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Abstract 

Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in 
demand.  As a result, cost damping is a model extension of the simple linear-in-cost model requiring an 
appropriate non-linear link function between utility and cost. The link function may take different forms 
and be represented as a non-linear-in-parameter form such as the well-known Box-Cox function. However, 
it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate 
and improve model fit without increasing the number of parameters. The specific contributions of the 
paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it 
occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any 
variable by estimating two auxiliary linear models.  This turns out to be an important guidance as the 
damping rate largely dictates which link functions are appropriate for the data. Thirdly, inspired by the Box-
Cox function, we propose alternative linear-in-parameter link functions, some of which are based on 
interpolation of approximate Box-Cox end points, and others which are inspired by Taylor Expansions. The 
different functions are tested in simulation experiments and subsequently in a large-scale demand model 
based on more than 22,000 revealed preference observations. It is concluded that the use of properly 
specified linear-in-parameter functions gives good data fit and sometimes even outperforms the Box-Cox 
functions without increasing the number of parameters.  
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1 Introduction 
An important element of estimating travel demand models is to find the functional form that explains the 
underlying data generating process in the best possible way. In fact, the increase in model fit from using a 
proper functional form usually outweighs most other model-related choices such as accounting for 
heterogeneity and correcting for correlation in the error terms. However, the choice of functional form is 
not only important with respect to model fit but also because it affects all properties of the model from 
direct elasticities and cross elasticities to the derived value of time (VoT). If the model is concerned with 
long-distance trips the model needs to explain observations across a wide range of travel distances, which 
can be challenging. Therefore the importance of functional form tends to increase with the distance 
domain of the model. 

A search in the literature reveals three approaches to model functional form of a single variable: piecewise 
linear approximation (splines), power series expansions, and Box-Cox transformations. The first approach is 
discussed in Ben-Akiva and Lerman (1985) in a logit modelling framework and more recently in Pinjari and 
Bhat (2006) in a mixed logit framework. Power series expansions are discussed in Ben-Akiva and Lerman 
(1985) and have been applied in all types of transport modelling contexts as a simple test of the base model 
that is linear in variables. The work on Box-Cox transformations in the travel demand literature goes back to 
the early work by Gaudry and Wills (1978) and Hensher and Johnson (1981). The focus of the present paper 
is dedicated to the latter. Gaudry (2010) summarises the early findings and provides many arguments why 
the Box-Cox model is useful for modelling of travel demand. Applications are found in Gaudry et al. (1989), 
Ben-Akiva et al. (1987), Mandel et al. (1994) and Lapparent and de Palma (2002).  

Hyman (2007) argues that demand models, in order to be realistic, should comply with at least three 
properties:  1) decreasing sensitivity to generalised costs for longer than average trips, 2) increasing VoT for 
longer trips, and 3) monetary costs should enter in the generalised form in a logarithmic form. While the 
first two properties are intuitive and confirmed elsewhere (Jara-Diaz, 2007) it is important to stress that 
cost damping (of which property 3) is a specific case) is primarily a phenomenon that plays out on longer 
distances. For many urban models where the trip distances are short or moderate, the damping is usually 
low and may even be negative. Daly (2010), in his work on cost damping in travel demand models and in 
line with the first two properties discussed by Hyman (2007), argues that a desirable model should:  

i) be RUM consistent in the sense that the model should be consistent with random utility 
maximisation (RUM) such that the gradient of the utility function with respect to cost is equal 
or less than zero for the entire domain of the model. 

ii) allow for cost damping (decreasing sensitivity to cost and/or time), and 
iii) allow for increasing VoT with distance. 

The first property is the softest as it establishes a general type of RUM consistency. The second property 
should not be considered a restriction but rather a relaxation of the linear-in-attribute model where the 
econometric specification of the model is extended to allow for a more flexible curvature. In doing so we 
allow for a parameterisation of the “de-acceleration” of slope when the distance increases. Although there 
are no strict theoretical arguments for cost damping there is strong empirical evidence in favour of models 
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applying cost-damping as discussed in Daly (2010). In Section 2 we will elaborate further on this and argue 
that cost damping arises from several cofounding processes and should be seen, primarily, as a sound 
econometric extension of the linear model. The third property, we believe, should be generalised slightly as 
to say, 

iii) allow for different degrees of damping for different attributes (cost and time) with distance. 

Empirically, there is a tendency that cost is more damped than time, which is why Daly (2010) refers to 
increasing VoT as a function of distance. However, this observation is mainly true for daily trips where time 
constraints play a role. For longer trips and in particularly for vacation trips, this is not necessary the case as 
the trip in itself may be considered part of the journey. To illustrate the link between the VoT and cost 
damping consider a simple utility function where cost 𝑐𝑐 is modelled as 𝑓𝑓(𝑐𝑐,𝛽𝛽𝑐𝑐) and time 𝑡𝑡 as 𝑔𝑔(𝑡𝑡,𝛽𝛽𝑡𝑡). VoT 

is given by 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝜕𝜕𝜕𝜕(𝑡𝑡,𝛽𝛽𝑡𝑡)
𝜕𝜕𝜕𝜕

/ 𝜕𝜕𝜕𝜕(𝑐𝑐,𝛽𝛽𝑐𝑐)
𝜕𝜕𝜕𝜕

. If the damping in 𝑐𝑐 is higher than in 𝑡𝑡 we will have that 𝜕𝜕𝜕𝜕(𝑡𝑡)
𝜕𝜕𝜕𝜕

 dominates 
𝜕𝜕𝜕𝜕(𝑐𝑐)
𝜕𝜕𝜕𝜕

 for longer distances.  Hence, as distance increases, 𝑉𝑉𝑉𝑉𝑉𝑉 will increase as well. In a linear version of 

𝑔𝑔(𝑡𝑡,𝛽𝛽𝑡𝑡) and 𝑓𝑓(𝑐𝑐,𝛽𝛽𝑐𝑐), 𝑉𝑉𝑉𝑉𝑉𝑉 is simply the ratio between 𝛽𝛽𝑡𝑡 and 𝛽𝛽𝑐𝑐. So there is no damping. In a version with 
𝑔𝑔(𝑡𝑡,𝛽𝛽𝑡𝑡) = 𝛽𝛽𝑡𝑡𝑙𝑙𝑙𝑙(𝑡𝑡) and 𝑓𝑓(𝑐𝑐,𝛽𝛽𝑐𝑐) = 𝛽𝛽𝑐𝑐𝑙𝑙𝑙𝑙(𝑐𝑐) we have 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝛽𝛽𝑡𝑡𝑐𝑐/𝛽𝛽𝑐𝑐𝑡𝑡. This is a version in which both time 
and cost are “maximally damped” as will be considered in more detail in the subsequent sections. In the 
current paper, we will explore damping in a generalised cost context as we maintain a fixed VoT 
formulation. It does not affect the generality of the results as our main objective is to propose a set of 
functions that will apply in any context including a context, where we have separate damping functions for 
cost and time. However, it means that a more flexible specification as represented by iii) is worth while 
considering if supported by data and that possible challenges that arise from the estimation of such forms 
are while worth considering for the future as also pointed out in Section 5.  

Generally, the three properties can be used to remove specific functional forms as potential candidates in a 
demand model. A candidate that fulfils all the properties is the Box-Cox transformation.  However, due to 
its non-linearity it has not been widely used in (practical) large-scale modelling. Moreover, although being 
flexible and generally quite successful in many applications (e.g., Gaudry, 2010) it should be stressed that 
the Box-Cox transformation in itself represents an approximation to an underlying unknown data 
generating process. Hence, there is no guarantee (or theoretical evidence) supporting the Box-Cox model 
for other functions. For the estimation of Constant Elasticity of Substitution (CES) functions, however, the 
Box-Cox model will have the advantage of being monotonic as well as having continuity for lambda equal to 
zero (Gaudry, 2010). In the context of discrete choice this is less important as the models are typically 
restricted to Box-Cox parameters in the unit interval. In that case all of the models presented in this paper 
will preserve the order of the data.      

