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Abstract--The dynamic tariff (DT) method is designed for the 
distribution system operator (DSO) to alleviate congestions that 
might occur in a distribution network with high penetration of 
distributed energy resources (DERs). Uncertainty management is 
required for the decentralized DT method because the DT is de-
termined based on optimal day-ahead energy planning with 
forecasted parameters such as day-ahead energy prices and en-
ergy needs which might be different from the parameters used by 
aggregators. The uncertainty management is to quantify and 
mitigate the risk of the congestion when employing the DT 
method, which is achieved by firstly formulating the problem as a 
chance constrained two-level optimization and then solving the 
problem through an iterative procedure. Two case studies were 
conducted to demonstrate the efficacy of the uncertainty man-
agement of DT method. 
 

Index Terms-- Chance constrained program, congestion man-
agement, distribution system operator (DSO), distributed energy 
resources (DERs), uncertainty management. 

I.  INTRODUCTION 

S the penetration level of distributed energy resources 
(DERs), such as photovoltaic systems (PV systems), wind 
power systems (WPS), electric vehicles (EV) and heat 

pumps (HP), in distribution networks is constantly increasing, 
the operation of distribution networks becomes more and more 
challenging. One of the big challenges of the distribution sys-
tem operator (DSO) is the potential congestion problems, en-
visaged as voltage problems (bus voltage is close to or 
exceeding the limit, typically +/–10%) and overloading prob-
lems (loading is close to or exceeding the thermal limit of 
power components).  

The congestions in distribution networks may be caused by 
simultaneous charging or discharging of EVs. There are a 
number of congestion management methods to resolve the 
problems without reinforcing the distribution network. The 
congestion management methods can be categorized into two 
groups, direct control methods [1], [2] and indirect control 
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methods, namely market based methods [3]–[6]. Market based 
methods have drawn a lot of attention of researchers as well as 
the DSOs because they have the least impact on customers and 
can benefit the stakeholders in the market through energy 
planning or other operation managements. 

A recently introduced interesting market based method is 
the dynamic tariff (DT) method [7]–[9]. Though the DT 
method shares many similar features of the distribution loca-
tional marginal pricing (DLMP) method [5], [6], e.g. both 
methods employ optimization tools and marginal cost concept 
(Lagrange multipliers) and DT is equal to the congestion cost 
element of the DLMP, there are differences between them. First 
of all, the DT method is not a market clearing method while the 
DLMP is. The DT method relies on the existing day-ahead 
market, e.g. the spot market in Nordic area, and it can be 
seamlessly integrated into the existing market [7]–[9]. Second 
of all, the DT method is a decentralized control method, which 
is implemented through two steps of optimizations, while the 
DLMP is a centralized clearing method through one step of 
optimization. 

However, the uncertainty within the DT framework and the 
corresponding optimization under uncertainty has not been 
studied previously. The uncertainty comes from the following 
aspects. Firstly, the uncertainty lies in the nature of the decen-
tralized control structure of the DT method. The DSO employs 
price signals instead of direct command to control the energy 
planning of each aggregator, which makes it a decentralized 
control method. In the previous studies [7]–[9], an assumption 
was made that the parameters used by the DSO were the same 
as used by the aggregators. However, this might not be the case 
in practice and it may compromise the decentralized control 
concept by forcing the aggregators to report parameters to the 
DSO. Recognizing the importance of relaxing the link between 
the DSO and the aggregators, a different, but more practical, 
assumption is made in this paper, i.e. the DSO predicts the 
energy requirements of the flexible demands as the aggregators 
will not share this information with the DSO for protecting 
privacy of their customers. The prediction leads to a certain 
level of uncertainty of the DT method for congestion man-
agement. Secondly, there is uncertainty between the day-ahead 
energy planning and the real-time operation condition. For 
instance, the components of the power system or DER can fail 
with a certain level of probability. The forecast error of the 
energy production or consumption of the DER is another ex-
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ample. 
By knowing the sources of the uncertainty and quantifying 

the uncertainty, it is possible to enhance the robustness of the 
DT method for congestion management through uncertainty 
management, which is the main contribution of this paper. The 
robustness is defined in this paper as the guarantee that the 
congestion probability is under a certain level with a given 
confidence level. Uncertainty management has been previously 
employed in other optimal scheduling problems in distribution 
networks, such as EV scheduling in [10] where a stochastic 
load profile is considered, and DG scheduling in [11] where 
stochastic productions of DERs are treated. However, unlike 
the DT method, both of them are using direct control methods 
without employing the DSO-Aggregator business model and 
the price incentives.   

