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Amalgams and χ-boundedness

Irena Penev ∗

November 11, 2015

Abstract
A class of graphs is hereditary if it is closed under isomorphism and
induced subgraphs. A class G of graphs is χ-bounded if there exists
a function f : N → N such that for all graphs G ∈ G, and all in-
duced subgraphs H of G, we have that χ(H) ≤ f(ω(H)). We prove
that proper homogeneous sets, clique-cutsets, and amalgams together
preserve χ-boundedness. More precisely, we show that if G and G∗

are hereditary classes of graphs such that G is χ-bounded, and such
that every graph in G∗ either belongs to G or admits a proper ho-
mogeneous set, a clique-cutset, or an amalgam, then the class G∗ is
χ-bounded. This generalizes a result of [J. Combin. Theory Ser. B,
103(5):567–586, 2013], which states that proper homogeneous sets and
clique-cutsets together preserve χ-boundedness, as well as a result of
[European J. Combin., 33(4):679–683, 2012], which states that 1-joins
preserve χ-boundedness. The house is the complement of the four-edge
path. As an application of our result and of the decomposition theorem
for “cap-free” graphs from [J. Graph Theory, 30(4):289–308, 1999], we
obtain that if G is a graph that does not contain any subdivision of
the house as an induced subgraph, then χ(G) ≤ 3ω(G)−1.

AMS Classification: 05C15, 05C75

Keywords: hereditary classes, χ-bounded classes, graph decompositions,
amalgam, house

1 Introduction
All graphs in this paper are simple and finite (possibly null). We denote
by N the set of all non-negative integers and by N+ the set of all positive
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integers. The vertex-set and the edge-set of a graph G are denoted by V (G)
and E(G), respectively. A clique of a graph G is a (possibly empty) set of
pairwise adjacent vertices of G, and a stable set of G is a (possibly empty)
set of pairwise non-adjacent vertices of G. We denote by χ(G) the chro-
matic number of G, and by ω(G) the clique number of G (i.e. the maximum
size of a clique of G). A class of graphs is hereditary if it is closed under
isomorphism and induced subgraphs. A class G of graphs is said to be χ-
bounded if there exists a function f : N→ N such that for all graphs G ∈ G,
and all induced subgraphs H of G, we have that χ(H) ≤ f(ω(H)). Under
these circumstances, we also say that G is χ-bounded by the function f , and
that f is a χ-bounding function for G. Note that for every χ-bounded class
G, there exists a non-decreasing χ-bounding function for G; indeed, if G is
χ-bounded by f : N → N, then G is also χ-bounded by the non-decreasing
function g : N → N given by n 7→ max{f(m) | 0 ≤ m ≤ n}. Further-
more, note that if G is a hereditary class, then G is χ-bounded by a function
f : N → N if and only if all graphs G ∈ G satisfy χ(G) ≤ f(ω(G)). Not
all hereditary classes are χ-bounded. For instance, it is well-known that
triangle-free graphs can have an arbitrarily large chromatic number [20, 25],
and consequently, the class of triangle-free graphs is not χ-bounded. Note
that this implies that the class of all graphs is not χ-bounded.

χ-Bounded classes were introduced by Gyárfás [16] as a generalization of the
class of “perfect” graphs. A graph G is perfect if all induced subgraphs H
of G satisfy χ(H) = ω(H). Thus, the class of perfect graphs is χ-bounded
by the identity function. Perfect graphs were introduced in the 1960s by
Berge [2], who also made the famous Strong Perfect Graph Conjecture,
which states that a graph G is perfect if and only if neither G nor its com-
plement contains an induced odd cycle of length at least five. This conjecture
was proven more than four decades later, and it is now known as the Strong
Perfect Graph Theorem [8]. Over the course of those four decades, many
theorems of the following form were proven: if all proper induced subgraphs
of a graph G are perfect, and G admits a particular graph decomposition,
then G is also perfect. (Under these circumstances, the decomposition in
question is said to preserve perfection.) Decompositions considered in this
context include clique-cutsets [15], star-cutsets [9], homogeneous sets [19],
homogeneous pairs [10], 2-joins [12], amalgams [3], and others. Some of
these theorems were crucial for the proof of the Strong Perfect Graph Con-
jecture.

For many classes G∗ defined by forbidding an induced subgraph or a fam-
ily of induced subgraphs, there is a decomposition theorem of the following
form: every graph in G∗ either belongs to some well-understood “basic” class
G or admits one of several graph “decompositions.” This raises the following
question: which graph decompositions preserve χ-boundedness? Formally,
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let us say that a decomposition D preserves χ-boundedness provided that
for all hereditary classes G and G∗ such that G is χ-bounded, and such that
every graph in G∗ either belongs to G or admits the decomposition D, we
have that the class G∗ is χ-bounded (however, the optimal χ-bounding func-
tions for G and G∗ need not be the same). It is a routine exercise to show
that clique-cutsets preserve χ-boundedness. It is also known that cutsets
of size at most k preserve χ-boundedness [1, 7, 22] (note that this decom-
position does not preserve perfection), as do proper homogeneous sets [7]
and 1-joins [14]. (All these decompositions are defined formally later in this
section.) Obvious “candidates” for further study in this context are decom-
positions that are known to preserve perfection. In the present paper, we
add the “amalgam” decomposition to the list of decompositions known to
preserve χ-boundedness (see Theorem 1.2).

Given graph decompositions D1, . . . , Dk, we say that D1, . . . , Dk together
preserve χ-boundedness provided that for all hereditary classes G and G∗
such that G is χ-bounded, and such that every graph in G∗ either belongs
to G or admits at least one of the decompositions D1, . . . , Dk, we have that
the class G∗ is χ-bounded (but again, the optimal χ-bounding functions for
G and G∗ need not be the same). Since the preservation of χ-boundedness
does not entail the preservation of χ-boundedness by the same χ-bounding
function, the fact that each of the decompositions D1, . . . , Dk individually
preserves χ-boundedness does not imply that they together preserve it. In-
deed, suppose that D1 and D2 are graph decompositions that individually
preserve χ-boundedness, and let G be a hereditary, χ-bounded class. Set
G0 = G, and for all i ∈ N+, let G2i−1 be a hereditary class such that ev-
ery graph in G2i−1 either belongs to G2i−2 or admits the decomposition D1,
and let G2i be a hereditary class such that every graph in G2i either belongs
to G2i−1 or admits the decomposition D2. Set G∗ =

⋃
i∈N
Gi; then G∗ is a

hereditary class, and every graph in G∗ either belongs to G or admits one
of the decompositions D1 and D2. Now, since D1 and D2 individually pre-
serve χ-boundedness, we know that each Gi is χ-bounded by some function
fi : N → N. However, the fi’s need not be the same, and the sequence of
functions {fi}i∈N need not have an upper bound. Consequently, we cannot
in general guarantee that G∗ is χ-bounded. Proposition 1.1 (see below) gives
an example of this sort of behavior. We remark that Proposition 1.1 is an
adaptation of the construction given in section 4 of [7]. The results of [7]
concern operations that preserve χ-boundedness, and here, we “translate”
the example from that paper into the language of graph decompositions.

Proposition 1.1. Let Dodd be the property of having an odd chromatic
number, and let Deven be the property of having an even chromatic number.
Then Dodd and Deven individually preserve χ-boundedness, but they do not
preserve it together.
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Proof. The fact thatDodd andDeven do not together preserve χ-boundedness
follows immediately from the fact that every graph has either an odd or an
even chromatic number, and the class of all graphs is not χ-bounded. More
formally, one can let G be the empty class and G∗ be the class of all graphs.
Then G and G∗ are hereditary, G is χ-bounded (by any function f : N→ N),
and every graph in G∗ either belongs to G or admits Dodd or Deven. However,
G∗ is not χ-bounded.

It remains to show thatDodd andDeven individually preserve χ-boundedness.
Let us prove this for Dodd (the proof for Deven is analogous). Fix hered-
itary classes G and Godd such that G is χ-bounded, and every graph in
Godd either belongs to G or admits Dodd (that is, has an odd chromatic
number). Let f : N → N be a non-decreasing χ-bounding function for
G; we claim that Godd is χ-bounded by f + 1. Suppose that this is not
the case, and fix some G ∈ Godd such that χ(G) ≥ f(ω(G)) + 2. Since
G is χ-bounded by f and χ(G) > f(ω(G)), we see that G /∈ G. Thus,
G has an odd chromatic number. Let H be an induced subgraph of G
such that χ(H) = χ(G) − 1. Now, since f is non-decreasing, we have that
χ(H) = χ(G)−1 ≥ f(ω(G))+1 ≥ f(ω(H))+1, and so since G is χ-bounded
by f , we see that H /∈ G. On the other hand, since χ(H) = χ(G) − 1 and
χ(G) is odd, we see that χ(H) is even. Since H /∈ G and χ(H) is even,
we deduce that H /∈ Godd. But this is impossible because H is an induced
subgraph of G ∈ Godd, and Godd is a hereditary class. This proves that
Godd is indeed χ-bounded by f + 1, and it follows that Dodd preserves χ-
boundedness.

One might object that the example from Proposition 1.1 is somewhat artifi-
cial, and that Dodd and Deven are not “true” graph decompositions. Never-
theless, Proposition 1.1 demonstrates that one should not assume that the
fact that two or more decompositions individually preserve χ-boundedness
implies that they together preserve it. (We remark that this problem does
not arise in the context of perfect graphs: if decompositions D1, . . . , Dk indi-
vidually preserve perfection, then it is easy to see that they together preserve
it.) In [7], it was shown that cutsets of size at most k and clique-cutsets
together preserve χ-boundedness, as well as that proper homogeneous sets
and clique-cutsets together preserve χ-boundedness. In the present paper,
we prove that proper homogeneous sets, clique-cutsets, and amalgams to-
gether preserve χ-boundedness (see Theorem 1.2). These three decomposi-
tions, as well as the standard ways of decomposing graphs that admit them
into smaller “blocks of decomposition,” are represented in Figures 1.1, 1.2,
and 1.3; formal definitions are given below. (We remark that in our figures,
shaded circles represent cliques, a straight line between two circles indicates
that all possible edges between the sets of vertices represented by those
circles are present, a wavy line between two circles indicates arbitrary ad-
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↓
X 6= ∅

X

Y

Y Z

Z

x

G

G[X ] G0

Figure 1.1: Graph G and homogeneous set partition (X,Y, Z) of G. The
homogeneous set X of G is proper if 2 ≤ |X| ≤ |V (G)| − 1. Graphs G[X]
and G0 are the two blocks of decomposition; graph G0 is obtained from G
by “shrinking” X to a vertex x.

↓
A 6= ∅ C B 6= ∅

A BC C

G

G[A ∪ C] G[B ∪ C]

Figure 1.2: Graph G and cut-partition (A,B,C) of G, where C is a clique-
cutset of G. Graphs G[A ∪ C] and G[B ∪ C] are the two blocks of decom-
position.

jacency between the corresponding sets of vertices, and the absence of any
kind of line between two circles indicates that there are no edges between
the sets of vertices represented by the two circles.)

Given a graph G, a set S ⊆ V (G), and a vertex v ∈ V (G) r S, we say
that v is complete (respectively: anti-complete) to S in G provided that
v is adjacent (respectively: non-adjacent) to every vertex of S in G; v is
said to be mixed on S if v is neither complete nor anti-complete to S in
G. Given disjoint sets X,Y ⊆ V (G), we say that X is complete (respec-
tively: anti-complete) to Y in G provided that every vertex of X is complete
(respectively: anti-complete) to Y in G. A homogeneous set of a graph
G (see Figure 1.1) is a non-empty set X ⊆ V (G) such that no vertex in
V (G) r X is mixed on X; a homogeneous set X of a graph G is proper
if 2 ≤ |X| ≤ |V (G)| − 1. A homogeneous set partition of a graph G is a
partition (X,Y, Z) of V (G) such that X is a non-empty set (Y and Z may
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A C 6= ∅ D

K

A B

c

|A ∪B| ≥ 2 |C ∪D| ≥ 2

C D

B 6= ∅

b

↓
K K

G

Gc Gb

Figure 1.3: Graph G and amalgam (K,A,B,C,D) of G. Graphs Gb and Gc

are the two blocks of decomposition. Graph Gb (bottom right) is obtained
from G r A by “shrinking” B to a vertex b, and graph Gc (bottom left) is
obtained from GrD by “shrinking” C to a vertex c.

possibly be empty), and X is complete to Y and anti-complete to Z in G.
Note that if (X,Y, Z) is a homogeneous set partition of G, then X is a (not
necessarily proper) homogeneous set of G. Conversely, every homogeneous
set of G induces a unique homogeneous set partition of G. A cutset of a
graph G is a (possibly empty) set C ⊆ V (G) such that G r C is discon-
nected. A cut-partition of a graph G is a partition (A,B,C) of V (G) such
that A and B are non-empty (C may possibly be empty), and A is anti-
complete to B in G. Clearly, if (A,B,C) is a cut-partition of a graph G,
then C is a cutset of G; conversely, every cutset of G gives rise to at least
one cut-partition of G. A clique-cutset of a graph G (see Figure 1.2) is a
cutset of G that is a (possibly empty) clique of G. (In particular, the empty
set is a clique-cutset of any disconnected graph.) A 1-join of a graph G is a
partition (A,B,C,D) of V (G) such that B and C are non-empty (A and D
may possibly be empty), B is complete to C, A is anti-complete to C∪D, D
is anti-complete to A∪B, and |A∪B|, |C∪D| ≥ 2. Note that if (A,B,C,D)
is a 1-join of G, then (D,C,B,A) is also a 1-join of G. An amalgam of a
graph G (see Figure 1.3) is a partition (K,A,B,C,D) of V (G) such that
K is a (possibly empty) clique, (A,B,C,D) is a 1-join of G r K, and K
is complete to B ∪ C. Clearly, if (K,A,B,C,D) is an amalgam of G, then
(K,D,C,B,A) is also an amalgam of G. Note also that if (A,B,C,D) is a
1-join of G, then (∅, A,B,C,D) is an amalgam of G, and so the amalgam
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decomposition generalizes the 1-join decomposition.

As stated above, our main result is that proper homogeneous sets, clique-
cutsets, and amalgams together preserve χ-boundedness. More precisely, we
prove the following theorem.

Theorem 1.2. Let G and G∗ be hereditary classes. Assume that G is χ-
bounded by a non-decreasing function f : N → N, and that every graph in
G∗ either belongs to G, or admits a proper homogeneous set, a clique-cutset,
or an amalgam. Let L ∈ N ∪ {∞} be such that all graphs G ∈ G satisfy
ω(G) ≤ L. Then G∗ is χ-bounded by the function f̃ : N → N given by

f̃(0) = 0 and f̃(n) = (
min{n,L}∑

t=1
f(t))n−1 for all n ∈ N+.

