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Abstract 24 

Exposure assessment is a key step in determining risks to chemicals in consumer goods including 25 

personal care products (PCPs). Exposure models can be used to estimate exposures to chemicals 26 

in the absence of biomonitoring data and as tools in chemical risk prioritization and screening.   27 

We apply a PCP exposure model based on the product intake fraction (PiF), which is defined as 28 

the fraction of chemical in a product that is taken in by the exposed population, to estimate 29 

chemical intake based on physicochemical properties and PCP usage characteristics. The PiF can 30 

be used to estimate route and pathway specific exposures during both the use- and disposal-31 

stages of a product. As a case study, we stochastically quantified population level exposures to 32 

parabens in PCPs, and compared estimates to biomarker values. We estimated exposure based on 33 

the usage of PCPs in the female US population, taking into account population variability, 34 

product usage characteristics, paraben occurrence in PCPs, and the PiF. Intakes were converted 35 

to urine levels and compared to NHANES (National Health and Nutrition Examination Survey) 36 

biomonitoring data. Results suggest that for parabens, chemical exposure during product use is 37 

substantially larger than environmentally mediated exposure after product disposal. Modeled 38 

urine concentrations reflect well the NHANES variation of three orders of magnitude across 39 

parabens for the 50
th

, 75
th

, 90
th

, and 95
th

 percentiles and were generally in good agreement with 40 

measurements, when taking uncertainty into account. This study presents an approach to estimate 41 

multi-pathway exposure to chemicals in PCPs and can be used as a tool within exposure based 42 

screening of chemicals as well in higher tier exposure estimates. 43 

 44 

Keywords: exposure modeling, dermal exposure, inhalation exposure, multi-media studies, 45 

personal exposure, population based studies 46 
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 48 

1. Introduction 49 

In order to inform risk assessment of chemicals in cosmetics and personal care products 50 

(PCPs) an understanding of individual and population level exposure is required.
1,2

 The need for  51 

exposure estimates based on various chemical uses is highlighted by the recent advances in high-52 

throughput exposure models for chemical prioritization
3,4

 which can also be combined with high-53 

throughput toxicity estimates to inform risk.
5,6

 Historically, these modeling efforts have focused 54 

on far-field environmentally mediated exposures and less on near-field pathway exposures 55 

occurring indoors and during product use.
3,7

 Usage of PCPs has been shown to be well correlated 56 

with exposure
8,9

 and use-phase exposure has been estimated to be greater than environmentally 57 

mediated exposure.
10,11

 Modeling techniques can be used to estimate near-field and use-phase 58 

exposures to chemicals in PCPs and can be used to further enhance chemical prioritization 59 

methods for chemicals in consumer products.
6
 60 

Several calculations have been developed to estimate chemical intake via PCP use and are 61 

based on multiplicative models
1,2,12

 using a set skin permeation fraction often derived from the 62 

literature and do not necessarily take exposure duration (e.g. rinse-off versus leave-on into 63 

account).
1
 On the other hand, models have been developed to estimate the skin permeation 64 

coefficient of a chemical
13,14

 and chemical uptake into the skin.
15,16

 Skin permeation models 65 

provide the advantage that they can be applied to chemicals based on physicochemical properties 66 

(i.e. octanol-water partition coefficient, Kow, and molecular weight) thereby lending themselves 67 

to computationally based calculations rather than relying on data from the literature which is not 68 

conducive to multiple chemical calculations. Furthermore, models used to estimate exposure to 69 

chemicals applied dermally vary in mathematical complexity, for example by assuming only one 70 

chemical fate pathway (i.e. dermal uptake),
15

 or only providing complex numerical solutions.
16

 71 
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Modeling frameworks are currently being developed to combine dermal uptake with the concept 72 

of the product intake fraction, PiF, defined as the fraction of the chemical in a product that is 73 

eventually taken in by the exposed individual(s)/population.
17

 These models can be applied to 74 

predict chemical intake via several different pathways such as dermal uptake, inhalation intake 75 

and gaseous dermal uptake of volatilized chemicals, and to environmentally mediated exposure 76 

after product disposal. The advantage of this multi-pathway approach is that the relative 77 

contribution of each pathway can be estimated and does not assume that exposure only occurs 78 

via dermal uptake of product applied to the skin and allows for comparison between use-phase 79 

and disposal-phase exposures. 80 

 Such models, however, have yet to be evaluated on a population level using for example, 81 

biomarker data. Additionally, exposure is often estimated based on the usage of a single product 82 

rather than an aggregate analysis taking into account usage of multiple products containing a 83 

given chemical
1,2,15

, which may underestimate a consumer’s entire exposure for chemicals found 84 

in multiple product types. Cowan-Ellsberry and Robison
1
 and Gosens et al.