The paper is organized as follows. Section II presents the 
concept of the DT method for congestion management in a 
decentralized manner and the optimal energy planning through 
quadratic programing. The uncertainty sources of the decen-
tralized control of the DT method are analyzed in section II. 
The robustness enhancement of the DT method through un-
certainty management is proposed in section III. Two case 
studies regarding robustness enhancement are described and 
discussed in section IV followed by the conclusion. 

II.  DT METHOD AND ITS UNCERTAINTY 

A.  Concept of DT for Congestion Management 

In [7], [8], the DT method to solve the congestion problem 
in a decentralized manner is proposed with the following pro-
cedure. Firstly, the DSO collects the flexible demand data, such 
as energy requirements and the availability, from the aggre-
gators or by its own prediction. The DSO also needs the net-
work information and the predicted spot price. Secondly, the 
DTs are calculated through the optimal energy planning by the 
DSO where the network constraints are respected. The DTs are 
sent to all the aggregators, together with the predicted energy 
prices as a reference to the aggregators. Thirdly, the aggrega-
tors make their own optimal plans independently with both the 
predicted spot prices and the received DTs. At last, the aggre-
gators submit their energy plan/bids to the spot market. This 
DSO-Aggregator business model is still valid with the presence 
of parameter uncertainties of the optimal energy planning; 
however, the link between the DSO and the aggregators will be 
relaxed and the decentralized control architecture will be 
strengthened. 

The concern regarding the regulatory issues related to the 
DT concept is addressed as follows. The DT collected by the 
DSO from the aggregators is similar to the congestion revenue 
collected by the independent system operator (ISO) in trans-
mission networks. The concept of the congestion revenue at the 
transmission level is widely accepted in the electricity market 
with nodal price systems [12] or zonal price systems [13]. The 
congestion revenue will be used to improve the network con-
ditions and reduce the congestions in the future, and benefits 
the parties who pay this congestion revenue. At the distribution 

level, the regulations in many European countries [14] require 
both cost reflectiveness, i.e. the network tariff reflects the cost 
incurred by different end-users, and non-discrimination. In 
many cases, the above two objectives are against to each other 
and a trade-off is made between them.  If the 
non-discrimination has higher priority, the aggregators of 
flexible demands, who function as retailors or suppliers, can 
absorb the discrimination due to the DT and distribute the 
congestion cost among its customers. The aggregators optimize 
the consumptions at the cheapest hours and cause the potential 
congestions. Therefore, it is reasonable that the aggregators 
bear the cost of the congestion for rescheduling the flexible 
demands. 

Moreover, the total revenue of the DSO is regulated by the 
regulators [14]. When the DT is considered in addition to the 
conventional flat tariff structure, the DT shall be included in the 
calculation of the total revenue of the DSO. The DSO uses DT 
as a tool to handle the potential congestions and shall not try to 
maximize the revenue through DT since the total revenue is 
regulated. In this sense, the DSO is independent in the DT 
concept while the aggregators are competitors. 

B.  Quadratic Programming Based DT Method 

In [9], a quadratic programing formulation was proposed for 
the DT method. The DT method through quadratic program-
ming can not only take into account the predicted energy price 
sensitivity of the spot market to the energy planning of flexible 
demands, but also offer a unique optimal solution of the energy 
planning at the aggregator side and therefore resolve the duel 
degeneracy issue of the optimization problem formulated 
through linear programming. 