Let us now briefly discuss the idea of the proof of Theorem 1.2. First of all,
note that χ-boundedness is a property of graph classes, and not of individ-
ual graphs. To be sure, one can see χ-boundedness by a fixed function as
a property of graphs: given a function f : N → N, a graph G is χ-bounded
by f if χ(G) ≤ f(ω(G)). (Thus, a hereditary class is χ-bounded if and
only if there is a function f : N → N such that every graph in the class is
χ-bounded by f .) Note, however, that every graph G is χ-bounded by the
constant function χ(G), and so the concept of a χ-bounded graph (without
reference to a previously fixed function) is not useful. Furthermore, very few
(natural) graph decompositions preserve χ-boundedness by a fixed function,
that is, there are not many graph decompositions D for which the following
statement is true: “if f : N → N is a function, and G is a graph that ad-
mits the decomposition D and has the property that all its proper induced
subgraphs are χ-bounded by f , then G is also χ-bounded by f .” (It is easy
to see that clique-cutsets preserve χ-boundedness by a fixed non-decreasing
function, but few other graph decompositions have this property.) For this
reason, χ-boundedness is typically inconvenient to work with directly if one
wishes to show that a graph decomposition preserves χ-boundedness (or
that several graph decompositions together preserve it). One way around
this problem (and this is the approach that we use to prove Theorem 1.2) is
to find a graph property P that is in a sense “equivalent” to χ-boundedness,
and that is also preserved by the graph decomposition(s) under considera-
tion. More precisely, we need to be able to show that if a hereditary class
is χ-bounded, then every graph in the class has the property P ; that if
every graph in a hereditary class has the property P , then the class is χ-
bounded; and that if all proper induced subgraphs of a graph G have the
property P , and G admits one of the decompositions under consideration,
then G is also χ-bounded. It is important to note that if one wishes to
use this approach to show that graph decompositions D1, . . . , Dk together
preserve χ-bondedness, then one must find one graph property P that is
preserved by all k decompositions. It would not be enough to find graph
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properties P1, . . . , Pk such that Di preserves Pi for each i ∈ {1, . . . , k}, for
then one could not guarantee that the decompositions D1, . . . , Dk do not
exhibit the kind of behavior discussed in the paragraph preceding Proposi-
tion 1.1. Thus, even though it was shown in [7] that proper homogeneous
sets and clique-cutsets together preserve χ-boundedness, in order to prove
Theorem 1.2, we must start from scratch and find a graph property that
is preserved by all three decompositions from Theorem 1.2 (namely, proper
homogeneous sets, clique-cutsets, and amalgams), and not just by the “new”
decomposition (the amalgam decomposition).

In order to prove Theorem 1.2, we introduce a new graph property, which
we call “f -colorability” (where f : N → N is a superadditive function), we
show that the three decompositions from Theorem 1.2 preserve f -colorability
(see Lemma 2.6), and we show that f -colorability is “equivalent” to χ-
boundedness in the sense discussed in the previous paragraph (see Lem-
mas 2.5 and 2.7). We remark, however, that the fact that a hereditary class
G is χ-bounded by a function f : N→ N does not imply that every graph in G
is f -colorable, but merely that there exists some function f̃ : N→ N (which
increases much faster than f) such that every graph in G is f̃ -colorable.
The definition of f -colorability is somewhat technical, and we postpone it
to section 2. In that section, we also prove some easy technical results con-
cerning f -colorability, we state our three main technical lemmas (namely,
Lemmas 2.5, 2.6, and 2.7), we derive Theorem 1.2 from these three lemmas,
and we dereive two corollaries of Theorem 1.2 (see Corollaries 2.8 and 2.9;
these corollaries are arguably easier to apply in practice than Theorem 1.2
iteself). One of the three technical lemmas (namely, Lemma 2.7) is proven
in section 2. The other two (namely, Lemmas 2.5 and 2.6) are more difficult
to prove, and their proofs are postponed to section 3.

In section 4 (the final section of this paper), we give an application of Theo-
rem 1.2. We first need a few definitions. Given graphs H and G, we say that
G is H-free if G does not contain (an isomorphic copy of) H as an induced
subgraph. A subdivision of a graph H is denoted by H∗ (in particular, H
itself is an H∗), and a graph G is said to be H∗-free provided that G does
not contain any subdivision of H as an induced subgraph. The class of all
H∗-free graphs is denoted by Forb∗(H). Scott [23] showed that if F is a
forest, then Forb∗(F ) is χ-bounded, and he conjectured that Forb∗(H) is
χ-bounded for every graph H. Recently, Pawlik et al. [21] gave a counterex-
ample to Scott’s conjecture (see also [4]), but it remains an open problem to
determine for which graphs H, the class Forb∗(H) is χ-bounded. As already
mentioned, Forb∗(H) is χ-bounded if H is a forest [23]. It is also known
that Forb∗(H) is χ-bounded if H is a complete bipartite graph [17], if H has
at most four vertices (see [18] for the case when H is the complete graph on
four vertices; the other graphs on at most four vertices are easier to handle,
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Figure 1.4: The house (left) is the complement of the four-edge path. A
house∗ (middle) is any subdivision of the house. A cap (right) is any graph
obtained from the house by possibly subdividing the three edges of the house
that do not belong to the unique triangle of the house.

and we refer the reader to the introduction of [6] for a summary), if H is
a cycle [5] (see [24] for the case when H is a cycle of length five), and if
H is the bull (i.e. the five-vertex graph that consists of a triangle and two
vertex-disjoint pendant edges) or a certain generalization of the bull called
a “necklace” [6]. The house is the complement of the four-edge path, and a
cap is any graph obtained from the house by possibly subdividing the three
edges of the house that do not belong to the unique triangle of the house
(see Figure 1.4). A graph is cap-free if it does not contain any cap as an
induced subgraph. Thus, the house is a cap, every cap is a house∗, and
every house∗-free graph is cap-free. Using Corollary 2.9 (which is an easy
consequence of Theorem 1.2; see section 2) and a decomposition theorem
for cap-free graphs from [11], one can show that all house∗-free graphs G
satisfy χ(G) ≤ 4ω(G)−1 (see Proposition 4.3), and so the class Forb∗(house)
is χ-bounded. However, if instead of using Corollary 2.9, we use certain
technical results concerning f -colorability from section 2, we can obtain a
better χ-bounding function for the class Forb∗(house). In particular, we
obtain the following theorem.

Theorem 1.3. Every house∗-free graph G satisfies χ(G) ≤ 3ω(G)−1.

The proof of Theorem 1.3 is given in section 4. We remark that we do not
know whether the bound from Theorem 1.3 is optimal.

2 f-Colorability and the proof of Theorem 1.2
The set of all finite subsets of a set S is denoted by Pfin(S). If S is a set of
sets, then we often write

⋃
S instead of

⋃
A∈S

A. If f is a function, and S is

a subset of the domain of f , then we denote by f � S the restriction of f to
S, and we denote by f [S] the image of S under f .

A function f : N → N is said to be superadditive if for all m,n ∈ N, we
have that f(m) + f(n) ≤ f(m+ n). Note that every superadditive function
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f : N → N is non-decreasing and satisfies f(0) = 0. Note furthermore that
if f : N→ N is a superadditive function, then f is strictly increasing if and
only if f(1) ≥ 1.

Given a positive integer m and integers a and b, we write a ≡m b if a
and b are congruent modulo m. For all n ∈ N, we set [n] = {1, . . . , n} (in
particular, [0] = ∅). For all m,n ∈ N, we set m+ [n] = {m+ 1, . . . ,m+ n}
(in particular, m+ [0] = ∅ for all m ∈ N, and 0 + [n] = [n] for all n ∈ N).

If G is a graph and S ⊆ V (G), we denote by G[S] the subgraph of G
induced by S, and we denote by G r S the subgraph of G obtained by
deleting S (thus, G r S = G[V (G) r S]). If v1, . . . , vk ∈ V (G), we often
write G[v1, . . . , vk] instead of G[{v1, . . . , vk}]. A proper induced subgraph
of G is any induced subgraph of G that has fewer vertices than G (in par-
ticular, the null graph is a proper induced subgraph of every non-null graph).

A weight function for a graph G is any function w : V (G) → N+. Given a
graph G and a weight function w : V (G) → N+ for G, we denote by w(G)
the maximum weight of a clique of G with respect to w, that is,

w(G) = max{
∑

v∈Q
w(v) | Q is a clique of G}.

Clearly, if w : V (G)→ N+ is a weight function for a graph G, and S ⊆ V (G),
then w � S is a weight function for G[S]. To simplify notation, we often refer
to w itself (and strictly speaking, we mean w � S) as a weight function for
G[S]. Consistently with the notation above, we denote by w(G[S]) the
maximum weight of a clique of G[S] with respect to w, that is,

w(G[S]) = max{
∑

v∈Q
w(v) | Q is a clique of G[S]}.

Given a graph G, we denote by KG the set of all vertices of G that do not
have a non-neighbor in G, and we denote by RG the set of all vertices of G
that do have a non-neighbor in G (see Figure 2.1); thus, V (G) = KG ∪RG,
KG ∩ RG = ∅, KG is a (possibly empty) clique, KG is complete to RG,
and every vertex of RG has a non-neighbor in RG (and consequently, either
RG = ∅ or |RG| ≥ 2). Note that if H is an induced subgraph of a graph
G, then RH ⊆ RG. Given a graph G and a vertex u ∈ V (G), we denote by
ΓG(u) the set of all neighbors of u in G, and we set ΓG[u] = {u} ∪ ΓG(u),
KG(u) = KG[ΓG(u)], and RG(u) = RG[ΓG(u)] (see Figure 2.1).

If G is a graph, we say that Q is a G-admissible clique provided that Q
is a (possibly empty) clique of G that satisfies the property that for all
u, u′ ∈ Q, either ΓG[u] ⊆ ΓG[u′] or ΓG[u′] ⊆ ΓG[u]. Note that if Q is
a G-admissible clique, then Q can be ordered as Q = {u1, . . . , uk} (with

10



KG

RG

u

KG(u)

RG(u)

G

V (G) \ ΓG[u]

G

Figure 2.1: Left: Graph G with V (G) decomposed into KG and RG; KG is
a clique complete to RG, and every vertex in RG has a non-neighbor in RG.
Right: Graph G and vertex u ∈ V (G) with ΓG(u) decomposed into KG(u)
and RG(u); KG(u) is a clique complete to RG(u), and every vertex in RG(u)
has a non-neighbor in RG(u).

k = |Q| ≥ 0) so that for all i, j ∈ {1, . . . , k}, if i < j, then ΓG[ui] ⊆ ΓG[uj ]
(and consequently, RG(ui) ⊆ RG(uj)). Note also that if Q is a G-admissible
clique, and H is an induced subgraph of G, then every subset of Q∩V (H) is
an H-admissible clique. (In particular, every subset of a G-admissible clique
is a G-admissible clique.) Clearly, the empty set is a G-admissible clique for
every graph G. Furthermore, if G is a non-null graph and u ∈ V (G), then
{u} is a G-admissible clique.

We now define “f -colorability,” the crucial concept of this paper. As ex-
plained in the introduction, the idea behind f -colorability is that it is in
a certain sense “equivalent” to χ-boundedness: roughly speaking, if all
graphs in a hereditary class have the f -property (where f is a suitable
function), then the class is χ-bounded, and conversely, if a hereditary class
is χ-bounded, then there is a suitable function f such that every graph in
the class is f -colorable. Furthermore, our three decompositions preserve
f -colorability, that is, if all proper induced subgraphs of a graph G are
f -colorable, and G admits one of our three decompositions (a proper ho-
mogeneous set, a clique-cutset, or an amalgam), then G is f -colorable. All
this is made formal in Lemmas 2.5, 2.6, and 2.7, which we state later in this
section. But first, let us give the definition of f -colorability.

Given a superadditive function f : N → N, a graph G, a weight function
w : V (G)→ N+ for G, and a G-admissible clique Q, we define an (f ;w;Q)-
valid coloring of G to be any function φ : V (G) → Pfin(N+) that satisfies
all the following:

(a) φ(v1) ∩ φ(v2) = ∅ for all v1v2 ∈ E(G);

(b) |φ(v)| = f(w(v)) for all v ∈ V (G);

(c) |
⋃
φ[RG]| ≤ f(w(G[RG]));

11



(d) |
⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])) for all u ∈ Q.

Given a superadditive function f : N → N, we say that a graph G is f -
colorable provided that for every weight function w : V (G)→ N+ for G, and
every G-admissible clique Q, there exists an (f ;w;Q)-valid coloring of G.

Let us make a few remarks about the definition above. Suppose that
f : N → N is a superadditive function, G a graph, w : V (G) → N+ a
weight function for G, Q a G-admissible clique, and φ : V (G) → Pfin(N+)
an (f ;w;Q)-valid coloring of G. If we regard positive integers as colors,
then the function φ can be seen as a variant of weighted coloring: by con-
dition (a), φ assigns disjoint sets of colors to adjacent vertices of G, but
by condition (b), rather than assigning w(v) colors to each vertex v of G
(as an ordinary weighted coloring would), φ assigns f(w(v)) colors to each
vertex v; we will return to condition (b) and explain why we need it later
in this section. Note that if S ⊆ V (G), then

⋃
φ[S] is the set of all colors

(positive integers) that φ uses on S. Note also that if A and B are disjoint
subsets of V (G), complete to each other of G, then condition (a) implies
that

⋃
φ[A] and

⋃
φ[B] are disjoint (that is, φ uses disjoint color-sets on A

and B). Further, condition (c) places an upper bound on the number of
colors that φ may use on RG, and condition (d) places an upper bound on
the number of colors that φ may use on RG(u) for u ∈ Q. We will return to
conditions (c) and (d) and provide some intuition behind them later in this
section. For now, we note that the definition of an (f ;w;Q)-valid coloring of
G in fact places an upper bound on the number of colors that φ may use on
V (G), and not just on RG. (This is not surprising given that f -colorability
is supposed to be “equivalent” to χ-boundedness.) More precisely, we have
the following proposition.

Proposition 2.1. Let f : N → N be a superadditive function, let G be a
graph, let w : V (G)→ N+ be a weight function for G, let Q be a G-admissible
clique, and let φ : V (G) → Pfin(N+) be an (f ;w;Q)-valid coloring of G.
Then for every set S ⊆ V (G) such that either

(1) RG ⊆ S, or

(2) RG(u) ⊆ S ⊆ ΓG(u) for some u ∈ Q,

we have that |
⋃
φ[S]| ≤ f(w(G[S])). In particular, |

⋃
φ[V (G)]| ≤ f(w(G)).

Proof. The fact that |
⋃
φ[V (G)]| ≤ f(w(G)) follows immediately from the

preceding statement: we simply set S = V (G), and we observe that S sat-
isfies (1).

To prove the first statement, we fix a set S ⊆ V (G) that satisfies (1) or
(2). First, we claim that |

⋃
φ[RG[S]]| ≤ f(w(G[RG[S]])). If S satisfies (1),
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then clearly, RG[S] = RG, and the claim follows from condition (c) of the
definition of an (f ;w;Q)-valid coloring of G. On the other hand, if S satisfies
(2), then we fix a vertex u ∈ Q such that RG(u) ⊆ S ⊆ ΓG(u), we observe
that RG[S] = RG(u), and we see that our claim follows from condition (d)
of the definition of an (f ;w;Q)-valid coloring of G.

Now, set KG[S] = {x1, . . . , xt} (with t = |KG[S]| ≥ 0). By condition (b)
of the definition of an (f ;w;Q)-valid coloring of G, we have that |φ(xi)| =
f(w(xi)) for all i ∈ {1, . . . , t}. Since KG[S] = {x1, . . . , xt} is a clique, com-
plete to RG[S] in G, we see that w(G[S]) = w(G[KG[S]]) + w(G[RG[S]]) =

(
t∑

i=1
w(xi)) +w(G[RG[S]]); since f is a superadditive function, it follows that

(
t∑

i=1
f(w(xi))) + f(w(G[RG[S]])) ≤ f(w(G[S])). We now have that

|
⋃
φ[S]| = |(

t⋃
i=1

φ(xi)) ∪ (
⋃
φ[RG[S]])|

≤ (
t∑

i=1
|φ(xi)|) + |

⋃
φ[RG[S]]|

≤ (
t∑

i=1
f(w(xi))) + f(w(G[RG[S]]))

≤ f(w(G[S])),

which is what we needed.

We next prove Proposition 2.2, which states that if G[RG] is f -colorable,
then so is G. After that, we derive two easy corollaries of Proposition 2.2
(namely, Propositions 2.3 and 2.4), which we will use throughout the paper.

Proposition 2.2. Let f : N→ N be a superadditive function, and let G be
a graph such that G[RG] is f -colorable. Then G is f -colorable.

