 

using a decomposition strategy [21]. The group further presented one methodology for general investment 158 

planning and one for detailed design configuration of SMGs [22]. However, neither of the presented 159 

methodologies considered short-term operation flexibility. 160 

Chen et al. also studied the multi-generation of power and chemicals. In three consecutive works, the 161 

group first presented a deterministic superstructure-based optimization model for designing static SMGs 162 

coproducing power, naphtha, diesel, and methanol from coal and biomass [23]. The model was later 163 

enhanced to allow for flexible operation optimization with respect to price variations over seasonal peak- 164 

and off-peak periods, and, based on a case study, the group concluded that FMGs may achieve higher net 165 

present values (NPVs) than static ones because of the operation flexibility, however at the cost of larger 166 

investments [24]. In a third study, the group implemented a modified decomposition algorithm based on 167 

the generalized Benders decomposition in their optimization model to reduce computational time [25], and 168 

demonstrated in two case studies that the modified methodology achieved faster calculation times than 169 

the BARON solver [26]. The group applied simple energy balances rather than detailed process integration 170 

methodologies to simulate process integration possibilities, which may have led to overestimated efficiency 171 

improvements, as also discussed by the authors [27]. Furthermore, uncertainties were not considered. 172 

Another branch of multi-generation plants are facilities based on the combined generation of cooling, 173 

heating, and power (CCHP), also known as trigeneration. Marnay et al. [28] presented a methodology for 174 

minimizing the overall costs of CCHPs in commercial buildings by selecting and dimensioning technologies 175 

and optimizing operation based on diurnal load profiles. Rubio-Maya et al. [29][30] presented a heuristic, 176 

two-level approach for designing local FMGs generating power, heat, cooling and fresh water. Selection of 177 

technologies and a preliminary process dimensioning were handled in a first step based on monthly-178 

averaged requirements, while a second step dealt with the final dimensioning of components, including 179 

thermal energy storage, based on monthly mean-day demands. Piacentino et al. [31] presented a 180 
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deterministic MILP-based tool for optimizing trigeneration-based micro-grids with thermal storages with 181 

respect to NPV. Capuder and Mancarella [32][33] presented a framework for the techno-economic and 182 

environmental comparison of seven distributed FMG options for co-generating heat and power. The 183 

framework considered half-hour time steps on typical seasonal days, thermal energy storage, and ramp 184 

rate constraints between successive time periods. The group found that increased operation flexibility 185 

resulted in significant savings in investment and operating costs as well as in a reduced environmental 186 

impact when compared to the reference case of a district heating boiler. Recently, Capuder et al. [34] 187 

extended their work to consider the economic value of operational flexibility and investment flexibility 188 

under long-term operational uncertainty and found that consideration of investment flexibility both 189 

reduced expected costs and economic risks associated with investments in distributed FMGs co-generating 190 

heat and power. 191 

With regard to distributed energy supply systems (DESS), Voll et al. [35] developed an approach for the 192 

superstructure-free synthesis and optimization of DESS using an evolutionary algorithm and applied the 193 

method on a numerical example of a DESS with time-varying heating and cooling loads. Following this, Voll 194 

et al. [36] presented a framework for automated superstructure generation and optimization of DESS using 195 

an MILP model. The group further developed a method for reducing non-linear DESS optimization problems 196 

into MILP models using a multivariate piecewise-affine surrogate modelling approach [37], and a method 197 

for exploring the near-optimal solution space when optimizing DESS [38]. In a recent study, the group 198 

presented a hybrid approach for optimizing the synthesis of renewable electricity systems by combining 199 

heuristic-based pre-selection of candidate technologies with the previously developed automated 200 

superstructure generation and optimization of DESS [39]. Zhou et al. [40] presented a two-stage stochastic 201 

programming model for designing DESS which further allowed for the consideration of uncertainties in the 202 

optimization. Finally, Leung Pah Han et al. [41] presented an iterative method combining MILP/MINLP for 203 

designing local production systems that integrate food, water, and energy systems based on annual 204 

demands, with the aim of minimizing the cumulative exergy destruction. 205 
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Concerning urban multi-generation plants, Lythcke-Jørgensen and Haglind [42] studied the design and 206 

operation optimization of an FMG generating power and heat and producing cellulosic ethanol. The study 207 

found that short-term operating  patterns may be critical for the overall economy of FMGs. Maréchal et al. 208 

[43] presented a multi-period, multi-objective MINLP/MILP approach for deterministic design optimization 209 

that comprised technology selection and dimensioning, process integration, facility location selection, and 210 

network layout. By considering monthly static operating patterns, Fazlollahi and Maréchal [44] used parts 211 

of this methodology for designing FMGs that provide energy services for district energy systems. In three 212 

parallel works, the group extended their work by incorporating the following methodology: A method for 213 

approximating energy system conditions by a number of typical periods with hourly and aggregated multi-214 

hour time steps [45]; a model of daily thermal storages [46]; and a model of distribution networks [47]. 215 

Shortcomings of the combined methodology are the facts that only cyclic short-term operating patterns 216 

may be considered using the typical periods approach, and that input parameter uncertainties are not 217 

considered. 218 

This study presents a novel, systematic methodology for designing FMGs. It applies node-based 219 

superstructure representation and is based on a genetic algorithm and multi-period MILP approach [48]. 220 

The purpose of the methodology is to conduct quick and reliable pre-feasibility analyses of FMGs for 221 

assessing which of the facility designs that would be efficient in a given energy system context, rather than 222 

estimating the optimal performance of pre-defined facility designs. The novelty of the methodology lies in 223 

the fact that it simultaneously considers the following: Selection, location, and dimensioning of processes 224 

from many alternatives; systematic heat and mass integration using pinch analysis; flexible operation 225 

optimization with respect to both short-term market fluctuations and long-term energy system 226 

development through the application of the Characteristic Operating Pattern (CHOP) method [49]; 227 

investment planning; global sensitivity and uncertainty analysis; consideration of local resource availability, 228 

biomass supply chains, and market sizes; variable part-load performance; and multi-objective optimization 229 
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considering NPV and 100-years global warming potential (GWP100a). To the author’s best knowledge, no 230 

previous methodology has considered all of these aspects in an integrated, systematic manner.  231 

The paper is structured as follows: After the introduction, which also features a short literature review on 232 

methodologies for designing multi-generation systems, the developed design methodology is presented in 233 

Section 2. In Section 3, the methodology is applied in a case study of a conceptual FMG co-generating 234 

power and heat and producing cellulosic ethanol, synthetic natural gas, and fertilizer from natural gas, 235 

domestic and industrial waste, straw, and manure. Section 4 contains a discussion on advantages, 236 

drawbacks, and development possibilities for the design methodology. A conclusion on the study is given in 237 

Section 5. 238 

2. Design methodology 239 

The design methodology developed in the present study is a tool for optimizing the design and operation of 240 

FMGs by coupling process models with energy system information, as illustrated in Figure 2. The structure 241 

of the design methodology is presented in Figure 3, which illustrates how the optimization problem has 242 

been decomposed into several parts. The design methodology is introduced in this section, which is 243 

structured according to the five overarching steps of the methodology. 244 

2.1. Input data 245 

In general, four types of input data are required for running the design methodology: Process and 246 

equipment models, energy system data, local resource data, and life cycle inventory data. If sensitivity and 247 

uncertainty analyses are to be performed on selected designs, uncertainty distributions for input data    248 

must be defined for all the considered uncertain input parameters  . 249 

Process and equipment models 250 

The first input to the design methodology is models of the processes and equipment to be considered for 251 

the FMG. The models can be detailed thermodynamic and chemical models as well as simpler black box 252 
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models, as long as they provide the information required for developing surrogate models, as discussed in 253 