2
 present aggregate 85 

exposure estimates for parabens in PCPs, however their estimates do not use a skin permeation 86 

model nor are their estimates validated against biomarker data. Delmaar et al.
15

 estimated 87 

aggregate exposure to diethyl phthalate using a skin permeation model, however they only 88 

consider the dermal exposure pathway. The application of a multi-pathway exposure model to 89 

estimate cosmetic intake has not been validated on a population level nor applied across multiple 90 

product types to yield aggregate exposure estimates. To address this gap, the product intake 91 

fraction concept would need to be adapted to several PCPs and validated against population level 92 

data. Evaluation of a PCP exposure model using data rich chemicals will build further 93 
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confidence in these techniques such that they can be incorporated into Tier 1 exposure and risk 94 

screening approaches and used on a broader range of chemicals. 95 

 In this paper, we apply the PiF concept to model chemical intake due to PCP usage using 96 

parabens as a case study. In order to compare the estimated intakes to population-based 97 

biomonitoring data we probabilistically combined the PiF calculations with aggregate exposure 98 

considerations to capture population variability, focusing on a class of widely used chemicals. 99 

This type of analysis is referred to as a Tier 2 probabilistic exposure estimate
18

 and is more 100 

detailed than point estimates often used in screening approaches (Tier 1).
6
 Parabens are 101 

commonly used in PCPs and cosmetics as preservatives, are readily absorbed into the skin,
19

 are 102 

detectable in urine,
20

 and thereby provide a good PCP exposure case study. Urinary biomarker 103 

data is available for the US population from NHANES (National Health and Nutrition 104 

Examination Survey)
21

 where parabens have been detected in ~99% of the population.
22

 105 

Additionally, parabens are suspected endocrine disruptors
23,24

 and these exposure calculations 106 

provide a basis for informing risk when combined with toxicity, bioactivity, or allowable dose 107 

data.
17

 This study therefore aims to: 108 

1. Estimate and contrast modeled product intake fraction for various exposure pathways 109 

(including near and far-field exposures) for parabens in a variety of PCPs and cosmetics 110 

while accounting for both chemical specific properties and product use characteristics. 111 

2. Develop a stochastic method to produce population distributions of exposure resulting 112 

from the usage of multiple PCPs.  113 

3. Evaluate the stochastic method by comparing its predictions with NHANES urine 114 

concentrations at different percentiles (50
th

 to 95
th

) of exposure in the US population. 115 

2. Methods 116 
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We used four common parabens methyl, ethyl, propyl, and butyl paraben (MeP, EtP, PrP, 117 

BuP, respectively) and eleven commonly used personal care products (PCPs) as a case study. We 118 

included rinse-off products (shampoo, conditioner, facial cleanser, body wash) and leave-on 119 

products (body lotion, face cream, night cream, deodorant, foundation, eye shadow, and lipstick). 120 

We studied the U.S. female population due to the availability of urine biomarker data
21

 and the 121 

significantly higher exposure of the female versus male population to parabens.
22

  122 

2.1 Product Intake Fraction  123 

We used the product intake fraction (PiF) metric to assess the fraction of parabens in 124 

products that humans are exposed to a) during product use and b) via subsequent environmental 125 

emissions after product use. The PiF is defined as the ratio of the amount of chemical in a 126 

product that is taken in by humans and the amount of chemical contained in that product and 127 

depends on physicochemical properties as well as product use characteristics.
17

 Once a product is 128 

applied we assumed that it can undergo the following pathways: direct dermal uptake into the 129 

skin, volatilization to air, and washed down-the-drain after the product is rinsed off. Following 130 

from these pathways, we calculated a PiF for each of the following exposure pathways: dermal 131 

uptake of chemical in an aqueous product (PiF
derm,aq

), inhalation of chemical from the volatilized 132 

product (PiF
inh

), gaseous dermal uptake of chemical from the volatilized product (PiF
derm,gas

), 133 

and environmentally mediated chemical intake due to disposal after product use (PiF
disp

