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Abstract  

The phenomenon of urban flooding due to rainfall exceeding the design capacity of drainage systems is 

a global problem and can have significant economic and social consequences. This is even more extreme 

in developing countries, where poor sanitation still causes a high infectious disease burden and 

mortality, especially during floods. At present, there are no software tools capable of combining 

hydrodynamic modelling and health risk analyses, and the links between urban flooding and the health 

risk for the population due to direct contact with the flood water are poorly understood. The present 

paper outlines a novel methodology for linking dynamic urban flood modelling with quantitative 

microbial risk assessment (QMRA). This provides a unique possibility for understanding the interaction 

between urban flooding and health risk caused by direct human contact with the flood water and hence 

gives an option for reducing the burden of disease in the population by use of intelligent urban flood risk 

management. The model linking urban flooding and health risk is applied to Dhaka City in Bangladesh, 

where waterborne diseases including cholera are endemic. The application to Dhaka City is supported by 

measurements of pathogens in the urban drainage system. The outcome of the application indicates 

that direct contact with polluted flood water is a plausible route of primary transmission of cholera and 

demonstrates the applicability and the potential for linking urban flood models with QMRA in order to 

identify interventions to reduce the burden of disease on the population in Dhaka City.  
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Introduction 

Cholera is an important infectious diarrhoeal disease with high human and economic impacts. It is 

estimated that 2.8 million cases occur annually in endemic countries (with a lethal outcome for 91,000, 

while 1.4 billion people are at risk) and 87,000 cases occur in non-endemic countries with a lethal 

outcome for 2,500 (Ali 2012). The infections influence the population as such, but the incidence is 

estimated to be higher for children under 5 years of age (Ali 2012, Deen 2008, Sur 2005).  

Cholera is caused by an infection of the human intestine by the bacterium Vibrio cholerae after ingestion 

of contaminated water (Ramamurthy and Sharma, 2014) or foods (FAO, 2005, Rabbani, 1999). V. 

cholerae is a naturally occurring (autochthonous) bacterium in estuarine and brackish environments, 

where it is found as a free-living organism or associated with plankton and sediments, and it has shown 

also to have the ability to colonize freshwater ecosystems (Alam et al 2006, Colwell 2005, Borroto 1997, 

Huq 1990). V. cholera occurs at elevated temperatures, typically above 19 °C (Louis et al., 2003), and 

shows an optimum growth between 30 °C and 37 °C (Borroto 1997). V. cholerae has an absolute 

requirement for NaCl, with optimal salinities between 2 and 25 parts per thousand (Louis et al., 2003, 

Borroto, 1997). Therefore, the aquatic environment plays a significant role in cholera epidemics and 

serves as a reservoir between outbreaks (Alam et al 2011). 

Cholera is endemic to Bangladesh (Lipp et al. 2002). Sporadic cases of cholera occur every year and 

epidemics reoccur regularly (Longini et al., 2002). The entire population in Bangladesh is considered to 

be at risk of contracting cholera, and the overall annual incidence rate is estimated to be around 4 per 

1000 (Ali, 2012). The magnitude of the epidemics may be driven by climatic factors such as the El Niño 

southern oscillation and sea surface temperatures (Koelle et al. 2005, Reiner et al. 2012). In the Dhaka 

area, Reiner et al. (2012) found a correlation between El Niño, flooding and cholera epidemics, A
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particularly in the core areas of the city. Moreover, an analysis of 33 years of cholera in rural Bangladesh 

found that a small spring outbreak occurs around April, and there is a clear annual outbreak in 

September through December (Longini et al. 2002). Dhaka also experiences biannual outbreaks. The 

spring peak can be explained by intrusion of salt water into the Bengal Delta which, combined with high 

temperatures, gives favorable conditions for V. cholerae and subsequently an increased risk of infection 

(Akanda et al. 2009, 2011, 2013). A similar situation was observed in the Indus river basin where cholera 

risk is correlated to above average temperatures followed by above average rain (Jutla et al. 2013). The 

fall peak in the Bengal Delta was found to be correlated with high flow in the Ganges-Brahmaputra-

Meghna basin and with the flooding extend (Akanda et al. 2013), and large outbreaks in Dhaka have 

shown to be correlated with the floods of 1988, 1998, 2004 (Schwartz et al. 2006) and 2007 (Alam, 2011, 

Hashizume et al. 2008). The studies by Akanda and co-workers (2013), however, do not directly 

represent a causal connection but identify two plausible physical variables in the transmission process. 