Section 2.2. 254 

Energy system data 255 

The second input to the design methodology is data on the surrounding energy system that the FMG is to 256 

operate within. Depending on the processes considered, energy system data may include parameters such 257 

as power price, demands for district energy, fossil fuel prices, subsidy schemes etc. All information must be 258 

provided for short time intervals, a few hours or less, in order to include details on short-term fluctuations 259 

in prices and demands that the FMG may respond to. The data must be provided for the entire lifetime of 260 

the FMG. 261 

Local resource data 262 

Local resource data describe the availability, costs, and logistics of local resources considered for processing 263 

in the FMG, e.g. biomass, manure, domestic, and industrial waste etc. This information can be essential for 264 

the economic viability of FMGs, as transportation and storage costs for processing locally distributed 265 

resources may induce a diseconomy-of-scale trend that can exceed the economy-of-scale benefits for 266 

larger processing equipment, as also discussed by Jack [50]. 267 

Life cycle inventory data 268 

The environmental impact parameter considered in the design methodology is the 100-years global 269 

warming potential (GWP100a). GWP100a is an indicator of the global warming impact over a 100-year 270 

period from materials mining, production of equipment, installation, operation and maintenance, and 271 

decommissioning of a facility, measured in equivalent tons of CO2 emissions. In order to consider the 272 

minimization of GWP100a when designing FMGs, life cycle inventory data must be provided on all 273 

considered process equipment, consumed resources, displaced production and consumption etc. 274 
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2.2. Structuring phase 275 

2.2.1. CHOP-reduction of external operating conditions 276 

In order to reduce computation time, external operating conditions are reduced using the Characteristic 277 

Operating Pattern (CHOP) method introduced by Lythcke-Jørgensen et al. [49]. The CHOP method is a 278 

visually-based aggregation method for clustering data on external operating conditions. Aggregation is 279 

conducted based on important parameter values rather than time of occurrence, thereby preserving 280 

important information on short-term relations between the relevant operating parameters. The CHOP 281 

method is briefly introduced below. Details on contents, validation, and application of the CHOP method 282 

have been given previously [49]. 283 

The CHOP method assumes quasi-static operation and is applicable on datasets in the form of operating 284 

points   , with each point being characterised by a year of occurrence after operation initiation   , a 285 

duration   , and a number of operating condition parameters   . 286 

                  (1) 287 

A principal sketch of the data aggregation principle applied in the CHOP method is presented in Figure 4. 288 

The CHOP method consists of the three principal steps, which are described below: 289 

1: Entity selection 290 

In the first step of the CHOP-method, the user has to identify the relevant volatile operating parameters   291 

for the FMG of interest. The parameters selected are to be seen as boundary conditions for the operation 292 

of the FMG, and parameter values are therefore assumed to be unaffected by FMG operation. This 293 

assumption needs to be validated, perhaps à posteriori, when applying the design methodology. Relevant 294 

operating parameters could be power price, fossil fuel prices, and CO2 tax schemes, depending on the 295 

processes considered for the FMG and the energy system of interest. If price functions can be established 296 

for some boundary conditions as a function of FMG operation, the function constants can be captured in 297 

the vector    as well.  298 
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2: Clustering criteria 299 

Having identified the relevant parameters  , the second step is to define the criteria for clustering 300 

operating points. This is done by splitting the value range of each relevant parameter   into a number of 301 

characteristic intervals,   , using a graphic-based two-step approach based on the cumulative parameter 302 

curve. The process is illustrated in Figure 5 with power price chosen as parameter. 303 

a) Important values: Some parameter values may be of special interest, making it relevant to 304 

introduce a break at these points. For instance, for the power price example, it may be relevant to 305 

introduce a break at a power price of 0.00 Euro/MWh to make sure that negative prices are 306 

grouped together. Also, if an operating decision, e.g. turning on a piece of equipment, is dependent 307 

on a given power price, an interval break should be introduced at this price as well. 308 

b) Even division: If the already set break-points are far from each other in terms of both parameter 309 

value and duration, it is suggested that additional interval breaks are introduced to minimize the 310 

span. The break-points should be located such that the parameter value range is constant for each 311 

of the intervals. 312 

3: Cluster procedure 313 

Having defined the clustering criteria, the final step is to cluster the data in order to establish the final 314 

CHOP-groups    to replace the initial dataset of operating points   . Each    is characterised by a unique 315 

combination of characteristic parameter intervals, causing the maximum number of CHOP-groups to be: 316 

                   (2) 317 

All initial operating points    are sorted into the CHOP groups    based on parameter values. Any     with 318 

no    belonging to it is discarded. Each included    becomes an operating point in the final CHOP-reduced 319 

dataset characterised by a duration    (the sum of durations of the aggregated data points), a present value 320 

factor      , and a number of operating condition parameters   , which are the weighted average 321 

parameter values of the aggregated data points.  322 

                     (3) 323 
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                 (4) 324 

       
  

     
            (5) 325 

   
           

  
     (6) 326 

with   being the annual discount rate. 327 

If investment planning is not taken into account, a single CHOP-reduced dataset can be used for 328 

representing operating conditions over the lifetime of the FMG to be designed. In case investment planning 329 

is to be considered, one has to define a number intervals at the end of which novel investments are 330 

allowed, e.g. every 5th year, as suggested by Liu et al. [18]. If so, individual CHOP dataset must be developed 331 

for each investment interval, increasing the overall number of periods significantly in the final optimization 332 

model. 333 

2.2.2. Surrogate modelling 334 

In the design methodology, process and market models are reduced to step-wise linearized surrogate 335 

models in order to fit them into the optimization model developed. A generic illustration of a surrogate 336 

process model             defined by a dimension    and load     , is presented in Figure 6. 337 

Each surrogate process model            is characterized by: A number of mass flows into the process 338 

               , and mass flows out of the process                 ; a number of internal thermal energy 339 

flows                      , thermal energy flows into the process                , and thermal energy flows 340 

out of the process                 ; plus investment costs           and operating costs           . 341 

Furthermore, dimensional and operational constraints may be associated with each           . Each mass 342 

flow function                and operating cost function                must be a linear or step-wise linear 343 

function of the load      as defined in equations (7) and (8). Each thermal energy flow function                344 

is characterized by an inlet temperature      , an outlet temperature       , and a heat flow capacity 345 
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                as defined in equation (9), with the latter being a linear or step-wise linear function of the 346 

load      as defined in equation (10). 347 

                                 
                        

                        
 

   (7) 348 

                                 
                        

                        
 

   (8) 349 

                                               (9) 350 

                                  
                        

                        
 

   (10) 351 

In the equations,         are the load intervals for which the step-wise linear functions apply, while 352 

              represent linear function constants. Note that power flows are modelled as mass flows as 353 

they do not require quality differentiation in process integration methods. 354 

To represent possible economy of scale effects, power laws [51] are used to calculate investment costs 355 

           of the surrogate process models as a function of the dimension    and a scaling constant     : 356 

                    
  

   
 
    

    (11) 357 

with         being the reference investment cost and     the reference dimension of the process  . 358 

Multiple process models may be merged into combined surrogate models if they are synchronized, i.e. their 359 

dimensions are aligned and they share the same load pattern at all times. Processes with non-synchronised 360 

dimensions and load patterns must be assigned individual surrogate models. 361 

A generic illustration of surrogate models for product or service markets,      , thermal energy markets 362 

       , and local biomass markets          , which are functions of the FMG load vectors   , are 363 

presented in Figure 7. 364 

Each surrogate product market model   is characterized by: Mass flows of bought and sold products 365 

           ,          ; product price as a function of FMG operation     ; and production and demand 366 
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constraints. Each surrogate thermal energy market model     is characterised by: Forward and return 367 

thermal energy flows             ,            ; thermal energy service price as a function of FMG operation 368 

      ; temperatures of the thermal flows         ,        ; and generation and demand constraints. Each 369 

surrogate local biomass market model is characterized by a mass flow of biomass            and a vector 370 

of marginal biomass costs           as functions of the annual biomass demand      , as described in 371 

more detail in Section 2.2.3. 372 

2.2.3. Biomass supply chain modelling 373 

If local biomass resources are to be consumed, a biomass supply chain model must be established to relate 374 

the marginal biomass unit cost to the biomass feedstock consumption. As discussed by e.g. Jack [50] and 375 

Boldrin et al. [52], transportation costs may be central of the economic analysis of local biomass resources. 376 

In the present methodology, a generic biomass supply chain model is integrated analogous to the one 377 

developed for sugar beet by Boldrin et al. [52]. 378 

In the model, the biomass unit cost           as a function of the annual biomass quantity demanded       379 

is assumed to consist of two components, namely a reference cost     and a cost for transportation, 380 