Proof. If KG = ∅, the result is immediate. So assume that KG 6= ∅, and set
KG = {x1, . . . , xt} (where t = |KG| ≥ 1). Fix a weight function w : V (G)→
N+ and a G-admissible clique Q. Clearly, Q ∩ RG is a G[RG]-admissible
clique. By hypothesis, G[RG] is f -colorable; fix an (f ;w;Q ∩ RG)-valid
coloring φR : RG → Pfin(N+) of G[RG]. It is clear that RG[RG] = RG,
and it is also clear that RG[RG](u) = RG(u) for all u ∈ RG. Thus, the
(f ;w;Q ∩RG)-valid coloring φR of G[RG] satisfies all the following:

(a’) φR(v1) ∩ φR(v2) = ∅ for all v1v2 ∈ E(G[RG]);

(b’) |φR(v)| = f(w(v)) for all v ∈ RG;
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(c’) |
⋃
φR[RG]| ≤ f(w(G[RG]));

(d’) |
⋃
φR[RG(u)]| ≤ f(w(G[RG(u)])) for all u ∈ Q ∩RG.

In view of (c’), we may assume that
⋃
φR[RG] ⊆ [f(w(G[RG]))] (we permute

colors if necessary). We now define the function φ : V (G) → Pfin(N+) by

setting φ � RG = φR � RG and φ(xi) = f(ω(G[RG])) +
i−1∑
j=1

f(w(xj)) +

[f(w(xi))] for all i ∈ {1, . . . , t}. Let us check that φ is an (f ;w;Q)-valid
coloring of G. We must verify that φ satisfies the following:

(a) φ(v1) ∩ φ(v2) = ∅ for all v1v2 ∈ E(G);

(b) |φ(v)| = f(w(v)) for all v ∈ V (G);

(c) |
⋃
φ[RG]| ≤ f(w(G[RG]));

(d) |
⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])) for all u ∈ Q.

The fact that φ satisfies (a) and (b) is immediate from the construction and
the fact that φR satisfies (a’) and (b’). The fact that φ satisfies (c) follows
from the fact that φR satisfies (c’). It remains to check that φ satisfies
(d). Fix u ∈ Q; we need to show that |

⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])). If

u ∈ RG, then this follows from the fact that φR satisfies (d’). On the other
hand, if u ∈ KG, then we have that RG(u) = RG, and the result follows
from the fact that φR satisfies (c’). This proves that φ is an (f ;w;Q)-valid
coloring of G, and it follows that G is f -colorable.

Proposition 2.3. Let f : N → N be a superadditive function, and let G
be a graph such that KG 6= ∅. If all proper induced subgraphs of G are
f -colorable, then so is G.

Proof. Since KG 6= ∅, we have that G[RG] is a proper induced subgraph of
G. The result now follows immediately from Proposition 2.2.

Proposition 2.4. Let f : N → N be a superadditive function. Then every
complete graph is f -colorable.

Proof. If G is a complete graph, then RG = ∅. Clearly, the null graph is
f -colorable (the null function is a suitable coloring), and so the result follows
from Proposition 2.2.

Now, our goal is to prove three lemmas (Lemmas 2.5, 2.6, and 2.7) about f -
colorability and χ-boundedness. We state these lemmas below, but roughly
speaking, Lemma 2.5 states that “χ-boundedness implies f -colorability,”
Lemma 2.6 states that “proper homogeneous sets, clique-cutsets, and amal-
gams preserve f -colorability,” and Lemma 2.7 states that “f -colorability
implies χ-boundedness.” Together, the three lemmas imply Theorem 1.2.
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The proof of Lemma 2.7 is an easy exercise, and so we prove this lemma
immediately. The proofs of Lemmas 2.5 and 2.6 are more involved, and we
postpone them to section 3. We now state the three lemmas.

Lemma 2.5. Let G be a hereditary class, χ-bounded by a non-decreasing
function f : N → N that satisfies f(1) ≥ 1. Let L ∈ N ∪ {∞} be such that
L ≥ 2 and such that all graphs G ∈ G satisfy ω(G) ≤ L. Define f̃ : N → N

by setting f̃(0) = 0 and f̃(n) = (
min{n,L}∑

t=1
f(t))n−1 for all n ∈ N+. Then f̃

is a superadditive function that satisfies f̃(1) = 1, and every graph in G is
f̃ -colorable.

Lemma 2.6. Let f be a superadditive function, and let G be a graph that
admits a proper homogeneous set, a clique-cutset, or an amalgam. Assume
that all proper induced subgraphs of G are f -colorable. Then G is f -colorable.

Lemma 2.7. Let f : N→ N be a superadditive function such that f(1) = 1,
and let G be a hereditary class such that every graph in G is f -colorable.
Then G is χ-bounded by f .

Proof. Fix G ∈ G; we need to show that χ(G) ≤ f(ω(G)). Let w : V (G)→
N+ be given by w(v) = 1 for all v ∈ V (G); clearly then, w(G) = ω(G).
Further, it is clear that ∅ is a G-admissible clique. By hypothesis, G is f -
colorable; fix an (f ;w; ∅)-valid coloring φ : V (G)→Pfin(N+) of G. Propo-
sition 2.1 guarantees that |

⋃
φ[V (G)]| ≤ f(w(G)), and so after possibly

permuting colors, we may assume that
⋃
φ[V (G)] ⊆ [f(w(G))]. Since φ is

an (f ;w;Q)-valid coloring of G, we know that for all v ∈ V (G), we have
that |φ(v)| = f(w(v)) = f(1) = 1 (and in particular, φ(v) 6= ∅), and we also
know that for all v1v2 ∈ E(G), we have that φ(v1)∩φ(v2) = ∅. Thus, for all
v1v2 ∈ E(G), we have that φ(v1) and φ(v2) are non-empty and disjoint, and
consequently, φ(v1) 6= φ(v2). This proves that φ is a proper coloring of G
(here, we consider finite subsets of N+ to be colors and not sets of colors).
Now, since φ(v) is a one-element subset of [f(w(G))] for all v ∈ V (G), we see
that |φ[V (G)]| is bounded above by the number of one-element subsets of
[f(w(G))], which is precisely f(w(G)) = f(ω(G)). Thus, G can be properly
colored with f(ω(G)) colors, and so χ(G) ≤ f(ω(G)). This proves that G is
χ-bounded by f .

We now derive Theorem 1.2 from the three lemmas above. Theorem 1.2 is
restated below for the reader’s convenience.

Theorem 1.2. Let G and G∗ be hereditary classes. Assume that G is χ-
bounded by a non-decreasing function f : N → N, and that every graph in
G∗ either belongs to G, or admits a proper homogeneous set, a clique-cutset,
or an amalgam. Let L ∈ N ∪ {∞} be such that all graphs G ∈ G satisfy

15



ω(G) ≤ L. Then G∗ is χ-bounded by the function f̃ : N → N given by

f̃(0) = 0 and f̃(n) = (
min{n,L}∑

t=1
f(t))n−1 for all n ∈ N+.

Proof (assuming Lemmas 2.5, 2.6, and 2.7). By construction, we have that
f̃(0) = 0 and f̃(1) = 1. Thus, if every graph in G∗ is edgeless, then G∗
is χ-bounded by f̃ , and we are done. So assume that G∗ contains a graph
that contains at least one edge. Since G∗ is hereditary, it follows that G∗
contains the complete graphs K1 and K2. Since neither K1 nor K2 admits
a proper homogeneous set, a clique-cutset, or an amalgam, it follows that
K1,K2 ∈ G. Since K1 ∈ G and G is χ-bounded by f , it follows that f(1) ≥ 1;
and sinceK2 ∈ G and ω(K2) = 2, it follows that L ≥ 2. Then by Lemma 2.5,
we know that f̃ is a superadditive function that satisfies f̃(1) = 1, and that
every graph in G is f̃ -colorable. Lemma 2.6, together with an easy induction
on the number of vertices, now implies that every graph in G∗ is f̃ -colorable.
Lemma 2.7 then guarantees that G∗ is χ-bounded by f̃ .

We now derive two easy corollaries of Theorem 1.2, which are arguably
more convenient to use in practice than Theorem 1.2 itself. The first of
these corollaries (Corollary 2.8) deals with the case when L = ∞, and the
second (Corollary 2.9) deals with the case when L is finite.

Corollary 2.8. Let G and G∗ be hereditary classes. Assume that G is χ-
bounded by a non-decreasing function f : N→ N, and that every graph in G∗
either belongs to G, or admits a proper homogeneous set, a clique-cutset, or
an amalgam. Define f̃ : N→ N by setting f̃(0) = 0 and f̃(n) = (

n∑
t=1

f(t))n−1

for all n ∈ N+. Then G∗ is χ-bounded by the function f̃ .

Proof (assuming Theorem 1.2). We set L = ∞, and the result follows im-
mediately from Theorem 1.2.

Corollary 2.9. Let L and c be positive integers, and let G be a hereditary
class such that for all graphs G ∈ G, we have that either

• ω(G) ≤ L and χ(G) ≤ c, or

• G admits a proper homogeneous set, a clique-cutset, or an amalgam.

Then all graphs G ∈ G satisfy χ(G) ≤ (1 + (L− 1)c)ω(G)−1.

Proof (assuming Theorem 1.2). Let G0 be the class of all graphs G such that
ω(G) ≤ L and χ(G) ≤ c, and let f : N→ N be given by f(0) = 0, f(1) = 1,
and f(n) = c for all n ≥ 2. Then G0 is a hereditary class, χ-bounded by the
non-decreasing function f : N→ N, and every graph in the hereditary class
G either belongs to G0, or admits a proper homogeneous set, a clique-cutset,
or an amalgam. By Theorem 1.2 then, we see that G is χ-bounded by the
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function f̃ : N → N given by f̃(0) = 0 and f̃(n) = (
min{n,L}∑

t=1
f(t))n−1 for all

n ∈ N+. But clearly, for all n ∈ N, we have that f̃(n) ≤ (1 + (L− 1)c)n−1.
The result is now immediate.

We complete this section by giving some intuition behind the definition of
f -colorability. Naturally, the definition of f -colorability was calibrated so
as to allow us to prove Lemmas 2.5, 2.6, and 2.7. The most challenging
part of coming up with a “correct” definition was the need for amalgams to
preserve f -colorability. So let us give a brief outline of this fact (the fact
that amalgams preserve f -colorability); in passing, we will comment on why
various conditions from the definition of f -colorability were needed to make
the proof go through.

Let f : N → N be a superadditive function, let G be an graph, all of
whose proper induced subgraphs are f -colorable, and assume that G admits
an amalgam (K,A,B,C,D). We need to show that G is f -colorable. Fix a
weight function w : V (G)→ N+ of G and a G-admissible clique Q; we need
to exhibit an (f ;w;Q)-valid coloring of G. After some “preprocessing,” we
can reduce the problem to the case when KG = ∅, RG[B] = B, RG[C] = C,
and Q ⊆ K ∪ A ∪ B. We now “decompose” G into graphs Gb and Gc as in
Figure 1.3 (thus, Gb is obtained from G r A by “shrinking” B to a vertex
b, and Gc is obtained from GrD by “shrinking” C to a vertex c). Clearly,
Gb and Gc are (isomorphic to) proper induced subgraphs of G, and so they
are f -colorable. We define a weight function wb : V (Gb) → N+ by setting
wb � (K ∪C ∪D) = w � (K ∪C ∪D) and wb(b) = w(G[B]), and we define wc

analogously; thus, wb(Gb), wc(Gc) ≤ w(G). Since Q ⊆ K ∪A ∪B, it is easy
to see that Q is a Gc-admissible clique, and that Q ∩K is a Gb-admissible
clique. Ideally, we would like to construct an (f ;wb;Q∩K)-valid coloring of
Gb and an (f ;wc, Q)-valid coloring of Gc, and then put these two colorings
together in order to obtain an (f ;w;Q)-valid coloring of G. Since K is a
clique in both Gb and Gc, and since wb � K = wc � K, it is easy to arrange
(by permuting colors if necessary) that our (f ;wb;Q ∩K)-valid coloring of
Gb and our (f ;wc;Q)-valid coloring of Gc agree on K. However, we run
into a different problem: in order to be able to combine the colorings of Gb

and Gc in a suitable way, we need to ensure that every color used on the set
C by the coloring of Gb is used on the vertex c by the coloring of Gc (for
otherwise, there is no obvious way to combine the two colorings so that the
resulting coloring of G uses disjoint color-sets on B and C; disjoint color-sets
must be used on B and C because B and C are disjoint and complete to
each other in G). Consequently, we need a way to ensure that the number
of colors used on the set C is no greater than the number of colors used
on the vertex c, and for this, we need that at most f(wc(c)) = f(w(G[C]))
colors get used on C. (We remark that this is why it is essential that an
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(f ;w;Q)-valid coloring of G should assign f(w(v)) colors, and not just w(v)
colors, to each vertex v of G. In other words, this is why we need condition
(b) in our definition.) In order to accomplish this, we use b as a “marker
vertex” in Gb, and we observe that ΓGb

(b) = K ∪ C. We now “add” b to
the Gb-admissible clique Q ∩K, and we observe that (thanks to our “pre-
processing”) we have that RGb

(b) = RG[K∪C] = RG[C] = C. We now apply
condition (d) of our definition, and we conclude that the number of colors
that our (f ;wb; {b} ∪ (Q ∩K))-valid coloring of Gb uses on the set C is at
most f(w(G[C])), which is what we need. (We remark that the reason we
need condition (d) in our definition is precisely so that we could “separate”
C from K in the neighborhood of b in Gb, and then ensure that the number
of colors used on C is not “too large” relative to w(G[C]).)

Our preceding comments clarify why we need conditions (b) and (d) in
our definition of an (f ;w;Q)-valid coloring of G. What about condition
(c)? Could we not replace this condition with the (perhaps more natural)
condition that |

⋃
φ[V (G)]| ≤ f(w(G))? In fact, we need condition (c) so

that we could prove that proper homogeneous sets preserve f -colorability.
Indeed, suppose that G is a graph that admits a proper homogeneous set
X, and suppose that all proper induced subgraphs of G are f -colorable. Let
w : V (G) → N+ be a weight function for G, and let Q be a G-admissible
clique. We decompose G into G[X] and the graph G0 obtained from G by
“shrinking” X to a vertex x (see Figure 1.1). For the sake of simplicity, let
us focus on the case when ΓG(u) = X for some vertex u ∈ Q. In this case,
we have that RG(u) = RG[X]. Now, we wish to color G0 and G[X], and then
put the two colorings together to produce an (f ;w;Q)-valid coloring of G.
Since RG(u) = RG[X], the only way to ensure that condition (d) is satisfied
for the vertex u ∈ Q in our coloring of G is to first ensure that our coloring
of G[X] satisfies condition (c).

Finally, one might ask why our definition of an (f ;w;Q)-valid coloring in-
volves a clique of “designated vertices” (the G-admissible clique Q) rather
than just one designated vertex. The clique is necessary in order to make
the induction (for amalgams) go through. For suppose that we were allowed
just one designated vertex v of G. If v ∈ K, then v would be “inherited”
by both Gb and Gc, and we would not be able to “add” another designated
vertex to either block. But as explained above, we need to be able to add b
to the collection of designated vertices of Gb. Thus, we need an unlimited
number of designated vertices. It is not surprising that we do not allow our
collection of designated vertices to be completely arbitrary, and that instead,
we require it to form a clique. The fact that we require this clique to be G-
admissible may seem a bit mysterious, though. However, this requirement
is crucial for the proof of Lemma 2.5. There, we fix a graph G ∈ G, a weight
function w : V (G) → N+ for G, and a G-admissible clique Q, and after
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some “preprocessing,” we construct a function φ∗ : V (G) → Pfin(N+) that
satisfies conditions (a), (b), and (c) of the definition of an (f̃ ;w;Q)-valid col-
oring of G, but may fail to satisfy condition (d) (here, G and f̃ are as in the
statement of Lemma 2.5). Now, since Q is a G-admissible clique, we see that
the sets RG(u), with u ∈ Q, form a nested sequence, and this allows us to
recursively “modify” φ∗ on these sets until we obtain a function that satisfies
condition (d). At each recursive step, we make sure that the new function
still satisfies conditions (a), (b), and (c), and so when recursion is complete,
we obtain an (f̃ ;w;Q)-valid coloring of G. If the clique Q were arbitrary
(rather than G-admissible), then the sets RG(u), with u ∈ Q, could intersect
in an essentially arbitrary fashion, and so this sort of recursive modification
would not be possible. We remark that the fact that Q is G-admissible is
also used in the proof of Proposition 3.3 (which is in turn used to prove
Lemma 2.6), but there, the “recursive modification” is far simpler, and we
omit the details here.

