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Int. J. Rapid Manufacturing, Vol. x, No. x, 2015 

 

Calibration of a Numerical Model for Heat Transfer 
and Fluid Flow in an Extruder 

 

Abstract: This paper discusses experiments performed in order to validate simulations on a 
fused deposition modelling (FDM) extruder. The nozzle has been simulated in terms of heat 
transfer and fluid flow. In order to calibrate and validate these simulations, experiments were 
performed giving a significant look into the physical behaviour of the nozzle, heating and 
cooling systems. Experiments on the model were performed at different sub-mm diameters 
of the extruder. Physical parameters of the model – especially temperature dependent 
parameters – were set into analytical relationships in order to receive dynamical parameters. 

This research sets the foundation for further research within melted extrusion based 
additive manufacturing. The heating process of the extruder will be described and a note on 
the material feeding will be given. 
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1. Introduction 

Fused Deposition Modelling (FDM) is based on the 

deposition of a melted filament strand onto a surface. The 
melted filament is deposited to form layers in order to 

build a three dimensional object. A throwback of this 
technology is the poor surface quality and high surface 

roughness of the final product. 

 

Precision Tooling for Extrusion Based Additive 
Manufacturing is largely absent within the industrial 

scene and few attempts have been herein due to FDM 

limitations in terms of feedstock shape and resolution 
through standard tooling. Vaezi et al. [27] There is, 

though with respect to thermopolymer rheology no 
distinct cause for, why extrusion based tooling systems  

for this AM process technology cannot be miniaturized to 

allow for µFDM deposition. The polymer rheology scales  
linearly well below the 0.4mm extruder diameter that has  

become the de-facto standard within FDM Chena et al.  
[28]. This paper aims to provide a Numerical Model for 

Heat Transfer and Fluid Flow in an Extruder, to form the 

base for further advances in tooling system for Extrusion 
based AM. 

 

Earlier research has, concluded the following parameter s  

to be the most influencing for the surface quality of the 
manufactured product  Anitha et al. [3]: 

 layer thickness, 

 width of the melted filament path and 

 printing speed. 

 

All of the parameters are directly correlated to the 
diameter of the nozzle. In order to increase surface 

quality, a scaling of the nozzle orifice and possibly of the 

entire extruder can be considered. Lee et al. [23] 
performed a similar analysis for acrylonitrile butadiene 

styrene (ABS). 

Whereas Anitha et al [3] were using the surface 
roughness parameter Lee et al. [23] were using an even 

more complex experiment, Sood et al. [24] focused on the 

dimension accuracy. 
It can be stated that there exist multiple papers discussing 

the surface quality of FDM printed objects using Taguchi  

methods, which will not be discussed here any further. 

Masood et al. [25] mostly aimed to increase the entire 
system of FDM printing by a software approach for 

distributing the material and came to the conclusion that 
surface quality is directly affected by production speed.  

Similar to the publications presented above, they also 

concluded that the layer thickness plays an important 
role. 

Literature research showed a lack of simulations of 

extruders for AM. Simulations concerning the heat 
transfer within an extruder Hofstaetter et al. b [2] as well 

as fluid flow within the nozzle were described in 
Hofstaetter et al.[1, 2]. The aim of this paper is therefor  

also the validation of the simulation results by Hofstaetter  

et al. [1, 2]. For this aim, experiments were performed on 
an extruder for heat transfer and heat distribution as well 

as fluid flow, filament feed and viscosity. 

Simulations throughout this paper has been 
performed using Comsol Multiphysics  5.0 [11] with the 

modules “heat transfer in solids/fluids” and “laminar  

flow”. The configuration is described in detail in 
Hofstaetter et al. [1, 2]. 

2. Method 

For the validation of simulations, an Open-Hardwar e 

Extrusion system known as the “E3D HotEnd v6” 
extruder was simulated in terms of heat transfer and fluid 

flow. The primary dependencies of the simulations were 

the total heat transfer coefficient and pressure difference.  
In order to validate these parameters, experiments were 

carried out by heating the extruder electrically from 

room temperature to operating temperature monitoring 
the temperature of the extruder as a function of time. The 

extruder was operated in an environment with controlled 

temperature, close-loop controlled by a PID controller to 
target temperature while material feed was controlled 

through micro-stepping by an open-loop controlled 
stepper motor. 

The viscosity model used in the simulations was validated 

by performing rheometer experiments in a rotational 
rheometer. Viscosity was measured and compared to 

calculated values defined by the Cross-WLF model of Shin 

et al. [14]. 

