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ABSTRACT

This paper presents a novel framework for the structural design and analysis of wind turbine blades and establishes its
accuracy. The framework is based on a beam model composed of two parts – a 2D finite element based cross section
analysis tool and a 3D beam finite element model. The cross section analysis tool is able to capture the effects stemming
from material anisotropy and inhomogeneity for sections ofarbitrary geometry. The proposed framework is very efficient
and therefore ideally suited for integration within wind turbine aeroelastic design and analysis tools. A number of
benchmark examples are presented comparing the results from the proposed beam model to 3D shell and solid finite
element models. The examples considered include a square prismatic beam, an entire wind turbine rotor blade, and a
detailed wind turbine blade cross section. Phenomena at both the blade length scale – deformation and eigenfrequencies
– and cross section scale – 3D material strain and stress fields – are analyzed. Furthermore, the effect of the different
assumptions regarding the boundary conditions is discussed in detail. The benchmark examples show excellent agreement
suggesting that the proposed framework is a highly efficientalternative to 3D finite element models for structural analysis
of wind turbine blades.
Copyright c© 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The numerical simulation of the dynamic behavior of wind turbines is typically performed using aeroelastic analysis
tools. These tools compute the aerodynamic and structural response of the turbine simultaneously. A large number of
dynamic load cases needs to be analyzed for design and certification of wind turbines and the analysis therefore tends
to be computationally expensive. As a consequence, wind turbine rotor blades are typically modeled within aeroelastic
simulation tools using beam finite elements (see, e.g., [1, 2]). This type of elements is specifically developed for the
analysis of long and slender structures like wind turbine blades and allows for a good compromise between accuracy and
computational efficiency. The accumulated knowledge in aerodynamic and structural design has lead to rotor blades which
work closer to their limits while the increasing size of rotor blades has lead to the emergence of new design criteria. As a
result, accurate estimates of the turbine response has become paramount leading to a gradual enhancement of the accuracy
of beam finite element models [3].

Beam finite element models are generated in two steps. The first step concerns the analysis of the beam cross section
properties, e.g., stiffness and mass. In the second step, the beam finite elements are generated through integration of
these properties along the beam length. Recent efforts to improve the accuracy of the prediction of the structural response
have led to the integration of advanced cross section analysis frameworks within wind turbine aeroelastic simulation
tools. The BEam Cross section Analysis Software – BECAS – a framework for structural analysis of wind turbine
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blades, was developed in this context and is presented here.The cross section analysis tool at the core of BECAS is
an implementation of the theory originally presented by Giavotto et al. [4] for the analysis of inhomogeneous anisotropic
beams. Implementations of this theory have been used as a benchmark for the validation of new cross section analysis
tools emerging since the early 1980’s, namely, VABS which isperhaps currently the most widely used cross section
analysis tool (see, e.g., [5, 6, 7]). Among other, BECAS can take into account the effects of material anisotropy (from,
e.g., fiber orientation) and correctly estimate torsional stiffness, a feature previously deemed unimportant when analyzing
shorter blades. These new features make it possible to incorporate new blade technologies like aeroelastic tailoring for
load mitigation through material and geometrical design. The internal forces and moments at each section of the blade
stemming from nonlinear aeroelastic analysis can be seamlessly transferred to the cross section analysis tool. It is then
possible to accurately assess the structural performance of the blade with a high level of detail down to the material level
with a very low computational effort.

Applications of BECAS include the multimaterial structural topology optimization framework presented in [8, 9] for
optimal design of laminated composite beam cross sections.A novel approach for the computation of strain energy
release rates in fractured beams using the Virtual Crack Closure Technique within BECAS was recently presented in
[10]. BECAS was also used extensively for the design of the DTU 10MW reference wind turbine [11, 12]. The current
paper builds on the experience gained throughout this project, which led to a number of improvements of the tool and a
number of developments related to automatic pre- and post-processing. The workflow devised in the project and employed
in the current paper is described in Figure 1. The pre-processing step concerns the generation of input for the cross
section analysis tool based on existing information of the blade. BECAS currently encompasses a number of solutions
for automatic input generation based on, e.g., existing shell finite element models. The stiffness and mass properties are
then computed by the cross section analysis tool and used as input for the wind turbine aeroelastic simulation tool (e.g.,
HAWC2 [2]). The internal cross section forces and moments resulting from wind turbine aeroelastic simulations are finally
returned to BECAS, and used, e.g., for the analysis of the local strain and stress fields at a cross section level.

The accuracy of a number of beam modeling methods has been previously assessed in terms of the beam displacements
and rotations in [13, 14] for beams with simple geometries. The cross section stiffness and mass properties obtained by
a number of different tools, some of which specifically developed for wind turbine blade analysis, have been compared
in [7]. Initial results concerning the validation of the local stresses and strains based on the theories underlying VABS
and BECAS have been presented in [15] and [4], respectively.The comprehensive validation work presented in this paper
extends the existing body of work in this field by presenting aset of results in which BECAS is compared against 3D shell
and solid finite element models of realistic wind turbine blade designs. The validation considers cross section stiffness and
mass properties, static deformation and eigenfrequencies, and local strains and stresses at the material level. The results
presented will allow blade designers to understand the level of accuracy and the benefits and limitations of the proposed
framework for the specific problem at hand.

The paper is divided as follows. The theoretical methodology underlying the BECAS framework is described in the
next section. Afterwards, the setup for each of the numerical experiments used for validation is described and the results
are presented. The results are interpreted and discussed inthe next section. Finally, the merits of the proposed framework
are discussed in the last section.

2. METHODOLOGY

The methodology employed for the analysis of the structuralresponse of the beams is described in this section. A general
beam finite element model is described first. The BECAS framework for analysis of anisotropic beam cross sections with
arbitrary geometry is described next. Finally, details regarding the solution procedure and implementation are discussed.

2.1. Beam finite element analysis

The beam finite element static equilibrium equations are given as (cf. [16])

K̂û = f̂ where K̂ =

nb
∑

e=1

K̂e =

nb
∑

e=1

∫ Le

0

B̂
T

e KsB̂e dz (1)

wherenb is the number of elements in the beam finite element assembly,Le is the length of elemente, and the
summation refers to the typical finite element assembly. Theequation yields the solutionŝu =

[

û1 ... ûn ... ûnnb

]T
where

ûn =
[

ûn
x ûn

y ûn
z r̂nx r̂ny r̂nz

]T
are the three displacementsu and rotationsr with respect to thex, y, andz axis of node

n of the beam finite element assembly for a given structure subjected to external loadŝf =
[

f̂
1
... f̂

n
... f̂

nnb

]T

where

f̂
n
=

[

f̂n
x f̂n

y f̂n
z m̂n

x m̂n
y m̂n

z

]T

are the three forceŝf and momentŝm with respect to thex, y, andz axis of noden,
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wherennb
is the number of nodes in the beam finite element assembly. Thebeam finite element stiffness matrix̂Ke is

given in function of the cross section stiffness matrixKs and the strain-displacement matrixB̂e = B̂(N̂e), whereB̂ is the

strain-displacement relation. The shape function matrixN̂e is defined such thatr = N̂û wherer =
[

χT ϕT
]T

is composed
of the three translations inχ = [χx χy χz]

T of the cross section reference point, and three rotations inϕ = [ϕx ϕy ϕz]
T .