3 Proof of Lemmas 2.5 and 2.6
In this section, we prove Lemmas 2.5 and 2.6. The proof of Lemma 2.5 relies
on Lemma 2.6, and so we prove Lemma 2.6 first. We obtain Lemma 2.6 as
a corollary of three lemmas: Lemma 3.2 (which states that proper homoge-
neous sets preserve f -colorability), Lemma 3.4 (which states clique-cutsets
preserve f -colorability), and Lemma 3.5 (which states that amalgams pre-
serve f -colorability). We begin with a technical proposition, which we will
use in the proofs of Lemmas 3.2 and 3.5.

Proposition 3.1. Let G be a graph, and let (X,Y, Z) be a homogeneous set
partition of G. Let x be a vertex that does not belong to V (G), and let G0
be the graph with vertex-set V (G0) = {x}∪Y ∪Z, and adjacency as follows:
G0[Y ∪ Z] = G[Y ∪ Z], and x is complete to Y and anti-complete to Z in
G (in other words, G0 is obtained from G by “shrinking” X to the vertex x;
see Figure 1.1). Let w : V (G) → N+ be a weight function for G, and let Q
be a G-admissible clique. If Q∩X = ∅, then set Q0 = Q, and if Q∩X 6= ∅,
then set Q0 = (QrX)∪{x}. Then Q0 is a G0-admissible clique, and Q∩X
is a G[X]-admissible clique. Define w0 : V (G0)→ N+ by setting

w0(v) =


w(G[X]) if v = x

w(v) if v 6= x

for all v ∈ V (G0). Then w0(G0) = w(G). Let φ0 : V (G0)→Pfin(N+) be an
(f ;w0;Q0)-valid coloring of G0, let φX : X →Pfin(N+) be an (f ;w;Q∩X)-
valid coloring of G[X], and assume that

⋃
φX [X] ⊆ φ0(x). Let φ : V (G)→
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Pfin(N+) be given by

φ(v) =


φX(v) if v ∈ X

φ0(v) if v ∈ Y ∪ Z

for all v ∈ V (G). Then φ is an (f ;w;Q)-valid coloring of G.

Proof. It is clear that Q0 is a G0-admissible clique, that Q ∩X is a G[X]-
admissible clique, and that w0(G0) = w(G). It remains to show that φ
is an (f ;w;Q)-valid coloring of G. We must verify that φ satisfies all the
following:

(a) φ(v1) ∩ φ(v2) = ∅ for all v1v2 ∈ E(G);

(b) |φ(v)| = f(w(v)) for all v ∈ V (G);

(c) |
⋃
φ[RG]| ≤ f(w(G[RG]));

(d) |
⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])) for all u ∈ Q.

We first prove that φ satisfies (a). Fix v1v2 ∈ E(G); we must show that
φ(v1) ∩ φ(v2) = ∅. If v1, v2 ∈ X, then this follows from the fact that φX is
an (f ;w;Q ∩X)-valid coloring of G[X], and if v1, v2 ∈ Y ∪ Z, then this fol-
lows from the fact that φ0 is an (f ;w0;Q0)-valid coloring of G0. So assume
that one of v1 and v2 belongs to X, and the other one belongs to Y ∪ Z;
by symmetry, we may assume that v1 ∈ X and v2 ∈ Y ∪ Z. Since X is
anti-complete to Z in G, it follows that v2 ∈ Y , and so xv2 ∈ E(G0). Since
φ0 is an (f ;w0;Q0)-valid coloring of G0, it follows that φ0(x) ∩ φ0(v2) = ∅.
Since v1 ∈ X, φ � X = φX , and

⋃
φX [X] ⊆ φ0(x), we have that φ(v1) =

φX(v1) ⊆ φ0(x). Since v2 ∈ Y and φ � (Y ∪Z) = φ0 � (Y ∪Z), we have that
φ(v2) = φ0(v2). It follows that φ(v1) ∩ φ(v2) ⊆ φ0(x) ∩ φ0(v2) = ∅. This
proves that φ satisfies (a).

The fact that φ satisfies (b) follows immediately from the fact that φ0 is
an (f ;w0;Q0)-valid coloring of G0, and the fact that φX is an (f ;w;Q∩X)-
valid coloring of G[X].

We next prove that φ satisfies (c). We consider two cases: when x ∈ KG0 ,
and when x ∈ RG0 . Suppose first that x ∈ KG0 . Then RG = RG0 ∪ RG[X],
and RG0 is complete to RG[X] in G; consequently, w(G[RG]) = w(G[RG0 ])+
w(G[RG[X]]) = w0(G0[RG0 ]) +w(G[RG[X]]). Since f is superadditive, it fol-
lows that f(w0(G0[RG0 ])) + f(w(G[RG[X]])) ≤ f(w(G[RG])). Further, it is
clear that

⋃
φ[RG] = (

⋃
φ0[RG0 ])∪(

⋃
φX [RG[X]]). Since φ0 is an (f ;w0;Q0)-

valid coloring of G0, we know that |
⋃
φ0[RG0 ]| ≤ f(w0(G0[RG0 ])), and since
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φX is an (f ;w;Q∩X)-valid coloring of G[X], we know that |
⋃
φ[RG[X]]| ≤

f(w(G[RG[X]])). It now follows that

|
⋃
φ[RG]| ≤ |

⋃
φ0[RG0 ]|+ |

⋃
φX [RG[X]]|

≤ f(w0(G0[RG0 ])) + f(w(G[RG[X]]))

≤ f(w(G[RG])),
which is what we needed.

Suppose now that x ∈ RG0 . Then RG = (RG0 r {x}) ∪ X; furthermore,
G0[RG0 ] is obtained from G[RG] by “shrinking” X to the vertex x, and we
easily deduce that w0(G0[RG0 ]) = w(G[RG]). By construction, we have that⋃
φX [X] ⊆ φ0(x), and consequently,⋃

φ[RG] = (
⋃
φ0[RG0 r {x}]) ∪ (

⋃
φX [X])

⊆ (
⋃
φ0[RG0 r {x}]) ∪ φ0(x)

=
⋃
φ0[RG0 ].

Since φ0 is an (f ;w0;Q0)-valid coloring of G0, we know that |
⋃
φ0[RG0 ]| ≤

f(w0(G0[RG0 ])). Since w0(G0[RG0 ]) = w(G[RG]), it follows that |
⋃
φ[RG]| ≤

|
⋃
φ0[RG0 ]| ≤ f(w0(G0[RG0 ])) = f(w(G[RG])), which is what we needed.

This proves that φ satisfies (c).

It remains to show that φ satisfies (d). Fix u ∈ Q; we must show that
|
⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])). We consider three cases: when u ∈ X,

when u ∈ Y , and when u ∈ Z.

Suppose first that u ∈ X. Then u ∈ Q∩X and x ∈ Q0. Note that RG(u) =
RG0(x) ∪ RG[X](u), and furthermore, RG0(x) is complete to RG[X](u) in
G; consequently, w(G[RG(u)]) = w(G[RG0(x)]) + w(G[RG[X](u)]). Since
f is superadditive, it follows that f(w(G[RG0(x)])) + f(w(G[RG[X](u)])) ≤
f(w(G[RG(u)])). Since φ0 is an (f ;w0;Q0)-valid coloring of G0, and x ∈ Q0,
we see that |

⋃
φ0[RG0(x)]| ≤ f(w0(G0[RG0(x)])) = f(w(G[RG0(x)])); and

since φX is an (f ;w;Q ∩X)-valid coloring of G[X] and u ∈ Q ∩X, we see
that |

⋃
φX [RG[X](u)]| ≤ f(w(G[RG[X](u)])). Thus,

|
⋃
φ[RG(u)]| = |(

⋃
φ0[RG0(x)]) ∪ (

⋃
φX [RG[X](u)])|

≤ |
⋃
φ0[RG0(x)]|+ |

⋃
φX [RG[X](u)]|

≤ f(w(G[RG0(x)])) + f(w(G[RG[X](u)]))

≤ f(w(G[RG(u)])),
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which is what we needed to show.

Suppose next that u ∈ Z. Then u ∈ Q0, and u is non-adjacent to x in G0
and anti-complete to X in G. Thus, RG(u) = RG0(u) and w(G[RG(u)]) =
w0(G0[RG0(u)]). Since φ0 is an (f ;w0;Q0)-valid coloring of G, we see that
|
⋃
φ[RG(u)]| = |

⋃
φ0[RG0(u)]| ≤ f(w0(G0[RG0(u)])) = f(w(G[RG(u)])),

which is what we needed to show.

It remains to consider the case when u ∈ Y . Then u ∈ Q0, and since
φ0 is an (f ;w0;Q0)-valid coloring of G0, it follows that |

⋃
φ0[RG0(u)]| ≤

f(w0(G0[RG0(u)])). Further, we have that x ∈ ΓG0(u), and so either x ∈
KG0(u) or x ∈ RG0(u).

Suppose first that x ∈ KG0(u). Then RG(u) = RG0(u) ∪ RG[X], and
furthermore, RG0(u) is complete to RG[X] in G, so that w(G[RG(u)]) =
w(G[RG0(u)]) + w(G[RG[X]]). Since f is a superadditive function, it fol-
lows that f(w(G[RG0(u)])) + f(w(G[RG[X]])) ≤ f(w(G[RG(u)])). Since φX

is an (f ;w;Q ∩ X)-valid coloring of G[X], we know that |
⋃
φX [RG[X]]| ≤

f(w(G[RG[X]])). We now have that

|
⋃
φ[RG(u)]| = |(

⋃
φ0[RG0(u)]) ∪ (

⋃
φX [RG[X]])|

≤ |
⋃
φ0[RG0(u)]|+ |

⋃
φX [RG[X]]|

≤ f(w0(G0[RG0(u)])) + f(w(G[RG[X]]))

= f(w(G[RG0(u)])) + f(w(G[RG[X]]))

≤ f(w(G[RG(u)])),

which is what we needed.

Suppose now that x ∈ RG0(u). Then RG(u) = (RG0(u)r {x})∪X; further-
more, G0[RG0(u)] is obtained from G[RG(u)] by “shrinking” X to the vertex
x, and we easily deduce that w0(G0[RG0(u)]) = w(G[RG(u)]). Further, by
construction, we have that

⋃
φX [X] ⊆ φ0(x), and so we get the following:⋃

φ[RG(u)] =
⋃
φ[(RG0(u) r {x}) ∪X]

= (
⋃
φ0[RG0(u) r {x}]) ∪ (

⋃
φX [X])

⊆ (
⋃
φ0[RG0(u) r {x}]) ∪ φ0(x)

=
⋃
φ0[RG0(u)].

22



It now follows that

|
⋃
φ[RG(u)]| ≤ |

⋃
φ0[RG0(u)]|

≤ f(w0(G0[RG0(u)]))

= f(w(G[RG(u)])),

which is what we needed to show. This proves that φ satisfies (d), and
it follows that φ is an (f ;w;Q)-valid coloring of G. This completes the
argument.

We are now ready to prove Lemma 3.2, which states that proper homoge-
neous sets preserve f -colorability.

Lemma 3.2. Let f be a superadditive function, and let G be a graph that
admits a proper homogeneous set. Assume that all proper induced subgraphs
of G are f -colorable. Then G is f -colorable.

Proof. Let w : V (G) → N+ be a weight function for G, and let Q be a G-
admissible clique. LetX be a proper homogeneous set of G, and let (X,Y, Z)
be the associated homogeneous set partition of G. Let x be a vertex that
does not belong to V (G), and let G0, w0, and Q0 be as in the statement of
Proposition 3.1. By Proposition 3.1, we have that w0(G0) = w(G), that Q0
is a G0-admissible clique, and that Q∩X is a G[X]-admissible clique. Using
the fact that G0 is f -colorable (because G0 is isomorphic to a proper induced
subgraph of G), we fix an (f ;w0;Q0)-valid coloring φ0 : V (G0)→Pfin(N+)
of G0. Then |φ0(x)| = f(w0(x)) = f(w(G[X])). Using the fact that G[X]
is f -colorable, we fix an (f ;w;Q ∩X)-valid coloring φX : X →Pfin(N+) of
G[X]. By Proposition 2.1, we have that |

⋃
φX [X]| ≤ f(w(G[X])) = |φ0(x)|,

and so after possibly permuting colors, we may assume that
⋃
φX [X] ⊆

φ0(x). Proposition 3.1 now implies that the function φ : V (G)→Pfin(N+)
given by

φ(v) =


φX(v) if v ∈ X

φ0(v) if v ∈ Y ∪ Z

for all v ∈ V (G) is an (f ;w;Q)-valid coloring of G, and consequently, G is
f -colorable.

We now state and prove Proposition 3.3, a technical result that will be
of use to us in the proof of Lemma 3.4 (which states that clique-cutsets
preserve f -colorability), and also in the proof of Lemma 3.5 (which states
that amalgams preserve f -colorability).

Proposition 3.3. Let G be a graph such that KG = ∅, and let (A,B,C) be
a cut-partition of G. Let w : V (G)→ N+ be a weight function for G, and let
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Q be a G-admissible clique such that Q ∩ C ⊆ KG[C]. Set QA = QrB and
QB = QrA. Then QA is a G[A∪C]-admissible clique, and QB is a G[B∪C]-
admissible clique. For each X ∈ {A,B}, let φX : X ∪ C → Pfin(N+) be a
function such that either

(1) φX is an (f ;w;QX)-valid coloring of G[X ∪ C], or

(2) φX satisfies all the following:

(2.1) φX(v1) ∩ φX(v2) = ∅ for all v1v2 ∈ E(G[X ∪ C]);
(2.2) |φX(v)| = f(w(v)) for all v ∈ X ∪ C;
(2.3) |

⋃
φX [X ∪ C]| ≤ f(w(G));

(2.4) |
⋃
φX [RG(u) ∩ (X ∪ C)]| ≤ f(w(G[RG(u)])) for all u ∈ QX .

Assume that φA � C = φB � C. Then there exists an (f ;w;Q)-valid coloring
of G.

Before turning to its proof, let us first make a couple of remarks about
Proposition 3.3. First of all, it is easy to see (and the details are given
in the proof of Proposition 3.3) that if φX satisfies (1), then it also satis-
fies (2): conditions (2.1) and (2.2) from Proposition 3.3 are are identical
to conditions (a) and (b), respectively, of the definition of an (f ;w;QX)-
valid coloring of G[X ∪C], but conditions (3) and (4) are a bit weaker than
conditions (c) and (d), respectively. Thus, Proposition 3.3 effectively gives
us a way to “combine” functions φX (with X ∈ {A,B}) that are “almost”
(f ;w;QX)-valid colorings of G[X ∪C] into an (f ;w;Q)-valid coloring of G.
The reason that we assume that φX satisfies (1) or (2), rather than simply
assuming that it satisfies (2), is that this makes it easier to apply Propo-
sition 3.3 directly (that is, without checking too many hypotheses) in the
proofs of Lemmas 3.4 and 3.5. In the proof of Lemma 3.4 (which deals with
clique-cutsets), our functions φA and φB both satisfy (1); in the proof of
Lemma 3.5 (which deals with amalgams), one of the two functions satisfies
(1), and the other one satisfies (2).