In this study we investigate how the choice of functional form affects travel demand models and we give 
numerous examples of useful forms other than the Box-Cox model. To focus the analysis in the paper we 
limit the analysis and the simulation experiments to assess the functional form of generalised travel time 
variables and not separate time and cost terms as well as the corresponding VoT. However, as damping and 
non-linearity in general are found not only in specifications with generalised time and cost, the findings in 
the paper are also relevant to cases where VoT is estimated. Hence, the definitions and the estimation of 
the damping rate considered in Section 2 as well as the different functional forms considered in Sections 3 
and 4 are also relevant for cases where VoT is estimated. Even so, as many practical models world-wide 
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have applied generalised cost or time specifications, the investigation of functional form in a generalised 
time context is also of practical relevance. For a more elaborate discussion of the concept of generalised 
time and cost we refer to Wardman (2008).  

The remainder of the paper is organised as follows. First, we discuss cost damping in general and functional 
form in Section 2 where we also advice on how to assess the amount of damping in a data set. In Section 3, 
we suggest various approximations to the Box-Cox model and investigate by means of simulated data how 
these can be used to model data both when the true model is a Box-Cox model and when it is not. Section 4 
illustrates how the various functional forms can be used in a large-scale demand model and the effects of 
functional form on model fit, elasticities, and recuperation of the distance distribution in the data. The final 
Section 5 concludes the paper. 

2 Functional form and cost damping 
Cost damping has been observed repeatedly in the empirical literature. This is particular true for long-
distance models, see e.g. Rohr et al. (2010), Börjesson (2010) and Rich and Mabit (2012). As mentioned in 
Section 1 we will consider damping in a broader context as a property that relates to, e.g. monetary cost, 
travel time attributes, and generalised cost. For the attributes being considered, it is common to find cost 
damping although the rate may vary depending on which attribute is considered. Experiments carried out 
in connection with the Danish National Transport Model (NTM) show that cost damping is a phenomenon 
that is also very much present in travel time attributes. A relevant question is therefore to ask why cost 
damping occurs. Although there may be other causes, we believe that cost damping is a phenomenon that 
arises from at least the following processes.  

Firstly, it is possibly related to human preferences as represented by the utility function not being entirely 
linear with respect to increasing costs. One perception is that all trips have some sort of inherent start-up 
costs. This means that the perceived cost is higher for shorter trips and less for longer trips which in turn 
may show up as damping.  

Secondly, cost damping may occur as an effect of unobserved attributes, e.g. car occupancy rate. 
Occupancy rate is in general increasing with distance. If a model is too simplistic and does not capture 
occupancy rate effects properly, it will not capture that costs are relatively deflated as distance increases 
whereas the time sensitivity remains constant. In models where car costs are attached to the driver, e.g. no 
cost sharing, this would most likely result in cost damping. This is because the higher occupancy rate for 
longer distances tends to deflate the individual cost all other things being equal.  

A third possible reason for damping may be heterogeneity in the error term. As distance increases the error 
term accumulates more noise and the variance goes up. When the variance increases, the scale goes down 
and will consequently cause model sensitivity to decrease. This is discussed in more detail in Daly and 
Carrasco (2009). 

A fourth possible reason may be selection bias. The higher travel cost, the more valuable is the time at the 
destination.  
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Whatever the reason, not correcting for cost damping may lead to bias in the model estimation as well as in 
the sensitivity of the model. In our view, the simplest and possibly most efficient strategy1 is to consider 
cost damping as a functional form issue and this will therefore be the departure point of the paper.  

2.1 Definition of damping    
As stated in Section 1 damping is defined as “decreasing relative sensitivity to cost or time”. In what follows 
we will skip the distinguished reference to cost or time and simply refer to “cost” as a common term. There 
are natural limits to how much and how little damping a model should have. These limits can be assessed 
by considering the sensitivity to increasing costs. Consider the logit model for two simple utility functions 
𝑈𝑈𝑖𝑖 = 𝑎𝑎𝑥𝑥𝑖𝑖 + 𝜖𝜖𝑖𝑖 and 𝑉𝑉𝑖𝑖 = 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖 + 𝜖𝜖𝑖𝑖 where 𝜖𝜖𝑖𝑖 are error terms that are identically and independently Gumbel 
distributed. If 𝑃𝑃𝑖𝑖 represents the logit probability function, the direct elasticity of these two models is given 
in (1) below.   

(1) 𝐸𝐸𝑈𝑈,𝑖𝑖 = 𝑎𝑎𝑥𝑥𝑖𝑖(1 − 𝑃𝑃𝑖𝑖) 𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸𝑉𝑉,𝑖𝑖 = 𝑏𝑏(1 − 𝑃𝑃𝑖𝑖) 

In the linear case, there is proportionality between the elasticity and the attribute, and the sensitivity is 
equal to 𝑎𝑎𝑥𝑥𝑖𝑖 as the cost goes to infinity. This will be referred to as “minimum cost damping” as the relative 
effect of cost is not reduced as the underlying attribute increases. Having a model with 𝑎𝑎𝑥𝑥𝑖𝑖𝛿𝛿 with 𝛿𝛿 > 1 
would in principle be possible, however, it would lead to an aggressive scaling when 𝑥𝑥𝑖𝑖 is large. Usually 
𝛿𝛿 > 1 does not apply to long-distance travel although it may be the case for shorter distances. On the other 
hand, the logarithmic case may be referred to as “maximum cost damping” as the elasticity approaches 𝑏𝑏 
as the distance goes to infinity and hence is invariant to the cost level. If we go beyond the maximum 
damping case it usually implies a violation of the RUM assumption (the first property in Section 1). The 
above discussion can be operationalised through Definition 1 below. 

 

Definition 1: Let 𝑥𝑥 represent travel costs and 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 a logarithmic and linear transformation of 
𝑥𝑥 which is introduced in the travel demand model. We will say that 𝑥𝑥 is 

- damped if 𝑎𝑎 < 0,𝑏𝑏 < 0 and both are statistically significant. 
 

- maximally damped if 𝑎𝑎 < 0 and statistically significant, and 𝑏𝑏 ≈ 0, i.e. not significantly different 
from 0. 
 

- minimally damped if 𝑏𝑏 < 0 and statistically significant, and 𝑎𝑎 ≈ 0, i.e. not significantly different 
from 0. 

 

1 Correcting for the functional form will repair not only the non-linearity in the preference structure, but also (at least 
partly) the effect that heterogeneity may have on model sensitivity. On the other hand, accounting for heterogeneity 
will not correct for non-linearity in the preference structure.  
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It is important to note that this definition is not equivalent to saying that every damped process should 
follow the 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 form. Rather it is a technical definition stating that if, in a given data generating 
process, the log-term 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 and the linear term 𝑏𝑏𝑏𝑏 become significant with a negative parameter, then the 
data generating process will be partly damped. A visualisation of Definition 1 is shown below in Figure 1. 

Minimum damping: f(x)=bx

0

Utility

Dam
ping 

interval

Maximum damping: f(x)=alnx

f(x)=alnx + bx

Cost

 

Figure 1: Illustration of minimum and maximum damping.  
 

There could be other possible definitions of damping, which could be anchored in the Box-Cox model, 
however Definition 1 is intended as an operational and easy-to-assess damping measure that does not 
require non-linear models to be estimated. 

2.2 Assessing the amount of damping 
A very interesting question is whether we can define a measure for the amount of damping in a given data 
generating process. This is considered in Definition 2 below. 

 

Definition 2: In a dampened data generating process 𝑥𝑥 (refer to Definition 1) we will refer to 𝜇𝜇 ∈ [0,1] as 
the “linear damping rate” of 𝑥𝑥. Consider the two auxiliary models represented by: 

(2)  
𝑀𝑀1 𝑓𝑓(𝑥𝑥) = 𝑧𝑧𝑧𝑧 + 𝑎𝑎2𝑥𝑥 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑀𝑀2 𝑓𝑓(𝑥𝑥) = 𝑧𝑧𝑧𝑧 + 𝑎𝑎1𝑥𝑥

 

The “linear damping rate” 𝜇𝜇 of 𝑥𝑥 is defined by  

(3) 𝜇̂𝜇 = 1 −
𝑎𝑎�2
𝑎𝑎�1

 

If 𝜇𝜇 = 1, 𝑥𝑥 is said to be maximally damped and if 𝜇𝜇 = 0, 𝑥𝑥 is said to be minimally damped.   