Taking EV as an example, the energy planning of flexible 
demands at the DSO side can be written as [9], 
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where ,
i im m

i tB R  is matrix of the price sensitivity coefficient, 

L dn nD R  is power transfer distribution factor (PTDF), 
d in m

iE R  is customer to load bus mapping matrix, BN  is 

the set of aggregators, TN  is the set of planning periods, ,i ta is 

availability of EVs, tc is the baseline price, im
id R is energy 

demands of EVs, Ln
tf R is line loading limit, ,

im
i tp R is 

charging power of EVs of one aggregator, ,
im

i tq R is inflexi-

ble demand, max im
ip R is the maximum charging power of 

EVs, im is the number of customers of aggregator i , Ln is the 

number of lines, dn is the number of buses, Ln
t R  is La-

grange multiplier of the line loading limit constraint. 
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In the energy planning, the line loading limit is ensured by 
constraint (2), energy demand requirement of EVs is fulfilled by 
constraint (3) and the allowed charging power of EVs is repre-
sented by (4). 

The calculated DT, denoted as tr , through the above opti-

mization by the DSO, is equal to T
tD  , which will be sent to the 

aggregators, who then make the energy planning of the flexible 
demands on behalf of the owners. The energy planning of dif-
ferent aggregators is independent and without the information of 
the network constraints. Aggregator i can employ the following 
optimization to make the energy planning [9]. 
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subject to, 
 ,

t Nt
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In [9], it is proven that the convergence of the aggregator 

energy planning and the DSO one can be assured, i.e. the re-
sults and the line loading profiles resulting from the energy 
planning at the aggregator side will be same as those at the DSO 
side. As such, the DT method for the congestion management is 
realized in a decentralized manner. A strong assumption made 
by the authors was that the parameters of the optimization 
problem at the DSO side are same as those at the aggregator 
side. However, it is not necessarily true. In the following sub 
section, the source of parameter differences and the resulting 
uncertainty of the decentralized control of the DT method will 
be studied. 

C.  Uncertainty of the Decentralized Control 

Table I gives one possible scenario of the information 
sources where the DSO and aggregators may have the required 
parameters ready for their energy planning respectively, which 
will be the assumption made for the study of the following 
sections. In this scenario, parameter ,i tB is mainly to resolve the 

degeneracy issue in linear program and therefore the DSO 
should share it with the aggregators. Although the aggregators 
should have the freedom to choose their own energy price 
prediction resources, it is suggested that they (include DSO) all 
use the same source, since the DT method works through the 
total price (DT + energy price) as the price signal to control the 
behavior of the flexible demands. However, small discrepancy 
due to e.g. numerical errors of computers or modifications 
according to their own preferences is allowed as shown by case 
studies in [15]. The only uncertainty sources lie in the param-
eters id and ,i ta , i.e. the driving patterns of EVs, where the 

DSO can only predict the driving pattern while the aggregators 
can have the detailed data from their customers. Since the study 
is focused on the difference between the DSO plan and the 
actual plans made by the aggregators that will be submitted to 
the day-ahead market, the data that the aggregators employ to 

determine the optimal energy plans will be deemed as accurate.  
 
 
 

TABLE  I 
INFORMATION SOURCE OF DSO AND AGGREGATOR 

 

Para. DSO Aggregator 

,i tB  Predicted by DSO From DSO 

tc  
Predicted by DSO or 
third party 

From DSO or choose the same 
third party as the DSO do 

D , tf  Determined by DSO Not needed 

iE ,
max
ip  

From customers’ 
subscription From customers’ subscription 

id , ,i ta  Predicted by DSO From the customers’ reports 

 
It is important to know the distribution of the prediction 

error of predicted parameters id and ,i ta in order to analyze the 

accuracy of the DSO’s energy plan (compared to the energy 
plans of the aggregators) and then enhance the robustness of the 
DT method. In [16], the driving pattern (driving distance and 
availability) of a large number of drivers has been surveyed. 
The study is based on Denmark and it can help illustrate the 
discussion of parameter randomness in this section and the 
methodology of robust enhancement in the following sections 
without affecting the generality of the discussion. 