 

3. Experimental setup 

The experimental validation took place on an extruder  
test bench developed at the Technical University of 

Denmark (DTU). It consists of a load cell (see Figure 1), a 
stepper motor (see Figure 2) and the extruder barrel 

including a rolling road to pose for a substrate (see Figure 

3). The single components are described below.  
 

The commonly used E3D HotEnd extruder – 

graphically represented in Figure 4 – consists of the 

following components (Genuine E3D-Online reseller [5]): 

• aluminium heater block heated by a cartridge with 

up to 25W, 

• stainless steel heatbreak, 

• aluminium heatsink and 
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• brass nozzle (diameter 0.2 to 0.8 mm). 

Moreover, a fan can additionally be mounted. For the 
experiments, a DC cooling fan has been used with 

dimensions 30mm × 30mm × 10 mm with the following 
specifications (Xinyujie Electronics Co [6]): 

 

air flow 1.3*10^6 to 2.1*10^6 mm^3/s 

static pressure 423 to 1105 Pa 

 

 

The actual extrusion process takes place in the 
following steps: 

1. The polymer material in a solid state enters the 
extruder as a 1.75mm filament. 

2. The nozzle is kept at a temperature above melting 

temperature of the polymer material. In the case of 

ABS, the value is chosen according to the generally  
used temperatures of, e.g., 230◦ C. It shall be noted,  

that both common materials – ABS and PLA – are 
highly viscous polymers with nonlinear viscosity. 

This causes the pressure to rise unless a higher  

temperature or higher pressure is set at the 
extruder. Heat is generated by a cartridge heater  

and temperature is conducted via solid heat 
transfer. The extruder barrel is cooled by a constant 

heat transfer into the environment as well as by a 

fan placed at the heat sink. 

3. While being supplied with new polymer material,  

the polymer closer to the outlet of the nozzle melts  

as passing glass transition, then elevated over the 
melting temperature. During this process, the 

dynamic viscosity changes non-linearly for non-

Newtonian polymers (e.g., viscoelastic polymers).  
This has a major influence on the pressure within 

the nozzle as can be seen in the Navier-Stokes  
equation (3) showing the influence of the dynamic  

viscosity. For the reason that the viscosity is 

exponentially depending on the temperature as 
shown later in in equation (5).  

4. The polymer exits the nozzle in a liquid state and is 

cooled by the ambient air temperature. 

4. Simulation Implementation 

The experimental validation took place to support the 

numerical model presented by Hofstaetter et al. a, b [1, 2].  

The most important modules used were 

• heat transfer and 

• laminar flow. 

The calculation description is based on the processes 

performed during the study. Respectively, the following 
sections are based on the information provided by [10] 

concerning the calculations.  

4.1. Heat transfer (in solids/fluids) 

Heat transfer is based on the first fundamental law of 
thermodynamics rewritten with respect to T to 

 ρCpu · ∇T = ∇ · (k∇T) + Q   (2) 

 ρ density 

Cp specific heat capacity 

u velocity vector 

k thermal conductivity 

T temperature 

 Q combined heat sources 

 
The overall heat transfer coefficient h for the heat flux 

from the model consisting of metals in an air environment 

is stated by The Engineering Toolbox [11] as 5 to 37 
W/m2K. The value of h = 15W/m2K has been chosen for 

reasons described in section 6.1. 

4.2. Laminar flow 

The laminar flow of the polymer within the nozzle is 

simulated using the Navier- Stokes equation 

 

∇ · (ρu) = 0 

(3) 

for a stationary process. 

ρ density 

p pressure 

u  velocity vector 

F  volume force vector 

η dynamic viscosity 

T Temperature 

I eye tensor 

 

As a first approach, the flow is simulated as a single-

phase flow, meaning, that it only consists of the polymer .  
The interface is used to compute the velocity and 

pressure fields. 
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5. Experimental Implementation 

5.1. Heating and cooling 

An 8-bit ARM MCU based controller board with an RS-232 

interface is used for the process control. The temperatur e 
of the cartridge heater is maintained by a PID loop. The 

temperature is set to 300◦ C, to prevent that the PID loop 

modulate the current flow to the cartridge heater, with a 
16W of the maximum allowable power draw. After 140s  
measurement time, the temperature reached 264.9 to 
265.3 ◦ C, meaning, while maintaining a 100% duty cycle 

within the PID control loop. 

Measurements were performed in intervals of 10s 
starting from 0s and going to 140s. Experiments and 

simulations have been carried out without fluid flow and 

with the cooling fan operating. Room temperature was 
maintained at 20.5◦ C. 