 

6 
 



The linear damping rate is estimated under the 𝐻𝐻0 hypothesis with minimal damping and under the 
assumption that the functional form is linear. In the case of minimal damping the two models should be 
identical and 𝑎𝑎�1 = 𝑎𝑎�2. If there is maximum damping 𝑎𝑎�2 → 0 and the logarithmic term in 𝑀𝑀1 will overtake 
the specification. As mentioned, the specification is only correct under 𝐻𝐻0 or in an infinitesimal region of 
𝐻𝐻0. So the power of the test (of damping) and thereby the precision of the estimate of 𝜇𝜇 will gradually 
decline as the amount of damping increases.  

In the estimation of 𝑎𝑎1 in model 𝑀𝑀2 we recommend replacing 𝜃𝜃 with the parameter vector 𝜃𝜃� from Model 
𝑀𝑀1. In doing so we assure that the 𝜃𝜃-term is identical across models 𝑀𝑀1 and 𝑀𝑀2. So first we estimate a 
fully parameterised model (𝑀𝑀1) and by re-using everything except for the linear parameter for 𝑥𝑥, we avoid 
that correlation between this term and other terms affects the linear parameter estimate in the second 
model.  

It should be noted that the above diagnosis (Definition 2) applies only to data where the damping rate is 
between 0 and100% and where the lower damping bound can be represented by a linear term. If this is not 
the case, the power of the test will decline but may still provide valuable information. However, if the 
damping approaches the lower bound (the linear case) the damping may be more aggressive than the 
linear term and should be modelled as an power function with powers above 1. This corresponds to a Box-
Cox parameter above unity and can be the case for urban models where the travel distances are short or 
moderate.  

At this stage it is natural to introduce the Box-Cox in which the amount of damping is represented by the 𝜆𝜆 
parameter.   

(4) 𝐵𝐵𝐵𝐵(𝑥𝑥; 𝜆𝜆) = �
𝑥𝑥𝜆𝜆 − 1
𝜆𝜆

𝜆𝜆 ∈ ]0,1]

𝑙𝑙𝑙𝑙(𝑥𝑥) 𝜆𝜆 = 0
 

The linear and logarithmic cases are nested within the BC model and emerge as 𝜆𝜆 → 1 and 𝜆𝜆 → 0, 
respectively. These limits then correspond to the “minimum” and “maximum” damping definitions in 
Definition 1 as discussed above. It should be noted that in general, the Box-Cox is not necessary restricted 
to 𝜆𝜆 ∈ ]0,1], so we consider a restricted version of the Box-Cox model in this paper.  

Both 𝜇̂𝜇 and 1 − 𝜆𝜆 represent a measure of cost damping and they both operate on the unit interval. In Table 
1 below we have compared the two measures of damping in a Monte Carlo simulation experiment where a 
true Box-Cox data generating process has been simulated for different values of 1 − 𝜆𝜆.  

True 𝟏𝟏 − 𝝀𝝀 𝝁𝝁� Abs difference % deviation 
0.98 0.97 0.01 28.5% 

0.9 0.87 0.03 26.1% 
0.8 0.75 0.05 23.1% 
0.7 0.64 0.06 20.1% 
0.6 0.53 0.07 16.9% 
0.5 0.43 0.07 14.2% 
0.4 0.33 0.07 11.2% 
0.3 0.24 0.06 8.4% 
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0.2 0.16 0.04 5.5% 
0.1 0.08 0.02 2.7% 

0.02 0.01 0.01 0.5% 
Table 1: Comparison of 𝜇̂𝜇 and 𝜆𝜆 in a true simulated Box-Cox data generating process. The deviation is 
calculated as (1 − 𝜇̂𝜇 − 𝜆𝜆)/𝜆𝜆. 

The first thing to note is that 1 − 𝜆𝜆 and 𝜇̂𝜇 measure different types of damping and may not be identical 
although they will be similar under 𝐻𝐻0. Also, as the BC function approaches the log when 𝜆𝜆 → 0 we will 
have 𝜇̂𝜇 = 1 − 𝜆𝜆 in the limit. As the test is formulated under 𝐻𝐻0, the power of the test will decline as we 
move away from 𝐻𝐻0 and so will the relative precision of 𝜇̂𝜇 as it appears.  

What happens here is that the Box-Cox model measures damping in terms of the Box-Cox functions 
whereas 𝜇̂𝜇 measures damping in a linear way. This is illustrated below in Figure 2. 

Box-Cox λ parameter

100-%damping

Linear damping

Box-Cox damping

10

Min damping

Max damping

 

Figure 2: Damping in the Box-Cox model and in the linear model. 

An exact relationship between 𝜇𝜇 and 𝜆𝜆 depends on the underlying unobserved data generating process and 
cannot be explicitly stated. However, it is clear that the Box-Cox function is strictly convex in 𝜆𝜆 for 𝑥𝑥 > 1 
and that 𝜇𝜇 < 1 − 𝜆𝜆. 

3 Approximating the Box-Cox 
The Box-Cox model provides a flexible family of functional forms with all the desirable properties discussed 
in the introduction. Hence, it is a very natural place to start if we are looking for candidate functions 
allowing for cost damping. Estimating Box-Cox functions, however, can be challenging for large scale 
modelling due to its non-linear-in-parameter form and several packages such as ALOGIT and STATA do not 
currently facilitate Box-Cox functions in the estimation of the discrete choice models. SAS/QLIM and 
Biogeme do support Box-Cox functions, however, for large samples (>20.000 observations) and for large 
choice sets (>5000 alternatives) the introduction of non-linear forms is still computationally cumbersome. 
In any case, for testing and screening purposes, it is useful to consider approximations. As a result, we will 
look for appropriate Box-Cox approximations expressed as linear-in-cost functions. 
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In the following we will consider linear-in-parameter approximations of the Box-Cox model based on the 
findings in Section 2. A natural approximation is to define the approximating function as a mixture of the 
linear and logarithmic curve. That is;  

(5) 𝐿𝐿(𝑥𝑥; 𝑎𝑎, 𝑏𝑏) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 

This form is suggested by Hyman (2007) and discussed in Daly (2010). The form can be seen as a special 
case of two Box-Cox functions. Generally, if in the underlying Box-Cox functions the regression terms have 
the same sign, (5) will lead to an acceptable approximation of the Box-Cox process as the underlying form is 
monotone and has not a minimum or maximum (Gaudry et al. 2000). If that is not the case the first 
requirement in Section 1 will be violated. In that sense we may also see equation (5) as an approximation 
which imposes structure.  

The function has been used in several large-scale models. In Sweden, it was used in Beser and Algers (2002) 
and more recently in a report by WSP (WSP, 2011) on model development for high speed rail modeling. In 
the UK, it was used in Rohr et al. (2010). A problem with (5) is that for certain data generating processes, 
correlation between the linear and logarithmic parts may cause one of the parameters to be positive. 
Hence, the approximation violates the RUM condition discussed in Section 1. An alternative one-parameter 
formulation can be attributed to Daly (2012), which is often referred to as the Gamma form. 

(6) 𝐿𝐿𝐿𝐿𝐵𝐵(𝑥𝑥; 𝛾𝛾) = 𝛾𝛾𝛾𝛾 + (1 − 𝛾𝛾)𝑙𝑙𝑙𝑙𝑙𝑙 − 𝛾𝛾 

The model in (6) uses only one parameter and is by construction specified so that  

- at 𝑥𝑥 = 1 both 𝐵𝐵𝐵𝐵(𝑥𝑥, 𝛾𝛾) and 𝐿𝐿𝐿𝐿𝐵𝐵(𝑥𝑥; 𝛾𝛾) are zero and with unity slope. 
- at 𝑥𝑥 = 1 the second derivative for both specifications is (𝛾𝛾 − 1). 
- The functions are always equal if 𝛾𝛾 = 0 and 𝛾𝛾 = 1. 

Provided 𝑥𝑥 is close to 1 the approximation in (6) yields a good approximation to the Box-Cox model. 
Although this can to some extent be accomplished by dividing by the mean of 𝑥𝑥, the fit may not be 
particularly good in the tail of the distribution if the domain of 𝑥𝑥 is wide.   