Herein, four node beam finite elements with cubic Lagrangeaninterpolation functions are used.

2.2. Cross section analysis

The accuracy of the beam finite element model depends mainly on the accuracy of the cross section stiffness properties.
For a linear elastic beam there exists a linear relation between the internal cross section forcesT = [Tx Ty Tz]

T and

momentsM = [Mx My Mz]
T in θ =

[

TT MT
]T

(cf. Figure 2(a)), and internal strainsτ = [τx τy τz]
T and curvatures

κ = [κx κy κz]
T in ψ =

[

τTκT
]T

(cf. Figure 2(b)). This relation is given in its stiffness form as

θ = Ksψ (2)

where Ks is the 6× 6 cross section stiffness matrix. In the most general case, considering material anisotropy and
inhomogeneity, all 21 stiffness parameters inKs may be required to describe the deformation of the beam crosssection.
The methodology described next allows the accurate determination of all entries ofKs. The beams may have an arbitrary
cross section geometry while the materials may be anisotropic and inhomogeneously distributed in the cross section.

2.2.1. Beam kinematics and finite element formulation
The strains and stresses acting at a point in the cross section of the beam areǫ = [ǫxx ǫyy 2ǫxy 2ǫxz 2ǫyz ǫzz]

T ,
σ = [σxx σyy σxy σxz σyz σzz]

T , respectively. The stresses and strains are related by Hooke’s law asσ = Qǫ where
Q is the6× 6 material constitutive matrix. The forces and moments inθ are statically equivalent to the stress components
p = [σxz σyz σzz]

T acting on the cross section such thatθ =
∫

A
ZT p dA where A is the cross section area, and

Z = [I3 n] , with n =





0 −z y
z 0 −x
−y x 0



 (3)

andI3 is an identity matrix of size3× 3. The coordinatesx andy define the location of a point in the cross section given
with respect to the cross section reference coordinate system (cf. Figure 2).

It is assumed herein that the total displacements = [sx sy sz]
T of a point in the cross section is obtained ass = v + g

(see Figure 3). The displacementsv = [vx vy vz]
T are associated with the rigid body translations and rotations of the cross

section inr throughv = Zr. The displacementsg = [gx gy gz]
T are associated with the in- and out-of-plane cross section

distortion henceforth referred to as warping displacements. These are approximated following the typical finite element
approach such thatg ≈ Nu whereN is the matrix of finite element shape functions andu the nodal warping displacements.
In practice the cross section geometry is discretized usingtwo dimensional finite elements with three degrees of freedom
per node associated with the three dimensional nodal warping displacementsux, uy, anduz .From the definitions above
the total displacement of a point in the cross section is finally defined as

s = Zr + Nu (4)

A formula for the strains at a point in the cross section can now be derived based on the displacement definition presented
above. Assuming small strains,ǫαβ = 1/2 (∂sα/∂β + ∂sβ/∂α), (α, β = x, y, z) is employed thus yielding

ǫ = SZψ + Bu + SN
∂u
∂z

(5)

whereψ =
(

Tr +
∂
∂z

)

r where Trr = [0 0 0 τy − τx 0]. These in fact correspond to the typical beam theory result
in which τx = ∂χx/∂z − ϕy, τy = ∂χy/∂z + ϕx, τz = ∂χx/∂z, κx = ∂ϕx/∂z, κy = ∂ϕy/∂z, andκz = ∂ϕz/∂z.
Finally, the strain-displacement matrices are defined asB = B(N) where

B =





∂/∂x 0 ∂/∂y 0 0 0
0 ∂/∂y ∂/∂x 0 0 0
0 0 0 ∂/∂x ∂/∂y 0





T

,

andS = [0 I3] in which03 andI3 are the3× 3 zero and identity matrices, respectively. This corresponds to separating the
derivatives∂/∂z and leaving them unsolved. Note that henceforth()∂z = ∂()

∂z
for clarity.
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2.2.2. Virtual work principle
The first variation of the total virtual work per unit lengthδW of two sections of the beam with a vanishing distance

between them is

δW = δWe + δWi = 0 (6)

whereWi is the work done by the internal elastic forces, andWe the work done by the external forces acting on the cross
section. The variation of the internal strain energy is given by

δWi =

∫

Ω

δǫTσ dΩ =





δu∂z

δu
δψ





T 



M C L
CT E R
LT RT A









u∂z

u
ψ



 (7)

where the strain-displacement relation derived in (5) was invoked. Each of the system matrices presented above is defined
as

A
(6×6)

=

ne∑
e=1

∫
A

ZT
e ST

e QeSeZe dA, R
(nd×6)

=

ne∑
e=1

∫
A

BT
e QeSeZe dA, E

(nd×nd)
=

ne∑
e=1

∫
A

BT
e QeBe dA, (8)

C
(nd×nd)

=

ne∑
e=1

∫
A

BT
e QeSeNe dA, L

(6×nd)
=

ne∑
e=1

∫
A

ZT
e ST

e QeSeNe dA, M
(nd×nd)

=

ne∑
e=1

∫
A

NT
e ST

e QeSeNe dA (9)

wheree is the element number andne is the number of finite elements in the cross section mesh. Thetotal number of
degrees of freedom associated with the cross section finite element mesh isnd = nn × 3 where the number of nodesnn

multiplies the number of degrees of freedom at each node. Thesums in (9) refer to the typical assembly procedure used in
finite element analysis.

Assuming that surface and body forces are not present, the only contribution to the variation of the external workδWe

stems from the tractions which act on the cross section face.After some manipulation (see [17]) it can be shown that

δWe =

∫

A

∂
(

δsT p
)

∂z
dA =





δu∂z

δu
δψ





T 



P
P∂z

θ



+ δrT
(

θ∂z − TT
r θ

)

(10)

whereP =
∫

NT p dA, P∂z =
∫

NT p∂z dA. The vectorP can be seen as the nodal stresses in the cross section finite
element discretization as it represents the discretized stresses acting on the cross section face.

Equations (7) and (10) must be valid for anyδu∂z , δu, andδψ, and thus from (6) the variation of the total potential
energy is finally restated as





M C L
CT E R
LT RT A









u∂z

u
ψ



 =





P
P∂z

θ



 andθ∂z = TT
r θ (11)

Differentiating the first row with respect toz and adding it to the second yields the following set of secondorder linear
partial differential equations







Mu∂2z +
(

C − CT
)

u∂z + Lψ∂z − Eu − Rψ = 0
LT u∂z + RT u + Aψ = θ

θ∂z = TT
r θ

(12)

This second order linear differential equation renders twotypes of solutions – an homogeneous and particular solutions
– corresponding to two different physical phenomena. The homogeneous solution (θ = 0) is associated with the
deformations at the ends or extremities of the beam. The particular solution (θ 6= 0), on the other hand, will yield the
displacement field at the central part of the beam where end effects become negligible. We focus on the latter as this will
serve as the basis for the generation of beam finite elements suitable for structural analysis of relatively long and slender
beams.