), for 134 

each paraben and each PCP type. 135 

The expression for dermal uptake of chemicals in aqueous products into the skin (PiF
derm,aq

) 136 

is based on a two-compartment mass balance between product and skin and yields the following 137 

solution (see Table S1 in Supplementary Information (SI)): 138 

 tkk

kk

k
PiF

 )(

paps

psaqderm, papse1





                           (1)  139 
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where )h( 1

ps

k  and )h( 1

pa

k  are the product-skin and product-air transfer rates, respectively and 140 

t (h) is the exposure time, that is the duration that the product stays on the skin before being 141 

washed-off. The transfer rates psk  and pak  are both functions of the thickness of product on the 142 

skin, in addition to chemical specific parameters such as the aqueous skin permeation 143 

coefficient,
aq

pK (cm h
-1

) and the air-water partition coefficient (Kaw) respectively. Expressions for 144 

the intake of volatilized chemical via inhalation (PiF
inh

) and gaseous dermal uptake (PiF
derm,gas

) 145 

are given in SI, Table S1, and are summed with PiF
derm,aq

 to constitute the total use-stage, PiF
use

, 146 

via these exposure routes. 147 

The PiF associated with product disposal, PiF
disp

 (SI, Table S1), was modeled as the fraction 148 

of chemical not taken in during use and subsequently washed down the drain into a waste water 149 

treatment plant (WWTP) and then released to environmental compartments (air, water, soil). The 150 

subsequent environmental intake fractions (iF) were calculated using the USEtox model.
25

 151 

Finally, a chemical and product specific PiF
tot

 can be defined as the sum of chemical intakes via 152 

all considered pathways (i.e., PiF
derm,aq

, PiF
derm,gas

, PiF
inh

, PiF
disp

) and represents the total 153 

chemical intake via all exposure routes. More details on the calculation of the various pathway 154 

and route specific PiFs can be found in the SI (Section S1). 155 

We note that some personal care products may also lead to non-dietary ingestion exposure, 156 

for example mouthwash and toothpaste, however these products are not reported to contain 157 

parabens
12,26

 and were thus not included in the model. An ingestion PiF can be readily 158 

incorporated into this modeling framework and can take the value of the fraction of product that 159 

is ingested per product use. For example, for toothpaste Bremmer et al.
27

 used measured values 160 

to estimate a toothpaste ingestion fraction. We did not include an ingested fraction for lipstick as 161 
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the resulting median PiF
derm,aq

 was already larger than 50% for all parabens, and previously 162 

assumed fixed ingestion fractions for lipstick can vary greatly (e.g. from 0.1-100%).
4,27

 163 

2.2 Total daily intake  164 

The PiF
tot

 can then be used to calculate daily intake for a given chemical in a product and can 165 

be summed across several different products (p) to calculate an aggregate chemical intake, I (mg 166 

kg
-1

 d
-1

) as 167 

BW

fMPiF

I




p

pp

tot

p  

                            (2)  168 

where Mp (mg d
-1

), pf , and BW (kg) are the daily mass of product applied, fraction of chemical 169 

in the product, and body weight, respectively.  170 

2.3 Monte Carlo Analysis, Model Parameterization, and Aggregate Exposure 171 

Several of the parameters used as input to model the intake of chemicals in PCPs are subject 172 

to population variability, i.e. can have a range of possible values depending on individual 173 

characteristics and behavior within the studied population. We used Monte Carlo (MC) analysis 174 

to incorporate this population variability into our intake calculations. The parameters included in 175 

the analysis as well as their distributions are listed in SI, Table S5. The MC analysis was carried 176 

out for each product and chemical combination by generating 10
5
 random values for each input 177 

parameter from the given probability distribution and using these values to calculate an intake 178 

distribution. Thus in total for four parabens in 11 PCPs yields 44 calculated intake distributions. 179 

We note that the MC analysis considered variables to be independent and potential impacts of 180 

variable correlations were not assessed. 181 

Several key parameters dictate the calculated PiF and intake for a given product-chemical 182 

combination and include the aqueous skin permeation coefficient, ,aq

pK  the daily amount of 183 
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product used, ,pM  and the fraction of chemical in the product, pf  (Eq. 2). We collected 184 

empirical values of 
aq

pK  for parabens conducted in different media such as an aqueous solution 185 

or with an added alcohol and based the input distribution on these values
28–33

 (Table 1 and S3). 186 

For the daily mass of product usage, we used distribution data from Loretz et al.
34–36

 as these 187 

data pertain specifically to the U.S. female population and detailed information on distributions 188 

were available for the MC analysis. Generally, there is limited information available on the 189 

chemical composition of consumer products, including PCPs.
26

 We collected fraction paraben 190 

content information from various sources
1,12,37

 and aggregated this data into a uniform 191 

distribution (see SI Section S3 for details) with example values for shampoo and body lotion in 192 