Clearly, the objective of these models has not been to mimic the Box-Cox model but to model a latent data 
generating process which obviously may be quite different from Box-Cox data. Irrespectively whether the 
model in (5) has been considered as an approximation of the Box-Cox or not, the answer to a good Box-Cox 
approximation “lies in its genes” in the sense that interpolation is a good strategy.  

More specifically, the logarithmic/linear model in (5) can be seen as an approximation of the Box-Cox by 
interpolating its extreme end points. A natural and simple improvement of this is to narrow down the end 
points so that these are less extreme and fit the data better. As an example, if the true data generating 
process is with a Box-Cox parameter 𝜆𝜆 = 0.5, then using an approximation based on extreme points may 
not be the best choice. A better choice may be to interpolate between the following end points 𝐵𝐵𝐵𝐵(𝑥𝑥; 𝜆𝜆 =
0.3) and 𝐵𝐵𝐵𝐵(𝑥𝑥; 𝜆𝜆 = 0.7).  

The next question obviously is how to find these new extreme points. One approach could be using the 
damping measure 𝜇̂𝜇 from Definitions 1 and 2 which was obtained from two auxiliary linear models. As we 
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saw, 𝜇̂𝜇 is not exactly equal to the 𝜆𝜆 parameter and the difference may vary depending on the amount of 
damping and other aspects of the data. However, the point is that it needs not be very precise. In fact, if we 
narrow down the interpolation interval too much, the correlation between the end points will increase 
correspondingly. By choosing a semi-wide interval we introduce flexibility in the model, which will 
compensate for the fact that the interval may not be entirely correct.  

Following this, we propose the approximation: 

(7) 𝐵𝐵𝐵𝐵(𝑥𝑥; 𝜆𝜆)~𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥; (1 − 𝜇𝜇)(1 − 𝑘𝑘)� + 𝑏𝑏𝑏𝑏𝑏𝑏 �𝑥𝑥;𝑚𝑚𝑚𝑚𝑚𝑚�1, (1 − 𝜇𝜇)(1 + 𝑘𝑘)�� 

where 0 < 𝑘𝑘 < 1, and a 30% interpolation interval around 𝜇𝜇 implies that 𝑘𝑘 = 0.3. Strictly speaking, the 
right-hand side term in (7) could be questioned as it limits the Box-Cox parameter to 1 and is in conflict 
with the idea of approximating the Box-Cox by end points that are symmetric around 𝜇𝜇. Rather the right-
hand side could be expressed as 𝑏𝑏𝑏𝑏𝑏𝑏�𝑥𝑥; (1 − 𝜇𝜇)(1 + 𝑘𝑘)� and the end point could go as high as 1 + 𝑘𝑘 if 
damping is low (𝜇𝜇 → 0). However, if the premise is to look for approximations in the unit interval, the 
specification in (7) turns out to be more efficient as it will maintain the linear function as base in case of low 
damping. If however, the modeller aims to search for functions being more aggressive than a linear term 
(Box-Cox parameters above unity) the right interpolation point could be increased further. In the following, 
we will refer to the approximation in (7) as the Box-Cox End Point (BCEP) approximation whereas the 
Log/Linear model in (5) will be referred to as the LL approximation.  

3.1 Simulation experiment 1: compare the BCEP and the LL model when the 
data is Box-Cox 

In the simulation experiments throughout the paper we will consider a positive continuous data generating 
process which can be explored in a regression context. Although this is a simpler model than a logit type 
model, functional form recovery issues are likely to carry over to the logit case as well.  

First we generate a random variable 𝑑𝑑 for travel distance. It is generated as a lognormally distributed 
variable in order to resemble the shrinking tails of a distance frequency. The distribution is based on a 
normal distribution 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2) with 𝑑𝑑 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝑋𝑋). For simplicity we assume that cost 𝑥𝑥 and distance 𝑑𝑑 are 
identical. 

We then generate different stochastic processes by letting different functions 𝑞𝑞(𝑑𝑑) operate on 𝑑𝑑. If we 

seek a Box-Cox data generating process, (𝑑𝑑) = 𝑎𝑎 𝑑𝑑𝜆𝜆−1
𝜆𝜆

 . The distribution is chosen to be largely similar to 

what can be observed in the Danish NTM for commuter trips.  We have included trip length in the range up 
to 400 KM. 

In Table 2 below we present a Monte Carlo experiment that shows the result of the BCEP and LL model on a 
true BC process. For each model, we draw 100 data sets randomly consisting of 10,000 observations. All of 
the reported statistics are averages across all 100 data sets. Also note that we report the loglikelihood even 
though models are not nested. However, as number of parameters and observations are identical the 
loglikelihood will give the same order of model fit as would the Akaike and Bayesian Information Criteria.   

 
   

% Deviation 
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𝒌𝒌 𝝀𝝀 Model LogL 0-100 KM 100-200 KM 200-300 KM 300-400 KM 
0.3 0.1 BCEP 97032 0.01% 0.00% -0.02% -0.04% 
 0.1 LL 50341 1.63% 0.22% -1.70% -4.09% 
 0.3 BCEP 67486 2.99% 0.00% -0.21% -0.41% 
 0.3 LL 35626 70.50% 0.85% -4.17% -9.71% 
 0.5 BCEP 50368 1.39% 0.13% -0.45% -1.11% 
 0.5 LL 27090 14.20% 1.23% -4.67% -11.20% 
 0.7 BCEP 36873 4.72% 0.46% -0.59% -1.88% 
 0.7 LL 21759 22.20% 1.29% -3.60% -8.63% 
 0.9 BCEP 35991 4.57% 0.28% -0.23% -0.86% 
 0.9 LL 22816 18.30% 0.66% -1.36% -3.28% 
0.5 0.1 BCEP 82260 0.07% -0.02% -0.09% -0.16% 
 0.1 LL 50341 1.63% 0.22% -1.70% -4.09% 
 0.3 BCEP 55030 10.40% 0.00% -0.72% -1.42% 
 0.3 LL 35626 70.50% 0.85% -4.17% -9.71% 
 0.5 BCEP 38962 4.35% 0.42% -1.39% -3.45% 
 0.5 LL 27090 14.20% 1.23% -4.67% -11.20% 
 0.7 BCEP 29847 9.67% 0.84% -1.31% -3.82% 
 0.7 LL 21759 22.20% 1.29% -3.60% -8.63% 
 0.9 BCEP 30304 8.29% 0.45% -0.49% -1.53% 
 0.9 LL 22816 18.30% 0.66% -1.36% -3.28% 

Table 2: Assessment of performance of the BCEP approximation compared to the LL (Log/Linear) model for 
different values of interval 𝑘𝑘 and 𝜆𝜆 parameter2.  

The above tests show several things. Firstly, that in all cases the LL approximation is significantly worse than 
the BCEP model for all values of 𝜆𝜆. In the simulation, the BCEP model has been formulated around the 
linear damping rate 𝜇̂𝜇. It can also be seen that narrowing down the interval from 0.5 to 0.3 significantly 
increases the fit. Experiments not published here suggest that choosing an interval which is too narrow 
should be avoided.   