Cholera outbreaks have been suggested to follow two routes of transmission. A primary transmission 

from environmental exposure followed by a secondary direct or indirect person to person transmission, 

where the indirect secondary transmission includes fecal contaminated water, which may involve the 

same aquatic reservoirs as those of the primary transmission (Miller et al. 1985, Ruiz-Moreno et al., 

2010). We hypothesize that the fall cholera outbreak in Dhaka is mainly related to a primary infection 

via the urban flood water caused by autochthonous Vibrio cholera. In addition, cholera cases may also 

be due to infections from drinking water contaminated with flood water, or from an indirect secondary 

infection via the faecal oral route by exposure to flood water or contaminated drinking water.  

   A
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The 2007 outbreak in Dhaka was caused by a hyper infective clone, V. cholerae O1 El Tor, which is 

believed to have a yearly cycle mediated via the aquatic environment and during the outbreak 

transmitted via the faecal-oral route (Alam et al. 2011). Faeces from cholera patients typically contain 

107 to 108 V. cholerae per. g (Dizon et al. 1967, Levine et al. 1988). Hence, it only takes a relatively small 

number of seriously ill patients to contaminate the sewage and drainage systems in Dhaka and lead to 

secondary infections via contamination of drinking water or via direct contact with the mixture of 

surface and drainage water during flooding. 

Infectious waterborne diarrhoeal diseases are generally found to be related to low socioeconomic 

status, poor drinking water quality and sanitation, and cholera is no exception. Hashizume et al. (2008) 

observed a significantly higher cholera risk in the post-flood period for those using tube wells for 

drinking water compared with those using tap water. However, Colombara (2013) failed to show an 

association between cholera risk and water and sanitation variables among children in Dhaka, but found 

that social economic status, age and maternal education were key correlates of cholera risk. In India, 

most outbreaks are believed to be associated with inadequate water supply. However, cholera has also 

been linked with washing of clothes and bathing in the Ganges (Ramamurthy and Sharma, 2014). In 

addition, despite the successful effort of providing improved drinking water and the improvements in 

sanitation in developing countries (WHO 2013), there has been little evidence of a decline in the global 

burden of disease of cholera (Ali 2011). Hence, exposure to other waters than drinking water may also 

be important routes of transmission of V. cholera. Interventions against cholera must intersect all 

principal routes of transmission (not only via drinking water) to be effective. 

In this paper we analyze the primary infection from the direct human exposure to drainage and flood 

water based on hydraulic modelling of the 2004 floods in Dhaka and provide a first quantitative 

microbial assessment of cholera risk during flooding to better understand the relationship between A
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flooding and cholera risk in Dhaka, to provide the basis for more effective evidence-based interventions 

and to develop better tools for forecasting epidemics. 

Description of the setting in Dhaka City 

Dhaka, the capital of Bangladesh, is one of the most densely populated cities in the world. The average 

population density in the central part of the city is approximately 47,600 per km2. Greater Dhaka is 

bounded by the Balu River on the east, the Tongi Khal on the north, the Turag Rivers on the west and 

the Buriganga River on the south. The western part of Greater Dhaka is flood protected whereas the 

eastern part is unprotected. In recent years, Dhaka has experienced a rapid urbanization and the 

development of urban infrastructure. Combined with urban flooding this has created an environment 

which can be detrimental to millions of people. 

There are two kinds of floods in Dhaka city: fluvial flooding and water logging. Fluvial flooding is caused 

by high river levels, which overtop the banks of Balu River in the east. Water logging is mainly caused by 

heavy rainfall which exceeds the drainage capacity. The floods of 1954, 1955, 1968, 1971, 1974, 1987, 

1988, 1998 and 2004 were the most disastrous floods in Dhaka City. During the 2004 flood, 40% of the 

city and its habitants suffered directly due to water logging. Approximately 176,000 families and around 

900,000 people were affected. Sometimes river flooding and the water logging occur simultaneously, 

e.g. when high river stages at drain outfalls cause backwater effects in the drainage system leading to 

water logging. During every monsoon season, large portions of Dhaka city are inundated due to its low-

lying and flat topography. In 1998, around 56% of Dhaka was inundated for about 69 days, including 

most of the unprotected eastern part. 

Dhaka’s urban drainage system is a mixture of a partly separate wastewater and storm water system 

and a combined system. Even in areas where there is provision of separate sewers, much of the A
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wastewater discharges through the storm water drainage system.  Most of the sewerage infrastructure 

within Dhaka is ineffective due to either blocked or damaged sections, leading to environmental 

degradation and unhygienic conditions.  Due to rapid urbanization the city is experiencing massive 

construction works and as a result run-off carries a large amount of sediment which clogs the drainage 

system. 