In Denmark, a large portion of the drivers (about 40% on 
weekdays, about 50% on weekends) do not drive at all ac-
cording to the daily observations (interviews). The percentage 
of the drivers who drive on a particular day diminishes as the 
driving distance goes up. The average driving distance is about 
30 km while it varies from weekdays to weekends. From the 
statistics point of view, the prediction error (parameter used by 
the DSO minus the one used by the aggregator) of the predicted 
driving distance of each EV can be considered to have a normal 
distribution with variance 2 as shown in Fig. 1. The chance of 
the error bigger (or less) than a predefined number can be 
calculated from the normal distribution table, e.g. the proba-
bility of the error that is positive and bigger than 2 is only 
2.5% (the shadow part of Fig. 1). 

    


error

pr
ob

.

 
Fig. 1. Normal distribution of the prediction error 

 
The energy demand of an EV has a linear relationship with 

the driving distance, which is defined as the parameter “energy 
consumption per km” (Table II). Therefore, the prediction error 
of the energy demands id  also has a normal distribution. 
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The parameter ,i ta is also influenced by the randomness of 

the driving pattern. The availability of an EV can be modeled 
through two random variables, namely arriving (home) time 
and leaving (home) time. For example, in Fig. 2, y is the ar-

riving time while x is the leaving time. The availability 

,i ta ( j -th element) can be determined by the following rules. 

 
,

1 , ,

0
                  

,{ }          ,

,

+ 

i t j T

t x or t y

x t y

x x t x t ya t N
y y t y t x

x x y y t x y

        
        
              
             
                  

 (8) 

 

0 8 x 16 y 24
0

1

time (h)

av
ai

l.

 
Fig. 2. Illustration of the modeling of the availability ( x is the leaving time and 
y is the arriving time) 

 
The prediction error of the predicted arriving time has a 

normal distribution, so does the prediction error of the pre-
dicted leaving time. 

III.  ROBUSTNESS ENHANCEMENT OF THE DT METHOD 

THROUGH UNCERTAINTY MANAGEMENT 

The criterion of the robustness enhancement for the DT 
method is defined as: The probability of the line overloading 
 (percentage) is no bigger than a predefined number, e.g. 
1 with being a confidence level, under the uncertainty of 

the parameters. The task of the robustness enhancement is to 
find such DT that the above criterion is fulfilled. 

A.  Problem Formulation 

According to the concept described in section II.A, DT 
should be able to serve as a proper price signal such that the 
optimal energy plans made by the aggregators based on the 
received DT will result no (or alleviated) congestion on the 
distribution network. The method to determine such DT de-
scribed in section II.B, i.e. (1)-(4), is based on a deterministic 
optimization, which is not suitable for determining a DT with 
uncertainty constraints presented, because of the following two 
facts: 1) The Lagrange multiplier of uncertainty constraints is 
very difficult to find; 2) The Lagrange multiplier with uncer-
tainty constraints presented is no long the marginal price of the 
congestion cost. 

A method that can determine the DT without using Lagrange 
multiplier can be written as a two-level optimization,  

 
tr 1

min   
T

t
t N

r

  (9) 

subject to, 

 , ,( ) ,
B

i i t i t t T
i N

DE p q f t N


    , (10) 

 0,t Tr t N   , (11) 

 , arg mini tp  {(5): (6)-(7)}, Bi N  . (12) 

In the above two-level optimization, variable ,i tp is the 

unique minimizer of the inner optimization, which is a strictly 
convex optimization. The parameters id and ,i ta in (6)-(7) are 

deemed as random parameters; therefore constraint (9) cannot 
be fulfilled with certainty. A chance constrained two-level 
optimization can be formed as (9) subject to, 

 , ,.{ ( ) (1 ) , }
B

i i t i t t T
i N

prob DE p q f t N


        , (13) 

and (11)-(12), where  is the confidence level and has a typical 

value of 0.9, 0.95 or 0.99. 
The above chance constrained two-level optimization is 

very difficult to solve directly. An alternative method is de-
veloped in this paper to solve it, i.e. an iteration method based 
on the probability analysis and the knowledge gained in our 
previous work, i.e. the deterministic method to determine DT 
[9] and sensitivity analysis [15]. The main idea of the iteration 
method is explained as follows. 