3.2 Alternative Box-Cox approximation 
The above methodology suggested a quite efficient way of approximating a Box-Cox process arbitrarily 
closely by linear-in-parameter functions. However, we would like to draw attention to an alternative 
approximation of the Box-Cox function which emerges as a Taylor expansion by using L’Hospital’s rule in 
the following way; 

2 The loglikelihood (LogL) values for all of the continuous experiments are positive. This is because we allow the 
estimation of a scale parameter, which is generally found to be quite small. As a result, the loglikelihood will be 
composed of quite a few elements close to zero all of which will generate a positive contribution to the loglikelihood. 
This is completely valid and the larger the values of LogL the better Goodness-of-fit.  
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(8) 

𝐵𝐵𝐵𝐵(𝑥𝑥; 𝜆𝜆 > 0) = 𝛽𝛽
𝑥𝑥𝜆𝜆 − 1
𝜆𝜆

 

= 𝛽𝛽
𝑒𝑒𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆 − 1

𝜆𝜆
 

= 𝛽𝛽
1 + ∑ 𝜆𝜆𝑞𝑞(𝑙𝑙𝑙𝑙𝑙𝑙)𝑞𝑞

𝑞𝑞!𝑞𝑞

𝜆𝜆
 

~𝛽𝛽 �
1
𝜆𝜆

+ 𝑙𝑙𝑙𝑙𝑙𝑙 +
𝜆𝜆
2

(𝑙𝑙𝑙𝑙𝑙𝑙)2 +
𝜆𝜆2

6
(𝑙𝑙𝑙𝑙𝑙𝑙)3 +⋯+ 𝑂𝑂(𝐾𝐾)� 

 

In the brackets, the Box-Cox is now represented as a series of non-negative terms (if we assume 𝑥𝑥 > 1) all 
scaled with positive parameters. When multiplied with a negative scale parameter 𝛽𝛽, it becomes a simple 
polynomial expression with only negative terms 𝛽𝛽0,  𝛽𝛽1,  𝛽𝛽2, … which can easily be estimated (refer to 
equation (7) below). A challenge here is that the log-power terms are correlated. Although excessive 
correlation should always be avoided, it may not in itself be a problem to have correlated terms if we are 
operating on a single variable such as a generalised travel time (the log and linear terms are correlated as 
well). Even so, to reduce the correlation issue we suggest a specification that results from the following 
steps: 

i) Initially, include a sufficient number of terms to cope with the non-linearity. 
ii) Remove positive terms one by one until only negative terms exist. 
iii) Use backward selection (remove the least significant terms first) until only two terms are 

included.      

These steps represent a search process for a parsimonious two-parameter linear model. As we will see in a 
subsequent simulation test these models perform very well in explaining not only Box-Cox but also other 
types of data generating processes. We will refer to this model as the LP model (Log-Power model) as 
restated in (9) below 

(9) 𝐿𝐿𝐿𝐿(𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙2 + 𝛽𝛽3𝑙𝑙𝑙𝑙𝑙𝑙3 … 

If there is a minimum of cost damping the resulting model in (9) will generally include log-terms raised to a 
high power, e.g. 7-9. This makes the down-testing of the model somewhat cumbersome (may need 6-9 
model runs). What we therefore suggest, if damping is low (which can be tested by examining the linear 
damping rate in Definition 2) we therefore suggest including a linear term as well and then test the model 
down to include only one additional log-power term. We will refer to this model as the LLP model (Linear 
Log-Power model) as shown in (10) below. 

(10) 𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙 + 𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙2 + 𝛽𝛽2𝑙𝑙𝑙𝑙𝑙𝑙3 … 

The down-testing of the LLP model should be carried out in a similar manner as for the LP model except 
that the linear term should always be included. In other words, it is a matter of testing whether the second 
term should be 𝑙𝑙𝑙𝑙𝑙𝑙2, 𝑙𝑙𝑙𝑙𝑙𝑙3 or 𝑙𝑙𝑙𝑙𝑙𝑙 raised to an even higher power. 
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Yet a different model is a model which includes a product of the linear and logarithmic term alongside the 
linear term. This model is shown in (11) below and we will refer to this model as the xL model  

(11) 𝑥𝑥𝑥𝑥(𝑥𝑥) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥 + 𝛽𝛽2𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 

The slope of the xL model is typically rather different from the one of the LP and LLP models. It is common 
to have a large negative 𝛽𝛽1 and a smaller positive 𝛽𝛽2. This generally means that the micro-economic 
condition that cost has a negative derivative is not fulfilled as 𝑥𝑥 → ∞. From an implementation perspective 
it is necessary to consider the “domain of validity” of the model. Hence, we need to examine where 
𝜕𝜕𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

< 0, which in turn (if 𝛽𝛽2 > 0 and 𝛽𝛽1 < 0) implies that 𝛽𝛽2(𝑙𝑙𝑙𝑙𝑙𝑙 + 1) < 𝛽𝛽1⇒ 𝑥𝑥 < 𝑒𝑒𝑒𝑒𝑒𝑒 �𝛽𝛽2
𝛽𝛽1
− 1�. In all of 

the tests (simulation as well as real-world examples) where damping has been moderate to low this 
condition has been valid for the entire observed sample and quite a bit beyond. Below we explore the 
various alternative models in a series of Monte Carlo experiments. 

3.3 Simulation experiment 2: Comparison of BCEP, LL, LLP, LP and xL when the 
data is Box-Cox 

The experiment reported below in Table 3 is based on the true data being Box-Cox. 

   
% Deviation 

   𝝀𝝀 Model LogL 0-100 KM 100-200 KM 200-300 KM 300-400 KM 
0.2 BCEP 79359 0.09% -0.01% -0.09% -0.17% 
0.2 LL 41478 3.80% 0.49% -3.09% -7.44% 
0.2 LLP  NA NA NA NA NA 
0.2 LP (lnx+lnx2) 54146 -1.02% 0.37% 1.25% 2.00% 
0.2 xL 29412 0.38% -5.03% 5.48% 22.66% 
0.5 BCEP 50368 1.39% 0.13% -0.45% -1.11% 
0.5 LL 27090 14.15% 1.23% -4.67% -11.23% 
0.5 LLP (x+lnx2) 42805 -3.15% 0.60% -0.48% -2.26% 
0.5 LP (lnx+lnx4) 40245 5.47% -0.37% -0.88% -0.97% 
0.5 xL 28542 -0.10% -2.51% 2.01% 8.85% 
0.8 BCEP 34664 7.49% 0.46% -0.46% -1.48% 
0.8 LL 20816 33.15% 1.16% -2.64% -6.04% 
0.8 LLP (x+lnx3) 34554 -13.59% 0.09% 0.18% -0.11% 
0.8 LP(lnx2+lnx5) 29078 -10.55% -0.79% 1.17% 3.24% 
0.8 xL 35578 -0.47% -0.49% 0.20% 1.20% 

Table 3: Assessment of performance of the BCEP, LL, LP and LLP models for approximating Box-Cox for 
different values of 𝜆𝜆 and with 𝑘𝑘 = 0.3. 

If judged by the loglikelihood function there is a tendency that the BCEP model is the better model in all 
experiments except for 𝜆𝜆 = 0.8 where the xL performs exceptionally well. However, if we look at the 
performance in the tail of the distribution we will see that the LP and LLP models perform better for some 
of the values of 𝜆𝜆. In fact, from a practical modelling point of view this may be more important as capturing 
the first part of the curve is not the essential challenge (other variables commonly available in travel data 
may help explaining this part of the curve).  We also see that the performance of the LL model is not very 
good.  
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The above experiment was based on the premise that the data generating process was Box-Cox. Below we 
will consider a case where the data is not Box-Cox to get an idea of the robustness of the different forms. 

3.4 Simulation experiment 3: Comparison of Box-cox, BCEP, LL, LLP, LP and xL 
when the data is not Box-Cox  

We will explore how well the different models can recover functional forms that are not Box-Cox but still 
monotone and marginally decreasing. In particular, we will compare the Box-Cox approximations with a 
true Box-Cox model estimated by full information maximum likelihood.  

We consider three data generating processes  

(12) 𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙/𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑙𝑙𝑙𝑙𝑙𝑙 

(13) 𝑦𝑦𝑥𝑥/𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 

(14) 𝑦𝑦𝑙𝑙𝑙𝑙2𝑥𝑥/𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1(𝑙𝑙𝑙𝑙𝑙𝑙)2 + 𝑎𝑎2𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 

Results are given in Appendix A, however, below we outline the main findings.  

- For the LL data the true Box-Cox model is not a good model. In that sense, the “coin is two-sided” in 
that the LL model is weak when confronted with a Box-Cox data and that the Box-Cox model is 
weak when confronted with a LL data.  

- Only in 1 out of the 9 experiments the Box-Cox model turns out to be the better model. 
- In 6 out of 9 experiments the BCEP model outperforms the Box-Cox model. This is because it uses 

its more flexible end points to adjust the function to the data. It is not always the case though as it 
depends on the data. 

- The amount of damping is a very important determinant for the success of the various functions. 
Generally, if damping is high, the LP model is a natural choice. If on the other hand damping is low, 
the LLP or xL models seem to be good candidates as well. 