According to design specifications of the extruder [12] 

it is possible to achieve a temperature increase from 20 
to 200 ◦ C within 65s when 25W is allowed to be 

dissipated in the cartridge heater. Measurements were 
performed in two different configurations: 

1. Configuration with the fan turned off. 

2. Configuration with the fan turned on. 

5.2. Fluid flow 

As described above, the experimental setup of Andersen 

et al. [4] was used for measurements. Andersen et al.  
identified the maximum force that the drive can exert on 

the filament to be 19N. With a filament diameter of 
1.75mm, this correlates to a pressure of 7.9MPa at the 

extruder inlet, and with an expected pressure drop at the 

outlet.  

If the rate of extrusion is exceeding the capabilities of the 
drive mechanism, slippage will occur. This is a function of 

the pressure required to expel material with respect to 
the permissible pressure that can be delivered by the 

system. Experiments were performed by setting a feed of 

15mm controlled by the diameter of the stepper motor  
and measuring the actual feed, meaning the actual 

transportation length of the filament, after the extrusion 
took place. If a difference of lengths are observed, the 

required pressure is above the 7.9 MPa. Andersen et al.  

[4] measured the load force directly on the filament. 
 

5.3. Material viscosity 

A widely used model for polymer viscosity is described in 

Koszkul et al, Shin et al., Jena et al. [13, 14, 15]. The so-
called Cross-WLF model is based on the relation for the 

zero-shear viscosity: 

  (4) 

  (5) 

 n, A1, A2, D1, D2, D3 material model constants 

γ˙ shear rate 

τ relaxation time 

Tr arbitrary reference temperature 

According to experiments by [14], the material model 

constants for ABS can be defined as 

τ = 3.48 × 104 Pa n = 0.289 

D1 = 8.62 × 1011 Pas 

Tr = 373.15K 

A1 = 24.96 

A2 = 51.6K 

Tr is a chosen reference temperature. Usually, the glass  

transition temperature is chosen. According to Shin et al.  

[14], this value is 100◦ C, RepRap Wiki [16] stated a 
similar value of 105◦ C. 

 

6. Results 

6.1. Heating curve 

To calibrate the heat-transfer part of the numerical 

model, a series of experiments were performed under the 
conditions as described in section 4.1. Measurements  

were taken three times. They were affected by an average 
standard deviation of 0.15◦ C. A graphical representation 

is shown in Figure 5 showing a nearly linear increase of 

temperature during the early heating. 

The temperature gradient is slightly but steadily  
decreasing until it will reach a stationary value as 

described above. This behaviour is connected to the 

temperature difference between the metal of the extruder  
and the room temperature, which was located at 20.5◦ C.  

The simulation was calculated with a room temperatur e 
of 20.0◦ C. Multiple simulations showed, that the influence 

of the room temperature on the nozzle temperature is 

minimal and thus neglectible. This conforms with the 
robustness of the actual  working conditions of the nozzle.  

If the nozzle was affected dramatically, printing with 
continuous quality would be technically impossible. 

The figure also shows the heating curve calculated at 
10, 15 and 20 W/(m2K) heat flux outside. Statistics  
showed an averaged standard deviation of 5.28◦ C for 

10W/(m2K), 1.45◦ C for 15W/(m2K), 2.19◦ C for 

20W/(m2K), 4.98◦ C for 25W/(m2K) and 8.02◦ C for 
30W/(m2K). This makes it reasonable to set the heat flux 

outwards to 15W/(m2K) in the simulations. 



 Calibration of a Numerical Model for Heat Transfer and Fluid Flow in an FDM Extruder 5 

 

The heating time as stated from the extruder  

specifications [12] has been measured without fan 
activity three times with an average time of 86s and a 
standard deviation of 0.6s, which is only slightly below 

the measurements with fan on described above. It was 

not possible to find a configuration of the extruder which 

could fit this constraint. 

A graphical representation of the temperature rise in 
the heater block close to the nozzle is given in Figure 6. 

The nozzle was heated with 15W. The figure also 
indicates that stationary temperature is reached before 

600s. Experiments were only performed until 140s as the 

nozzle then has reached values greater than printing 
temperature of 230° C. 