Firstly, the chance constraint (13) is relaxed to be deter-
ministic. Meanwhile, the parameter  becomes a control vari-
able which will take different value in each iteration step 
according to the results of the previous iteration step. Random 
parameters id and ,i ta are replaced with their expected values, 

i.e. id and ,i ta , respectively. 

Secondly, the two-level optimization is reformed as the 
standard form descripted in section II.B (the one-level opti-
mization at the DSO side) in order to determine an iterative DT, 

denoted as ( )k
tr , based on the theory proven in [9]: The solution 

at the aggregator side ((5)-(7)) is the same as the solution at the 

DSO side ((1)-(4)) if T
t tr D  is hold. Thus, the optimization 

to determine the iterative DT can be written as (1) subject to, 
 ( ) ( )

, ,( ) (1 ) , , ( )
B

k k
i i t i t t t T t

i N

DE p q f t N


       , (14) 

 ,
t N

,
T

i t i Bp d i N


   , (15) 

 max
, ,0 , ,i t i t i B Tp a p i N t N     , (16) 

where k represents the iteration step. 
Thirdly, the chance constraint (13) will be verified through 

probability calculation based on the uncertainty analysis de-
scribed in section II.C and the sensitivity analysis of the opti-

mization (5)-(7) with updated DT, i.e. ( ) ( )k T k
t tr D  , which 

will be elaborated in section III.B. If (13) is fulfilled, then we 

find the final DT; otherwise the control parameter ( )k
t will be 

updated and perform the next iteration. The detailed procedure 
of the iteration method will be described in section III.C. 

B.  Probability Calculation  

Probability calculation is an important step in the uncer-
tainty management. It is carried out through uncertainty anal-
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ysis of the parameters and the sensitivity analysis of the optimal 
solution of the energy planning at the aggregator side.  
    1)  Sensitivity analysis: 

The sensitivity analysis is to determine the changes of the 
optimal solution due to the changes of the parameters and it 
shall be done per optimal solution [15]. The optimization (5)
-(7) (the optimization at the aggregator side) can be rewritten 
with updated parameters as, 

 
,

( )
, , , ,

1
min   ( 1 )

2i t

T

T T k T
p i t i t i t t i t i t

t N

p B p c E r p


   (17) 

subject to, 
 ,

t NT

i t ip d


 , (18) 

 max
, ,0    T

i t i t i Tp a p t N    . (19) 

Assume that the optimal solution of the above deterministic 
optimization problem is * * * * ( )

,1 ,2 ,3 ,( , , ,..., )
T

k
i i i i np p p p , which 

should be also the optimal solution of (1) subject to (14)-(16). 
Now assume that the parameters id and ,i ta at the right side of 

(18)-(19) can vary according to their statistic distributions with 

their centers id  and ,i ta respectively, note that 

i i id d d   and , , ,i t i t i ta a a   . It therefore can be deter-

mined how the optimal solution will change according to the 
changes of the parameters id and ,i ta , i.e. id and ,i ta , near 

the optimal point * * * * ( )
,1 ,2 ,3 ,( , , ,..., )

T

k
i i i i np p p p through the sensi-

tivity analysis method presented in [15].  
According to [15], the optimization problem (17)-(19) 

should be rewritten as a standard form as below ( i is fixed) 
with inactive constraints removed, 

 
1
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2

T T
x p Bx g p  (20) 

subject to, 
 Ap b  (21) 

where p is ,1 ,2 ,3 ,, , ,...,
T

TT T T T
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1

1

1
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1
T T
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i
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i
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i
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n i n

c E r

c E r

c E r

c E r
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 

 
  
 
 

  

, 

A and b are coefficients of the active constraints in (18)-(19). 
The optimal solution changes over the changes of the vector 

b can be obtained as (22). 