            . The reference cost is a fixed cost representing the price paid to the local farmers for the 381 

biomass, while the transportation cost represents the variable costs of logistics for delivering biomass to 382 

the FMG. 383 

                               (12) 384 

In order to calculate             , the land around the FMG is assumed divided as illustrated in Figure 8. 385 

It is assumed that the transportation cost for all biomass cultivated in an area    is constant and equal to 386 

the cost of transporting the biomass the mean transportation distance      , which is calculated as 387 

             
       

  
      (13) 388 

The marginal biomass unit cost         is then calculated as 389 
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   (14) 390 

The annual biomass cultivation    in each area    is calculated from the input data on local resources. 391 

The identified marginal biomass costs are included in the CHOP-reduced dataset for external operating 392 

conditions. This implies that any variation in the marginal biomass costs over the seasons or years can be 393 

taken into account in the optimization model. If several local biomass feedstocks are considered for 394 

processing, multiple BCM models can be defined in the design methodology. 395 

2.3. Optimization phase 396 

The optimization phase of the design methodology is based on a genetic algorithm and a multi-period 397 

mixed integer-linear programming (MILP) model from the OSMOSE software [48], which is developed at 398 

École Polytechnique Fédérale de Lausanne, Industrial Process and Energy Systems Engineering lab. In short, 399 

the optimization phase consists of three steps: 1. A genetic algorithm, used for selecting, locating, and 400 

dimensioning processes to be included in an FMG, and deciding upon possible investment plans; 2. a multi-401 

period MILP model for optimizing process integration and operation of the given processes over the 402 

lifetime of the facility, and 3. a post calculation step for calculating the overarching objective function 403 

values of each optimized design. The calculated objective function values are provided as feedback to the 404 

genetic algorithm. The three steps are described in detail below. 405 

2.3.1. Genetic algorithm 406 

A genetic algorithm developed at EPFL [48] is used for selecting, locating and dimensioning processes to be 407 

included in the FMG, and for determining the strategy if investment planning is considered. The genetic 408 

algorithm is preferred as the master optimization algorithm as it can be used for solving linear as well as 409 

non-linear models and is capable of conducting multi-objective optimization [53]. 410 
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In short, a genetic algorithm is a heuristic optimization algorithm that imitates the process of natural 411 

selection for solving an optimization problem. The variables of the optimization problem are seen as ‘genes’, 412 

while the objective function or functions describe the ‘Darwinian fitness’ of a solution. To start with, a 413 

population of a defined number of solutions with randomly assigned genes is generated, and the fitness of 414 

each solution is assessed. Next, a second population is ‘bred’ from a selected number of well-performing 415 

‘parent’ solutions from the first population. The new solutions inherit genes from the parent solutions as 416 

defined by the genetic operator crossover, while some of the inherited genes may be altered by the genetic 417 

operator called mutation. The genetic algorithm then iterates over a defined number of generations in 418 

search for optimal combinations of genes. 419 

When running the genetic algorithm in OSMOSE, one defines the population size and number of 420 

generations, while the algorithm has pre-defined settings for selection, mutation, and crossover [48]. For 421 

general information on genetic algorithms, consult e.g. [54]. 422 

The objectives of the genetic algorithm are to minimize the negative net present value            and 423 

the global warming potential               . Variables considered are   , the decision of whether or 424 

not a process or piece of equipment   should be installed  at a given location;   , the dimension of  ; and 425 

  , the installation delay of   in years. The optimization problem to be solved by the genetic algorithm in 426 

the design methodology can be written in condensed form as 427 

 
 
 
 

 
 
           

           

              
 

              
        

                  
  

     (15) 428 

Infrastructure for connecting facility locations is dimensioned by the genetic algorithm as well. The 429 

methodology is therefore not advantageous for systems with a large number of location options. Back-up 430 

utility processes are not dimensioned by the genetic algorithm, but by the MILP model based on required 431 

maximum capacities over the expected operating pattern. 432 
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2.3.2. Mixed integer-linear programming model 433 

Given the selection and location  , the dimension  , and the time of instalment   for all processes  , 434 

process integration and operation optimization over the lifetime of the FMG can be conducted. In order to 435 

reduce computation time and to guarantee that global optimality is reached for the operation optimization, 436 

a multi-period mixed integer-linear programming (MILP) model [48] is established to minimize operation 437 

costs              of the given FMG layout in each CHOP group  , which in total represents operation 438 

optimization over the lifetime of the facility. The variables are:     , the decision on whether a process   is 439 

running or shut down in period  ; and     , the load of the process if it is running. 440 

The MILP model is constructed so that each type of mass flow in the system has its own layer  . Mass 441 

balance applies for each layer over each period   and is included as a constraint in the MILP model. 442 

                (16) 443 

Special layers are constructed for thermal energy flows, for which pinch analysis [55] is applied to optimize 444 

heat integration. As heat integration over geographical distances may not be feasible, a thermal energy 445 

layer must be defined for each area within which heat integration is feasible. If all facilities considered in an 446 

FMG are co-located, it may be sufficient to define a single thermal energy layer. 447 

As mentioned previously, hot and cold thermal energy flows          from processes and markets are 448 

assumed to have step-wise constant heat capacity flow rates           over their temperature ranges. 449 

Assuming a pinch temperature difference of 10K, the temperatures of hot streams are shifted 5K up and 450 

the temperatures of cold streams are shifted 5K down. For each thermal layer in the FMG model, enthalpy 451 

balances    are calculated for each temperature interval  : 452 

                               (17) 453 

To satisfy the first law of thermodynamics, the sum of all temperature interval enthalpy flows in each 454 

thermal energy layer must be zero. Furthermore, the sum of enthalpy flows from the first temperature 455 

interval to any of the other temperature interval in each thermal energy layer must never be below zero to 456 

make sure that the 2nd law of thermodynamics is satisfied: 457 
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              (18) 458 

      
 
                               (19) 459 

The optimization problem to be solved by the MILP model in the design methodology can be written in 460 

condensed form as 461 

 
 
 
 
 
 

 
 
 
 
 

              

                    

              
          

                    

               
              

                           

     (20) 462 

Once the MILP model has been solved, the global warming impact of the optimized operation              463 

is calculated for each period  . 464 

In OSMOSE [48], the required investment in heat exchangers        is estimated as a part of the pinch 465 

analysis for each operating mode   using a method from [56]. For more information, consult Bolliger [48]. 466 

In the MILP model, no constraint is put on the dimensions of utility services     in order to make sure that 467 

constraints (17) and (18) are satisfied at all operating points. Once the MILP model has been solved,     is 468 

identified as the largest required utility service demand experienced over the lifetime of the system, and 469 

the investment cost is calculated using the power law function given in equation (11). 470 

2.3.3. Post computation 471 

Once the MILP operation optimization has been conducted, a post-calculation step is used for evaluating 472 

the overall performance of the optimized FMG with respect to NPV and GWP100a. 473 

First, the heat exchanger network investment cost,     , is defined as the largest estimated heat 474 

exchanger investment cost as identified by OSMOSE [48]: 475 

                    (21) 476 

The NPV,   , of the design is calculated as 477 



22 
 

           
          

                          (22) 478 

with     being the facility lifetime and   the annual discount rate. 479 

The global warming potential    of the design is calculated as 480 

                                             (23) 481 

Here,          is the global warming potential related to the production, installation, and scraping of the 482 

heat exchanger network,            is the global warming potential related to the production, installation, 483 

and scraping of the process      , and                 is the overall global warming potential of the FMG 484 

operation in period  . 485 

The calculated NPV and GWP100a are provided as feedback to the genetic algorithm. All data on optimized 486 

designs are stored in a database for later evaluation. 487 

2.4. Evaluation phase 488 

2.4.1. Pareto assembly 489 

Following the optimization phase, a Pareto frontier is assembled for optimized design solutions with 490 

respect to the two objectives, NPV and GWP100a. The Pareto frontier illustrates the border between the 491 

feasible solution space and the infeasible solution space of the optimization problem. Designs placed on the 492 