Let us now briefly discuss the idea of the proof of Proposition 3.3. As
already stated, we first show that φA and φB both satisfy (2). Now, ide-
ally, we would like to show that the function φ : V (G) → Pfin(N+) given
by φ � (A ∪ C) = φA and φ � (B ∪ C) = φB (this is well-defined because
φA � C = φB � C) is an (f ;w;Q)-valid coloring of G. Since φA and φB

satisfy conditions (2.1) and (2.2) from the statement of Proposition 3.3, the
function φ defined in this way satisfies conditions (a) and (b) of the definition
of an (f ;w;Q)-valid coloring of G. Unfortunately, φ need not satisfy condi-
tions (c) and (d). It may, for instance, be that (

⋃
φA[A]) r (

⋃
φA[C]) (the

set of colors that φA uses on A but not on C) and (
⋃
φB[B])r(

⋃
φB[C]) (the

set of colors that φB uses on B but not on C) are non-empty and disjoint,
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and so it is possible that φ uses “too many” colors on G, that is, more colors
than condition (c) allows. Similar problems may occur with condition (d).
In order to address this problem, we first “preprocess” φA and φB (that is,
we rename colors if necessary) so that

⋃
φA[A∪C],

⋃
φB[B∪C] ⊆ [f(w(G))]

(here, we use the fact that φA and φB satisfy condition (2.3)); since KG = ∅,
this ensures that φ satisfies condition (c). To ensure that φ satisfies condi-
tion (d), we use the fact that the sets RG(u), with u ∈ Q, form a nested
sequence, and if necessary, we permute colors so that for each u ∈ Q, one of⋃
φA[RG(u)∩ (A∪C)] and

⋃
φB[RG(u)∩ (B ∪C)] is included in the other.

Using the fact that φA and φB satisfy condition (2.4), we then easily deduce
that φ satisfies condition (d).

Proof of Proposition 3.3. It is clear that QA is a G[A∪C]-admissible clique,
and that QB is a G[B ∪ C]-admissible clique. Now, let us show that the
functions φX (with X ∈ {A,B}) satisfy (2); by symmetry, it suffices to
prove this for φA. By hypothesis, φA satisfies (1) or (2), and so we just
need to show that if φA satisfies (1), then it also satisfies (2). So sup-
pose that φA satisfies (1), that is, suppose that φA is an (f ;w;QA)-valid
coloring of G[A ∪ C]. Then it is immediate from the definition that φA

satisfies (2.1) and (2.2). Let us show that φA satisfies (2.3). Since φA is
an (f ;w;QA)-valid coloring of G[A ∪ C], Proposition 2.1 guarantees that
|
⋃
φA[A ∪ C]| ≤ f(w(G[A ∪ C])). Clearly, w(G[A ∪ C]) ≤ w(G), and

so since f is superadditive (and therefore non-decreasing), it follows that
f(w(G[A ∪ C])) ≤ f(w(G)). Thus, |

⋃
φA[A ∪ C]| ≤ f(w(G)), that is, φA

satisfies (2.3). It remains to show that φA satisfies (2.4). Fix u ∈ Q. Clearly,
RG[A∪C] ⊆ RG(u) ∩ (A ∪ C) ≤ ΓG[A∪C](u), and so Proposition 2.1 guaran-
tees that |

⋃
φA[RG(u) ∩ (A ∪ C)]| ≤ f(w(G[RG(u) ∩ (A ∪ C)])). Clearly,

w(G[RG(u) ∩ (A ∪ C)]) ≤ w(G[RG(u)]), and so since f is superadditive
(and therefore non-decreasing), we have that f(w(G[RG(u) ∩ (A ∪ C)])) ≤
f(w(G[RG(u)])). Thus, |

⋃
φA[RG(u) ∩ (A ∪ C)]| ≤ f(w(G[RG(u)])), that

is, φA satisfies (2.4). This proves that φA satisfies (2), and similarly, φB

satisfies (2).

Now, since Q is a G-admissible clique, so is Q∩C. Set Q∩C = {u1, . . . , uk}
(with k = |Q ∩ C| ≥ 0) so that for all i, j ∈ {1, . . . , k}, if i < j, then
ΓG[ui] ⊆ ΓG[uj ]. For all i ∈ {1, . . . , k}, set Ki = KG(ui), Ri = RG(ui),
RA

i = Ri∩ (A∪C), and RB
i = Ri∩ (B∪C). Clearly, for all i, j ∈ {1, . . . , k},

if i < j, then Ri ⊆ Rj , RA
i ⊆ RA

j , and RB
i ⊆ RB

j .

Since φA and φB satisfy (2.3), we have that |
⋃
φA[A ∪ C]| ≤ f(w(G)) and

|
⋃
φB[B ∪C]| ≤ f(w(G)). After possibly permuting colors, we may assume

that
⋃
φA[A ∪ C] ⊆ [f(w(G))] and

⋃
φB[B ∪ C] ⊆ [f(w(G))].

Recall that φA � C = φB � C. Set nK = |
⋃
φA[KG[C]]| = |

⋃
φB[KG[C]]|
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and nR = |
⋃
φA[RG[C]]| = |

⋃
φB[RG[C]]|. Since KG[C] is complete to RG[C]

in G (and therefore, in both G[A∪C] and G[B ∪C]), and since φA and φB

both satisfy (2.1), we know that for each X ∈ {A,B}, the sets
⋃
φX [KG[C]]

and
⋃
φX [RG[C]] are disjoint. Thus, after possibly permuting colors, we

may assume that
⋃
φA[KG[C]] =

⋃
φB[KG[C]] = [nK ] and

⋃
φA[RG[C]] =⋃

φB[RG[C]] = nK +[nR], and consequently,
⋃
φA[C] =

⋃
φB[C] = [nK +nR].

Further, we know that RA
1 ⊆ · · · ⊆ RA

k and RB
1 ⊆ · · · ⊆ RB

k ; thus, after
possibly permuting colors, we may assume that for each X ∈ {A,B}, and
all i ∈ {1, . . . , k}, we have that (

⋃
φX [RX

i ]) r [nK + nR] = nK + nR +
[|(

⋃
φX [RX

i ]) r [nK + nR]|].

Claim 1. For all i ∈ {1, . . . , k}, one of
⋃
φA[RA

i ] and
⋃
φB[RB

i ] is included
in the other.

Proof. Fix i ∈ {1, . . . , k}. By construction, one of (
⋃
φA[RA

i ]) r [nK + nR]
and (

⋃
φB[RB

i ]) r [nK + nR] is included in the other. Thus, it suffices to
show that (

⋃
φA[RA

i ])∩ [nK +nR] = (
⋃
φB[RB

i ])∩ [nK +nR]. We will prove
the following stronger statement: (

⋃
φA[RA

i ]) ∩ [nK ] = (
⋃
φB[RB

i ]) ∩ [nK ],
nK + [nR] ⊆

⋃
φA[RA

i ], and nK + [nR] ⊆
⋃
φB[RB

i ].

We first show that nK + [nR] ⊆
⋃
φA[RA

i ] and nK + [nR] ⊆
⋃
φB[RB

i ]. Since
ui ∈ KG[C], we see that ui is complete to RG[C] in G, and so RG[C] ⊆ Ri;
consequently, RG[C] ⊆ RA

i and RG[C] ⊆ RB
i , and it follows that nK + [nR] =⋃

φA[RG[C]] ⊆
⋃
φA[RA

i ] and nK + [nR] =
⋃
φB[RG[C]] ⊆

⋃
φB[RB

i ].

It remains to show that (
⋃
φA[RA

i ])∩[nK ] = (
⋃
φB[RA

i ])∩[nK ]. Fix z ∈ [nK ];
we need to show that z ∈

⋃
φA[RA

i ] if and only if z ∈
⋃
φB[RB

i ]. By
symmetry, it suffices to prove the “only if” part, and so we assume that
z ∈

⋃
φA[RA

i ], and we show that z ∈
⋃
φB[RB

i ]. Since KG[C] is a clique of
G[A∪C], since φA satisfies (2.1), and since z ∈ [nK ] =

⋃
φA[KG[C]], we know

that there exists a unique vertex uz ∈ KG[C] such that z ∈ φA(uz). Since
ui, uz ∈ KG[C], we see that uz ∈ ΓG[ui]. Thus, uz ∈ {ui}∪(Ki∩C)∪(Ri∩C).
Now, {ui} ∪ Ki is complete to Ri in G, and therefore, {ui} ∪ (Ki ∩ C)
is complete to RA

i in G[A ∪ C]. Since φA satisfies (2.1), we deduce that⋃
φA[{ui}∪(Ki∩C)] and

⋃
φA[RA

i ] are disjoint. Since z ∈
⋃
φA[RA

i ], we see
that z /∈

⋃
φA[{ui}∪(Ki∩C)]. Thus, uz /∈ {ui}∪(Ki∩C), and consequently,

uz ∈ Ri ∩ C ⊆ RB
i . Since φA � C = φB � C, we see that φA(uz) = φB(uz),

and so z ∈ φA(uz) = φB(uz) ⊆
⋃
φB[RB

i ]. This proves the claim.

Using the fact that φA � C = φB � C, we now define the function φ :
V (G)→Pfin(N+) by setting

φ(v) =


φA(v) if v ∈ A ∪ C

φB(v) if v ∈ B ∪ C
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for all v ∈ V (G). We claim that φ is an (f ;w;Q)-valid coloring of G. We
must show that φ satisfies all the following:

(a) φ(v1) ∩ φ(v2) = ∅ for all v1v2 ∈ E(G);

(b) |φ(v)| = f(w(v)) for all v ∈ V (G);

(c) |
⋃
φ[RG]| ≤ f(w(G[RG]));

(d) |
⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])) for all u ∈ Q.

The fact that φ satisfies (a) follows from the fact that (A,B,C) is a cut-
partition of G, and so E(G) = E(G[A ∪ C]) ∪ E(G[B ∪ C]), and from the
fact that φA and φB satisfy (2.1). The fact that φ satisfies (b) follows from
the fact that φA and φB satisfy (2.2). We next show that φ satisfies (c).
We first observe that

⋃
φ[V (G)] = (

⋃
φA[A ∪ C]) ∪ (

⋃
φB[B ∪ C]), and

we remind the reader that
⋃
φA[A ∪ C],

⋃
φB[B ∪ C] ⊆ [f(w(G))]; thus,⋃

φ[V (G)] ⊆ [f(w(G))], and consequently, |
⋃
φ[V (G)]| ≤ f(w(G)). But by

hypothesis, we have that KG = ∅, and so RG = V (G). It now follows that
|
⋃
φ[RG]| ≤ f(w(G[RG])), that is, φ satisfies (c).

It remains to show that φ satisfies (d). Fix u ∈ Q; we must show that
|
⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])). We consider two cases: when u ∈ C,

and when u ∈ A ∪ B. Suppose first that u ∈ C; then there exists some
i ∈ {1, . . . , k} such that u = ui, and so RG(u) = Ri = RA

i ∪ RB
i and⋃

φ[RG(u)] = (
⋃
φA[RA

i ])∪(
⋃
φB[RB

i ]). Since (by Claim 1) one of
⋃
φA[RA

i ]
and

⋃
φB[RB

i ] is included in the other, it follows that either
⋃
φ[RG(u)] =⋃

φA[RA
i ] or

⋃
φ[RG(u)] =

⋃
φB[RB

i ]. Since φA and φB satisfy (2.4), we
deduce that |

⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])), which is what we needed.

Suppose now that u ∈ A ∪ B; by symmetry, we may assume that u ∈ A.
Since (A,B,C) is a cut-partition of G, we see that RG(u) = RG(u)∩(A∪C),
and it follows that

⋃
φ[RG(u)] =

⋃
φA[RG(u) ∩ (A ∪ C)]. Since φA satis-

fies (2.4), it follows that |
⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])), which is what

we needed. Thus, φ satisfies (d), and it follows that φ is an (f ;w;Q)-valid
coloring of G.

We are now ready to prove Lemmas 3.4 and 3.5, which state that clique-
cutsets and amalgams, respectively, preserve f -colorability.

Lemma 3.4. Let f be a superadditive function, and let G be a graph that
admits a clique-cutset. Assume that all proper induced subgraphs of G are
f -colorable. Then G is f -colorable.

Proof. In view of Proposition 2.3, we may assume that KG = ∅, and there-
fore, RG = V (G). Let C be a clique-cutset of G, and let (A,B,C) be an
associated cut-partition of G; then G[A∪C] and G[B∪C] are proper induced
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subgraphs of G, and therefore, G[A ∪ C] and G[B ∪ C] are f -colorable. To
show that G is f -colorable, we fix a weight function w : V (G) → N+ for G
and a G-admissible clique Q; we need to show that there exists an (f ;w;Q)-
valid coloring of G.

Our goal is to apply Proposition 3.3. First, recall that KG = ∅. Fur-
ther, since C is a clique of G, we see that KG[C] = C, and consequently,
Q ∩ C ⊆ KG[C]. Next, set QA = Q r B and QB = Q r A; clearly, QA

is a G[A ∪ C]-admissible clique, and QB is a G[B ∪ C]-admissible clique.
Using the fact that G[A ∪ C] and G[B ∪ C] are both f -colorable, we fix
an (f ;w;QA)-valid coloring φA : A ∪ C → Pfin(N+) of G[A ∪ C] and an
(f ;w;QB)-valid coloring φB : B ∪C →Pfin(N+) of G[B ∪C]; then φA and
φB both satisfy condition (1) of Proposition 3.3. Since C is a clique of G
(and therefore of both G[A∪C] and G[B∪C]), we know that for all distinct
c1, c2 ∈ C, we have that φA(c1)∩φA(c2) = φB(c1)∩φB(c2) = ∅, and we also
know that for all c ∈ C, we have that |φA(c)| = |φB(c)| = f(w(c)). Thus,
after possibly permuting colors, we may assume that φA � C = φB � C. We
now see that the hypotheses of Proposition 3.3 are satisfied, and so Proposi-
tion 3.3 guarantees that there exists an (f ;w;Q)-valid coloring of G, which
is what we needed.

Lemma 3.5. Let f : N → N be a superadditive function, and let G be a
graph that admits an amalgam. Assume that all proper induced subgraphs of
G are f -colorable. Then G is f -colorable.

Proof. In view of Proposition 2.3, we may assume that KG = ∅, and there-
fore, RG = V (G). In view of Lemmas 3.2 and 3.4, we may assume that G
admits neither a proper homogeneous set nor a clique-cutset. By assump-
tion, G admits an amalgam. Choose an amalgam (K,A,B,C,D) of G that
satisfies the property that for all amalgams (K ′, A′, B′, C ′, D′) of G, we have
that |K ′| ≤ |K|.

Claim 1. A and D are non-empty, RG[K∪B] = RG[B] = B, and RG[K∪C] =
RG[C] = C.

Proof. By symmetry, it suffices to show that A 6= ∅ and that RG[K∪B] =
RG[B] = B. By the definition of an amalgam, we know that |A∪B|, |C∪D| ≥
2. Thus, if A = ∅, then 2 ≤ |B| ≤ |V (G)| − 2, and we deduce that B is a
proper homogeneous set of G, contrary to the fact that G does not admit
a proper homogeneous set. Thus, A 6= ∅. Next, since K is a clique of G,
complete to B in G, we see that K ⊆ KG[K∪B], and therefore, RG[K∪B] ⊆ B.
In order to show that RG[K∪B] = RG[B] = B, it now suffices to show that
every vertex in B has a non-neighbor in B. Suppose that some b ∈ B
is complete to B r {b}. If B = {b}, then K ∪ B is a clique-cutset of G,
which contradicts the fact that G does not admit a clique-cutset, and if
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B r {b} 6= ∅, then (K ∪ {b}, A,B r {b}, C,D) is an amalgam of G, contrary
to the maximality of K. Thus, every vertex in B has a non-neighbor in B,
and it follows that RG[K∪B] = RG[B] = B. This proves the claim.

Now, let w : V (G) → N+ be a weight function for G, and let Q be a
G-admissible clique. We need to show that there exists an (f ;w;Q)-valid
coloring of G.

Claim 2. Either Q ⊆ K ∪A ∪B or Q ⊆ K ∪ C ∪D.

Proof. If Q∩A 6= ∅, then using the fact that A is anti-complete to C∪D and
that Q is a clique, we see that Q ⊆ K ∪A ∪B, and we are done. Similarly,
if Q ∩ D 6= ∅, then Q ⊆ K ∪ C ∪ D, and we are done. So assume that
Q ⊆ K ∪B ∪ C. If Q ∩B = ∅ or Q ∩ C = ∅, then we are done. So suppose
that Q intersects both B and C, and fix some b ∈ Q∩B and c ∈ Q∩C. Since
Q is a G-admissible clique, it follows that one of ΓG[b] and ΓG[c] is included
in the other; by symmetry, we may assume that ΓG[b] ⊆ ΓG[c]. Since B
is complete to C, we know that C ⊆ ΓG[b], and consequently, C ⊆ ΓG[c].
But this is impossible because by Claim 1, RG[C] = C, and so c has a
non-neighbor in C. This proves the claim.