 1 1 1( )T Tp
B A AB A

b
  




 (22) 

The line loading change at a particular hour t is the summa-
tion of the changes of the EV charging power p , which can be 

written as, 

 ,
,( )

B B

i t
i i t i

i N i N

p
DE p DE b

b 


  

   (23) 

where ,i tp

b




can be retrieved from matrix 

p

b




by taking the 

corresponding rows. 
    2)  Chance of overloading due to energy demand: 

Since the change of the energy demand id  results the 

change of b vector of (21), the sensitivity of the change of the 
line loading over the change of the energy demand can be 
calculated through (22) and (23). Moreover, the probability of a 
predefined overloading  , e.g. line overloading 5% (5% more 
than the line loading limit), due to the prediction error of the 
energy demand, denoted as id , can be calculated through 

combining the statistic distribution of the prediction error into 
the calculation. Specifically, the probability can be determined 
by, 

 .
B

T
d i i t

i N

prob d f  


     
  
 , (24) 

where i is the sensitivity coefficients corresponding to id  

and can be retrieved from (23). 
    3)  Chance of overloading due to availability: 

Similarly, the prediction error of the availability ,i ta can be 

determined through (8) and the changes of the line loading can 
be determined through (22) and (23). The probability of a 
predefined overloading   due to the prediction error of the 
availability, denoted as ,i ta , can be calculated by, 

 , ,
,

.
B T

T
a i t i t t

i N t N

prob a f  
 

     
  
 , (25) 

where ,i t  is the sensitivity coefficient corresponding to ,i ta  

and can be retrieved from (23).  
Combining (24) and (25), the probability of a predefined 

overloading   due to EV parameters can be obtained as, 

 , ,
,

.
B B T

T T
i i i t i t t

i N i N t N

prob d a f   
  

       
  
  . (26) 

The distribution , ,
,B B T

T T
i i i t i t

i N i N t N

d a 
  

    , denoted by F , 

is a normal distribution since each element of id  and ,i ta  is 

a normal distributed random variable and F is a linear com-
bination of them. It is assumed that id and ,i ta are inde-

pendent random variables since the mathematical complexity 
incurred from the dependency of these random variables is not 
a focus of this paper. The variance of the joint distribution F is 
a linear combination of the variance of each random variable. 
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C.  Procedure of Robustness Enhancement 

In order to achieve robustness enhancement, a procedure is 
designed and illustrated in Fig. 3. The procedure that the DSO 
should follow is: 

1) Forecast the day-ahead energy prices. 
2) Forecast the driving behaviors of EVs, including driv-

ing distance, arriving time and leaving time. 
3) Set the initial line loading limit to be 100%, i.e. 

(0) 0t  in (14). 

4) Perform the optimal energy planning at the DSO side 
through QP and calculate the DT, i.e. solve (1) subject 
to  (14)-(16). 

5) Perform the sensitivity analysis of the energy planning 
at the aggregator side, i.e. (17)-(19). Determine i and 

,i t in (26). 

6) Perform the probability calculation, i.e. determine the 
value  of (26). 

7) Check whether the probability  is no bigger than 1- . 

If  yes, publish the final DT and terminate the algorithm; 
otherwise, 

8) Calculate the new line loading limit, which is achieved 
by pushing down the limit with a small step. The step 
size can be a fixed small number, e.g. 0.5%, or esti-
mated by the Newton-Raphson method noticing the fact 
that the sensitivity matrix is the Jacobian matrix. 

9) Go back to step 4. 
 

Start

Forecast Energy Prices

Forecast Driving Behaviors

Initial Line Loading Limit (100%)

Perform QP and Calc. DT

Perform Sensitivity Analysis

Probability Analysis

Chance of 
Overloading ε ≤ 5%?

Publish  The Final DT

End

Calc. New 
Line 

Loading 
limit

No

Yes

 
Fig. 3. Flowchart illustrating the procedure of robustness enhancement 

IV.  CASE STUDIES 

Case studies were conducted using the Danish driving pat-
tern and the Bus 4 distribution system of the Roy Billinton Test 

System (RBTS) [17] to demonstrate the robustness enhance-
ment of the DT method through uncertainty management. The 
details of the case studies are presented in this section.  