Pareto frontier are called efficient designs, as they represent the optimal pay-off between the two 493 

objectives of the optimization problem. An example of a Pareto frontier is developed as a part of the case 494 

study in Section 3 and can be seen in Figure 11. 495 

2.4.2. Sensitivity analysis and uncertainty analysis 496 

 Design optimization of FMGs involves many sources of uncertainty, e.g. technology learning curves, energy 497 

system development, policy schemes, estimated investment, operating costs etc. It is therefore important 498 

to assess variations in the performance of optimized designs as functions of input data uncertainty. In the 499 

present design methodology, uncertainties with respect to external operating conditions (energy systems) 500 
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are considered by solving the developed optimization problem for various scenarios, while uncertainties of 501 

economic and environmental parameters are considered for a number of selected designs in each scenario 502 

using the following three-step procedure for assessing output uncertainty: 503 

1. Selection of a number of interesting designs. 504 

2. Morris screening [57] is applied on each selected design for assessing the relative impact on 505 

performance variability from input parameter uncertainty. 506 

3. Monte Carlo simulation is applied for quantifying performance variability of each selected design. 507 

Uncertainties regarding topological parameters, such as equipment failure or forced outages, are not 508 

considered in the design methodology. 509 

Morris screening: Extended Morris screening [57][58] is a global sensitivity analysis method that is applied 510 

for assessing how the various input data uncertainties affect variations in model outputs. The method relies 511 

on estimation of elementary effect    on each model output from each input parameter  . The main 512 

advantage of Morris screening is its low computational cost when compared to other global sensitivity 513 

analysis methods. The method uses a special sampling technique, Morris sampling, and it has two degrees 514 

of freedom to be specified by the user:  , the number of value levels that an uncertain input parameter can 515 

take within its range; and  , the number of elementary effects to be calculated for each input in order to 516 

identify the elementary effect distributions        for each parameter    on each output function  . 517 

The elementary effect vector      for a parameter    is calculated as: 518 

     
                    

 
     (24) 519 

Here,      are model output functions, and   is the total number of uncertain model parameters 520 

considered.  , a perturbation factor for the input parameters, is optimal when calculated as: 521 

  
 

      
      (25) 522 

Once all      have been calculated for   random samples of input parameters, sigma-scaling [58] of      523 

is applied so that the impacts of input parameters on various outputs can be compared: 524 
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     (26) 525 

Here,                        is the standard deviation of the input parameter   , while 526 

                      is the standard deviation of the output   from simulation results. 527 

Based on the simulation results, the means and standard deviations of all sigma-scaled elementary effects 528 

      are calculated and assembled in scatter plots. In each plot, two lines corresponding to the positive 529 

and negative double estimated standard error of the mean,      , are drawn: 530 

         
                   

  
    (27) 531 

As described by Sin et al. [58], these lines may be used for dividing uncertain input parameters into 532 

significant or negligible with respect to model output variation. If the elementary effect of a parameter falls 533 

within the two lines, its impact can be interpreted as negligible on the model output variation. 534 

An example of the application of Morris screening and interpretation of its results is given in the case study 535 

in Section 3. 536 

Monte Carlo simulation: Following the Morris screening, the Monte Carlo simulation procedure presented 537 

by Sin et al. [58] is applied for quantifying the overall model output variation with respect to each of the 538 

two performance objectives. The Monte Carlo simulation is a technique for investigating output variability 539 

through uncertainty sampling and probability statistics. It has been chosen for the design methodology as it 540 

may provide uncertainty results without necessitating modifications or manipulations of the original 541 

models and because it facilitates identification of nonlinearities, thresholds, and discontinuities [59]. The 542 

procedure applied in the design methodology involves three steps: 543 

1. Specifying input uncertainty: In general, the Monte Carlo simulations may consider uncertainty 544 

distributions   for all input data. However, in order to reduce the number of parameter 545 

distributions to sample from, the parameters identified to have insignificant impact on model 546 

output variability in the Morris screening are not considered in the input uncertainty for the Monte 547 

Carlo simulations. 548 
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2. Sampling from input uncertainty: In order to obtain dense stratification over the range of each 549 

sampled variable without having to define the stratification manually, the Latin Hypercube 550 

Sampling method [60] is applied for sampling from input uncertainty. 551 

3. Evaluating the model for sampled input uncertainty: The optimization model is run for all sampled 552 

datasets. The Monte Carlo results provide a cumulative distribution function of the output 553 

functions which may be evaluated using basic statistics. 554 

2.5. Outputs 555 

The design methodology yields two overall outputs: 556 

1. An assembled Pareto curve and a database of feasible designs that have been optimized with 557 

respect to NPV and GWP100a. 558 

2. For selected designs: 559 

a. The sigma-scaled elementary effect of each input parameter   on each model output. 560 

b. A quantification of model output variation as a function of input uncertainty. 561 

To demonstrate the use of the design methodology, it is applied in a case study in Section 3. 562 

3. Case study: Conceptual FMG 563 

In this section, the developed design methodology is applied in a simple case study which treats the retrofit 564 

of an existing combined cycle combined heat and power (CHP) plant. With the aim of strengthening the 565 

integration between layers of the energy system, a number of routes for converting local biomass into 566 

power, heating, fuels, and other products are considered for integration in the CHP plant, and the impact of 567 

such integration on the overall economic and environmental performance of the plant is then assessed. The 568 

retrofit options considered include the possible installation of: A straw-based cellulosic ethanol production 569 

facility based on IBUS technology [61]; a biomethane facility, which includes an anaerobic digester 570 

producing biogas from manure, industrial waste, and ethanol production molasses, with an integrated 571 
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biogas upgrading facility; a biomass boiler and a natural gas boiler for utility heat; and a ground-based 572 

compression heat pump for district heating generation. A superstructure of possible retrofit options is 573 

presented in Figure 9. All processes are assumed to be co-located, while investment planning is neglected. 574 

A preliminary version of the case study was presented in [62]. 575 

3.1. Input data and structuring 576 

3.1.1. Surrogate process models 577 

A surrogate model of a gas turbine (GT) and a bottoming steam Rankine cycle (SR) were developed based 578 

on data from the Danish back-pressure combined cycle CHP plant ‘Silkeborg Kraftvarmeværk’ [63]. In the 579 

surrogate models, temperature levels were assumed to be load-independent, while gas consumption, GT 580 

power generation, and off-gasses heat flow capacity were assumed to be directly proportional to the GT 581 

load    . The heat and power generation of the SR were assumed directly proportional to the SR load    . 582 

Both the GT and the SR were assumed to operate adiabatically. Data used for developing the GT and SR 583 

surrogate models are presented in Table 1. 584 

A surrogate model of an IBUS ethanol facility (IB) was developed based on a validated IBUS facility model by 585 

Lythcke-Jørgensen et al. [14][64], with the modification that thermal separation stages were replaced by 586 

mechanical separation stages. A surrogate model of a biomethane facility (AD), consisting of a thermophilic 587 

anaerobic digestion reactor operating at 55◦C and a biogas upgrading facility, was developed based on 588 

models presented by Evald et al. [65]. The IB and the AD were assumed to have zero load flexibility. 589 

Surrogate models of a gas boiler (GB), a biomass boiler (BB), and a district heating heat pump (HP) were 590 

developed based on data presented by the Danish Energy Agency [66]. 591 

Economic data on the surrogate models are presented in Table 2. In the calculations, a plant lifetime of 592 

             and an annual discount rate of        were assumed. For power law investment 593 

calculations as defined in equation (11), an investment scaling constant of         was used. 594 
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Thermal energy flows as functions of process variables are presented in Table 3. It was assumed that a cold 595 

water reservoir with a temperature of 15◦C was available for balancing heat flows in the system. As all 596 

processes were considered to be co-located, a single thermal energy layer was defined in the model. 597 

Mass flows in the various layers as functions of process variables are presented in Tables 4-8. Note that 598 

power flows were modelled as mass flows in a separate layer. Market surrogate models were introduced 599 

into each layer to ensure mass balances. 600 

3.1.2. Energy system, market, and environmental impact data 601 

For the case study, the power price     and the relative district heating demand     were identified as 602 

relevant external operating parameters. A CHOP-reduced dataset of     and         based on historical 603 

data for western Denmark over the period primo 2010-ultimo 2014 has been presented by Lythcke-604 