By Claim 2 and by symmetry, we may assume that Q ⊆ K∪A∪B. We now
construct graphs Gb and Gc as in Figure 1.3. Formally, let b and c be distinct
vertices that do not belong to V (G). Let Gb be the graph with vertex-set
V (Gb) = K ∪ C ∪ D ∪ {b}, with adjacency as follows: Gb[K ∪ C ∪ D] =
G[K∪C∪D], and b is complete to K∪C and anti-complete to D. Similarly,
let Gc be the graph with vertex-set V (Gc) = K∪A∪B∪{c}, with adjacency
as follows: Gc[K ∪A∪B] = G[K ∪A∪B], and c is complete to K ∪B and
anti-complete to A. By the definition of an amalgam, we know that B and
C are non-empty and that |A ∪ B|, |C ∪D| ≥ 2; it is then easy to see that
Gb and Gc are both (isomorphic to) proper induced subgraphs of G, and
consequently, Gb and Gc are f -colorable. Now, we define wb : V (Gb)→ N+

by setting

wb(v) =


w(G[B]) if v = b

w(v) if v 6= b

for all v ∈ V (Gb), and we define wc : V (Gc)→ N+ by setting

wc(v) =


w(G[C]) if v = c

w(v) if v 6= c

for all v ∈ V (Gc). By construction, we have that wb(Gb) = w(G r A) and
wc(Gc) = w(G r D); in particular then, wb(Gb), wc(Gc) ≤ w(G). Next,
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A 6= ∅ C 6= ∅ D 6= ∅

K

A B

c

C D

B 6= ∅

b

↓
K K

G

Gc Gb

Q

Q

{b} ∪ (Q ∩K)

RG[K∪C] = RG[C] = C

RG[K∪B] = RG[B] = B

Figure 3.1: Top: Graph G, amalgam (K,A,B,C,D) of G, and G-admissible
clique Q. Bottom left: Graph Gc and Gc-admissible clique Q. Bottom right:
Graph Gb and Gb-admissible clique {b} ∪ (Q ∩K).

since Q ⊆ A ∪ B ∪ K is a G-admissible clique, we see that Q is a Gc-
admissible clique, and that Q ∩K is a Gb-admissible clique. Further, note
that {b} ∪ (Q ∩ K) is a clique of Gb, and that ΓGb

[b] = {b} ∪ K ∪ C,
whereas for all u ∈ K, we have that {b}∪K ∪C ⊆ ΓG[u], and consequently,
ΓG[b] ⊆ ΓG[u]. Thus, {b} ∪ (Q ∩ K) is a Gb-admissible clique. Using the
fact that Gb and Gc are f -colorable, we now fix an (f ;wb; {b} ∪ (Q ∩K))-
valid coloring φb : V (Gb)→Pfin(N+) of Gb and an (f ;wc;Q)-valid coloring
φc : V (Gc)→Pfin(N+) of Gc.

The situation to which we have reduced our problem is represented in Fig-
ure 3.1. Before continuing with the technical details, we give a brief outline
of the remainder of the proof. We first “preprocess” φb and φc (by per-
muting colors if necessary) so as to ensure that φb � K = φc � K and⋃
φb[C] ⊆ φc(c). We then apply Proposition 3.1 to φc and φb � C in order

to obtain an (f ;w;Q)-valid coloring φ∗c of G rD. We then apply Proposi-
tion 3.3 to the cut-partition (A ∪ B,D,K ∪ C) of G and the functions φ∗c
and φb � (K ∪C ∪D), and we obtain an (f ;w;Q)-valid coloring of G, which
is what we need. We remark that the function φb � (K ∪C ∪D) need not be
an (f ;w;Q ∩K)-valid coloring of G[K ∪ C ∪D]; however, we will see that
the function φb � (K ∪C ∪D) (playing the role of φB from Proposition 3.3)
does satisfy the hypotheses of Proposition 3.3.
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Since φb is an (f ;wb; {b} ∪ (Q∩K))-valid coloring of Gb, we see that for all
u ∈ K, we have that |φb(u)| = f(wb(u)) = f(w(u)), and sinceK is a clique of
Gb, we see that for all distinct u1, u2 ∈ K, we have that φb(u1)∩φb(u2) = ∅.
Similarly, since φc is an (f ;wc;Q)-valid coloring of Gc, we see that for all
u ∈ K, we have that |φc(u)| = f(wc(u)) = f(w(u)), and that for all distinct
u1, u2 ∈ K, we have that φc(u1) ∩ φc(u2) = ∅. Thus, after possibly permut-
ing colors, we may assume that φb � K = φc � K. Set nK =

∑
u∈K

f(w(u)).

Then |
⋃
φb[K]| = |

⋃
φc[K]| = nK , and by symmetry, we may assume that⋃

φb[K] =
⋃
φc[K] = [nK ].

Set nC = |φb[C]|. By Claim 1, we have that RGb
(b) = RG[ΓGb

(b)] =
RG[K∪C] = RG[C] = C; since φb is an (f ;wb; {b} ∪ (Q ∩ K))-valid color-
ing of Gb, it follows that nC = |

⋃
φb[C]| ≤ f(wb(G[C])) = f(w(G[C])).

Further, since φb is an (f ;wb; {b} ∪ (Q ∩ K))-valid coloring of Gb, and
since C is complete to K in Gb, we know that

⋃
φb[C] and

⋃
φb[K] are

disjoint, and so by symmetry, we may assume that
⋃
φb[C] = nK + [nC ].

Next, since φc is an (f ;wc;Q)-valid coloring of Gc, we know that |φc(c)| =
f(wc(c)) = f(w(G[C])) ≥ nC . Since c is complete to K in Gc, we know that
φc(c) and

⋃
φc[K] are disjoint, and so by symmetry, we may assume that

nK + [nC ] ⊆ φc(c). We now have that
⋃
φb[C] = nK + [nC ] ⊆ φc(c).

We now define φ∗c : V (G) rD →Pfin(N+) by setting

φ∗c(v) =


φc(v) if v ∈ K ∪A ∪B

φb(v) if v ∈ C

for all v ∈ V (G) rD. Since φc � K = φb � K, we see that φ∗c � (K ∪ C) =
φb � (K ∪C). Further, since Q ⊆ K ∪A∪B is a G-admissible clique, we see
that Q is a (GrD)-admissible clique.

Claim 3. φ∗c is an (f ;w;Q)-valid coloring of GrD.

Proof. Our goal is to apply Proposition 3.1 to the graphs G r D, Gc, and
G[C] (playing the roles of G, G0, and G[X], respectively, from Proposi-
tion 3.1), the vertex c (playing the role of x from Proposition 3.1), and the
functions φc, φb � C, and φ∗c (playing the roles of φ0, φX , and φ, respec-
tively, from Proposition 3.1). Recall that

⋃
φb[C] ⊆ φc(c) and Q ∩ C = ∅.

Thus, the only thing left to show in order to verify that the hypotheses of
Proposition 3.1 are satisfied is that φb � C is an (f ;w; ∅)-valid coloring of
G[C]. For this, we must show that φb � C satisfies all the following:

(a) φb(v1) ∩ φb(v2) = ∅ for all v1v2 ∈ E(G[C]);

(b) |φb(v)| = f(w(v)) for all v ∈ C;
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(c) |
⋃
φb[RG[C]]| ≤ f(w(G[RG[C]]));

(d) |
⋃
φb[RG[C](u)]| ≤ f(w(G[RG[C](u)])) for all u ∈ ∅.

The fact that φb � C satisfies (a) and (b) follows immediately from the
fact that φb is an (f ;wb; {b} ∪ (Q ∩K))-valid coloring of Gb. For condition
(d), there is nothing to show. It remains to prove that φb � C satisfies
(c). Since φb is an (f ;wb; {b} ∪ (Q ∩ K))-valid coloring of Gb, we know
that |

⋃
φb[RGb

(b)]| ≤ f(wb(Gb[RGb
(b)])). But now recall that RGb

(b) =
RG[K∪C] = RG[C] = C. Thus, |

⋃
φb[RG[C]]| ≤ f(w(G[RG[C]])), and so

φb � C satisfies (c). Thus, the hypotheses of Proposition 3.1 are satisfied,
and it follows that φ∗c is an (f ;w;Q)-valid coloring of G r D. This proves
the claim.

Since (by Claim 1) D 6= ∅, we see that (A∪B,D,K∪C) is a cut-partition of
G. Our goal is to apply Proposition 3.3 to the cut-partition (A∪B,D,K∪C),
and the functions φ∗c and φb � (K ∪C ∪D). First, recall that KG = ∅. Next,
by construction, we have that φ∗c � (K ∪ C) = φb � (K ∪ C). Further,
since Q ⊆ K ∪ A ∪ B, Claim 1 implies that Q ∩ (K ∪ C) ⊆ K = KG[K∪C].
By Claim 3, we know that φ∗c is an (f ;w;Q)-valid coloring of G r D =
G[K ∪ A ∪ B ∪ C], and so φ∗c satisfies condition (1) of Proposition 3.3.
Thus, to show that the hypotheses of Proposition 3.3 are satisfied, it only
remains to show that φb � (K ∪ C ∪ D) satisfies condition (1) or (2) from
the statement of Proposition 3.3; in our next claim (Claim 4), we prove that
φb � (K ∪ C ∪D) satisfies condition (2).

Claim 4. The function φb � (K ∪ C ∪D) satisfies all the following:

(1) φb(v1) ∩ φb(v2) = ∅ for all v1v2 ∈ E(G[K ∪ C ∪D]);

(2) |φb(v)| = f(w(v)) for all v ∈ K ∪ C ∪D;

(3) |
⋃
φb[K ∪ C ∪D]| ≤ f(w(G));

(4) |
⋃
φb[RG(u) ∩ (K ∪ C ∪D)]| ≤ f(w(G[RG(u)])) for all u ∈ Q ∩ (K ∪

C ∪D).

Proof. The fact that φb � (K ∪ C ∪D) satisfies (1) and (2) follows immedi-
ately from the fact that φb is an (f ;wb; {b} ∪ (Q ∩K))-valid coloring of Gb,
and the fact that wb � (K ∪C ∪D) = w � (K ∪C ∪D). Next, since φb is an
(f ;wb; {b} ∪ (Q ∩K))-valid coloring of Gb, Proposition 2.1 guarantees that
|
⋃
φb[V (Gb)]| ≤ f(wb(Gb)). We know that wb(Gb) = w(G r A) ≤ w(G),

and so since f is superadditive (and therefore non-decreasing), we have that
f(wb(Gb)) ≤ f(w(G)). It follows that |

⋃
φb[K ∪C ∪D]| ≤ |

⋃
φb[V (Gb)]| ≤

f(wb(Gb)) ≤ f(w(G)), and so φb � (K ∪ C ∪D) satisfies (3).

It remains to show that φb � (K∪C∪D) satisfies (4). Fix u ∈ Q∩(K∪C∪D);
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we must show that |
⋃
φb[RG(u) ∩ (K ∪ C ∪ D)]| ≤ f(w(G[RG(u)])). Re-

call that Q ⊆ K ∪ A ∪ B, and so u ∈ Q ∩ K. Since u ∈ K, we have
that B ⊆ ΓG(u), and so by Claim 1, we have that B ⊆ RG(u). Now, set
Rb = (RG(u)∩(K∪C∪D))∪{b}; then Gb[Rb] is obtained from G[RG(u)rA]
by “shrinking” B to the vertex b, and we easily deduce that wb(Gb[Rb]) =
w(G[RG(u)rA]) ≤ w(G[RG(u)]). Since f is a superadditive (and therefore
non-decreasing) function, we deduce that f(wb(Gb[Rb])) ≤ f(w(G[RG(u)])).
Next, it is easy to see that RGb

(u) ⊆ Rb ⊆ ΓGb
(u), and so since φb is

an (f ;w; {b} ∪ (Q ∩ K))-valid coloring of Gb, Proposition 2.1 guarantees
that |

⋃
φb[Rb]| ≤ f(wb(Gb[Rb])); since f(wb(Gb[Rb])) ≤ f(w(G[RG(u)])), it

follows that |
⋃
φb[Rb]| ≤ f(w(G[RG(u)])). But by construction, RG(u) ∩

(K ∪ C ∪D) ⊆ Rb, and so we deduce that |
⋃
φb[RG(u) ∩ (K ∪ C ∪D)]| ≤

f(w(G[RG(u)])), which is what we needed. This proves the claim.

Using Claim 4, the paragraph that precedes it, and Proposition 3.3, we
deduce that G admits an (f ;w;Q)-valid coloring. This completes the argu-
ment.

Clearly, Lemmas 3.2, 3.4, and 3.5 imply Lemma 2.6. It now only remains
to prove Lemma 2.5, restated below for the reader’s convenience.

Lemma 2.5. Let G be a hereditary class, χ-bounded by a non-decreasing
function f : N → N that satisfies f(1) ≥ 1. Let L ∈ N ∪ {∞} be such that
L ≥ 2 and such that all graphs G ∈ G satisfy ω(G) ≤ L. Define f̃ : N → N

by setting f̃(0) = 0 and f̃(n) = (
min{n,L}∑

t=1
f(t))n−1 for all n ∈ N+. Then f̃

is a superadditive function that satisfies f̃(1) = 1, and every graph in G is
f̃ -colorable.

Proof. To simplify notation, for all n ∈ N, we set Ln = min{n,L}. Thus,

f̃(0) = 0 and f̃(n) = (
Ln∑
t=1

f(t))n−1 for all n ∈ N+. By construction, we have

that f̃(1) = 1. Next, fix somem,n ∈ N; we need to show that f̃(m)+ f̃(n) ≤
f̃(m+ n). If m = 0 or n = 0, then this follows from the fact that f̃(0) = 0.
So assume that m,n ≥ 1. Since L ≥ 2, we have that Lm+n ≥ 2, and since f
is non-decreasing with f(1) ≥ 1, we have that f(1), f(2), f̃(m), f̃(n) ≥ 1. It
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now follows that

f̃(m+ n) = (
Lm+n∑

t=1
f(t))m+n−1

= (
Lm+n∑

t=1
f(t))(

Lm+n∑
t=1

f(t))m−1(
Lm+n∑

t=1
f(t))n−1

≥ (f(1) + f(2))(
Lm∑
t=1

f(t))m−1(
Ln∑
t=1

f(t))n−1

≥ 2f̃(m)f̃(n)

≥ f̃(m) + f̃(n).

This proves that f̃ is superadditive.

It remains to show that every graph in G is f̃ -colorable. Fix G ∈ G, and
assume inductively that every graph in G on fewer than |V (G)| vertices is f̃ -
colorable. Since G is hereditary, it follows that all proper induced subgraphs
of G are f̃ -colorable. In view of Proposition 2.4, we may assume that G
is not a complete graph (in particular, G is non-null). In view of Proposi-
tion 2.3, we may assume that KG = ∅, and therefore, RG = V (G). Further,
in view of Lemmas 3.2 and 3.4 (or alternatively, in view of Lemma 2.6), we
may assume that G admits neither a proper homogeneous set nor a clique-
cutset. Note that for all v ∈ V (G), we have that RG(v) 6= ∅, for otherwise,
either G would be a complete graph, or ΓG(v) would be a clique-cutset of G,
neither of which is possible. In particular then, G has no isolated vertices
(where an isolated vertex is a vertex of degree zero). Note also that for all
distinct v, v′ ∈ V (G), we have that ΓG[v] 6= ΓG[v′], for otherwise, either G
would be a complete graph on the vertex-set {v, v′}, or {v, v′} would be a
proper homogeneous set of G, neither of which is possible. Now, to show
that G is f̃ -colorable, we fix a weight function w : V (G)→ N+ for G, and a
G-admissible clique Q. We must exhibit an (f̃ ;w;Q)-valid coloring of G.