A.  Grid Data 

The single line diagram of the Bus 4 distribution network is 
shown in Fig. 4. Line segments of the feeder one are labeled in 
Fig. 4, among which L2, L4, L6, L8, L9, L11, and L12 refer to 
the transformers connecting the corresponding load points 
(LP1 to LP7). The study is focused on this feeder because it has 
the most diversity among all the feeders: 5 residential load 
points with different peak conventional demands and two 
commercial load points. Each of the residential load points 
(LP1-5) has 200 customers while each of the commercial load 
points (LP6-7) has 10 customers. The peak conventional de-
mands of residential customers are assumed to occur at 18:00 
when people come home and start cooking (shown in Fig. 7). 

The key parameters of the simulations are listed in Table II. 
The EV availability shown in Fig. 5 is from the driving pattern 
study in [16]. Assume that there are two aggregators (agg1 and 
agg2); one has 40 customers per load point and the other has 
160 customers per load point. 
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Fig. 4. Single line diagram of the distribution network 
 

TABLE  II 
KEY PARAMETERS FOR THE SIMULATION 

 

Parameter value 

EV battery size 25 kWh 

Peak charging power 11 kW (3 phase) 

Energy consumption per km,   150 Wh/km 

expected driving distance 40 km  

expected leaving time Hour 8  

expected arriving time Hour 18  

 of predicted driving distance, d  20 km 
 of predicted leaving time 60 minute 
 of predicted arriving time 60 minute 

Line loading limit: L2 1400 kW 

Line loading limit: L3 6000 kW 

Line loading limit: L4 1700 kW 

 
 



 

 
7

0 5 10 15 20 25
0

50

100

time (h)

E
V

 a
va

ila
bi

lit
y 

(%
)

 
Fig. 5. EV availability 

 

 
Fig. 6. System prices (day-ahead spot prices) 
 

B.  Results of The Robustness Enhancement 

    1)  Case One: 
According to the procedures proposed in section III.C, the 

basic energy prices are firstly predicted and the results are 
shown in Fig. 6. In this sub section, the prediction of the energy 
price is assumed to be perfect, i.e. the aggregators and the DSO 
use the same prediction. Then the driving behaviors including 
driving distance, arriving time and leaving time are predicted as 
list in Table II. The energy planning at the DSO side is per-

formed with initial values, i.e. (0) 0t  in (14), and the results 

are plotted in Fig. 7.  
 

 
Fig. 7. Line loading of the initial energy planning at DSO side  

 
Then the sensitivity analysis of the line loading change to 

the change of energy demand, arriving time and leaving time is 
performed at the optimal point. Part of the results (only re-
garding L3) is shown in Table III. It can be seen that the line 
loadings (L3) at hour 23 and 24 are sensitive to energy demand 
of EVs (the results are synthesized from the individual sensi-
tivity of each EV, because it is not necessary to show the results 
of a thousand EVs), while it is less sensitive at hour 5, 6, 10 and 
19. The change of energy demand will not affect the line 
loadings at other hours since the sensitivity coefficient is zero. 
For the change of the arriving time, it will only influence the 
line loading at hour 24 and the influence is insignificant (one 
minute change of the arriving time will only lead to 3.2 kW 
change of the line loading). The reason can be explained by the 
fact that the expected arriving time (see Table II) is far away 
from the congestion hour, namely hour 24. The same reason 
explains that the change of the leaving time has insignificant 
influence to the line loading change. 

 
TABLE  III 

SENSITIVITY OF L3 LOADING CHANGE TO THE CHANGE OF ENERGY DEMAND, 
ARRIVING TIME AND LEAVING TIME; DATA OF OTHER HOURS IS ZERO. 