Jørgensen et al. [49]. This dataset was applied in the present case study as representative for operating 605 

conditions over the lifetime of the studied FMG. The CHOP-reduced dataset is presented in Tables 9-12. A 606 

scatter plot of original and reduced operating condition data points is presented in Figure 10. 607 

For simplicity, the environmental objective of the study only considered CO2-emissions from facility 608 

production and avoided CO2-emissions from displaced external production. Average emission values were 609 

in general applied for the displaced production. Marginal values may, however, be utilised, e.g. in 610 

combination with energy system analysis [67]. Economic and environmental data on consumed and sold 611 

products are presented in Table 13. Biomass was assumed to be CO2 neutral. Manure was assumed to be 612 

delivered free of charge by local farmers in exchange for free, digested fertilizer. Manure emission impacts 613 

were not considered, although anaerobic digestion of manure may reduce greenhouse gas emissions 614 

significantly as compared to conventional use of undigested manure as fertilizer. 615 

3.1.3. Biomass supply chain model 616 

Apart from the straw cost paid to the producers as indicated in Table 13, an additional cost was placed on 617 

straw import to represent costs for transport and logistics. The company EA Energy Analysis [73] has 618 
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reported a fixed cost of 1.07 Euro/GJ for straw logistics in Denmark, including transportation for up to 10 619 

km, while an additional cost of 0.009 Euro/(GJ/km) is charged for every additional kilometre. Assuming a 620 

mean winter wheat straw yield of 4,183 kg/ha, as suggested by Bentsen et al. [74], and that 20% of the area 621 

around the facility has winter wheat cultivation, a surrogate biomass supply chain model was developed. 622 

The model is presented in Table 14. It was not assumed feasible to import biomass from outside the 50 km 623 

radius area around the facility. 624 

3.1.4. Optimization constraints 625 

Design variables and constraints in the case study are summarized in Table 15. As previously mentioned, 626 

investment planning was not considered in the present case. 627 

Operation variables and constraints are summarized in Table 16 and equation (28). As the GB was 628 

considered a back-up utility, it was dimensioned in the operation optimization step based on maximum 629 

required load. Note that the ethanol facility and the combined biogas facility were assumed to be inflexible, 630 

implying that load variations are not considered in the operation optimization. The facility was considered 631 

to be the sole provider of heating for the district heating grid, and, consequently, the district heating 632 

generation must meet the demand at all times. 633 

                (28) 634 

In the optimization phase, the genetic algorithm was run for a population size of 50 over 5 generations. 635 

3.1.5. Sensitivity and uncertainty analysis 636 

The uncertain input parameters considered in the case study and their distributions are given in Table 17. 637 

The reference investment costs and the ethanol price were given a relative uncertainty of      with a 638 

uniform distribution to represent cost and market uncertainties. The CO2 emissions displaced from the 639 

ethanol produced       was assumed to vary in the range           with a uniform distribution to 640 

represent the facts that it may not be gasoline that is replaced by the produced ethanol, and that the straw 641 
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consumed may not be CO2 neutral. Finally, the investment scaling constant was given an uncertainty range 642 

of           with a uniform distribution to represent the uncertainties related to the economy of scale 643 

benefits from investments. 644 

Morris screening was conducted with             . For each Monte Carlo simulation, a sample of 250 645 

data points was generated using Latin Hypercube Sampling [60] and assuming zero correlation between 646 

uncertainties in input parameters. 647 

3.2. Results and evaluation 648 

A database of feasible designs with optimized operation was obtained from running the optimization model. 649 

A scatter plot of the optimized designs with respect to NPV and CO2 emission impact is shown in Figure 11. 650 

In general, it was found that the larger the dimension of the biomass treatment facilities, the lower the NPV 651 

and the lower the total CO2 emission impact, illustrating the cost of avoided CO2 emissions in the case study. 652 

It was further found that the cost of avoided CO2 emission was higher for designs including both ethanol 653 

and biomethane production than for designs with only ethanol production. This trend is primarily caused by 654 

two effects: First of all, avoided CH4 emissions from undigested manure were not considered in the 655 

calculations, which would expectedly reduce the total CO2 emission impacts from designs with biogas 656 

production significantly. Secondly, a GB was installed as back-up utility heat source, and it was used in 657 

periods where it was economically unfavourable to operate the gas turbine while power for running the 658 

operation was imported from the grid. Combined, this made the overall biomethane production 659 

unfavourable from both an economic and an environmental perspective in the case study. 660 

The results further indicate that the NPV is reduced while the CO2 emission impact is only slightly affected 661 

for larger biomass boiler dimensions, suggesting that the biomass boiler is hardly used in the operation 662 

optimization for economic reasons. This opposes the current (2015) trend in Denmark where biomass, 663 

which is currently tax free, is replacing the taxed natural gas in the heating sector. The reason for this 664 

difference is the fact that tax and subsidy schemes are not considered in the calculations. The results also 665 



30 
 

suggest that operation with a district heating heat pump is favourable for specific periods, but that the 666 

investment costs make the overall economic performance of heat pumps unfavourable. Again, it must be 667 

stressed that taxes and subsidy schemes were not considered in the calculations. 668 

Three interesting designs, I, II, and III, were chosen for further investigation. Here, I is the identified retrofit 669 

design with the highest NPV; II is the identified retrofit design with the lowest CO2-emission impact; and III 670 

is the retrofit design with the largest NPV that includes biomethane production. The characteristics of the 671 

designs are described in Table 18, together with the performance of the reference facility (Ref). 672 

Based on the input parameter uncertainties defined in Table 17, Morris screening was applied for 673 

identifying elementary effects on NPV and GWP100a from each of the uncertain input parameters in each 674 

of the three selected designs. An example of an elementary effect histogram obtained using Morris 675 

screening is plotted in Figure 12. 676 

The means and standard deviation of the sigma-scaled elementary effects from uncertain input parameters 677 

on each of the model outputs are plotted for the three selected designs in Figure 13. The wedges in the 678 

figures represent the standard error of the mean as defined in equation (25). Elementary effects with mean 679 

and standard deviations of zero are not labelled in the figures. 680 

The scatter plots illustrate the relative importance of each of the input parameter uncertainties on each of 681 

the model outputs. From Figure 13, it is seen that the NPV of design I would be significantly affected by 682 

uncertainties in reference ethanol facility investment cost          and investment scaling constant   , as 683 

the mean and standard deviations of their elementary effects’ on NPV are far outside the standard-error-684 

of-the-mean wedge. Furthermore, it is seen that the impacts of          and    are either correlated with 685 

other uncertain input parameters, non-linear, or both, as their standard deviations are different from zero. 686 

The ethanol price      on the other hand was found to have a linear impact on NPV as the elementary 687 

effect has a standard deviation of zero. These observations can easily be confirmed by investigating the 688 

model structure. It is further seen that the NPV of design I was neither affected by the displaced CO2 689 
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emission from ethanol      nor the reference investment costs of the biomethane facility          and 690 

district heating heat pump         . This is evident from the fact that the dimension of the heat pump was 691 

negligible, no combined biogas facility was installed, and no economic cost was associated with CO2 692 

emissions. Opposed to this, as expected,      is found to be the only parameter affecting the total CO2 693 

emission impact. 694 

Similarly, observations on impact of parameter uncertainties were made for designs II and III based on 695 

Figure 13. For II, it was found that      had significantly more impact than the other designs. This is due to 696 

the fact that the ethanol facility was markedly larger, causing ethanol sales to have a relatively larger 697 

impact on the NPV. For III, it was found that          was no longer negligible, as a biomethane facility was 698 

in fact installed. 699 

Based on the Morris screening results, Monte Carlo simulations were conducted for each of the three 700 

designs considering non-negligible uncertainties in input parameters. The parameters considered are 701 

summarized in Table 19. The Latin Hypercube Sampling method was applied for generating samples of each 702 

250 data points for use in the Monte Carlo simulations. A visual representation of the Latin Hypercube 703 

sample used in the Monte Carlo simulation for design I is presented in Figure 14. 704 