A conclusion based on the specific simulation experiments is that the researcher in search for functional 
forms to explain the disutility of increasing travel time and cost should be careful not to focus on a 
particular type of function. Many function classes are needed in the tool-box. The results suggest that Box-
Cox is generally not necessarily very robust to deviations from the assumption of Box-Cox.  

We also note (as previously stated in connection with Definition 2) that the linear damping rate is slightly 
higher than the corresponding Box-Cox damping rate irrespectively of the data generating process. The 
linear damping estimate is useful for choosing among the different function types, among which certain 
types favour data which is highly damped and others data which is damped, only to a little extent. The 
linear damping estimate (if corrected for its upward bias) may also be a fairly good guess of the Box-Cox 
parameter without the need for running a non-linear model or it may be used as initial parameter guess 
prior to estimation. 
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4 Real-world tests based on NTM data 
To test the performance of the various functional forms and the relative impact on elasticities we have 
applied the functional forms to data used for the NTM. For simplicity we will only consider weekday 
commuter trips. The data consist of 22,761 revealed preference observations from the national Danish 
Travel Survey. 

The structure of the demand model is consistent with what has been applied in the NTM. That is, a nested 
logit structure with choice of destination at the upper level and choice of mode at the lower level.3 For 
simplicity, we have left out the remaining part of the model involving frequency choice and car ownership. 
For the choice of destination we have used sampling of alternatives (60 out of 907 are sampled) based on a 
stratified importance sampling setup. The models are corrected for sampling errors as suggested in 
Guevara and Ben-Akiva (2013). This will provide consistent estimates with the applied nesting structure. 
Transport modes include walk, bike, car, car as passenger, and public transport. 

The destination-mode choice model is fairly comprehensive and includes around 80 parameters. Variables 
included: 

- Generalised time variables 
- Regional dummies 
- Additional public transport level-of-service variables 
- Station proximity (at both ends), connector time, walk time,… 
- Socio-economic variables such as gender, age and income. 
- Car availability  
- Size variable related to the choice of destination based on employment in 127 sectors 

The paper does not allow a detailed description of the model and all of the underlying variables.4  

4.1 Model structure 
In the following, let 𝑑𝑑 represent destination (907 in total) and 𝑖𝑖 income intervals (currently 10 income 
bands for gross personal income). Function 1𝑖𝑖 is an indicator function for individual 𝑛𝑛 belonging to income 
group 𝑖𝑖. Monetary costs for all modes are deflated by an income dependent exogenous VoT estimate 
𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖). For simplicity we skip the index representing individuals. 

In the estimation process the following cost functions are applied for all models.  

(15) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑) ��
1𝑖𝑖

𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖)
𝑖𝑖

� 

(16) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑) = 0 

3 The nesting structure varies in the NTM in the sub-models for the different trip purposes. However, for commuting 
this was the best nesting structure statistically speaking. 
4 Documentation for the NTM is available from the first author upon request. 
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(17) 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) = 𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) ��
1𝑖𝑖

𝑉𝑉𝑉𝑉𝑉𝑉(𝑖𝑖)
𝑖𝑖

� 

where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑) is the car cost to destination  𝑑𝑑. 

Time for cars (and passengers) as shown in (18) is a combination of free-flow time 𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐, congestion time 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, ferry-sailing-time 𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑) and ferry-waiting-time 𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑). All of these attributes are calculated in an 
assignment model. 

(18) 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑) = [𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑) + 𝛾𝛾1𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑑𝑑)] + 𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑) + 𝛾𝛾2𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑) 

Public transport time (calculated in a schedule-based assignment model) consists of three weighted 
components, vehicle-time 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑), number of shifts 𝑛𝑛𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 and waiting time 𝑤𝑤𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝. 

(19) 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) = 𝐼𝐼𝐼𝐼𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) + 𝜗𝜗1𝑛𝑛𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 + 𝜗𝜗2𝑤𝑤𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 

 In the model, time and cost are joined in a generalised time measure 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚 

(20) 𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚(𝑑𝑑) = 𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑚𝑚(𝑑𝑑) + 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑚𝑚(𝑑𝑑) 

To account for differences between the transport market in and around Copenhagen and the rest of the 
country we allow for a separate parameterisation for Copenhagen. To reduce the complexity of the analysis 
we only use functional forms composed of two functions 𝑓𝑓 and 𝑔𝑔, each scaled by a corresponding 
parameter 𝛽𝛽1,𝑟𝑟 and 𝛽𝛽2,𝑟𝑟 (similar to what was used in the simulation experiments). Moreover, we apply the 
same functional form for Copenhagen (𝑟𝑟 = 1) and the rest of Denmark (𝑟𝑟 = 2) although the parameters 
will be different. 1𝑟𝑟 is the regional dummy function, which is one if region 𝑟𝑟 is chosen and zero elsewhere. 
This setup leads to the following utility functions for the various linear approximations of GTT 

(21) 𝑉𝑉𝑚𝑚(𝑑𝑑) = � 1𝑟𝑟 �𝛽𝛽1,𝑟𝑟𝑓𝑓�𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚(𝑑𝑑)� + 𝛽𝛽2,𝑟𝑟𝑔𝑔�𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚(𝑑𝑑)��
𝑟𝑟∈{1,2}

 

In case of the Box-Cox model, which is non-linear, the form becomes 

(22) 𝑉𝑉𝑚𝑚(𝑑𝑑) = � 𝛽𝛽𝑟𝑟1𝑟𝑟𝐵𝐵𝐵𝐵(𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚(𝑑𝑑),𝜆𝜆)
𝑟𝑟∈{1,2}

 

4.2 Damping and overall goodness-of-fit 
In the functional form analysis for the NTM (refer to setup above in Section 4.1) we start by assessing the 
damping degree for the two segments in the model.     

NTM test Copenhagen (r=1) Outside Copenhagen (r=2) 
𝜆̂𝜆 0.691 0.753 
1 − 𝜇̂𝜇 0.733 0.896 

Table 4: Estimated Box-Cox parameter 𝝀𝝀�  and 𝟏𝟏 − 𝝁𝝁� in the NTM.  
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The exact Box-Cox estimate was found by a combination of a bi-section algorithm and Monte Carlo 
simulation. Results indicate which was seen in the simulation, that 𝜆̂𝜆 < 1 − 𝜇̂𝜇. For 𝑟𝑟 = 1 (Copenhagen) the 
relative difference largely follows what was found in the simulation. For 𝑟𝑟 = 2 (outside Copenhagen) the 
difference is higher. This indicates not only a different damping in the two segments but also a somewhat 
different functional form.  

The overall goodness-of-fit is presented below in Table 5. 

Model Description LogL Consistent with RUM 
BC   -73661  
BCEP 𝑘𝑘 = 0.3 -73679  
LL 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙 -73790  
LLP 𝑥𝑥 + 𝑙𝑙𝑙𝑙2𝑥𝑥 -73738  

 𝑥𝑥 + 𝑙𝑙𝑙𝑙3𝑥𝑥 -73667  
LP 𝑙𝑙𝑙𝑙𝑥𝑥 + 𝑙𝑙𝑙𝑙5𝑥𝑥 -73665 No 

 𝑙𝑙𝑙𝑙2𝑥𝑥 + 𝑙𝑙𝑙𝑙5𝑥𝑥 -73640 No 
xL 𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 -73639 On the sample , not ∀𝑥𝑥 > 0 

Table 5: Goodness-of-fit of the different models based on data from the NTM.  

The first thing to note is that different functional forms cause huge shifts in the loglikelihood score. Exactly 
151 log-likelihood points separate the best (xL) and worst (LL) model, which is more than the increase of 
going from a multinomial logit to the nested logit. Another thing to note is that the non-linear Box-Cox 
model actually performs very well. We also see that it is very well approximated by the BCEP model. If the 
interpolation interval represented by 𝑘𝑘 = 0.3 was narrowed down further (refer to equation (7) in Section 
3) the BC model and the BCEP model would have had identical performance. In fact, as we shall see later 
the comparison between the two models in terms of elasticities and ability to replicate the distance 
distribution of elasticities is so similar that we will only consider the BCEP model in the remainder of the 
paper (Section 4.4). Another comment is that, as the damping percentage is relative low, the LP model is 
not really suitable for these data. As a result, it produces models which are not entirely consistent with 
RUM for the whole domain of GTT. This causes a positive parameter for one of the log-power terms, which 
in turn causes a violation of the first property in Section 1.  