 
Hour Energy Demand 

(kW/kWh) 
Arriving Time 
(kW/min) 

Leaving Time 
(kW/min) 

5 32 0 0 
6 8 0 0 
10 16 0 0 
19 8 0 0 
23 352 0 0 
24 384 3.2 0 

 
The next step is to carry out the probability analysis. Take 

L3 as an example (both L2 and L3 are critical which can be 
observed from Fig. 7; however L2 can be analyzed through the 
same method as for L3). The line loading limit is 6000 kW and 
the probability of the overloading 5%, i.e. 5% of the original 
limit or 300 kW, will be estimated. The critical hour (conges-
tion hour) is hour 24 and the sensitivities associated with ar-
riving time and leaving time are negligible according to Table 
IV. The standard deviation of F can be determined as 

1 1 2 2 43.26T T
d      (kW). Therefore, the probability 

of F bigger than 300 kW is very low (less than 0.1%). Ac-
cording the procedure, the algorithm can be terminated with the 
final DT (the 1st iteration column of Table IV). 
    2)  Case Two: 

However, if the DSO is more conservative, e.g. the DSO set 
its goal to be that the probability of overloading (0%) is no 
bigger than 5%, the algorithm needs to continue to the second 
iteration because after the first iteration, the probability of 
overloading is 50%. The new line loading limit of L3 at the 
critical hour is reduced by 0.5% (a fixed small step), i.e. the 
new line loading limit is 5970 kW. The procedure is repeated 
from step 4. The sensitivity and the standard deviation of F are 
almost not changed from the first iteration. The probability of 

30 0F   (noted that the line loading limit is reduced by 30 
kW in the optimal energy planning) is 24.5%. The algorithm 
needs to continue to the third and fourth iteration. After the 
fourth iteration, the probability is reduced to 2.1 % and the 
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algorithm can be terminated with the final DT (the 4th iteration 
column of Table IV). 

The results of Case One and Case Two are listed in Table 
IV. As the L3 loading limitation sets to be lower and lower in 
the optimal energy planning at the DSO side, the DT at LP2-5 
goes up gradually (DT at LP1 is not changed because the en-
hancement regarding L2 overloading has not been carried out 
yet; it can be done by following the same procedure for L3), 
which is reasonable because it needs to shift more power 
consumption to other hours. It can be seen from the final energy 
planning results shown in Fig. 8 that 90 kW is shifted from hour 
24 to hour 23 comparing to the original planning (Fig. 7). The 
benefit is that the probability of L3 overloading (the physical 
limitation is still 6000 kW) is only 2.1%, which is the confi-
dence that the DSO has on the DT method for congestion 
management. 

 

 
Fig. 8. The final energy planning results at the DSO side 

 
TABLE  IV 

RESULTS OF EACH ITERATION 

 
 1st iter 2nd iter 3rd iter 4th iter 
DT at LP1, 
Hour 24 
(DKK/kWh) 

0.0519 0.0519 0.0519 0.0519 

DT at LP2-5, 
Hour 24 
(DKK/kWh) 

0.0511 0.0514 0.0518 0.0521 

Prob. of over-
loading 5% 

<0.1% - - - 

Prob. of over-
loading 

50% 24.5% 8.2% 2.1% 

L3 loading 
limitation (kW) 

6000 5970 5940 5910 

 

V.  CONCLUSIONS 

The paper presents the uncertainty management of the DT 
method with the presence of stochastic parameters of the 
flexible demands. The uncertainty comes from the fact that the 
DSO needs to forecast the behavior and energy requirement of 
the flexible demands since the DT method has a decentralized 
control architecture, where the aggregators make day-ahead 
energy plans independently without considering network con-

straints. With the uncertainty management, the robustness of 
the DT method is enhanced that the probability of congestion 
(or an allowed congestion level) resulting from the DT method 
is under a predefined level. 

The main limitation of the proposed uncertainty manage-
ment method lies on the sensitivity analysis carried out in each 
iteration step, which has an assumption that the changes of the 
parameters are reasonably small. Therefore, the deviations of 
the forecast errors should not be too big; otherwise, the accu-
racy of the sensitivity analysis will be compromised. 

In the future work, the uncertainty regarding the forecasted 
conventional loads can be included, which should be more 
straightforward than handling the uncertainty of the energy 
requirement of the flexible demands. Further, a combination of 
the DT method and intra-day (or real-time) congestion man-
agement methods can be developed, which can offer the DSO 
more choices on risk management and cost of the congestion 
management in the distribution network. 
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