Running Monte Carlo simulations for each of the three selected designs, the resulting 10th to 90th percentile 705 

interval of predicted NPV and 0th to 90th percentile interval of predicted GWP100a are indicated for each of 706 

the three selected designs in Figure 15. 707 

The figure illustrates the variability in performance of the selected designs as functions of the defined input 708 

uncertainty. It is seen how the NPV variation is somewhat evenly distributed around the predicted value, 709 

which is to be expected as uncertainties in economic parameters are all considered to be evenly and 710 

uniformly distributed around the reference value. It is furthermore seen that the predicted CO2 emission 711 

impact in the deterministic run is the lowest possible as the considered uncertainties in CO2 emission 712 

impact can only lead to higher CO2 emission impacts. 713 
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In general, the performance variations are found to be larger for design II, caused by larger retrofit 714 

investments and a larger ethanol production, implying that the relative uncertainties in investments, 715 

ethanol prices and replaced CO2 emissions from produced ethanol will have a larger impact in absolute 716 

terms. 717 

Even with 10th to 90th percentile intervals, design I will outperform design III with respect to NPV, whereas 718 

the total CO2 emission impact is somewhat similar, suggesting that III should not be selected for the given 719 

case. Considering the found performance intervals, design I has a CO2 reduction price of 4.9-30.3 Euro/ton, 720 

while design II has a CO2 reduction price of 8.4-32.1 Euro/ton. Hence, in the marginal case, the results 721 

suggest that design I should be preferred if cost-efficient CO2 reductions are desired. 722 

A central aspect of the design methodology is the application of systematic process integration. To assess 723 

the importance of this feature, the performances of each of the three selected designs were evaluated 724 

without consideration of process integration, i.e. the combined cycle CHP and the biomass treatment 725 

facilities were operated separately. The change in performance is illustrated in Figure 16. 726 

It is clear that without process integration, all three designs obtained lower NPV and higher CO2 emission 727 

impacts. Also, it appears that the larger the dimensions of the biomass processing equipment, the larger 728 

the absolute reduction in performance. Altogether, this demonstrates the importance of considering 729 

process integration, both when developing smart energy systems in general and when designing FMGs in 730 

particular. 731 

4. Discussion and perspective 732 

This paper presents a generic methodology for optimizing the design of flexible multi-generation systems 733 

(FMGs), which are systems consisting of integrated and flexibly operated facilities that together provide 734 

multiple links between layers of the energy system. 735 
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One of the challenges of the presented design methodology is the fact that it is based on partial analysis, 736 

which implies that the impact on system level of FMG operation is neglected. However, as the central 737 

hypotheses for FMGs consider impacts on system levels, it is crucial that the aggregated impact of FMGs is 738 

assessed. For instance, if a number of FMGs are set to balance the power system by generating electricity in 739 

periods with no generation from renewable sources, they may become market dominating and thereby 740 

affect the power prices - a situation that makes partial analysis insufficient. One way of assessing the 741 

aggregated impact of FMG operation is to apply the developed design methodology for identification of 742 

preliminary designs of FMGs, and then integrate these designs in an energy system model in order to assess 743 

the system impact. The results from the energy system analysis could then be provided as feedback to the 744 

design methodology in an iterative loop. This topic will be treated in future research by the group. 745 

One of the shortcomings of the design methodology is the fact that thermal storages and dynamic 746 

operation constraints cannot be considered due to the application of the CHOP method [49]. The latter is 747 

applied to reduce computation times when searching for optimal designs while still maintaining detailed 748 

information on flexible operating conditions, which was previously proven to be crucial for obtaining 749 

optimal designs [62]. An advantage of the CHOP method is the fact that it is capable of capturing non-cyclic 750 

patterns in the energy system as opposed to most other energy system data aggregation methods, e.g. 751 

standard days, standard periods, average periods etc. [49]. To overcome the shortcoming of dynamic 752 

operation, the optimization phase of the methodology can be divided into two parts: A preliminary part 753 

where CHOP-reduced energy system data are used for the preliminary design, and a second part where 754 

chronological energy system data are used for detailed design and performance evaluation. This is 755 

analogous to the methodology presented by Rubio-Maya et al. [29], [30]. The second step would then allow 756 

for the consideration of thermal energy storages and dynamic operational constraints, albeit at the cost of 757 

increased computational time. Whether or not this is the right way to proceed is a relevant topic for further 758 

investigation. 759 
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In the design methodology, a genetic algorithm is used as the master algorithm to be able to digest all sorts 760 

of models and scan the solution space for efficient solutions. However, being heuristic by nature, it cannot 761 

guarantee optimality of the solutions. For example, in the simple case study considered, the optimized 762 

retrofit design with the highest NPV, ‘I’, had a biomass boiler of 1.1 MJ/s and a heat pump of 0.3 MJ/s 763 

installed, while the ethanol facility straw processing capacity was 5.2 kg/s. If the biomass boiler and heat 764 

pumps are removed, and the ethanol facility dimension is reduced to the minimum, i.e. 5.0 kg/s, the NPV 765 

would increase from 14.6 MEuro to 24.5 MEuro. This illustrates one of the drawbacks of using genetic 766 

algorithms: They may approximate the optimal or efficient solutions, but are not guaranteed to find them. 767 

However, as the present methodology is focussed on pre-feasibility studies of FMGs, the genetic algorithm 768 

is considered advantageous as it efficiently ‘separates the wheat from the chaff’.  769 

One of the novelties of the method is the consideration of local biomass supply chains, which is likely to 770 

have an impact on the dimensioning of biomass-processing FMGs [50]. In a similar manner, local industry 771 

and its demand for process heat, cooling, and other energy services ought to be considered when designing 772 

FMGs. If local industry is systematically considered for process integration in FMG studies, the overall 773 

energy and exergy efficiency of the local community may be increased further, and the industry demands 774 

may impact the dimensioning of FMGs as well. Thus, FMGs may be considered as supply facilities in local 775 

energy hubs or industrial symbioses, characterized by a high degree of mass and energy integration and 776 

reduced environmental impacts when compared to stand-alone industry. 777 

In general, it is relevant to allow for future retrofit options when designing complex systems like FMGs, as 778 

discussed by Liu and Pistikopoulos [22]. However, inclusion of investment planning in the design 779 

methodology is challenging as both technological and system developments are hard to predict. Whether 780 

or not investment planning should be considered in pre-feasibility analysis depends on the case treated, 781 

but it is evident that the computational time would increase exponentially as multiple investment scenarios 782 

would have to be considered by the genetic algorithm. 783 
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Economic and environmental parameter uncertainties are efficiently handled in the design methodology 784 

using a combined Morris screening/Monte Carlo simulation approach. With regard to handling of energy 785 

system uncertainties in the design methodology, it is recommended that explorative scenarios are used to 786 

give a better overview of optimality differences between likely, but fundamentally different, energy system 787 

scenarios. It should be noted that the total computation time is approximately proportional to the number 788 

of scenarios investigated in the developed design methodology. In the present study, it took approximately 789 

84 hours to conduct all calculations on a laptop with an Intel® Core™ i7-3720QM CPU @ 2.60 GHz 790 

considering one energy system scenario. 791 

The present case study featured a socio-economic analysis as neither taxes nor subsidies were considered. 792 

In general, socio-economic analyses can be used for providing recommendations for policy makers. If the 793 

design methodology is used with the aim of guiding investment decisions, it would be relevant to conduct a 794 

private economic evaluation including taxes and subsidies. 795 

A significant outcome of the case study is the assessment of impact from systematic process integration in 796 

the design methodology. The results show how the selected designs become suboptimal when process 797 

integration is neglected, and thus underline the importance of including process integration when 798 

developing smart energy systems in general and when designing FMGs in particular.  799 

5. Conclusion 800 

 A generic methodology for optimizing the design of FMGs is presented which simultaneously consider the 801 

following issues: Selection, location, and dimensioning of processes; systematic heat and mass integration; 802 

flexible operation optimization with respect to both short-term market fluctuations and long-term energy 803 

system development; global sensitivity and uncertainty analysis; consideration of local biomass availability 804 

and biomass supply chains; variable part-load performance; investment planning; and multi-objective 805 

optimization considering net present value (NPV) and 100-years global warming potential (GWP100a). 806 
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The methodology was applied in a simple case study where cellulosic ethanol production and upgraded 807 

biogas production were considered for installation in an existing combined cycle combined heat and power 808 

plant. The integration of ethanol production yielded more efficient results with respect to NPV and total 809 