2.2.3. Cross section equilibrium equations
First note that the definition of the displacements in (4) is six times redundat. The six rigid body motions – three

translations and three rotations – already represented by the shear and curvatures inr can also be represented by the
warping displacementsu. A series of constraints are therefore introduced through the Lagrange multiplier method. The
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variation of the virtual work expression in (6) is consequently augmented to include

δWc =

∫

δλT
u ZudA +

∫

λ
T
u Zδu dA +

∫

δλT
u∂z

Zu∂zdA +

∫

λ
T
u∂z

Zδu∂z dA (13)

whereλu andλu∂z
are the Lagrange multipliers associated withu andu∂z , respectively. This can be written in matrix

form asD = [Z1 ... Znn ] whereZn is obtained from (3) evaluated at the nodal coordinates of noden.
Taking into account the constraint above and after manipulation of (12) the resulting equilibrium equations for a section

in the central part of the beam are defined in matrix form as

Kw = f ⇔
[

K11 K12

0 K11

] [

w1

w2

]

=

[

f1
f2

]

whereK11 =





E R D
RT A 0
DT 0 0



 , K12 =





(CT − C) −L 0
LT 0 0
0 0 0





(14)

and, w1 =
[

uT ψT λT
u

]T
, w2 =

[

∂uT /∂z ∂ψT /∂z λT
u∂z

]T
, f1 =

[

0T θT 0T
]T

, and f2 =
[

0T (TT
r θ)

T 0T
]T

. For
given internal section forces and momentsθ the set of equations above yields the warping displacementsu and internal
strainsψ, respectively.

The cross section compliance matrixFs can be determined based on the cross section equilibrium equations presented
above. The first step consists of solving the set of equationsin (14) for six different right-hand sides each corresponding to
setting one of the entries ofθ to unity and the remaining to zero. This corresponds to solving the following set of equations

KW = F ⇔

[

K11 K12

0 K11

] [

W1

W2

]

=

[

F1

F2

]

(15)

where W1 =
[

UT
Ψ

T
Λ

T
u

]T
, W2 =

[

UT
∂z Ψ

T
∂z Λ

T
∂z

]T
, F1 =

[

0T I6 0T
]T

, and F2 =
[

0T Tr 0T
]T

. The resulting
solution matricesU, U∂z , Ψ andΨ∂z have six columns corresponding to each of the right-hand sides. For any given
θ the solutionsw1 andw2 can be obtained from the linear combination of the columns ofW1 andW2 asw1 = W1θ and
w2 = W2θ, respectively.

Equating the balance between the complimentary form of the cross section external energy and the internal elastic strain
energy yields

δθT Fsθ = δθT WT GWθ (16)

where

G =

[

G11 G12

GT
12 G22

]

, andG11 =





E R 0
RT A 0
0 0 0



 ,G12 =





C L 0
LT 0 0
0 0 0



 , andG22 =





M 0 0
0 0 0
0 0 0



 (17)

The expression for the cross section compliance matrix is readily obtained from (16) as

Fs = WT GW (18)

It is safe to assume that for most relevant structural analysis problemsFs is positive definite and thus the cross section
stiffness matrixKs is simply given byKs = F−1

s .

2.2.4. Strain and stress evaluation
Assuming that the internal cross section forces and momentsθ have been previously determined, e.g., from the beam

finite element solution or from simple static equilibrium considerations. Assuming also that the warping solutions to the
unit loadsU, U∂z , andΨ in (15) have been previously determined and are readily available. The strainsǫe at elemente in
the cross section coordinate system are then calculated as

ǫe = SeZeΨeθ + BeUeθ + SeNeU∂z,eθ

where the subscripte indicates the element number. The strains may be evaluated at different positions in each element. In
the current implementation of BECAS, the strains and stresses can be evaluated at element centers or Gauss point position,
i.e.,Se, Ze, Be andNe are evaluated at these locations. The arraysUe, U∂z,e, andΨe are obtained by extracting the degrees
of freedom of elemente from the corresponding arrays. Finally, the stresses are obtained throughσe = Qeǫe whereQe is
the6× 6 material constitutive matrix.
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The six components of stress and strains are herein defined with respect to three different coordinate systems, namely,
element, fiber plane, andfiber coordinate systems as described in Figure 4. The element coordinate system (xe,ye,ze)
is parallel to the cross section coordinate system. The fiberplane coordinate system (xp,yp,zp) is defined such that the
xp-zp plane is parallel to the stacking plane of the laminate. It isobtained through a rotationαp of the element coordinate
system whereαp is denominated thefiber plane angle. Finally, the fiber coordinate system (xf ,yf ,zf ) is associated with
the principal material directions so it corresponds to the typical material coordinate system. It results from a rotationαf

of the fiber plane coordinate system whereαf is referred to as thefiber angle. In sum, any material orientation in 3D can
be defined by the anglesαp andαf . These coordinate systems and angles are referred to later in Section 3 and 4 when
presenting and discussing the validation results.

2.3. Solution procedure and implementation

BECAS is an open-source toolbox freely available for academic use implemented as aMATLAB R© toolbox and compatible
with OCTAVE. All details of the implementation are discussed in [17]. Inpractice the procedure for the evaluation ofKs

consists of first assembling the matrices in (9) using standard finite element techniques. The cross section finite element
discretization is based on two dimensional isoparametric finite elements with three degrees of freedom at each node. The
next step consists of assembling the matricesK11 andK12 in (14), and finding the solutions to (15). BECAS uses sparse
storage for reducing memory requirements. The linear system of equations in (15) is solved by LU factorization of the
coefficient matrices. The Schur complement method is employed where a block of matrixK11 is defined such that the
factorization is performed on a matrix with reduced bandwidth. The Cuthill-McKee reordering scheme is implemented in
order to further reduce bandwidth. Finally, having assembled matrixG, the cross section compliance matrixFs is computed
by replacing the solutions obtained into (18) andKs is finally obtained.

As an example, consider a problem with a cross section discretization corresponding to 200 000 degrees of freedom.
In its current implementation, BECAS v2.3, takes approximately 40 seconds to determine the cross section stiffness and
mass properties (including assembly and solution times) ona Dell Latitude with 4GB of RAM and two Intel i5-2520M
CPUs at 2.50GHz. Models with 1.3 million degrees of freedom have been solved successfully in about 7 minutes on the
same platform thus attesting the efficient use of memory.