Table 1. 193 

Up until this point, all calculations were described for a given product-chemical combination 194 

used by the exposed population and do not account for the population with zero exposure. In 195 

reality, different consumers use different combinations of products, with some products 196 

containing paraben(s) and some not. Thus, in order to calculate aggregate exposure to PCPs, the 197 

probability of occurrence of a given chemical within a PCP (percentage of products with a given 198 

paraben) and the probability of product use (percentage of population that uses a given product) 199 

need to be taken into account
1
 (Figure S4, SI). The initial distributions created for the chemical 200 

intake of the exposed population are thus adjusted for the unexposed population by adding the 201 

appropriate amount of zeros representing non-exposure to the 44 distributions of 10
5
 values 202 

calculated for the exposed population. 203 

2.4 Product co-use 204 

To calculate the population exposure to parabens, the co-use of PCPs should also be taken 205 

into account. For a given paraben there are eleven intake distributions representing each product 206 
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with several entries representing zero exposure based on the exposure probability; we randomly 207 

permeated these distributions and then summed intake across products. This yields a single 208 

aggregated intake distribution for each paraben (four distributions in total) with each entry 209 

representing a random sum of product intake percentiles with some products having zero intakes. 210 

We note that paraben exposure can occur via other media such as food and dust,
19,38,39

 however 211 

these media have been estimated to contribute substantially less to exposure levels when 212 

compared to those occurring from direct PCP use.
1,12,39

   213 

To demonstrate the potential usage of the PiF for risk screening, we also applied Eq. (2) 214 

using the 99
th

 percentiles for all values (except body weight, which was set to a constant 75 kg) 215 

and added intake across all eleven products to yield a high-end usage scenario. This intake 216 

estimate represents a user who uses all eleven products which all contain parabens, and does not 217 

take into account any of the exposure adjustments described above. This intends to represent the 218 

very high-end of potential exposure, within the intended use of PCPs.  219 

2.5 Converting external intake into urine concentrations 220 

The inclusion of the MC analysis to produce intake distributions also allows for comparison 221 

to NHANES biomonitoring data which is in the form of population percentiles.
21

 In order to 222 

compare modeled intakes to biomonitoring data, we converted the dose taken in into urine 223 

concentrations based on the urinary excretion fraction, ,UEf  of the chemical. Following Angerer 224 

et al.
40

 the creatinine corrected chemical content in urine, ,)mg (mg 1

excreted intake Cr

C  can be 225 

estimated as  226 

24h

UE
Cr

Cr

fBWI
C


                  (3) 227 
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where )d (mg 1

excreted24h

Cr  is the daily creatinine excretion rate. There is very limited data on 228 

UEf  for parabens available in the literature.
41

 Thus, we estimated UEf  values based on measured 229 

in vitro renal and hepatic clearance rates.
42,43

 Uncertainty in UEf  was included in the analysis by 230 

setting upper and lower bounds and running two sets of MC calculations using these high and 231 

low bounds of UEf  (see SI, Section S5). We also added UEf  and hCr24 from Eq. (3) to the Monte 232 

Carlo analysis to account for population variability in these parameters. For further details on 233 

UEf  see SI, Section S5. Eq. (3) was applied to each of the four paraben aggregate intake 234 

distributions to yield distributions for paraben urinary concentrations. The percentiles from these 235 

distributions can then be compared to the population based urinary concentration percentiles 236 

available from NHANES (50
th

, 75
th

, 90
th

, and 95
th

 percentiles for the years 2009-2010).
21

 237 

3. Results  238 

3.1 Paraben Product Intake Fraction 239 

The median product intake fraction during the use-stage, PiF
use

 ranged from 2-88% (2.5
th

-240 

97.5
th

 percentiles ranged from 0.1-99%) across the product-chemical combinations, with the 241 

highest PiF
use

 for EtP in body lotion and the lowest for EtP in conditioner (Figure 1). This 242 

indicates that a substantial fraction of the parabens in cosmetics penetrates the skin (Figure S2). 243 