CO2 emission impact than did the integration of combined ethanol and biomethane production. However, 810 

the total CO2 emission impact might conceivably have been reduced significantly for designs with 811 

biomethane production if avoided CH4 emissions from conventional use of manure had been considered. 812 

The highest NPV and CO2 emission impact was obtained for the reference combined heat and power plant, 813 

illustrating that reducing CO2 emissions come at a cost. The case study further demonstrated how 814 

suboptimal designs would be obtained if systematic process integration was not considered, underlining 815 

the importance of considering systematic process integration when developing smart energy systems in 816 

general, and FMGs in particular. 817 

 The developed design methodology efficiently screens the solution space for promising FMG designs, and 818 

is capable of assessing the importance of parameter uncertainties as well as estimating the likely 819 

performance variation for the individual designs. Thus, the developed design methodology is useful for 820 

conducting quick and reliable pre-feasibility analyses for the development of FMG concepts. 821 
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Figure 1: Conceptual sketch of a flexible multi-generation system. Dotted arrows indicate a range of 

technological pathways for linking the energy system layers. 
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Figure 2: Visualization of how the design methodology interacts with models at various levels. 
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Figure 3: Design methodology structure. 
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Figure 4: Principal sketch of the data aggregation principle applied in the CHOP method. Operating points Oj 

are clustered and merged into CHOP groups Gi with aggregated weight factors. Figure from [49]. 
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Figure 5: Illustrative example of the suggested two-step approach for defining characteristic intervals based on the cumulative parameter curve (left). 

Interval break points are set for a) Important values, and b) Even division. The characteristic intervals are indicated on the second axis in b). Figure 

from [49]. 
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Figure 6: Generic illustration of a surrogate process model. 
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Figure 7: Generic illustration of a) a surrogate product or service market, b) a surrogate thermal energy market, and c) a surrogate local biomass 

market. 
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Figure 8: Applied land division around the FMG, with each circular area    being represented by an annual 

biomass production quantity   , a minimum transportation distance      and a maximum transportation 

distance   . The number of circular areas    is defined by the user. 
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Figure 9: Superstructure of considered retrofit options for the existing combined cycle CHP. The gas turbine and steam Rankine cycle are grey as they 

are already installed. 
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Figure 10: Scatter plot of reference operating points and CHOP groups with respect to power price and relative heat demand. 
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Figure 11: Scatter plot of optimized design solutions with respect to NPV and CO2 emission impact. The designs are clustered according to type of 

biomass treatment installed. The dotted line crudely illustrates the identified Pareto curve. The designs marked ‘I’, ‘II‘ and ‘III‘ are selected for further 

investigation. ‘Ref‘ is the evaluated performance of the reference combined cycle CHP. 
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Figure 12: Histogram – elementary effect on NPV from reference ethanol facility Investment cost for design 

I. 
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Figure 13: Means and standard deviations of sigma-scaled elementary effects on NPV (left) and total CO2 

emission impact (right) from uncertain input parameters for designs I (top), II (middle), and III (bottom).  
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Figure 14: Example of Latin Hypercube Sampling – sample used for Monte Carlo simulations for design I. 
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Figure 15: Scatter plot of optimized design solutions with respect to NPV and CO2-emission impact, with performance variability indicated for each of 

the three selected designs. NPV performance intervals represent 10th to 90th percentiles of predicted performance, while CO2 emission impact 

intervals represent 0th to 90th percentiles of predicted performance. 
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Figure 16: Performance of selected designs if systematic process integration had not been considered. 
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Table 1: Data used for developing gas turbine and bottoming steam Rankine cycle surrogate models 

Facility Variable Description Value Reference 

Gas turbine (GT)        Nominal power capacity 85 MW [63]  
             Nominal gas consumption 216.25 MW [63]a 

             Nominal off-gas heat flow 105.3 MJ/s [63]a 

         Off-gas temperature, before heat exchange 465◦C [63] 

          Off-gas temperature after heat exchange 68◦C [63] 

Rankine cycle (SR)        Nominal power capacity 23.3 MW [63]a 
        Nominal district heating generation 82.0 MJ/s [63]a 
                Turbine inlet pressure 15.5 bar assumption 

                Turbine inlet temperature 450◦C assumption 
a
: Calculated based on operation data from [63] 
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Table 2: Economic data on surrogate models 

Model Reference 
investment cost 

        

Reference operation and 
maintenance costs 

        

Reference 
dimension 

    

Gas turbine (GT) - 2.50 Euro/MWh power [66]  - 
Steam Rankine cycle (SR) - 2.50 Euro/MWh power [66] - 
Ethanol facility (IB) 256.0 MEuro [65] 35.9 MEuro/year [65] 13.9 kg/s straw [65] 
Biomethane facility (AD) 179.8 MEuro [65]  44.2 MEuro/year [65] 13.9 kg/s strawb [65] 
Gas boiler (GB) 2.0 MEuro [66] 0.41 Euro/MWh heat [66] 20 MJ/s [66] 
Biomass boiler (BB) 40 MEuro [66] 4.0 Euro/MWh heat [66] 50 MJ/s [66] 
District heating heat pump (HP) 6.8 MEuro [66] 0.50 Euro/MWh heat [66] 10 MJ/s [66] 
b
: The biogas upgrading facility is dimensioned to process all C5-molasses from the reference ethanol facility if installed. 
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Table 3: Thermal energy flow functions 

Process Flow-description Notation Type Function 
[MJ/s] 

         

Gas turbine (GT) Off-gas heat flow          Hot           465◦C /68◦C 

Steam Rankine cycle 
(SR) 

Water heating         Cold           120◦C /200◦C 

 Water evaporation         Cold           200◦C /200◦C 
 Steam superheating         Cold           200◦C /450◦C 
 Condensation        Hot           120◦C /120◦C 
Ethanol facility (IB) Steam generator, water 

heating 
         Cold           15◦C /192◦C 

 Steam generator, evaporation          Cold           192◦C /192◦C 

 Steam generator, 
superheating 

         Cold           192◦C /195◦C 

 Pretreatment, cooling 1          Hot           190◦C /100◦C 

 Pretreatment, cooling 2          Hot           100◦C /100◦C 

 Pretreatment, cooling 3          Hot           100◦C /80◦C 

 Pretreatment, cooling 4          Hot           100◦C /50◦C 

 Liquefaction cooling         Hot           50◦C /33◦C 

 Distillation, heating 1           Cold           100◦C /100◦C 
 Distillation, heating 2           Cold           33◦C /37◦C 
 Distillation, cooling 1           Cold           68◦C /68◦C 
 Distillation, cooling 2           Cold           100◦C /30◦C 

Biomethane facility 
(AD) 

Anaerobic digester, heating        Cold      
        

55◦C /55◦C 

 Gas upgrading heat loss        Hot      
        

100◦C /30◦C 

Gas boiler (GB) Gas boiler off-gas      Hot        465◦C /68◦C 
Biomass boiler (BB) Biomass boiler off-gas      Hot        465◦C /68◦C 
District heating heat 
pump (HP) 

Heat pump heat delivery      Hot        90◦C /90◦C 

District heating 
demand (DH) 

Heating of return flow      Cold     40◦C /80◦C 
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Table 4: Power flow functions 

Process Flow-description Notation Function [MW] 

Gas turbine (GT) GT power generation                  
Steam Rankine cycle (SR) SR power generation                   
Ethanol facility (IB) IB power consumption                    
Combined biogas facility (AD) AD power consumption                       
District heating heat pump (HP) HP power consumption                    
Power market Power market exchange         
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Table 5: Straw flow functions 

Process Flow-description Notation Function [MJ/s] 

Ethanol facility (IB) Ethanol straw consumption                      
Biomass boiler (BB) Biomass boiler straw consumption                       
Straw market Straw import         
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Table 6: Solid biofuel flow functions 

Process Flow-description Notation Function [MJ/s] 

Ethanol facility (IB) Ethanol solid biofuel production                      

Biomass boiler (BB) Biomass boiler biofuel consumption                                    

Solid biofuel market Solid biofuel export              
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Table 7: C5 residues flow functions 

Process Flow-description Notation Function [MJ/s] 

Ethanol facility (IB) Ethanol molasses production                  
Combined biogas facility (AD) Anaerobic digester molasses consumption                      
C5 residues market C5 residues export          
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Table 8: Natural gas flow functions 

Process Flow-description Notation Function [MJ/s] 

Gas turbine (GT) Gas turbine gas consumption                     

Combined biogas facility (AD) Upgraded biogas production                       

Gas boiler (GB) Gas boiler consumption                        

Natural gas market Natural gas market exchange          
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Table 9: Interval break points in the CHOP-reduced dataset. 