3. NUMERICAL EXAMPLES

The results obtained using the beam finite element frameworkbased on the proposed cross section analysis tool are
presented and validated in this section. The general setup for the validation work is presented first and each of the numerical
examples is described in detail next.

3.1. Setup

Three different numerical examples were considered as presented in Table I. In the first validation example a solid prismatic
beam with square cross section made from an orthotropic material was considered. Three different orientations of the
orthotropic material were analyzed. This is an academic example which serves to illustrate general features of the proposed
model. Among other, it is demonstrated that the effects of material anisotropy and resulting couplings are correctly captured
both at the beam length scale (tip displacement and eigenfrequencies) and cross section scale (local stresses). Furthermore,
the effect of the boundary conditions were studied in order to establish the consequences of the assumptions underlying
the beam finite element model.

The second example considers the DTU 10MW reference wind turbine rotor blade presented in [11, 12]. BECAS was
extensively used in the design of this blade. Hence, the results presented here serve to further establish the accuracy of the
proposed method when used within such wind turbine blade design frameworks. Again, results are presented associated
both with the blade length scale (blade displacements and eigenfrequencies) and cross section scale (local strains along the
caps and trailing edge panels).

Finally, in the last example, the interest was on the detailed analysis of local phenomena at the cross section scale,
namely, strains and stresses at the material level. In this example the geometry, materials distribution, and structural lay-
out of a wind turbine cross section were defined in great detail. This example serves to establish the accuracy of the
proposed method when working at later stages of the design process where a great level of detail has been reached.

For all numerical experiments the displacements and rotations were assumed small and varying linearly with respect
to the loads. The structural stiffness, frequency, and strength responses were analyzed using beam finite element models
generated based on BECAS, henceforth referred to as BECAS models. The results were compared against detailed 3D
finite element models discretized using shell and solid finite elements. The material properties and load cases for each of
the validation examples are compiled in Tables II and III, respectively.

6 Wind Energ. 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
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3.2. Prismatic beam of square cross-section

A 2m long cantilevered beam with square cross section of0.1m by 0.1m was considered. The cross section coordinate
system is presented in Figure 5 wherez is the longitudinal axis. The beam is composed of unidirectional carbon-fiber
reinforced plastics (UD CFRP) whose mechanical propertiesare listed in Table II. Three different material orientations
were considered, described in terms of the fiber angleαa and fiber plane angleαp defined in Figure 4. In the first case, S1,
all fibers were aligned with the beam axis and stacked in an horizontal plane (αa = 0◦, αp = 0◦) parallel to thex-z plane.
In case S2 all fibers were oriented at17.5◦ while the stacking plane remained horizontal (αa = 17.5◦, αp = 0◦). Finally,
in case S3 the fibers were oriented at17.5◦ with respect to the beam longitudinal axis and stacked in a plane rotated by
17.5◦ around thez axis (αa = 17.5◦, αp = 17.5◦).

The structural response (tip displacement, natural frequencies, and stresses) of the beam was analyzed using a beam
finite element model. The stiffness and mass properties weredetermined using BECAS where the cross section was
discretized using20× 20 eight-node quadratic plane finite elements with three degrees of freedom per node (see Figure
5). The resulting stiffness and mass matrices were integrated along the length using 20 straight, four-node cubic beam
finite elements. The nodal displacement and rotations of thebeam finite element model were constrained at the clamped
end of the beam.

The results were compared against a 3D solid finite element model (3DFEM) generated in ABAQUS using 20-node
solid finite elements (C3D20) [18]. Here the beam was discretized using 20x20 elements in the cross section plane and
101 elements along the length of the beam corresponding to a total of 525615 degrees of freedom. Boundary conditions
and loads were applied to the 3D solid finite element model using two master nodes. One master node was placed at the
center of the section at the clamped end of the beam, while theother master node was placed at the center of the section
at the opposite end of the beam where the loads were applied. The master nodes were coupled to the nodes representing
the respective cross section via so-called coupling constraints. Two different types of coupling constraint were used–
kinematic and distributing. Kinematic coupling constraints force the cross section nodes to move like a rigid body and
therefore prevent warping deformation of the cross section. Distributing coupling constraints constrain the motion of the
cross section nodes to the rigid body motion defined by the master node in an average sense and therefore do not prevent
warping deformation of the cross section [18]. In order to study the effect of the different boundary conditions, two model
variations were considered. The first model used a kinematiccoupling constraint at the clamped end and a distributing
coupling constraint at the opposite end where the loads wereapplied. This model is henceforth referred to asfixed-free.
The second model used a distributing coupling constraint atboth ends of the beam and is henceforth referred to asfree-free.

Beam tip displacements and rotations, along with the five lowest natural frequencies are compared in Table IV for each
of the model configurations. The magnitude of the resulting stresses obtained using BECAS and 3DFEM are compared in
Figure 6. Results are evaluated at a path along the length of the beam and in more detail at a section in the middle of the
beam (1 meter away from both ends). The position of the path isindicated in Figure 5. The path results obtained using
BECAS are compared to thefree-freeandfixed-freeresults from 3DFEM. At the central section of the beam the BECAS
results are compared withfree-free3DFEM results.

3.3. DTU 10MW Reference Wind Turbine Rotor Blade

The 86.37m long rotor blade of the DTU 10 MW reference wind turbine (DTU10MW RWT) was considered here. The
reader is referred to [11, 12] for an extensive description of the structural design of the blade including details on geometry,
material properties and structural topology, among other.The slight pre-bend of the blade described in [11, 12] was not
considered in either of the models described here.

A total of 51 cross sections along the blade length were defined as presented in Figure 7. The cross section coordinate
system of each section was placed at the half-chord point with the axis parallel to the blade coordinate system shown in
Figure 7. For the development of the BECAS based beam finite element model the stiffness and mass properties were
analyzed at each of these sections. The cross section finite element mesh was generated automatically based on the shell
finite element model as shown in Figure 9. The beam finite element model of the blade was then obtained by integration of
these properties. A total of 52 straight beam finite elementslocated along theZ axis of the blade coordinate system (see
Figure 7) were used.

The results obtained using the BECAS model were compared against the ABAQUS 3D shell finite element model
(3DFEM). The shell finite elements were placed in the outer surface of the aerodynamic shell. The nodes were offset to
the outer surface everywhere except the shear webs, where they were placed at the mid-thickness position. The layup was
defined at each element using the layering capabilities of the S8R shell finite element in ABAQUS. Two sets of master
nodes were defined at the half-chord position at each of the 51cross sections. The first set was coupled to the cross section
nodes representing the load carrying caps using a distributing coupling constraint (see Section 3.2 for a description of the
different types of constraints). These nodes were used for application of the loads. The second set of master nodes was
instead connected to all nodes in the section. These master nodes were used for measuring the displacements and rotations
of each cross section which were then compared to the beam finite element results. The decision for using two different
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sets of nodes for load and deformation resulted from the factthat the rotation results, namely the torsional rotationrz,
showed much larger deviations when determined only based onthe nodes in the caps. The reason is that relative local
deformation of the caps due to the loading has a strong influence on the estimated torsional rotation.