In contrast, the mean environmentally mediated PiF
disp

 was three to four orders of magnitude 244 

lower than PiF
use

 for all product-chemical combinations, ranging from 10
-4

 – 10
-3 

% with the 245 

highest PiF
disp

 for PrP in shampoo and the lowest for EtP in body lotion. This implies that the 246 

focus can be on the use-stage exposure, which is substantially higher than environmentally 247 

mediated exposure, such that the disposal-stage was subsequently excluded from the Monte 248 

Carlo analysis. Within the use-stage, dermal aqueous uptake accounted for 78-99% of the total 249 



 

12 
 

PiF
use

 indicating that exposure to parabens in PCPs is dominated by direct dermal intake of 250 

chemical applied to the skin (Figure S2). As the second main impact pathway, gaseous dermal 251 

uptake accounted for 1 to 21% of PiF
use

 and inhalation represented only 0.1 to 1% of PiF
use

. 252 

Weschler and Nazaroff
44

 also found that dermal gaseous uptake exceeds the inhalation pathway 253 

for parabens.  254 

The large range in PiF
use

 for parabens is mostly due to the variation in the application 255 

duration of each PCP; PiF
use

 ranged from 6-50% for rinse-off products with a mean application 256 

duration of 4 minutes, and from 50-80% for leave-on products with a mean application duration 257 

of 14 hours. A plot of PiF
derm,aq 

versus time (Figure S3a) for the mean product thickness, h (0.01 258 

cm), shows that at 4 minutes (0.07 h), chemical uptake is still in the linear phase of the 259 

exponential (with PiF
derm,aq 

ranging from 0.2 – 0.4), whereas at 14 hours, uptake has reached its 260 

plateau. For parabens this plateau occurs for PiF
derm,aq 

at or above 80% at the mean product 261 

thickness indicating that parabens are readily absorbed into the skin, which has been observed 262 

empirically,
32,45

 whereas this plateau may occur at a substantially lower PiF
derm,aq

 for more 263 

volatile chemicals. This observation is in-line with Gouin et al.
46

 who suggested that wash-off 264 

products (as opposed to leave-on products) are likely the dominant source of PCP chemicals to 265 

WWTPs, noting that this depends on physicochemical properties. For a given chemical, 266 

increasing product thickness can also reduce the fractional aqueous uptake (although not 267 

necessarily the overall intake via this pathway); thus body wash (mean h = 0.003 cm) had a 268 

larger PiF
derm,aq

 than shampoo (mean h = 0.03 cm) (Figure 1) while both are rinse-off products 269 

(this is demonstrated in a plot of PiF
derm,aq

 versus time using the product thickness for body wash 270 

and shampoo (Figure S3b)). Overall, mean product thicknesses ranged from 10
-4

 (body lotion) to 271 

10
-2

 (shampoo) and are a function of the surface area of the application area and amount of 272 
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product applied (Table S1). The PiF
derm,aq

 was more sensitive to product thickness for rinse-off 273 

products as the uptake plateau is reached at 8 hours irrespective of leave-on product thickness 274 

(Figure S3b).  275 

3.2 Population level paraben intakes 276 

Figure 2 presents the relationship between the potential doses of chemical used (assuming 277 

100% product usage in the population and 100% paraben occurrence) and the effective chemical 278 

intake after the indicated adjustment (i.e. product usage, paraben occurrence, and PiF) to the 279 

previous adjustment. Adjusting for product usage reduced the potential dose by a factor of 1.4 280 

for the four parabens on average, and the subsequent adjustment for paraben occurrence reduced 281 

the potential dose by a factor 1.5 for MeP up to a factor 6 for BuP. Multiplying the effectively 282 

applied dose (i.e. after adjusting for product usage and occurrence) by the PiF reduced the 283 

population exposure by 3, 1.5, 4, and 2 times for MeP, EtP, PrP, and BuP, respectively. Overall, 284 

the final adjusted intakes were 7, 11, 13 and 20 times lower than the potential dose for MeP, EtP, 285 