 

6.2. Fluid flow 

In order to ensure that experiments conducted on the 

experimental setup at all times was within the pressure 
limits of the extruder drive mechanism, close attention 

was paid to this limit. Similar to work performed by 
Andersen et al. [4], the nozzle was heated to a stationary  

temperature of 230◦ C. A sweep of the extrusion speed 

showed that the stepper motor looses torque with 
increasing extrusion speed. This is a well-known 

characteristic of stepper motors described by Athani [26].  
During the experiments, the set extrusion length at the 

inlet was held constant at 15mm at an extrusion 

temperature of 230◦ C similar to the temperatur e 
received in the simulations. Hereafter, the actual 

extrusion length was measured and is shown in Figure 7. 
Lack of extrusion from slippage increased significantly at 
100mm/min under a level of half the set extrusion length,  

indicating that the required extrusion pressure exceeded 
the systems capabilities. The experiment has therefore 

been halted. 

It seems reasonable to try a linear approximation of 
the measurements in the range of 10 to 100 mm/min. It 

has been calculated using a least-square method resulting 
in the form of c1x + c2 with the parameters 

c1 = −0.0492 ±0.003(5.1%) (6) 

c2 = 15.7382 ±0.172(1.1%) (7) 

The relatively small error lets assume a linear slippage of 

the polymer filament in the stepper motor in the range of 
10 to 100 mm/min. This allows to calculate the actual 

length of the filament extruded at certain feed velocities. 
Feed velocities over 100mm/min, however, cannot be 

used. During the experiments, an unsteady feed with 

bulging could be spotted during irregular slippage. This  

result might be different with another experimental setup 
and different friction coefficients between the materials  

or harder bowden cable. The bowden cable, however is 
necessary to prevent bending of the filament during the 

feeding into the extruder as the stresses change from pull 

to push stress when passing the stepper motor. 
Reasonably smaller velocities usually result in a 

higher surface quality of the product, whereas higher  

velocities usually result in worse surface quality. Anitha 
et al [3] 

As could be shown by Hofstaetter et al. a [2] in 

simulations, pressure difference and therefore extrusion 

velocity have a strong influence on the velocity in other 

directions than the nozzle velocity. The sweep over feed 

velocities also indicated this by the following: 

 
• Filament extruded at low velocities exits the nozzle 

in a smooth form. 

• Filament extruded at higher velocities tends to curl 
up in a non-smooth form. 

These observations also correlate with the experience 

described by Andersen et al. [4]. This is another argument 

for smaller printing velocities in order to increase surface 
quality. 

Other observations during the experiments showed,  

that the consistence and geometry of the filament can be 
changed by supporting the filament after the extruder.  

Pulling the filament also results in smaller filament 
diameters. Measurements of the filament thickness after  

the extrusion without an external pulling force on 15 

different positions using a vernier caliper resulted in an 
average filament thickness of 0.37 mm. The extrusion was 

performed using a 350 µm nozzle diameter. This  
information concludes a widening of the filament after  

exiting the nozzle during the solidification. 

6.3. Viscosity measurements 

Calibration of the fluid flow part of the numerical model 

was carried out through rheometer measurements .  
Literature research brought only a few measurements on 

temperature dependence of ABS viscosity. In order to 
validate the measurements of Shin et al. [14], it has been 

decided to individually perform experiments at Vienna 

University of Technology. The analysis took place using 
Rheometer 301 by the company Anton Paar [22] (plate-

plate configuration) at values 160, 180 and 230 ◦ C with a 
slid diameter of 2mm. The probe hereby was placed in the 

analysis instrument, then melted and analyzed with the 

amplitude sweep, frequency sweep and time sweep. 

The results for the complex viscosity can be found in 

Figure 8. The measurement at 160◦ C did not reach the 
zero shear viscosity at the converging left side of the 

measurements and therefore has not been used for 

further analysis. These measurements were then 
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compared to the Cross-WLF model in order to validate 

the law for a viscosity over temperature relation. 
 

The zero shear viscosities η0 at 180 and 230 ◦ C were 

found as follows including the relative error ∆rel to the 

Cross-WLF model in equation 5: (The measurement at 
160◦ C did not reach the zero shear viscosity and 

therefore has not been used for this comparison.) 

T in ◦ C η0 in Pas  ∆rel 

180 7.70 × 104  0.653 

230 2.77 × 103  0.815 

These values are similar and comparable to the 

measurements of Shin et al. [14]. All measurements tend 
to reach higher viscosities than the model. The model 

could be modified here, e.g. a higher order could be 

introduced. This has not been performed here. 

A reason could be a different composition of ABS 
components in the model and the experiment. This could 

not be validated as Shin et al. [14] did not state any  
further details on the ABS composition. However,  

Andersen et al. [4] pointed out that colour pigments  

influence the mechanical and thermal properties of 
filaments. 