Two load cases were considered – BLC1 and BLC2 as described inTable III. In load case BLC1 the blade was loaded
by 11 concentrated forces – 6 forces in the flapwise direction(fy) and 5 forces in the edgewise direction (fx). The forces
were defined in such a way that the resulting distribution of bending moments closely approximates the distribution of the
ultimate bending moments resulting from the aeroelastic computations as described in [11, 12]. The forces were appliedat
the half-chord point at each section. In the BECAS based beamfinite element model the loads were applied as point forces
and moments at the beam nodes which are located along theZ axis of the blade coordinate system. A torsional moment
mz was therefore included together with the forces in order to account for the offset between the half-chord point and the
position of the beam node at each cross section (see Table III).

In load case BLC2 a torsional moment was applied at the tip of the blade. The ability to correctly estimate the torsion
response was one of the main motivations for the developmentof BECAS. Hence this load case was introduced so that the
accuracy of the torsional response of the wind turbine bladecould be assessed individually.

The most relevant components of displacements and rotations at each of the 51 sections calculated using both BECAS
and the 3D shell finite element model are compared in Figure 8 for both load cases. The strains were measured along three
different paths defined along the length of the blade as indicated in Figure 10. The relevant components of the strain are
compared in Figure 11 for both load cases. Finally, the six lowest natural frequencies are compared in Table V.

3.4. Detailed wind turbine blade cross-section

In this last validation example we focused on the analysis ofthe strains and stresses on a generic wind turbine blade
cross section where the structural lay-out was defined with great detail. The cross section geometry, finite element mesh,
coordinate system, and location of reference, shear, mass,and elastic centers along with the elastic axes as determined by
BECAS are presented in Figure 12. The mechanical propertiesof the materials UD, BIAX, TRIAX, Core, and Adhesive
are given in Table II. The outer shell consisted of a sandwichstructure with an inner core material (Core) and faces
composed of a tri-axial laminate (TRIAX). The suction and pressure side shells were bonded to each other and to the
load carrying spar by an adhesive (Adhesive). The spar caps consisted mainly of uni-directional fibers (UD) while the
shear webs were sandwich structures with a core material (Core) and layers of a bi-axial laminate (BIAX) in the faces.
The material distribution at a detail of the junction between shear web and the cap is presented in Figure 15(a). The cross
section geometry and structural lay-out were defined with great detail and a complete description of the model within this
paper is therefore impractical. Instead the authors ensurethe reproducibility of the results by making the input files to this
numerical example available upon request.

Two load cases were considered in this validation example – DLC1 and DLC2 as defined in Table III. In load case DLC1
the cross section was subjected to a transverse forceTy = 1× 106 N and a bending momentMx = −30× 106 N m. This
is similar to subjecting the blade to a flapwise load. In load case DLC2 the cross section was subjected to a torsional
momentMz = 1× 106 N m. As previously mentioned, torsion load cases were introduced to ascertain the accuracy of
BECAS when predicting the response of beams in torsion, an important motivation for the development of these type of
numerical tools.

In BECAS the cross section was meshed using 8 node quadratic plane elements with three degrees of freedom per
node (see Figure 12). As no results associated with the beam length scale (beam displacements or eigenfrequencies) were
computed, a beam finite element model was unnecessary.

The results from BECAS were compared against a 3D solid finiteelement model in ABAQUS. The finite element mesh
was generated through extrusion of the cross section mesh presented in Figure 12. The result was a60m long solid finite
element model of a beam of constant cross section meshed with20 node layered solid finite elements (ABAQUS element
type C3D20). The model was clamped at one end while tip forcesand moments were applied at the opposite end. The
loading was chosen such that it induces the same internal forces and moments as in DLC1 and DLC2 at the cross section
of interest, i.e., at the central section of the beam, 30m from the ends, where the strains and stresses were analyzed. The
length was chosen to ensure that the effect of the boundary conditions does not affect the results.

The strains and stresses estimated by both numerical modelswere finally compared. The six stress components were
evaluated along paths defined in Figure 13. The results obtained from each model for different paths, load cases, and stress
components are presented in Figure 14. Finally, the six components of the strains at a detail of the connection between the
shear web and the cap were analyzed. The shear strainǫ12 in the material coordinate system resulting from the DLC1 load
case is compared in Figure 15(b).
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4. DISCUSSION

In general the tip deformation and eigenfrequencies for thesquare prismatic beam S1, S2, and S3 in Table IV show
very good agreement with the 3DFEM results. The effect of theunconstrained warping boundary conditions assumed in
the beam finite element model is clearly visible in the results. The beam finite element model matches very closely the
3DFEM model withfree-freeboundary conditions, the largest deviation being 0.14% and0.99% for the tip deformation
and eigenfrequencies, respectively. The deviation is larger when comparing to the 3DFEM model withfixed-freeboundary
conditions, where the tip deformation results suggest thatbeam finite element model tends to underestimate the bending
stiffness. That is, the constrained warping boundary condition has a stiffening effect on the beam. The largest deviation in
this case is 2.71% for the displacementuy and 1.76% forrx both in case S3, and 1.67% forrz in case S2. The frequency
results present the same trend. The frequencies in which bending motion is predominant are underestimated by the beam
model. The largest relative difference is observed for thefixed-freeboundary conditions (i.e., 2.75% in case S3). On the
other hand, the frequencies associated with torsion estimated by BECAS are larger than thefree-freesolutions but smaller
than thefixed-freeresults.

The results show also that the effects of the material anisotropy on the structural response of the beam are correctly
captured by the BECAS based beam finite element model. Namely, the torsional motion stemming from the coupling
between bending and torsion induced by the material orientation shows very good agreement both in terms of tip rotation
and eigenfrequencies.

Regarding the stresses in Figure 6, the effects of the boundary conditions are clearly visible. In the central part of the
beam all three models – BECAS, 3DFEMfree-free, and 3DFEMfixed-free– show very good agreement. This is clear
form the fringe plots obtained at the mid-section of the beam. At this section the boundary conditions do not affect the
stresses and the results from BECAS and 3DFEM are practically indistinguishable. The 3DFEM results are for thefree-free
boundary conditions although the same results were obtained for thefixed-freeboundary conditions. At the clamped end
of the beam, BECAS deviates significantly from thefixed-freeresults and approximates thefree-freeresults better.

Finally, note that the BECAS results in Figure 5 show that theelastic axis is oriented at 17.5◦ which coincides with the
fiber plane orientation. The shear center position is determined based on a truncated expression which does not include the
bend-twist coupling term [17]. The shear center position istherefore not affected by the anisotropy introduced by the fiber
orientation.