PrP, and BuP, respectively. Cowan-Ellsberry and Robison
1
 also found that applying these 286 

refinements substantially reduced the population exposure of parabens in PCPs with reductions 287 

ranging from a factor 2 to 12.5. Using PrP as an example, body wash, shampoo, body lotion, and 288 

conditioner contributed most to the potential applied dose (26, 22, 18, and18%). Once the 289 

refinements were applied, body lotion and body wash dominated the total intake (38% and 28%, 290 

respectively), whereas shampoo and conditioner combined made up only 13% of the total intake 291 

due to lower exposure duration and PiF (Figure 2).  292 

Accounting for product co-use yielded the final modeled exposure distributions for the four 293 

parabens (Figure 3). Based on these distributions ~100, 75, 97, and 69% of the adult female 294 

population is exposed (i.e. with non-zero intakes) to MeP, EtP, PrP, and BuP, respectively which 295 
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compares well to 99, 42, 93, and 47% detection reported for all urine samples (i.e. representing 296 

the entire population) from NHANES
22

 (Figure S5, SI). The higher detection frequency we 297 

determined for female adults are consistent with the highest NHANES paraben urine 298 

concentrations for female adults compared to other population groups. MeP and PrP had the 299 

highest probability of exposure out of the four parabens (Figure 3), due to their higher frequency 300 

of occurrence, while the modeled EtP and BuP intakes were strongly reduced when considering 301 

occurrence (Figure 3).         302 

The mean (2.5
th

-97.5
th

 percentile) modeled population intakes were 0.2 (3×10
-3

-0.8), 0.03 (0-303 

0.2), 0.06 (0-0.3), 0.02 (0-0.1) mg kg
-1

 d
-1

 for MeP, EtP, PrP, and BuP, respectively (Table 2). 304 

These modeled mean intakes fall in-between those found by Cowan-Ellsberry and Robison
1
 and 305 

Guo and Kannan
12

 for paraben exposure due to PCPs (Table S9), noting that these studies did not 306 

take population variability into account.  307 

Since some consumers may indeed use all PCP types which may all contain a given paraben, 308 

we calculated a high-end intake without applying the exposure adjustments for population 309 

exposure (i.e. we did not adjust for product usage, paraben occurrence, and co-use), yielding 310 

doses of 8, 3, 4, and 2 mg kg
-1

 d
-1 

for MeP, EtP, PrP, and BuP respectively and are approximately 311 

an order of magnitude larger than the 99
th

 percentile stochastically based adjusted exposure 312 

estimates. While these high-end estimates of exposures may not necessarily be likely, they may 313 

be possible and provide upper end conservative exposure estimates. 314 

3.3 Conversion to biomonitoring levels and comparison to NHANES 315 

Combining urinary excretion rates with the modeled intakes (with all adjustments, i.e. product 316 

usage, paraben occurrence, and PiF
tot

) allows for conversion to urinary concentration 317 

distributions, which can be directly compared to the 50
th

, 75
th

, 90
th

, and 95
th

 percentiles of the 318 
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NHANES biomonitoring data. Modeled urine concentration percentiles reflect well the 319 

NHANES variation of three orders of magnitude across parabens and percentiles and were well 320 

correlated (R
2 

= 0.9 comparing the log). Modeled values were within a factor of three (except for 321 

one value) using the in vitro estimated values of .UEf  When taking uncertainty into account, all 322 

modeled values were in agreement with NHANES values (Figure 4). As discussed above, the 323 

effect of applying the PiF
tot

 reduced the product usage and paraben occurrence adjusted intakes 324 

on average by a factor of 1.5 to 4 (Figure 2) which is a reflection of the median PiF
tot

 being 325 

larger than 50% for the majority of the products (i.e the leave-on products). This indicates that 326 

the three orders of magnitude variation in the biomonitoring data is not only a function of the PiF 327 

but also population variability and the other included exposure adjustments. The comparison to 328 

biomonitoring data suggests that the estimated PiFs for parabens are within an order of 329 

magnitude of actual intake fractions. 330 

4. Discussion 331 

 The PiF is a useful metric to compare product specific chemical intake due to various 332 

near- and far-field exposure pathways and routes due to PCP use, and for differentiating 333 

exposure between leave-on and rinse-off products instead of assuming a fixed fraction of 334 

chemical absorbed into the skin, which may lead to overestimates of the exposure. For parabens, 335 

model results suggested that dermal aqueous and gaseous uptake were the dominant exposure 336 

pathways and the inhalation and far-field pathways were substantially lower in comparison. 337 