Calculating the model gives a viscosity over 

temperature relation in the region of 100 to 260 ◦ C as 
shown in Figure 9. The start of the range at 

100◦ C is caused by the position of the glass transition 

temperature of ABS. 

Moreover, equation 4 gives a relation of the dynamic  

viscosity depending on the shear rate which is plotted in 
the range of 0.01 to 1000 1/s in Figure 10. The 

experimental data has also been plotted. 

The law presented in equation 5 and Figure 9 have also 

been verified by values measured by Yang et al. [17]. The 
model is also suitable in comparison to the model 

calculated by Monzon et al. [18]. As a critical value in the 

simulation, these values have been checked although not 
applied in the extruder experiment. 

  

 

7. Discussion 

A model of an extruder for AM has been implemented and 

calibrated by experimental data showing an overall heat 
transfer from the metal of the extruder into the 
environment of 15W/(m2K). This value is reasonably  

within the range available in literature. 

Heating of the nozzle showed that it is only necessary to 
heat the extruder with 15W instead of the potential 25W 

possible. When printing ABS, it is not necessary to use the 
entire power of the electric heating system. This, 

however, might be necessary for different materials. 

The maximal extrusion speed at the inlet for ABS is 
located below 100mm/min. Above this value, slippage of 

the stepper motor becomes irregular and non-

deterministic. This sets a limit to printing speed. 

The filament diameter after extrusion lies above the 

nozzle diameter and can be changed by applying an 
external pulling force. The filament changes its size after  

exiting the nozzle and during solidification. 

Performing a parameter sweep with feeding velocities of 
10 to 100 mm/min showed a smooth form of the 

extruded filament at low extruding velocities and an 

uneven and curled shape at higher velocities. This 
behaviour results from higher velocities in other  

directions (see [2]) than the nozzle within the polymer at 
higher pressure differences between inlet and outlet. The 
reasonable feeding speed lies below 20mm/min where 

the slippage is located at lower values. 

Viscosity measurements compared to the CrossWLF 
model of Shin et al. [14] brought similar results to Yang et 

al., Monzon et al. [17, 18]. The Cross-WLF model has been 

validated with three experimental settings at three 
different temperatures 160, 180 and 230 ◦ C where 180 

and 230 ◦ C reached zero shear viscosity. It can be 
concluded that the Cross-WLF model by Shin et al. [14] 

delivers the values to expect from experiments. 

8. Conclusion 

A numerical model for heat transfer and fluid flow within 
extruders for AM has been developed. Calibration of this 

model has been described throughout this paper from 

values for which literature states multiple options or data 
ranges. In order for the model to produce valid results, 

these values were successfully experimentally identified.  

The results were presented in section 7. From this, it can 
finally be concluded that: 

 

Viscosity needs to be considered carefully when defining 
a model as viscosity exponentially depending on the 

polymer temperature. Temperature also has a great 

influence on the viscosity of the polymer and as a 
consequence also on the surface quality of the printed 

object. The overall heat transfer coefficient plays an 

important role in the height of the temperature within the 
extruder, and could likewise be identified through 

experimental results. Throughout experimental work, 
concerns were that filament slippage could lead to false 

results due to the connected pressure drop inside the 

extruder system. This exact mechanism also defines the 
maximal printing speed of an extrusion based 3D printer. 

Finally, throughout the experimental studies, it was 
noticed that the polymer widens after the extrusion 
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during solidification. This fact needs to be considered 

when creating the printing geometry and motion control 
of the printer. 
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Figure 1 Start of test setup, load cell [4] 

 

 

Figure 2 Step two of test setup, stepper motor [4] 

 

 

Figure 3 Step three of test setup, nozzle and movement 

simulation [4] 

 

 

Figure 4 E3D HotEnd extruder; from top to bottom: 

heatsink, heatbreak, heater block, nozzle (modi_ed 

from a model from GrabCAD) 
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Figure 5 Temperature during heating with 25W 

includingsimulations 

 

 

Figure 6 Temperature close to the nozzle in simulations 

and experiments 

 

 

Figure 7 Slippage of filament, shown as the actual extruded length 

for an intended extrusion of 15mm 

 

 

Figure 8 Experimentally gathered complex viscosity at 

160, 180 and 230 °C 

 

 

Figure 9 Viscosity over temperature in the range of 100 

to 260 °C 

 

 

Figure 10 Viscosity over shear rate in the range of 0.01 

to 1000 1/s 