The validation results obtained based on the DTU10MW RWT blade are presented in the Table V and Figures 8 and
11. The eigenfrequencies obtained using the BECAS based beam finite element model and 3D shell finite element model
(3DFEM) are in very good agreement, the largest deviation being 1.54%. Note that these frequencies match well also with
those reported in [11] obtained using BECAS for the analysisof the cross section properties but relying on a different
beam finite element formulation implemented in HAWC2 [2]. The largest difference between these results and the BECAS
based beam model presented in this paper was 3%.

Overall the blade deformation results presented in Figure 8are in good agreement for both load cases. The results
suggest that the BECAS model is generally more compliant than the 3DFEM model. This may partly be due to the
mesh generation procedure. The cross section finite elementmesh used in BECAS was automatically generated through
extrusion of the shell finite element model in the thickness direction as illustrated in Figure 9. This procedure may generate
small discrepancies in the material distribution between the BECAS and shell finite element model which then affects the
stiffness and mass properties and ultimately can be observed in the structural response of the models.

An exception to this behavior is observed in Figure 8(e) where the torsional motion of the blade resulting from transverse
flapwise and edgewise forces in load case BLC1 is larger in the3DFEM model. However, in this case it is difficult to
conclude that this is a result of the overestimation of the torsional stiffness by the beam model. The applied transverse
forces are not applied at the shear center and a torsional moment is therefore induced locally. The irregularities in the
lengthwise variation of the torsional rotation given by the3DFEM model suggest that these moments induce significant
local deformation. The local effect of the loads is only partly captured by the beam model and is perhaps the reason for the
deviation between the two models. These local effects are negligible for the other blade deformation results obtained for
the same load case as seen in Figure 8(a-d). For the torsionalload case, the torsional moment applied at the tip also leads
to a large deviation in the results as seen in 8(f). The magnitude of the remaining components is too small and therefore
omitted.

The effect of the loads is also visible in the strain results presented in Figure 11. For both load cases there is a very
good match between the strains obtained by BECAS and the 3DFEM model. Note that, in accordance with the blade
deformation results, the strain results for load case BLC1 also indicate that the BECAS model is generally more compliant
than the 3DFEM model for both load cases. The strains from BECAS are offset by approximately 1% everywhere except
in the vicinity of the load application points where the deviation is larger. For the torsional load case BLC2 the deviation
is practically negligible although increasing significantly close to the tip where the moment is applied.

Finally, note that the strains obtained by BECAS do not account for tapering, twist and spanwise curvature which is
naturally accounted for in the 3DFEM model. However, in the inner part of the blade where these geometrical features
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are more pronounced the deviations are not larger, suggesting that their effect on the strains is of minor importance in the
regions where the strains were measured.

The last example concerns the analysis of the strains and stresses in a detailed wind turbine blade cross section.
The stresses presented in Figure 14 analyzed along the different paths match very closely for all load cases and stress
components, the largest deviation being less than 1%. In Figure 14(a-c) the jumps in the stresses resulting from the different
materials across the thickness are correcltly captured by BECAS. The linear variation of the longitudinal stresses along
the length of the shear web is visible in Figure 14(d). As expected the shear stressσ12 is approximately constant along
the same path as seen in Figure 14(e). The stresses in Figure 14(g-i) are analyzed along the outermost layer of the airfoil
which is composed of a single material – glass fiber triaxial laminate. Note that the non-zeroσ22 stresses in Figure 14(h)
are a result of layering materials with different Poisson ratios. The discontinuities of theσ22 stresses at the outer surface
are a result of the material discontinuity in the layers below.

The last results concern the stresses at a the connection between the shear web, cap, and leading edge panel as presented
in Figure 15. The analysis of the stresses in this region is specially challenging since it is composed of many different
materials (e.g., uniaxial and triaxial laminates, core material, and adhesive) and joins different types of panels (e.g., the
monolythic laminates in the caps with the sandwich panels ofthe leading edge and shear web). The BECAS and the
3DFEM model results show a very good match thus attesting theability of BECAS to correctly account for different
material effects and accurately predict complex 3D strain and stress fields.

In general, the set of results presented in this paper suggests that the proposed framework is suitable for the structural
analysis of wind turbine blades. Results both at the cross section and blade length scale show a good agreement with other
modeling approaches routinely used in wind turbine blade design. Perhaps one of the biggest challenges lying ahead for
the further development of the proposed framework concernsthe incorporation of geometrical nonlinearities at the cross
section level. Existing blade designs are composed of panels (e.g., in the trailing edge region) which are sufficiently flexible
such that deformation stemming from geometrical nonlinearities becomes significant even at low load levels. Future work
will focus on the development of a reduced order model which can take this type of nonlinearities into account. The aim is
to devise an efficient procedure which can be used, among other, to predict the effect of these nonlinearities on the strains
and stresses and estimate panel buckling. However, note that the problem is not trivial and its solution may jeopardize the
computational efficiency of the reduced order model.

Finally, the generation of a reduced order model requires a certain amount of computation time. However, once
assembled the reduced order model is computationally very efficient and can accurately describe certain properties of
a complex system. In the case of the BECAS based beam model presented here, the solution to the equilibrium equations
at each cross section are the main source of computational expense. As shown in this paper, the resulting beam finite
element model can be used to accurately analyze the local andglobal response of wind turbine blades. However, the true
potential of the model regarding its efficiency is demonstrated only when applied in computationally intensive applications
like the time series analysis of the nonlinear aeroelastic response of a wind turbine blade.

5. CONCLUSIONS

This paper describes and assesses the accuracy of the BEam Cross section Analysis Software – BECAS – a computational
framework for structural analysis of wind turbine blades. The framework is built upon a 2D finite element based cross
section analysis tool capable of predicting the effects of material anisotropy and inhomogeneity for sections of arbitrary
geometry. A brief presentation of the most important theoretical aspects underlying the cross section and beam finite
element analysis procedure was given. Three validation examples were considered - solid square cross section beam, an
entire wind turbine blade, and detailed wind turbine blade cross section. The validation work focused on phenomena at the
blade length scale (i.e., blade deformation and eigenfrequencies) and cross section length scale (i.e., material strains and
stresses). Results generated by the BECAS based beam model were compared with 3D shell and solid finite element models
generally showing a very good agreement. Yet, the ability ofthe BECAS framework to separate the 2D problem at the cross
section scale from the blade length scale allows for much greater computational efficiency than that of 3D shell and solid
finite element models. Future work includes, among other, the efficient generation of time series of material strains and
stresses for reliability and fatigue analysis. These results will give an insight into a number of mechanisms associated with
blade failure and perhaps allow for the development of noveltechnologies for designing blades with improved structural
performance.

Finally, it is worth noting that the source code of the entireframework is distributed free of charge for academic use in
the hope that it is useful and can be extended at other research institutions.
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6. TABLES

Table I. Catalogue of numerical examples used for validation and corresponding number of degrees of freedom (DOF) in beam
(BECAS) and 3D finite element models (3DFEM).