4.3 Elasticities and distance distribution recovery 
Besides looking at the overall fit of the model it is important and relevant to assess whether the difference 
in goodness-of-fit corresponds to differences in the sensitivity of the model. Generally, if we look at 
average elasticities over the sample the differences are relative small. As a result, we are doing well “on 
average” irrespective of which method we consider and we will not consider those further. The differences 
are in the tails of the distribution and this is important to consider as a considerable part of the total 
mileage is captured in the tails. The focus on the tails is relevant in many forecast situations where large 
infrastructure projects are analysed as these usually have a high proportion of long-distance trips. Danish 
examples are The Great Belt Bridge (1998), the Øresund Bridge (2000), and the Fehmarn Belt Fixed Link (to 
open in 2020). Below in Table 6  we consider average elasticities for trips over 50 kilometres and the 
percentage divergence of these elasticities when compared with the best model (the xL model) in Table 7. 

  Elast.    
Model Description Car cost Car time  Pub cost Pub time 
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BC   -1.248 -1.023 -1.242 -1.729 
BCEP 𝑘𝑘 = 0.3 -1.250 -1.023 -1.247 -1.735 
LL 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙 -1.362 -1.149 -1.323 -1.802 
LLP 𝑥𝑥 + 𝑙𝑙𝑙𝑙3𝑥𝑥 -1.210 -0.980 -1.217 -1.695 
xL 𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 -1.185 -0.955 -1.186 -1.664 

Table 6: Direct elasticities for car and public transport in the tail of the distribution (>50 KM). 

Model Car cost Car time  Pub cost Pub time 
BC 5.32% 7.12% 4.72% 3.91% 
BCEP 5.49% 7.12% 5.14% 4.27% 
LL 14.94% 20.31% 11.55% 8.29% 
LLP 2.11% 2.62% 2.61% 1.86% 

Table 7: Overprediction of elasticities compared to the best model (xL) in the tail of the distribution (>50 
KM). 

As seen, the LL model overpredicts the sensitivity in the tails of the distribution compared to the best 
model. Clearly, this is not the same as to say that the LL model overpredicts compared to the true model so 
Table 7 offers nothing more that a comparison relative to the xL model. The overprediction varies between 
8% and 20%. Moreover, the BC and the BCEP models also seem to slightly overpredict sensitivity in the 
range of 4%-7%. 

When considering the distance recovery of the model, which is basically a misspecification test, it reveals 
certain problems in the tails for both public transport and car as seen in Table 8. 

 

Model Description %deviation car-tail %deviation pub-tail 
BC   1.57% -11.55% 
BCEP 𝑘𝑘 = 0.3 2.29% -11.55% 
LL 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙 -1.38% -16.87% 
LLP 𝑥𝑥 + 𝑙𝑙𝑙𝑙3𝑥𝑥 4.66% -15.03% 
LP 𝑙𝑙𝑙𝑙2𝑥𝑥 + 𝑙𝑙𝑙𝑙5𝑥𝑥 -7.96% -18.51% 
xL 𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 3.47% -15.13% 

Table 8: Deviation between shares of observed and modelled trips above 50 KM.  

This means that the comparison in section 4.2 was based on a slightly misspecified model. We have kept 
this in the paper as it provides an examination of how well the different functional forms perform under a 
misspecified and a more correctly specified model to be introduced below in section 4.4.    

4.4 Results from an improved model 
Due to the previous misspecification an improved model was considered. For this model we only consider 
four functional forms: The BCEP, LL, LLP and xL models. The reader will notice that due to the low degree of 
damping all of these functions include a linear term in their specifications. The BCEP model includes the 
linear term because we apply a 30% interval, which in this case hits the upper limit of 1. The way the 
specification was improved compared to section 4.1 was to simply split the estimation of the public 
transport GTT (other modes are not changed) into cost and time as seen in (23) below  
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(23) 𝑉𝑉𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) = � 𝛽𝛽1,𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑)+𝛽𝛽1𝑃𝑃,𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒𝑝𝑝𝑝𝑝𝑝𝑝(𝑑𝑑) + 𝛽𝛽2,𝑟𝑟𝑓𝑓�𝐺𝐺𝐺𝐺𝑇𝑇𝑚𝑚(𝑑𝑑)�
𝑟𝑟∈{1,2}

 

So by this re-construction we keep the cost-parameter constant across alternatives but let the travel-time 
vary. Due to this we implicitly estimate a VoT (or a scaling of the VoT) for public transport. Below in Table 9 
we show the overall model fit. 

Model Description LogL Consistent with RUM 
BCEP 𝑘𝑘 = 0.3 -73665  
LL 𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙 -73765  
LLP 𝑥𝑥 + 𝑙𝑙𝑙𝑙2𝑥𝑥 -73667  

 𝑥𝑥 + 𝑙𝑙𝑙𝑙3𝑥𝑥 -73639  
xL 𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 -73612 On the sample , not ∀𝑥𝑥 > 0 

Table 9: Model fit of the various improved models based on data from the NTM. 

By comparing these results with results based on the misspecified model we can see that all models 
improve their loglikelihood value. The highest absolute increase is in the LLP (the 𝑥𝑥 + 𝑙𝑙𝑙𝑙2𝑥𝑥 model) and the 
second highest is in the xL model. The smallest increase is in the BCEP model. Below in Table 10 we look at 
the recovery of the distance distribution in the new improved model. For the LLP models, we present only 
the results for the best model. 

Model %deviation car-tail %deviation pub-tail 
BCEP 0.3% -3.07% 
LL -4.78% -3.07% 
LLP 1.43% -1.06% 
xL 0.08% -1.43% 

Table 10: Deviations between shares of observed and modelled trips above 50 KM. Improved model. 

As we can see, there is a very significant improvement in the fit for the tails. For the xL model the fit for cars 
is almost perfect, whereas for public transport there is less than 2% deviation which for most standards is 
acceptable.  

If we look at the elasticities in Table 11 these are shifted downwards in the improved model.  

 Elast.    
Model Car cost Car time  Pub cost Pub time 
BCEP -1.263  -1.035  -1.242  -1.609  
LL -1.381  -1.169  -1.323  -1.635  
LLP -1.230  -0.999  -1.219  -1.517  
xL -1.206  -0.974  -1.181  -1.466  

Table 11: Direct elasticities for car and public transport in the tail of the distribution (>50 KM) for the 
improved model. 

If we look at the relative overprediction of the different models compared to the xL model these have 
generally not improved and seem more or less unchanged. 

Model Car cost Car time  Pub cost Pub time 
BCEP 4.73% 6.26% 5.17% 9.75% 
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LL 14.51% 20.02% 12.02% 11.53% 
LLP 1.99% 2.57% 3.22% 3.48% 

Table 12: Overprediction of elasticities compared to the best of the improved models (xL) in the tail of the 
distribution (>50 KM).  

The results show that the choice of functional form has great impact on the tail elasticities. This may be 
important if the underlying model is used for assessment of infrastructure where a majority of the trips are 
long-distance trips. 

5 Conclusion and summary 
This paper has investigated functional form in transport demand modelling and in particular the issue of 
cost damping and how choosing a proper functional form will significantly influence the goodness-of-fit, 
elasticities, and the recovery of the revealed distance distribution. More specifically the paper contributes 
to the literature with the following findings. 

Firstly, we point out a way of determining the amount of cost damping based on two auxiliary linear 
models. The assessment of the amount of cost damping is shown to be essential to the choice of functional 
form. If damping is low, models with a linear cost as base are generally recommended. On the other hand, 
if damping is high, models with a logarithmic cost as base should generally be used.  

Secondly, we consider approximations of the Box-Cox model and show that good approximations can be 
obtained by either a Box-Cox End Point (BCEP) approximation or by a Taylor expansion of a slightly 
rewritten Box-Cox form. In the BCEP model we approximate the Box-Cox by first estimating the damping 
rate of the underlying process and then subsequently fitting the Box-Cox curve by interpolating between 
Box-Cox end points defined in some proper region of the approximated Box-Cox parameter. For the Taylor 
expansion we show that the Box-Cox works out as a sequence of log-power terms. Subsequently, based on 
the Taylor expansion, we argue that by adding a linear term and a product of a linear and a logarithmic 
term two potentially interesting models arise which are relevant for low-damping processes.  