Note that for all v ∈ V (G), we have that {v} is a G-admissible clique,
and that any (f̃ ;w; {v})-valid coloring of G is also an (f̃ ;w; ∅)-valid coloring
of G. Thus, we may assume that Q 6= ∅. Since Q is a G-admissible clique,
we know that it can be ordered as Q = {u1, . . . , uk} (with k = |Q| ≥ 1) so
that for all i, j ∈ {1, . . . , k}, if i < j, then ΓG[ui] ⊆ ΓG[uj ]. We saw above
that for all distinct v, v′ ∈ V (G), we have that ΓG[v] 6= ΓG[v′]; consequently,
we have that for all i, j ∈ {1, . . . , k}, if i < j, then ΓG[ui] $ ΓG[uj ].

To simplify notation, we set Ri = RG(ui) for all i ∈ {1, . . . , k}. We also
set R0 = ∅ and Rk+1 = RG = V (G). For all i ∈ {0, . . . , k + 1}, we set
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ωi = ω(G[Ri]), wi = w(G[Ri]), and χi = χ(G[Ri]). (Thus, ω0 = w0 =
χ0 = 0, ωk+1 = ω(G), wk+1 = w(G), and χk+1 = χ(G).) Finally, we set

M =
Lw(G)∑

t=1
f(t), so that f̃(w(G)) = Mw(G)−1. Since G has no isolated ver-

tices, we know that all v ∈ V (G) satisfy w(v) ≤ w(G)−1, and consequently,

f̃(w(v)) = (
Lw(v)∑
t=1

f(t))w(v)−1 ≤Mw(G)−2.

Claim 1. For all i ∈ {0, . . . , k}, we have that Ri $ Ri+1, ωi < ωi+1, and
wi < wi+1.

Proof. Recall that RG(v) 6= ∅ for all v ∈ V (G). In particular then, R1 6= ∅,
and it follows immediately that R0 $ R1, ω0 < ω1, and w0 < w1.

Next, fix some i ∈ {1, . . . , k − 1}. We know that ΓG[ui] $ ΓG[ui+1], and it
follows that Ri ⊆ Ri+1. Furthermore, we know that ui ∈ ΓG[ui+1], and that
ui has a non-neighbor in ΓG[ui+1], and so it follows that ui ∈ Ri+1 r Ri.
Thus, Ri $ Ri+1. Since ui is complete to Ri in G, we see that ωi+1 ≥ ωi + 1
and wi+1 ≥ wi + w(ui), and consequently, ωi < ωi+1 and wi < wi+1.

It remains to show that Rk $ Rk+1, ωk < ωk+1, and wk < wk+1. By
construction, we have that Rk+1 = RG = V (G); since uk /∈ Rk, it follows
that Rk $ Rk+1. Further, since uk is complete to Rk, we deduce that
ωk+1 ≥ ωk + 1 and wk+1 ≥ wk + w(uk), and consequently, ωk < ωk+1 and
wk < wk+1. This proves the claim.

Claim 2. For all i ∈ {0, . . . , k+ 1}, we have that χi ≤ f(Lwi) and
i∑

t=1
χt ≤

Lwi∑
t=1

f(t). In particular,
k+1∑
t=1

χt ≤M .

Proof. The second statement (that is, the statement that
k+1∑
t=1

χt ≤ M) fol-

lows from the first because M =
Lw(G)∑

t=1
f(t) and w(G) = wk+1. It remains to

prove the first statement. First, since G ∈ G, we see that ωi = ω(G[Ri]) ≤
ω(G) ≤ L for all i ∈ {0, . . . , k + 1}. Since the codomain of the function w
is N+, we see that for all i ∈ {0, . . . , k + 1}, we have that ωi ≤ wi, and it
follows that ωi ≤ min{wi, L} = Lwi . Since f is non-decreasing, we deduce
that f(ωi) ≤ f(Lwi). Thus, it suffices to prove the following claim: for all

i ∈ {0, . . . , k+1}, we have that χi ≤ f(ωi) and
i∑

t=1
χt ≤

ωi∑
t=1

f(t). We proceed
by induction on i. Since ω0 = χ0 = 0, the claim clearly holds for i = 0.
We now fix some i ∈ {0, . . . , k}, and we assume that the claim holds for
i; we need to show that it holds for i + 1. The fact that χi+1 ≤ f(ωi+1)
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follows from the fact that G[Ri+1] ∈ G (because G ∈ G, and G is hereditary),
and the fact that G is χ-bounded by f . Further, by Claim 1, we know that
ωi < ωi+1, and so by what we just showed, and by the induction hypothesis,

we have that
i+1∑
t=1

χt = (
i∑

t=1
χt) +χi+1 ≤ (

ωi∑
t=1

f(t)) +f(ωi+1) ≤
ωi+1∑
t=1

f(t). This
completes the induction, and we are done.

For all i ∈ {0, . . . , k}, fix a proper coloring ψi+1 : Ri+1rRi → (
i∑

t=1
χt)+[χi+1]

of G[Ri+1 rRi]. Using Claim 1 and the fact that R0 = ∅ and Rk+1 = V (G),
we see that the domains of the functions ψ1, . . . , ψk+1 are pairwise disjoint,
and that their union is V (G). Further, by Claim 2, the codomains of the
functions ψ1, . . . , ψk+1 are all included in [M ]. We now define the func-
tion ψ : V (G) → [M ] by setting ψ(v) = ψi+1(v) for all i ∈ {0, . . . , k} and
v ∈ Ri+1 rRi. By construction, the codomains of ψ1, . . . , ψk+1 are pairwise
disjoint, and so ψ is a proper coloring of G.

We now define the function φ∗ : V (G)→Pfin(N+) by setting

φ∗(v) = {ψ(v) + rM | 0 ≤ r ≤ f̃(w(v))− 1}

for all v ∈ V (G). Before continuing with the technical details, let us briefly
outline the remainder of the proof and discuss the role that the function φ∗
will play. The function φ∗ is a “preliminary candidate” for an (f̃ ;w;Q)-valid
coloring of G: it is not hard to see that it satisfies conditions (a), (b), and
(c) of the definition of an (f̃ ;w;Q)-valid coloring of G (this follows from
Claim 3 below, together with the fact that RG = V (G)), but unfortunately,
it need not satisfy condition (d). The reason why φ∗ may fail to satisfy
condition (d) is that there may be an index i ∈ {1, . . . , k} and an isolated
vertex vi of G[Ri] such that w(vi) = wi. Now, conditions (b) and (d) of the
definition of an (f̃ ;w;Q)-valid coloring of G imply that any (f̃ ;w;Q)-valid
coloring φ : V (G) → Pfin(N+) of G satisfies |φ(vi)| = f̃(w(vi)) = f̃(wi)
and |

⋃
φ[Ri]| ≤ f̃(wi), and consequently,

⋃
φ[Ri] = φ(vi). Unfortunately,

φ∗ need not have this property, and so φ∗ may fail to satisfy condition (d).
(We remark that this problem does not arise with condition (c). This is
because G contains no isolated vertices, and so all vertices v ∈ V (G) satisfy
w(v) ≤ w(G)− 1, and consequently, f̃(w(v)) ≤Mw(G)−2 = 1

M f̃(w(G)).) To
rectify the problem, we recursively modify φ∗ on the nested sequence of sets
R1, . . . , Rk in order to eliminate this “anomaly” for one index i at a time.
At each recursive step, we make sure that the function that we construct
still satisfies conditions (a), (b), and (c), and when recursion is complete,
we obtain a function that satisfies condition (d) as well. We thus obtain an
(f̃ ;w;Q)-valid coloring of G, which is what we need. We now turn to the
technical details.

Claim 3. The function φ∗ satisfies all the following:
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(1) φ∗(v1) ∩ φ∗(v2) for all v1v2 ∈ E(G);

(2) |φ∗(v)| = f̃(w(v)) for all v ∈ V (G);

(3)
⋃
φ∗[V (G)] ⊆ [f̃(w(G))].

Proof. The fact that φ∗ satisfies (2) is immediate from the construction
of φ∗. We next show that φ∗ satisfies (1). Fix v1v2 ∈ E(G); we must
show that φ∗(v1) ∩ φ∗(v2) = ∅. Since ψ is a proper coloring of G, we
know that ψ(v1) 6= ψ(v2); since the codomain of ψ is [M ], it follows that
ψ(v1) 6≡M ψ(v2). By construction then, for all x1 ∈ φ∗(v1) and x2 ∈ φ∗(v2),
we have that x1 ≡M ψ(v1) 6≡M ψ(v2) ≡M x2, and consequently, x1 6= x2. It
follows that φ0(v1) ∩ φ0(v2) = ∅, and so φ∗ satisfies (1).

It remains to show that φ∗ satisfies (3). We must check that for all v ∈
V (G), we have that φ∗(v) ⊆ [f̃(w(G))]. Fix v ∈ V (G), and recall that
f̃(w(v)) ≤Mw(G)−2. We then have that

max φ∗(v) = ψ(v) + (f̃(w(v))− 1)M

≤ M + (Mw(G)−2 − 1)M

= Mw(G)−1

= f̃(w(G)),

and consequently, φ∗(v) ⊆ [f̃(w(G))]. It follows that
⋃
φ∗[V (G)] ⊆ [f̃(w(G))],

and so φ∗ satisfies (3). This proves the claim.

Set S0 = ∅, and for all i ∈ {1, . . . , k}, set

Si = {(
i∑

t=1
χt) + rM | 0 ≤ r ≤ f̃(wi)− 1}.

By Claim 1, we have that wi ≥ 1 for all i ∈ {1, . . . , k}. Since f̃ is superad-
ditive (and therefore non-decreasing) and satisfies f̃(1) = 1, it follows that
for all i ∈ {1, . . . , k}, we have that f̃(wi) ≥ 1, and consequently, Si 6= ∅.

Claim 4. For all i ∈ {0, . . . , k}, we have that |Si| = f̃(wi) and Si ⊆
[f̃(w(G))].

Proof. Fix i ∈ {0, . . . , k}. If i = 0, then Si = ∅, and the result is immediate.
So assume that i ≥ 1, so that Si 6= ∅. It is clear that |Si| = f̃(wi), and we just

need to show that Si ⊆ [f̃(w(G))]. By Claim 2, we know that (
i∑

t=1
χt) ≤M ,
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and by Claim 1, we have that wi ≤ w(G)− 1, and so by the definition of f̃
and M , we have that f̃(wi) ≤Mwi−1 ≤Mw(G)−2. Consequently,

maxSi = (
i∑

t=1
χt) + (f̃(wi)− 1)M

≤ M + (Mw(G)−2 − 1)M

= Mw(G)−1

= f̃(w(G)),

and it follows that Si ⊆ [f̃(w(G))]. This proves the claim.

Our goal now is to recursively define a sequence of functions φ0, . . . , φk :
V (G)→Pfin(N+) such for all i ∈ {0, . . . , k}, φi satisfies all the following:

(a-i) φi(v1) ∩ φi(v2) = ∅ for all v1v2 ∈ E(G);

(b-i) |φi(v)| = f̃(w(v)) for all v ∈ V (G);

(c-i) |
⋃
φi[Rj ]| ≤ f̃(wj) for all j ∈ {1, . . . , i};

(d-i)
⋃
φi[Ri] ⊆ Si;

(e-i) φi � (V (G) rRi) = φ∗ � (V (G) rRi).

Once we have constructed functions these functions, we can easily show that
φk is an (f̃ ;w;Q)-valid coloring of G (see Claim 6), from which we immedi-
ately deduce that G is f̃ -colorable. We now proceed to construct functions
φ0, . . . , φk.

First, set φ0 = φ∗. Claim 3 guarantees that φ0 satisfies (a-0) and (b-0).
Further, φ0 vacuously satisfies (c-0), it satisfies (d-0) because R0 = ∅, and
it satisfies (e-0) because φ0 = φ∗.

Now, fix i ∈ {0, . . . , k − 1}, and suppose that we have defined a function
φi : V (G) → Pfin(N+) that satisfies (a-i)-(e-i). Our goal is to construct a
function φi+1 : V (G)→Pfin(N+) that satisfies (a-(i+ 1))-(e-(i+ 1)). Set

Ui+1 = {v ∈ Ri+1 | w(v) = wi+1}.

By Claim 1, we have that wi+1 > wi, and consequently, for all v ∈ Ui+1,
we have that w(v) > wi. Thus, Ui+1 ⊆ Ri+1 r Ri and Ri ⊆ Ri+1 r Ui+1.
Furthermore, each vertex in Ui+1 is an isolated vertex of G[Ri+1].

Claim 5. |
⋃
φi[Ri+1 r Ui+1]| ≤ f̃(wi+1).
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Proof. If Ui+1 = Ri+1, then the result is immediate. So assume that Ui+1 $
Ri+1. Note that this implies that wi+1 ≥ 2. By (e-i), we have that φi �
(Ri+1 r Ri) = φ∗ � (Ri+1 r Ri). Further, for all v ∈ Ri+1 r Ui+1, we have
that w(v) ≤ wi+1 − 1, and so f̃(w(v)) ≤ f̃(wi+1 − 1). It now follows that⋃

φi[Ri+1 r (Ri ∪ Ui+1)]

=
⋃
φ∗[Ri+1 r (Ri ∪ Ui+1)]

=
⋃
{ψ(v) + rM | v ∈ Ri+1 r (Ri ∪ Ui+1), 0 ≤ r ≤ f̃(w(v))− 1}

⊆ {a+ rM | a ∈ (
i∑

t=1
χt) + [χi+1], 0 ≤ r ≤ f̃(wi+1 − 1)− 1},

and consequently, |
⋃
φi[Ri+1 r (Ri∪Ui+1)]| ≤ χi+1f̃(wi+1−1). Further, by

Claim 2, we have that χi+1 ≤ f(Lwi+1), and so if i = 0 (so that R0 = ∅),
then we have that Ri+1 r Ui+1 = Ri+1 r (Ri ∪ Ui+1), and consequently,

|
⋃
φi[Ri+1 r Ui+1]| ≤ χi+1f̃(wi+1 − 1)

≤ f(Lwi+1)(
Lwi+1−1∑

t=1
f(t))wi+1−2

≤ (
Lwi+1∑

t=1
f(t))wi+1−1

= f̃(wi+1),

and we are done. So assume that i ≥ 1. Then by Claim 1, we have that

wi+1 > wi ≥ 1 and χi ≥ 1, and so by Claim 2, χi+1 +1 ≤
i+1∑
t=1

χt ≤
Lwi+1∑

t=1
f(t).
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Further, by (c-i), we have that |
⋃
φi[Ri]| ≤ f̃(wi). Thus,

|
⋃
φi[Ri+1 r Ui+1]| ≤ |

⋃
φi[Ri+1 r (Ri ∪ Ui+1)]|+ |

⋃
φi[Ri]|

≤ χi+1f̃(wi+1 − 1) + f̃(wi)

= χi+1(
Lwi+1−1∑

t=1
f(t))wi+1−2 + (

Lwi∑
t=1

f(t))wi−1

≤ (χi+1 + 1)(
Lwi+1∑

t=1
f(t))wi+1−2

≤ (
Lwi+1∑

t=1
f(t))(

Lwi+1∑
t=1

f(t))wi+1−2

= f̃(wi+1).

This proves the claim.

In view of Claims 4 and 5, we have that |
⋃
φi[Ri+1 r Ui+1]| ≤ |Si+1|. Fix

an injective function σ :
⋃
φi[Ri+1 r Ui+1] → Si+1, and define the function

φi+1 : V (G)→Pfin(N+) by setting

φi+1(v) =



Si+1 if v ∈ Ui+1

σ[φi(v)] if v ∈ Ri+1 r Ui+1

φi(v) if v /∈ Ri+1

for all v ∈ V (G).