Ref. DOF BECAS DOF 3DFEM

Square S1, S2, and S3 222 (beam) + 3 843 (cross section) 525 615

DTU 10 MW RWT blade DTU10MW
471 (beam) +

608 970
7869 (average per cross section, 51 cross sections)

Detailed WT blade section DWT 29 559 (cross section) 4 050 369

Table II. Material stiffness and mass properties used for modelling the square and detailed WT blade cross sections. Eij , Gij , and
νij are elastic modulus, shear modulus, and Poisson coefficient in direction {ij}, respectively, and ̺ is the mass density. Material

properties for square beam are from [19].

Square Detailed WT blade section
UD UD BIAX TRIAX Core Adhesive

E11 [Pa] 1.43×1011 4.00×1010 1.20×1010 2.00×1010 5.00×107 3.50×109

E22 [Pa] 1.00×1010 1.00×1010 1.20×1010 1.00×1010 5.00×107 3.50×109

E33 [Pa] 1.00×1010 1.00×1010 1.00×1010 1.00×1010 5.00×107 3.50×109

G12 [Pa] 6.00×109 4.00×109 1.00×1010 7.50×109 1.79×107 1.25×109

G13 [Pa] 5.00×109 4.00×109 3.80×109 4.00×109 1.79×107 1.25×109

G23 [Pa] 3.00×109 3.57×109 3.80×109 4.00×109 1.79×107 1.25×109

ν12 0.20 0.28 0.50 0.50 0.40 0.40
ν13 0.30 0.28 0.28 0.28 0.40 0.40
ν23 0.52 0.40 0.28 0.28 0.40 0.40

̺ [kg/m3] 2900 1900 1890 1860 80 1890

Table III. Load cases considered for each of the validation examples presented in Table I. Load case SLC1 is a vertical force applied
at the tip of the square beams S1, S2, and S3. Load cases BLC1 and BLC2 are associated with the DTU10MW, where the load
application point is the half-chord point of the respective cross section. The torsional moment mz in BLC1 is applied only in the beam
finite element model in order to compensate for the offset between the beam nodal positions and the half-chord position. Load case
DLC1 and DLC2 associated with the DWT are internal cross section forces and moments defined according to the cross section

coordinate system in Figure 12.

Square section
(S1, S2, S3)

SLC1
z [m] 2
fy [kN] 100

DTU 10MW RWT
blade

(DTU10MW)

BLC1

z [m] 20.1 30.4 33.0 47.7 52.0 62.4 65.8 76.2 84.8
fx [kN] 0.0 0.0 290.0 180.0 0.0 130.0 0.0 18.0 25.0
fy [kN] 230.0 270.0 0.0 0.0 250.0 0.0 220.0 190.0 165.0

(mz) [kNm] -122.7 -226.5 -27.1 -8.0 -170.8 -0.6 -111.9 -74.0 -46.9

BLC2
z [m] 89.166

mz [kNm] 450

Detailed WT blade
section (DWT)

DLC1
Ty [MN] 1
Mx [MNm] -30

DLC2 Mz [MNm] 1
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Table IV. Tip displacement uy and rotations rx and rz , and five lowest eigenfrequencies for 2 m long square beams loaded with
tip load fy = 105 N. Results obtained using BECAS based beam model and a 3D solid finite element model in ABAQUS (3DFEM).
The fiber angle αf and fiber plane angle αp are defined in Figure 4. Frequencies indicated with (∗) correspond to eigenmodes
in which torsional motion is predominant. Displacement units are m, rotations are in rad, and frequencies are given in Hz. Labels
free− free and fixed − free refer to the type of boundary conditions in the 3DFEM model. Relative difference is defined as Rel.
Diff. = (v3DFEM − vBECAS)/|v3DFEM | × 100 where v3DFEM and vBECAS are deformation or frequency values determined

using the 3DFEM and BECAS model, respectively.

Ref.
Fiber orientation Tip deformation [m, rad] Frequencies [Hz]
αp αf uy rx rz f1 f2 f3 f4 f5

S1 0◦ 0◦

BECAS 0.23 -0.17 0.00 27.89 27.96 157.47∗ 159.65 162.21
3D FEM (fixed-free) 0.23 -0.17 0.00 27.89 27.97 157.97∗ 159.88 162.40
3D FEM (free-free) 0.23 -0.17 0.00 27.89 27.96 157.29∗ 159.67 162.22

Rel. Diff. (fixed-free) (%) -0.04 0.02 - 0.03 0.03 0.32 0.14 0.11
Rel. Diff. (free-free) (%) 0.01 0.02 - 0.00 0.00 -0.11 0.01 0.00

S2 17.5◦ 0◦

BECAS 0.65 -0.48 -0.48 16.60 16.66 99.29 101.53 181.70∗

3D FEM (fixed-free) 0.63 -0.47 -0.49 16.89 17.02 101.27 104.17 183.46∗

3D FEM (free-free) 0.65 -0.48 -0.48 16.62 16.68 99.93 102.53181.33∗

Rel. Diff. (fixed-free) (%) -2.63 1.72 -1.67 1.69 2.12 1.96 2.53 0.96
Rel. Diff. (free-free) (%) -0.14 0.01 0.00 0.11 0.15 0.64 0.98 -0.20

S3 17.5◦ 17.5◦

BECAS 0.65 -0.48 -0.46 16.60 16.65 99.43 101.43 182.15∗

3D FEM (fixed-free) 0.63 -0.47 -0.47 16.85 17.07 101.24 104.30 183.64∗

3D FEM (free-free) 0.65 -0.48 -0.46 16.62 16.68 100.08 102.45 181.72∗

Rel. Diff. (fixed-free) (%) -2.71 1.76 -1.51 1.43 2.41 1.79 2.75 0.81
Rel. Diff. (free-free) (%) -0.14 0.01 0.00 0.11 0.15 0.65 0.99 -0.24

Table V. Six lowest eigenfrequencies for DTU 10 MW RWT rotor blade calculated using BECAS and ABAQUS shell finite element
model (3D FEM). The labels flapwise (flap), edgewise (edge) and torsional (torsion) are indicative of the predominant motion observed
for each of the eigenmodes. Relative difference is defined as Rel. Diff. = (f3DFEM − fBECAS)/|f3DFEM | × 100 where f3DFEM

and fBECAS are the frequencies determined using the 3DFEM and BECAS model, respectively.

Freqs. [Hz]
f1 f2 f3 f4 f5 f6

(flap) (edge) (flap) (edge) (flap) (torsion)
BECAS 0.62 0.95 1.75 2.80 3.57 5.69
3DFEM 0.61 0.95 1.75 2.84 3.58 5.69

Rel. Diff. [%] -0.72 0.61 0.25 1.54 0.37 -0.04
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7. FIGURES

WT blade Loads

t

Blade 

section

Cross section FE mesh

Beam FE

WT FE model

Cross section

Stress

BECAS BECASAeroelastic analysis Post-processingPre-processing

Figure 1. Schematic description of the workflow used for the structural design and analysis of wind turbine blades based on the cross
section analysis tool, BECAS.