Gouin et al. (2013) suggested that the use-phase of PCPs may be used to estimate down-the-drain 338 

emissions of PCP chemicals and the framework presented here can also be applied in this 339 

context. Furthermore, the PiF for PCPs has an analytical solution and can be calculated based on 340 

physicochemical properties and product usage characteristics and thus lends itself to rapid 341 
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computational exposure estimates. While this study applied stochastic techniques in-line with 342 

Tier 2 exposure calculations
18

 to facilitate comparison with bioactivity data, the PiF modeling 343 

framework for PCPs can also be readily applied in Tier 1 screening assessments as recommended 344 

by Shin et al.
6
 345 

 Other exposure media for parabens include food and dust
19,38,39

, however these sources 346 

have been previously found substantially lower than PCPs.
1,12,39

 Soni et al.
19

 estimated that the 347 

highest likely food intake for MeP and PrP is 0.01 mg kg
-1

 d
-1

 (1 mg d
-1

 normalized to 75 kg used 348 

in this study), which is 20 and 6 times lower than our modeled mean intake due to PCP usage for 349 

MeP and PrP, respectively. The 95
th

 percentile food intake for the four parabens ranged from 10
-350 

4
-10

-6
 mg kg

-1
 d

-1
 based on measured food concentrations of parabens in U.S.

39
 Intake of the four 351 

parabens via dust based on measured dust concentrations was estimated to range between 10
-6

-352 

10
-9

 mg kg
-1

 d
-1

 
38

 and is several orders of magnitude lower than modeled PCP intakes.     353 

 To predict paraben intake accurately, it is crucial to account for product usage, paraben 354 

occurrence within products, and population variability. Accounting for these exposure 355 

adjustments and using modeled PiF for parabens in PCPs yielded agreement between modeled 356 

and NHANES urine concentrations. This indicates that a detailed exposure calculation taking 357 

into account the chemical and product dependent PiF, exposure probability, and population 358 

variability can be an effective method to predict population level chemical intake associated with 359 

PCPs. 360 

 Uncertainty on the fraction urinary excretion, ,UEf  is considerable when converting 361 

chemical intakes and the limited empirical data available in the literature for parabens resulted in 362 

high uncertainty in estimated urine concentrations. Physicochemical property based estimates of 363 

pharmacokinetic parameters have recently been made available
42,47

 and may be useful for 364 
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comparing exposure with high-throughput toxicity data for a larger number of chemicals. While 365 

the mean modeled urine levels overestimate those of NHANES the R
2
 of 0.87 for the log fit of 366 

modeled versus measured indicates that the modeling approach presented here was able to 367 

capture the exposure patterns of the four parabens well.    368 

 An additional challenge when estimating aggregate exposure is to effectively take into 369 

account product co-use.
1
 While several PCP usage studies report some data on product co-use, 370 

this information cannot be practically applied to a comprehensive PCP study as the data 371 

presentation is often incomplete; for example, only the most commonly used combinations, the 372 

correlation between the use of two products (rather than multiple products), or data on different 373 

sets of PCPs are presented,
1,48,49

 and certain PCPs of interest are not included in that dataset. By 374 

accounting for the probability of using a product, we were able to provide an initial reasonable 375 

estimate of product co-use, which could be complemented by multiple product usage conditional 376 

probabilities. Furthermore, co-use becomes even more complex when chemicals occur in 377 

different product types, for example PCPs and cleaning products and alternative methods for 378 

taking co-use into account may be needed.  379 

 Within the context of risk screening, the exposure refinements needed for a population 380 

level calculation may not necessarily be needed to calculate exposure for high-end product users 381 

(for example, those who use several PCPs with high-end product masses within the intended 382 

product usage) to protect all users rather than an average user. For example, exposure estimates 383 

can be compared with the allowable daily intake (ADI) to inform risk of parabens in PCPs. 384 

While there is no ADI for EtP and BuP, the combined ADI for MeP and PrP in the European 385 

Union is 0-10 mg kg
-1

 d
-1 19,23

 which is within an order of magnitude of both the high-end user 386 
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combined intake of 12 mg kg
-1

 d
-1

 and the 99
th

 percentile stochastically estimated intake (with 387 

exposure adjustments) of 1.5 mg kg
-1

 d
-1

.  388 

  We presented a detailed population level PCP exposure model which is able to predict the 389 

three orders of magnitude of variation in NHANES paraben urine concentrations. The PCP 390 

product intake fraction model can be readily incorporated into rapid exposure models and can be 391 

combined with concentration databases such as the recently released Consumer Product 392 

Chemical Profile database CPCPdb
26

 to estimate chemical intakes due to PCP use. 393 

 394 
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 546 

Tables 547 

 MeP EtP PrP BuP Notes and Reference 

logKaw
 

-5.6 -6.0 -5.2 -4.9 Calculated from solubility and 

vapor pressure, EPI Suite 
50

. 