Let us check that the function φi+1 satisfies (a-(i+ 1))-(e-(i+ 1)). The fact
that φi+1 satisfies (d-(i+1)) is immediate from the construction of φi+1. The
fact that φi+1 satisfies (e-(i+ 1)) follows from the fact that φi satisfies (e-i).
Next, by Claim 4 and (d-(i + 1)), we have that |

⋃
φi+1[Ri+1]| ≤ |Si+1| =

f̃(wi+1); and for all j ∈ {1, . . . , i}, the fact that φi satisfies (c-i), that σ is
an injection, and that Rj ⊆ Ri ⊆ Ri+1 r Ui+1, implies that |

⋃
φi+1[Rj ]| =

|σ[
⋃
φi[Rj ]]| = |

⋃
φi[Rj ]| ≤ f̃(wj). Thus, φi+1 satisfies (c-(i + 1)). For

(b-(i + 1)), we fix some v ∈ V (G), and we show that |φi+1(v)| = f̃(w(v)).
If v ∈ Ui+1, then w(v) = wi+1, and so by Claim 4 and the construction of
φi+1, we have that |φi+1(v)| = |Si+1| = f̃(wi+1) = f̃(w(v)). On the other
hand, if v /∈ Ui+1, then using the fact that σ is an injection, and the fact
that φi satisfies (b-i), we see that |φi+1(v)| = |φi(v)| = f̃(w(v)). Thus, φi+1
satisfies (b-(i+ 1)).
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It remains to show that φi+1 satisfies (a-(i + 1)). Fix v1v2 ∈ E(G); we
must show that φi+1(v1) ∩ φi+1(v2) = ∅. If v1, v2 /∈ Ri+1, then this fol-
lows from the fact that φi satisfies (a-i). Suppose next that v1, v2 ∈ Ri+1.
Since v1v2 ∈ E(G[Ri+1]), and since every vertex of Ui+1 is an isolated
vertex of G[Ri+1], we see that v1, v2 ∈ Ri+1 r Ui+1. Then since σ is an
injection, and since φi satisfies (a-i), we have that φi+1(v1) ∩ φi+1(v2) =
σ[φi(v1)] ∩ σ[φi(v2)] = σ[φi(v1) ∩ φi(v2)] = σ[∅] = ∅. It remains to consider
the case when exactly one of v1 and v2 belongs to Ri+1; by symmetry, we
may assume that v1 ∈ Ri+1 and v2 /∈ Ri+1. By (d-(i + 1)), we know that

φi+1(v1) ⊆ Si+1, and consequently, all x1 ∈ φi+1(v1) satisfy x1 ≡M (
i+1∑
t=1

χt).

On the other hand, by (e-(i+ 1)), we have that φi+1(v2) = φ∗(v2), and con-

sequently, for all x2 ∈ φi+1(v2), we have that x2 ≡M ψ(v2) ∈ [M ] r [
i+1∑
t=1

χt]

and therefore x2 6≡M

i+1∑
t=1

χt. Thus, for all x1 ∈ φi+1(v1) and x2 ∈ φi+1(v2),

we have that x1 ≡M (
i+1∑
t=1

χt) 6≡M x2, and consequently, x1 6= x2. It follows

that φi+1(v1)∩φi+1(v2) = ∅, and so φi+1 satisfies (a-(i+1)). This completes
the induction.

Claim 6. The function φk : V (G)→Pfin(N+) is an (f̃ ;w;Q)-valid coloring
of G.

Proof. We need to show that φk satisfies all the following:

(a) φk(v1) ∩ φk(v2) = ∅ for all v1v2 ∈ E(G);

(b) |φk(v)| = f̃(w(v)) for all v ∈ V (G);

(c) |
⋃
φk[RG]| ≤ f̃(w(G[RG]));

(d) |
⋃
φk[RG(u)]| ≤ f̃(w(G[RG(u)])) for all u ∈ Q.

The fact that φk satisfies (a), (b), and (d) follows immediately from the fact
that it satisfies (a-k), (b-k), and (c-k), respectively. It remains to show that
φk satisfies (c). Since V (G) = RG, it suffices to show that |

⋃
φk[V (G)]| ≤

f̃(w(G)). First, since φk satisfies (d-k), we know that
⋃
φk[Rk] ⊆ Sk, and

so by Claim 4, we have that
⋃
φk[Rk] ⊆ [f̃(w(G))]. On the other hand,

since φk satisfies (e-k), we know that φk � (V (G) r Rk) = φ∗ � (V (G) r
Ri), and so Claim 3 implies that

⋃
φk[V (G) r Rk] ⊆ [f̃(w(G))]. We now

have that
⋃
φk[V (G)] = (

⋃
φk[Rk]) ∪ (

⋃
φk[V (G) r Rk]) ⊆ [f̃(w(G))], and

consequently, |
⋃
φk[V (G)]| ≤ f̃(w(G)). Thus, φk satisfies (c). This proves

the claim.

Claim 6 immediately implies that G is f̃ -colorable. This completes the
argument.
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4 House∗-free graphs and the proof of Theorem 1.3
We remind the reader that the house is the complement of the four-edge
path, a house∗ is any subdivision of the house, and a cap is any graph
obtained from the house by possibly subdividing the three edges of the
house that do not belong to the unique triangle of the house (see Figure 1.4).
Equivalently, a cap is a graph that consists of a cycle of length at least four,
together with a vertex that is adjacent to two adjacent vertices of the cycle,
and non-adjacent to all the remaining vertices of the cycle. Thus, the house
is a cap, and any cap is a house∗. Furthermore, every house∗-free graph is
cap-free (but not every cap-free graph is house∗-free). The class of cap-free
graphs is not χ-bounded because every triangle-free graph is cap-free, and
triangle-free graphs can have an arbitrarily large chromatic number [20, 25],
while their clique number is at most two. However, as we show in this
section, the class of house∗-free graphs is χ-bounded. To prove this, we
rely on a decomposition theorem for cap-free graphs from [11], and the fact
that every house∗-free graph is cap-free. Before stating the decomposition
theorem for cap-free graphs, we need a definition. A chordal graph is a graph
that does not contain any induced cycles of length greater than three. It is
well-known (and easy to prove) that every chordal graph either is a complete
graph or admits a clique-cutset [13]. (We remark that Proposition 2.4 and
Lemma 3.4 imply that if f : N→ N is a superadditive function, then every
chordal graph is f -colorable.) We now state the decomposition theorem for
cap-free graphs from [11].

Theorem 4.1. [11] Let G be a cap-free graph. Then G satisfies at least one
of the following:

• G is a chordal graph;

• G is a 2-connected, triangle-free graph, together with at most one ad-
ditional vertex, which is adjacent to all other vertices of G;

• G admits an amalgam.

As a corollary, we easily obtain the following.

Corollary 4.2. Let G be a house∗-free graph. Then either G is a bipartite
graph or an odd cycle of length at least five, or G admits a proper homoge-
neous set, a clique-cutset, or an amalgam.

Proof. Since G is house∗-free, it is cap-free, and so we may apply Theo-
rem 4.1 to G. If G admits an amalgam, then we are done. If G is chordal,
then either G is a complete graph (in which case either it contains at most
two vertices and is therefore bipartite, or it admits a proper homogeneous
set), or G admits a clique-cutset, and in either case, we are done. Further, if
G is a 2-connected, triangle-free graph, together with exactly one additional
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vertex, adjacent to all other vertices of G, then G admits a proper homoge-
neous set, and again we are done. So by Theorem 4.1, we may assume that
G is a 2-connected, triangle-free graph. If G contains no induced odd cycles
of length at least five, then the fact that G is triangle-free implies that G
is bipartite, and we are done. So assume that G does contain such a cycle,
and let c0 − c1 − · · · − c2k−1 − c2k − c0 (with indices in Z2k+1, k ≥ 2) be an
induced odd cycle of G.

Claim 1. No vertex in V (G)r {c0, . . . , c2k} has more than one neighbor in
{c0, . . . , c2k}.

Proof. Fix v ∈ V (G) r {c0, . . . , c2k}, and suppose that v has at least two
neighbors in {c0, . . . , c2k}. If v is adjacent to precisely two vertices in
{c0, . . . , c2k}, then G[v, c0, . . . , c2k] is a house∗, contrary to the fact that G is
house∗-free. So assume that v has at least three neighbors in {c0, . . . , c2k}.
Fix distinct indices r, t ∈ Z2k+1 such that v is adjacent to cr and ct, and
to precisely one vertex, say cs, in {cr+1, . . . , ct−1}. Since v is complete to
{cr, cs, ct}, and since G is triangle-free, we know that {cr, cs, ct} is a stable
set, and we easily deduce that G[v, cr, cr+1, . . . , cs, cs+1, . . . , ct] is a house∗,
contrary to the fact that G is house∗-free. This proves the claim.

Claim 2. For every component C of Gr {c0, . . . , c2k}, at most one vertex
in {c0, . . . , c2k} has a neighbor in C.

Proof. Fix a component C of Gr{c0, . . . , c2k}, and suppose that at least two
vertices in {c0, . . . , c2k} have a neighbor in C. By symmetry, we may assume
that c0 has a neighbor in C. Set C0 = ΓG(c0) ∩ V (C); by construction, C0
is non-empty, and by Claim 1, we know C0 is anti-complete to {c1, . . . , c2k}.
Since at least two vertices in {c0, . . . , c2k} have a neighbor in C, we know
that some vertex in V (C) r C0 has a neighbor in {c1, . . . , c2k}. Using the
fact that C is connected, we fix a minimal (and therefore induced) path
v0 − v1 − · · · − vt in C that has the property that v0 ∈ C0 and vt has a
neighbor in {c1, . . . , c2k}. By the minimality of v0 − v1 − · · · − vt, we know
that {v1, . . . , vt−1} is anti-complete to {c0, . . . , c2k}. Fix r ∈ Z2k+1 r {0}
such that vt is adjacent to cr; by Claim 1, we see that cr is the only neighbor
of vt in {c0, . . . , c2k}. But now we see that G[v0, v1, . . . , vt, c0, c1, . . . , c2k] is a
house∗, contrary to the fact that G is house∗-free. This proves the claim.

If {c0, c1, . . . , c2k} $ V (G), then Claim 2 implies that G admits a cutset of
size at most one, contrary to the fact that G is 2-connected. It follows that
V (G) = {c0, c1, . . . , c2k}, and so G is an odd cycle of length at least five.
This completes the argument.

Using Corollaries 2.9 and 4.2, we easily obtain the following.

Proposition 4.3. Every house∗-free graph G satisfies χ(G) ≤ 4ω(G)−1.
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Proof. Corollary 4.2 implies that if G is house∗-free graph, then either G is
a triangle-free, 3-colorable graph, or G admits a proper homogeneous set,
a clique-cutset, or an amalgam. The result now follows from Corollary 2.9
(with L = 2 and c = 3).

As stated in the introduction, we can improve the bound from Proposi-
tion 4.3 by relying on technical results concerning f -colorability from sec-
tion 2 (rather than relying on Corollary 2.9). In particular, we can prove
Theorem 1.3, stated in the introduction and restated below for the reader’s
convenience.

Theorem 1.3. Every house∗-free graph G satisfies χ(G) ≤ 3ω(G)−1.

Proof. Let f : N→ N be given by f(0) = 0 and f(n) = 3n−1 for all n ∈ N+.
Clearly, f is a superadditive function that satisfies f(1) = 1. Furthermore,
it is clear that the class of house∗-free graphs is hereditary. Thus, it suf-
fices to show that every house∗-free graph is f -colorable, for Lemma 2.7
will then imply that the class of house∗-free graphs is χ-bounded by f , and
then we are done. Fix a house∗-free graph G, and assume inductively that
all proper induced subgraphs of G are f -colorable; we must show that G
is f -colorable. In view of Proposition 2.4, we may assume that G is not a
complete graph (and in particular, G is non-null), and in view of Proposi-
tion 2.3, we may assume that KG = ∅ (and so RG = V (G)). Further, in
view of Lemma 2.6, we may assume that G does not admit a proper ho-
mogeneous set, a clique-cutset, or an amalgam. Thus, Corollary 4.2 implies
that G is either a bipartite graph or an odd cycle of length at least five (and
in particular, G is triangle-free). Furthermore, we have that all v ∈ V (G)
satisfy RG(v) 6= ∅, for otherwise, either G would be a complete graph, or
ΓG(v) would be a clique-cutset of G, contrary to the fact that G is not a
complete graph and does not admit a clique-cutset.

Fix a weight function w : V (G) → N+ for G, and a G-admissible clique
Q; we must exhibit an (f ;w;Q)-valid coloring of G. Let us first show that
|Q| ≤ 1. Suppose that |Q| ≥ 2; then there exist distinct u1, u2 ∈ Q such that
ΓG[u1] ⊆ ΓG[u2]. Clearly, u2 ∈ KG(u1). Using the fact that RG(u1) 6= ∅,
we fix some v ∈ RG(u1), and we observe that {v, u1, u2} is a triangle in
G, contrary to the fact that G is triangle-free. Thus, |Q| ≤ 1. Next, note
that for every vertex v ∈ V (G), we have that {v} is a G-admissible clique,
and that every (f ;w; {v})-valid coloring of G is also an (f ;w; ∅)-valid col-
oring of G. Thus, we may assume that Q 6= ∅, and so |Q| = 1. Set Q = {u0}.

Since G is triangle-free, we see that ΓG(u0) is a stable set. Since G is either
a bipartite graph or an odd cycle of length at least five, we see that there
exists a proper coloring ψ : V (G) → [3] of G such that for all v ∈ ΓG(u0),
we have that ψ(v) = 1. Now, define φ : V (G) → Pfin(N+) by setting
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φ(v) = {ψ(v) + 3r | 0 ≤ r ≤ f(w(v))− 1}. We claim that φ is an (f ;w;Q)-
valid coloring of G. We must show that φ satisfies all the following:

(a) φ(v1) ∩ φ(v2) = ∅ for all v1v2 ∈ E(G);

(b) |φ(v)| = f(w(v)) for all v ∈ V (G);

(c) |
⋃
φ[RG]| ≤ f(w(G[RG]));

(d) |
⋃
φ[RG(u)]| ≤ f(w(G[RG(u)])) for all u ∈ Q.

The fact that φ satisfies (b) is immediate from the construction of φ. We
next show that φ satisfies (a). Fix v1v2 ∈ E(G); we must show that
φ(v1) ∩ φ(v2) = ∅. Since ψ is a proper coloring of G, we know that
ψ(v1) 6= ψ(v2); since the codomain of ψ is [3], it follows that ψ(v1) 6≡3 ψ(v2).
It now follows from the construction of φ that for all x1 ∈ φ(v1) and
x2 ∈ φ(v2), we have that x1 ≡3 ψ(v1) 6≡3 ψ(v2) ≡3 x2, and consequently,
x1 6= x2. Thus, φ(v1) ∩ φ(v2) = ∅, and φ satisfies (a).

Let us now show that φ satisfies (c). Since RG = V (G), we just need
to show that |

⋃
φ[V (G)]| ≤ f(w(G)). We prove this by showing that for all

v ∈ V (G), we have that φ(v) ⊆ [f(w(G))]; clearly, it suffices to show that
max φ(v) ≤ f(w(G)). Fix v ∈ V (G). Since RG(v) 6= ∅, we know that v has
a neighbor in G, and so w(v) ≤ w(G)− 1. Thus,

max φ(v) = ψ(v) + 3(f(w(v))− 1)

≤ 3 + 3(3w(G)−2 − 1)

= 3w(G)−1

= f(w(G)).

This proves that φ satisfies (c).

It remains to show that φ satisfies (d). Since Q = {u0}, we just need to
show that |

⋃
φ[RG(u0)]| ≤ f(w(G[RG(u0)])). Recall that for all v ∈ ΓG(u0),

we have that ψ(v) = 1. It then follows that⋃
φ[RG(u0)] = {ψ(v) + 3r | v ∈ RG(u0), 0 ≤ r ≤ f(w(v))− 1}

⊆ {1 + 3r | 0 ≤ r ≤ f(w(G[RG(u0)]))− 1},

and consequently, |
⋃
φ[RG(u0)]| ≤ f(w(G[RG(u0)])). This proves that φ

satisfies (d).

We now have that φ is an (f ;w;Q)-valid coloring of G, and consequently, G
is f -colorable. This completes the argument.
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