(a) Forces and moments (b) Strains and curvatures

Figure 2. Cross section coordinate system, forces and moments (a) and corresponding strains and curvatures (b) (from [8])

2D fe mesh

reference line

rigid body 
motion final deformed 

shape with 
warping 

undeformed beam
deformed beam

Figure 3. Schematic description of the deformation of a cantilever beam subjected to a tip load. The reference line is meshed
using beam finite elements. The deformation of each cross section is described in terms of the rigid body motions and warping
displacements. Cross section deformation is analysed using the cross section analysis tool BECAS where a finite element

discretization of the cross section geometry is used to approximate the warping deformation (from Blasques and Bitsche [10]).
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Figure 4. Definition of fiber plane angle αp and fiber angle αf . These angles are used to define the 3D material orientation at each
element of the cross section finite element mesh in BECAS.

Figure 5. Cross section finite element mesh and location of reference, shear, mass, and elastic centers, and orientation of elastic
axes as determined by BECAS for cantilever beam with square cross section S3. Dark element indicates position of the path along

which stresses are measured in Figure 6. Stresses are evaluated at element center.
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Figure 6. Stresses in material coordinate system for cantilever beam S3 obtained using the BECAS based beam finite element
model (BECAS) and a 3D solid finite element model (3DFEM). Beam is 2m long and subjected to a tip load fy = 105N. The
material orientation is αa = 17.5◦, αp = 17.5◦ (cf. Figure 4). Fringe plots refer to element stresses from BECAS (solid line) and
3DFEM with free − free boundary conditions (dotted line) at the cross section at the center of the beam (i.e. Z=1m). Note that lines
from BECAS and 3DFEM overlap. Line plots refer to stresses at a path along the beam length whose position in the cross section
is presented in Figure 5. Results for unconstrained and constrainted warping boundary conditions are indicated as free− free

and fixed − free, respectively. Relative difference is defined as Rel. Diff. = (σ3DFEM − σBECAS)/max(|σ3DFEM |)× 100 where
σ3DFEM and σBECAS are the stresses determined using the 3DFEM and BECAS model, respectively.
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Figure 7. Baseline cross sections and coordinate system of DTU 10 MW reference wind turbine rotor blade.
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Figure 8. Comparison of displacements in the DTU 10 MW reference wind turbine blade determined using BECAS and a shell finite
element model in ABAQUS (3DFEM). Results for load case BLC1 (flap and edgewise bending) and BLC2 (torsion), cf. Table III.
Relative difference is defined as Rel. Diff. = (d3DFEM − dBECAS)/max(|d3DFEM |) × 100 where d3DFEM and dBECAS are the

displacements determined using the 3DFEM and BECAS model, respectively.
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(a) Slice of the finite element shell model (shell thickness
visualized).

(b) Corresponding BECAS cross section finite element mesh
using 14 elements through thickness.

Figure 9. The BECAS cross section finite element mesh (b) is generated automatically based on the shell finite element model (a).

L1 - Cap, suction side, outer layer, along the length;

L2 - Cap, pressure side, outer layer, along the length;

L3 - Trailing edge panel, suction side, outer layer, along the length;

L3
L1

L2

Figure 10. Schematic wind turbine blade section indicating the location of the logintudinal paths used in the analysis of the strains in
the DTU10MW RWT rotor blade. Strains along these paths are presented in Figure 11.
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(a) ǫ11 for BLC1 along L1
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(b) ǫ11 for BLC1 along L2

Y
 [

m
]

X
 [

m
]

0 20 40 60 80
−1

0

1

2

3

4
x 10

4

Z [m]

ε
1
2
 [

µ
S

]

 

 

0 20 40 60 80
−10

0

10

20

30

40

R
el
.
D
iff
.
[%

]

3D FEM

BECAS

Rel. Diff.

(c) ǫ12 for BLC2 along L3

Figure 11. Strains in the DTU 10 MW reference wind turbine blade determined using BECAS and a shell finite element model in
ABAQUS. The location of the longitudinal paths are indicated in Figure 10. Results for load case BLC1 (flap and edgewise bending)
and BLC2 (torsion), cf. Table III. (a) and (b) Axial strains ǫ11 for load case BLC1. (b) In-plane shear strains ǫ12 for BLC2. Relative
difference is defined as Rel. Diff. = (ǫ3DFEM − ǫBECAS)/max(|ǫ3DFEM |) × 100 where ǫ3DFEM and ǫBECAS are the strains

determined using the 3DFEM and BECAS model, respectively.

18 Wind Energ. 2012; 00:1–14 c© 2012 John Wiley & Sons, Ltd.
DOI: 10.1002/we

Prepared using weauth.cls



J. P. Blasques et al. Accuracy of an efficient framework for structural analysis of wind turbine blades

x

y

z

Reference

Elastic

Shear

Mass

Ax. 1

Ax. 2

Figure 12. Detailed wind turbine blade cross section (DWT) finite element mesh and coordinate system. Reference, elastic, shear,
and mass center positions, and elastic axis orientation as calculated by BECAS.

P1 - Cap, suction side, through thickness;

P2 - Shear web, trailing edge side, outer face;

P3 - Shear web, trailing edge side, through thickness;

P4 - Perimeter aerodynamic profile.

Detail

P4

P2

P3

P1

Figure 13. Schematic wind turbine blade section indicating the location of the paths used in the analysis of the stresses in the detailed
wind turbine blade cross section (DWT). Stresses along these paths are presented in Figure 14.
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Figure 14. Results by BECAS and 3D FEM for detailed wind turbine blade cross section. Cross section subjected to load cases
DLC1 (flapwise bending) and DLC2 (torsion), cf. Table III. Stress components σ11, σ22 and σ12 evaluated at element centers
along paths P1 (spar cap, suction side, through thickness), P2 (shear web, from suction side to pressure side), P3 (shear web,
through thickness), P4 (around the perimeter of the aerodynamic profile), cf. Figure 13. For P4 each region is identified: TEP (trailing
edge panel pressure side), CAPP (spar cap pressure side), LEP (leading edge panel pressure side), LES (leading edge panel
suction side), CAPS (spar cap suction side), TES (trailing edge panel suction side). Relative difference is defined as Rel. Diff. =
(σ3DFEM − σBECAS)/max(|σ3DFEM |) × 100 where σ3DFEM and σBECAS are the stresses determined using the 3DFEM and

BECAS model, respectively.
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(a)

3D FEM

(b)

Figure 15. Results at the junction between the caps, shear webs, and leading edge panels of the detailed cross-section (see Fig.
13). Cross section subjected to load cases DLC1 (flapwise bending), cf. Table III. (a) Material distribution and principal fiber plane

orientations. (b) Strains ǫ12 in material coordinate system analyzed at element centroids.
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