Interval break point 1 2 3 4 5 6 7 

Power price [Euro/MWh] 0.00 25.00 33.00 41.00 49.00 57.00 65.00 
Relative heat demand [-] 0.125 0.25 0.45 0.65 0.80 0.95 - 
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Table 10: Duration of the defined CHOP groups in hours. Note that the duration is multiplied by six to represent the 30-year 
lifetime of the facility rather than the 5-year period that the historical values are taken from. 

CHOP group duration [h] 
Heat interval \ power interval 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

1 0 1,926 2,136 1,836 1,452 330 60 0 
2 66 7,068 13,188 12,666 11,232 5,880 1,170 330 
3 54 3,690 8,298 10,038 8,400 6,900 2,442 1,068 
4 132 4,302 8,412 9,600 8,898 6,510 3,108 1,188 
5 432 5,682 10,944 12,978 9,390 6,834 3,462 1,638 
6 180 3,492 11,718 15,846 10,656 7,806 5,388 5,418 
7 0 276 1,134 2,190 1,602 1,170 1,062 1,266 
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Table 11: Relative heat demand of the defined CHOP groups 

Relative heat demand [-] 
Heat interval \ power interval 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

1 - 0.105 0.106 0.105 0.105 0.107 0.109 - 
2 0.204 0.178 0.180 0.182 0.186 0.191 0.199 0.210 
3 0.392 0.334 0.335 0.334 0.334 0.344 0.348 0.339 
4 0.563 0.553 0.546 0.550 0.547 0.544 0.549 0.547 
5 0.731 0.721 0.727 0.726 0.721 0.720 0.721 0.740 
6 0.848 0.858 0.866 0.870 0.872 0.871 0.876 0.878 
7 - 0.961 0.961 0.960 0.962 0.961 0.963 0.963 
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Table 12: Power price of the defined CHOP groups 

Power price [€/MWh] 
Heat interval \ power interval 

 
1 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
8 

1 - 13.91 29.32 37.20 44.49 51.62 61.11 - 
2 -3.92 16.86 29.73 36.73 45.20 52.51 60.05 69.02 
3 -19.24 17.43 29.80 36.80 45.40 52.64 60.23 70.32 
4 -13.46 16.22 29.77 36.83 45.20 52.59 60.34 117.54 
5 -30.81 16.58 29.75 36.82 44.74 52.63 60.39 72.97 
6 -12.90 17.36 30.03 36.98 44.76 52.59 61.08 74.10 
7 - 17.20 30.56 37.11 44.58 52.75 60.95 75.08 
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Table 13: Economic data on, and CO2 emission impacts of, consumed and sold products 

Products Price [Euro/GJ] CO2 standard emission factor [kg/GJ] 
Consumed                             Sold 

Straw 5.70 [68] 0.00 - 
Natural gas 6.24 [68] 56.1 -56.1c [69] 
District heating 12.08d [70] - -33.0e [71] 
Molasses (C5 residues) 5.38 [72] - 0.00f [69] 
Solid biofuel (lignin) 8.71 [68] 0.00 -101.1g [69] 
Ethanol 16.05h [68] - -69.2h [69] 
Power [defined in CHOP] 0.413/0i [71] -0.413/0i [71] 
c
: Sold natural gas (bio-methane) is assumed to replace natural gas in the grid. 

d
: Reference heat-to-grid selling price in 2020 for natural gas-based combined cycle power plants in western Denmark. 

e
: Average CO2 emission for district heating in Denmark. 

f
: For simplicity, no avoided CO2 emission is associated with sold molasses. In reality, molasses may be sold as animal feed, 
thereby potentially replacing imported soy beans or similar, thus reducing CO2 emissions. 
g
: The solid biofuel, from which most of the alkaline metals have been removed, is assumed to replace coal. 

h
: Ethanol is assumed to be sold as, and replace, gasoline. 

i
: Marginal power generation CO2 emission is set equal to the average CO2 emission from power generation in Denmark, apart 
from periods with negative power prices where the marginal CO2 emission is set to zero to represent wind turbine power 
generation. 
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Table 14: Biomass supply chain model 

Area Radius  Annual yield 
      [ton] 

Fixed logistics costs 
     [Euro/GJ] 

Transport costs 
      [Euro/GJ] 

Marginal straw cost 
   [Euro/GJ] 

   10km  26,269 0.005 0 5.709 
   30km  210,154 0.005 0.215 5.924 
   50km  420,308 0.005 0.397 6.102 
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Table 15: Design optimization variables and constraints 

Design variable Description Lower bound Upper bound 

    Ethanol facility dimension, in kg/s straw processed 5 kg straw/s 20 kg straw/sj 
    Installation of a combined biogas facility, decision Integer decision       
    Biomass boiler dimension, in MJ/s heat delivered 0 MJ/s 100 MJ/s 
    District heating heat pump dimension, in MJ/s 

heat delivered 
0 MJ/s 50 MJ/s 

j
: Equal to the maximum annual production of straw within a 50km radius of the plant under the assumptions in section 3.1.3. 
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Table 16: Operation optimization variables and constraints 

Operation 
variable 

Description Lower bound Upper bound 

    Gas turbine operated Integer decision       
    Gas turbine load 0.20 1.00 
    Steam Rankine cycle operated Integer decision       
    Steam Rankine cycle load 0.40 1.00 
    Gas boiler load 0.00 1.00 
    Biomass boiler load 0.00 1.00 
    Heat pump load 0.00 1.00 
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Table 17: Uncertain parameters and their distributions 

Parameter Description Distribution Reference value Lower 
bound 

Upper 
bound 

         Investment cost, reference 
ethanol facility  

Uniform 256.0 MEuro 192.0 MEuro 320.0 MEuro 

         Investment cost, reference 
combined biogas facility 

Uniform 199.8 MEuro 149.9 MEuro 249.8 MEuro 

         Investment cost, reference 
gas boiler 

Uniform 2.0 MEuro 1.5 MEuro 2.5 MEuro 

         Investment cost, reference 
biomass boiler 

Uniform 40.0 MEuro 30.0 MEuro 50.0 MEuro 

         Investment cost, reference 
district heating heat pump 

Uniform 6.8 MEuro 5.1 MEuro 8.5 MEuro 

     Ethanol price Uniform 5.70 Euro/GJ 4.28 Euro/GJ 7.13 Euro/GJ 
     Ethanol displaced CO2 

emission 
Uniform -69.2 kg/GJ -41.5 kg/GJ -69.2 kg/GJ 

   Investment scaling constant Uniform 0.75 0.6 0.9 
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Table 18: Characteristics of the selected designs 

Design NPV 
[MEuro] 

CO2-emission 
impact [MTon] 

    
[kg/s] 

    
[-] 

    
[MJ/s] 

    
[MJ/s] 

    
[MJ/s] 

     
[MEuro] 

Ref 198.2 0.34 0.0 0 0.0 0.0 0.0 0 
I 147.0 -3.07 5.2 0 80.1 1.1 0.3 4.83 
II -22.9 -12.09 19.6 0 143.8 11.1 19.8 7.51 
III -12.1 -2.87 5.3 1 70.0 1.3 9.0 4.98 
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Table 19: Uncertain input parameters considered in Monte Carlo simulations for each of the three selected designs 

Design                                                           

I X  X   X X X 
II X  X X X X X X 
III X X X  X X X X 
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