Thirdly, we analyse the various functional forms in several data generating processes and conclude based 
on simulation experiments that the Box-Cox model is not particularly robust. In fact, the BCEP counterpart 
generally has better model fit when the data is not a Box-Cox. This is because it uses its flexible end points 
as a mean of correction.    

When tested on real-world data the various functional forms turn out to produce huge shifts in the log-
likelihood score as well as significant differences in the elasticities in the tail of the distance distribution. In 
the real-world example damping was shown to be relatively low. In our application, it turned out that the xL 
model had significantly better model fit than all the other models including the non-linear Box-Cox model. 
The worst model in terms of fit was the Log/Lin model. Results were robust whether they were based on a 
slightly misspecified model or an improved model. The final implementation of the Danish National Model 
benefitted from the findings in the paper, and the log-power function was widely used in the demand 
framework across segments.  

The research on functional form seems to be a widely uncultivated field except for contributions 
summarised by Gaudry (2010) and Daly (2010). This seems unjustified in light of its large impact on model 
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fit and model output as also documented in this paper. Certainly more research is needed in this field. 
Particularly, it would be relevant to investigate how VoT is recovered across relevant functional forms as 
many of the recommended forms may imply correlation issues. The recovery of VoT is obviously a tougher 
task than recovering a generalised travel time form as considered in this paper.  
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Appendix A: Acronyms 

 
Acronym Equation Description 
Box-Cox (4) True Box-Cox form as shown in equation (4). Is also referred to as BC. 
LL (5) Log-Linear form (𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑙𝑙) 

BCEP 
(6) Box-Cox End Point form  

(𝑎𝑎𝑎𝑎𝑎𝑎�𝑥𝑥; (1 − 𝜇𝜇)(1 − 𝑘𝑘)� + 𝑏𝑏𝑏𝑏𝑏𝑏 �𝑥𝑥;𝑚𝑚𝑚𝑚𝑚𝑚�1, (1 − 𝜇𝜇)(1 + 𝑘𝑘)��) 

LLP (10)  Linear-Log-Power form (𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑞𝑞𝑥𝑥; 𝑞𝑞 ∈ {2,3, … ,𝑄𝑄}) 
LP (9) Log-Power form (𝑙𝑙𝑙𝑙𝑞𝑞1𝑥𝑥 + 𝑙𝑙𝑙𝑙𝑞𝑞2𝑥𝑥;  𝑞𝑞1,𝑞𝑞2 ∈ {1,2, … ,𝑄𝑄} 𝑞𝑞1 < 𝑞𝑞2) 
xL (11) Linear plus linear and log multiplicative form (𝑥𝑥 + 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥) 

Table 13: Short names for the various functional forms. 

Appendix B: Simulation experiments when the data is not Box-Cox. 
The parameters 𝜆̂𝜆 and 𝜇̂𝜇 represent the Box-Cox and linear damping rate of the underlying data generating 
process.  

Recovery of the LL model  
First we consider recovery of the LL model given by  

(24) 𝑦𝑦𝑙𝑙𝑙𝑙𝑙𝑙/𝑙𝑙𝑙𝑙(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑙𝑙𝑙𝑙𝑙𝑙. 

These results are presented in Table 14. 
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 % Deviation    

Model 𝝀𝝀� 𝝁𝝁� LogL 0-100 KM 100-200 KM 200-300 KM 300-400 KM 
BC 0.293 

 
18746 -0.82% 0.02% 4.87% 10.12% 

BCEP 
 

0.369 19094 -0.86% -0.19% 4.31% 9.29% 
LLP 

  
14403 -2.00% -1.02% 3.56% 8.65% 

LP 
  

24263 -0.35% -0.39% 2.92% 6.97% 
BC 0.556 

 
16085 -1.48% -1.13% 4.06% 8.88% 

BCEP 
 

0.613 17376 -1.37% -1.10% 3.23% 7.29% 
LLP 

  
17320 -1.59% -0.80% 2.28% 4.87% 

LP 
  

25378 -0.22% -0.99% 1.89% 5.22% 
BC 0.804 

 
17113 7.95% -1.25% 1.73% 4.49% 

BCEP 
 

0.826 19930 6.71% -0.82% 1.29% 3.10% 
LLP 

  
21370 8.00% -0.42% 1.03% 2.09% 

LP 
  

18457 0.69% -1.53% 2.55% 6.71% 
Table 14: Evaluation of the various functional forms for a LL data generating process. “Tails” represent the 
5% longest trips. 

Recovery of the xL model 
Below we consider recovery of the xL model. 

(25) 𝑦𝑦𝑥𝑥/𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 

Results are presented in Table 15. This is a quite different type of model and does not collide with any of 
the suggested models except of course for the xL model itself.  

   
 % Deviation    

Model 𝝀𝝀� 𝝁𝝁� LogL 0-100 KM 100-200 KM 200-300 KM 300-400 KM 
BC 0.661   26860 1.84% 1.21% -1.59% -5.69% 
BCEP   0.733 23512 2.89% 1.68% -1.99% -7.25% 
LL     15589 4.89% 2.59% -5.84% -16.00% 
LLP     21620 2.68% 2.24% -2.47% -9.26% 
LP     35295 0.66% 0.32% -0.78% -2.74% 
BC 0.796   34369 0.98% 0.49% -0.40% -1.63% 
BCEP   0.846 27156 2.12% 0.94% -0.84% -3.16% 
LL     17817 3.98% 1.59% -3.21% -8.24% 
LLP     23849 2.15% 1.36% -1.35% -4.77% 
LP     35687 -0.75% -0.34% 0.56% 1.48% 
BC 0.898   48416 0.34% 0.13% -0.07% -0.34% 
BCEP   0.925 35600 1.23% 0.42% -0.32% -1.22% 
LL     24740 2.70% 0.81% -1.51% -3.73% 
LLP     30771 1.43% 0.69% -0.63% -2.16% 
LP     23174 -2.93% -1.28% 1.79% 5.00% 

Table 15: Evaluation of the various functional forms for a xL data generating process. “Tails” represent the 
5% longest trips.  

As seen from 𝜆̂𝜆 and 𝜇̂𝜇 this type of data is not naturally a high-damping process. For the high to medium high 
damping data generating processes, the LP model performs well. For low damping the BC model is the 
better model.  
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Recovery of log2x/xlogx model 
Below we consider recovery of data of the form;  

(26) 𝑦𝑦𝑙𝑙𝑙𝑙2𝑥𝑥/𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1(𝑙𝑙𝑙𝑙𝑙𝑙)2 + 𝑎𝑎2𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥. 

Results are presented in Table 16. 

   
 % Deviation    

Model 𝝀𝝀� 𝝁𝝁� LogL 0-100 KM 100-200 KM 200-300 KM 300-400 KM 
BC 0.198   20801 0.38% 0.15% 5.26% 10.66% 
BCEP   0.27 20868 0.38% -0.06% 4.85% 10.13% 
LL     38584 0.03% -0.23% 0.63% 1.78% 
LLP     13822 0.82% -1.47% 4.66% 11.53% 
LP     19154 0.51% 0.95% 7.06% 13.12% 
BC 0.362   15519 0.55% -0.57% 6.22% 13.12% 
BCEP   0.437 15928 0.50% -0.85% 5.40% 11.90% 
LL     31662 0.07% -0.41% 1.01% 2.72% 
LLP     13480 0.80% -1.48% 3.96% 9.61% 
LP     19045 0.15% -0.78% 4.77% 10.85% 
BC 0.875   8836 -0.08% -2.19% 2.27% 6.71% 
BCEP   0.862 10138 0.16% -1.82% 2.22% 6.06% 
LL     15589 0.39% -1.04% 1.95% 4.73% 
LLP     8355 -0.27% -2.10% 1.79% 5.55% 
LP     5883 0.36% -2.76% 5.00% 12.40% 

Table 16: Evaluation of the various functional forms for a log2x/xlogx data generating process. “Tails” 
represent the 5% longest trips. 
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