Values listed here are at 25 ºC 

and were corrected to skin 

temperature of 32 ºC for use in 

the model (see Sec. S.1). 
aq

pK (cm h
-1

)  

(geometric mean, GSD
2
) 

0.012, 

31 

0.009, 

19 

0.009, 

31 

0.023, 

31 

Lognormal distribution. See 

Table S3
a
 

gas

pK (cm h
-1

) 

(geometric mean, GSD
2
) 

4200, 

28 

10000, 

28 

1400, 

28 

1800, 

28 
Lognormal distribution. 

Geometric mean calculated 

using equation in Table S1. 

GSD
2
 was set to the mean of 

aq

pK GSD
2
.Values are at 25ºC 

and were corrected to skin 

temperature. 

fp shampoo (%) 

(low – high) 

0.01 

to 

0.2 

0 

to 

2×10
-4

 

1×10
-

3
 to 

0.2 

2×10
-

4
 to 

0.045 

Uniform distribution. See 

Table S4
b
 

fp body lotion (%) 

(low – high) 

0.01  

to  

0.29 

0.01  

to  

0.2 

0.01 

to  

0.2 

0  

to 

0.085 

Uniform distribution. See 

Table S4
b
 

fp range for all products % 

(low – high) 

8×10
-6

 

to 

0.5 

0  

to  

0.35 

0 

to 

0.28 

0  

to 

0.27 

Uniform distribution. See 

Table S4
b
 

Mp shampoo (g d
-1

) 

(2.5
th

 -97.5
th

 percentile) 1.7 to 34  

Gamma distribution. 
35

 

Mp body lotion (g d
-1

) 

(2.5
th

 -97.5
th

 percentile) 2.5 to 21 

Gamma distribution. 
34

 

Mp range for all products  

(g d
-1

) 

 

8×10
-4

 to 44 

(Min 2.5
th

 – max 97.5
th

 

percentile) 

34–36
. See Figure S1 

Table 1: Summary input data for main model parameters for methyl, ethyl, propyl, and butyl 548 
paraben. Further information and input data can be found in the SI. Notes: 

a
See Table S3 for 549 

references. 
b
Based on data from 

1,12,37
. GSD

2
 = geometric standard deviation squared. 550 

551 
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 552 

 553 

Figures 554 

 555 

Figure 1: Modeled total product intake fraction (PiF
tot

) for the 11 personal care products for 556 

MeP, EtP, PrP, and BuP (from left to right). The circles represent the median, the solid boxes 557 

represent the 25
th

 and 75
th

 percentiles, and the lines represent the 2.5
th

 and 97.5
th

 percentiles of 558 

PiF
tot

 calculated using Monte Carlo simulation.   559 

560 
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 561 

 562 

 563 

Figure 2: Reduction in potential applied chemical dose due to population PCP usage, paraben 564 

occurrence in products, and product intake fraction to yield the mean dose taken in for each 565 

product-chemical combination calculated by Monte Carlo simulations. The reductions were 566 

applied sequentially, thus the last column represents the dose based on all three reductions.  567 

568 
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 569 

 570 

 571 

 572 
 573 

Figure 3: Modeled log intake (mg kg d
-1

) distributions for the four parabens taking into account 574 

probability of exposure and product co-use. The grey solid vertical lines indicate the population 575 

with zero exposure (zero intakes were adjusted to a nominally low value (1×10
-15

) to make them 576 

visible on a log scale). The dashed line indicates the geometric mean of the exposed population 577 

and the black solid line indicates the geometric mean of the entire population (with adjusted zero 578 

intakes). 579 

580 
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 582 
 583 

Figure 4: Modeled urine concentrations from the Monte Carlo calculations versus NHANES 584 

urine concentrations. Vertical error bars on the modeled values represent uncertainty in fraction 585 

urinary excretion and horizontal error bars on the NHANES values represent the 95
th

 confidence 586 

interval on each percentile. The solid line indicates perfect agreement between modeled and 587 

measured values (1:1 line).  588 
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