  

Methodology 

Hydrodynamic and advection-dispersion urban flood models, which describe the transport of pollutants 

and water flow in the urban drainage system and on the surface, were used to determine the 

concentrations of pollutants in the surface flood waters (Hartnack et al., 2009). I.e. the drainage model 

was applied to estimate the quality of the mixture of wastewater and storm water spilled from the 

urban drainage system to the surface during flooding. Several important mechanisms have been 

modelled. First, the transport and dilution of wastewater and storm water in the drainage system is 

modelled using a 1-D hydrodynamic model, which can incorporate advection-dispersion processes 

(Garsdal et al. 1995). Hence, V. cholerae is transported in the system as a conservative pollutant, which 

is justifiable as the time frame for the transport is short compared to the die-off rate. Secondly, when 

the capacity of the drainage system is exceeded, the diluted sewerage spills into the surface flood 

waters, and this behavior is shown by a hydrodynamic 2-D flow model, which can also incorporate 

advection-dispersion processes. The models compute the water depth, flow velocity and concentrations 

of pollutants as a function of time for all spatial points in the model domain. Decay or growth of V. 

cholerae was not taken into account due to the relatively short duration of the flooding under A
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consideration. A quantitative microbial risk assessment (QMRA) was undertaken to estimate the risk of 

illness caused by infection by V. cholerae O1 El Tor via direct human contact with flood water.  

Modelling of urban flooding 

The flood model for Central Dhaka was developed using DHI MIKE Urban (Andersen et al, 2004). The 

model covers an area of 39.2 km2 and includes 852 sub-catchments. The rainfall-runoff process is 

simulated by a time-area model. The percentage of impervious surface area was calculated at 39%. The 

model comprises all important drainage system elements, i.e. both storm sewer pipes and box culverts. 

The total length of the network is 112 km. There are three sluice gates/regulators and two pump 

stations in the model to represent the pumps in Rampura and Shegunbagicha. There are three large 

lakes within the central part which act as detention ponds during storm events.  

The  urban drainage network in the model was described by use of a MIKE FLOOD, a 1D hydrodynamic 

model, while the surface flow is computed using a 2D model (Hartnack et al. 2009). The 2D model 

reproduces the urban surface topography, allowing for the hydrodynamic simulation of surface flood 

water. This flood simulation approach is commonly used for urban flood studies (Schmitt et al. 2004; 

Carr and Smith 2007; Mark and Djordjevic 2006) and is available in software packages such as 

INFOWORKS (Rubinato et al., 2013; Innovyze 2013) and MIKE FLOOD (Hartnack et al. 2009). The 

accuracy of these 2D flood models depends on the accuracy and resolution of the digital terrain model 

and its links with the 1D urban drainage model. The recommended grid size for urban 2D surface models 

is usually 1–5 m (Mark et al. 2004). In the current research, a grid size of 10 m was used, as a sensitivity 

analysis showed that this reproduces the topography of the city and the flooded areas while still giving 

acceptable run times for the simulations. In order to support this, the flood model was calibrated both 

for water levels in the urban rivers and for the flood extent of the 2004 flood. For the calibration of the A
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flood extent, a flood map of historically observed flooded locations was produced by The Institute of 

Water and Flood Management.  The observed flood map is consequently a schematic map based on 

field investigations. For the calibration, the flood extent was matched with the flood map drawn upon 

the observations. 

 
 

Figure 1 Model calibration at Demra on the Balu River 

 

The calibration results can be seen in Figure 1, where the observed and simulated maximum flood 

extents are shown for the storm in September 2004. For simulation of the health risk, two days with 

urban flood were selected for the analysis. In total, the model was run for three days in order to capture 

both the rising and the falling limb of the flooding. 
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Modelling of concentration in urban flood water  

The simulation of the pathogens and their transport in the urban drainage system and on the surface 

was carried out using a 1D advection-dispersion model (MOUSE TRAP) (Garsdal et al. 1995) of the urban 

drainage system, which was  coupled with a 2D advection–dispersion model (MIKE 21) (Hartnack et al. 

2009).  The 1D advection-dispersion models have previously been applied to cases for simulation of the 

transport and dilution of wastewater (Mark et al. 1996; Mark et al. 1998; Andersen et al. 2013).   

The 2D advection-dispersion model solves the mass-conservative advection-dispersion equation for 

dissolved substances in two dimensions: 
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Where 

c    : compound concentration (arbitrary units) 

u, v : horizontal velocity components in the x, y directions (m/s) 

h    : water depth (m) 

Dx, Dy: dispersion coefficients in the x, y directions (m2/s) 

Information on u, v and h at each time step is provided by the hydrodynamic module. 
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Cholera risk assessment 

Hazard identification and dose-response relations 

Epidemic Vibrio cholerae has two major serogroups (O1 and O139). The O1 serogroup has two biotypes 

(classical and El Tor), and each biotype has two major serotypes (Ogawa and Inaba). Since 1993, the El 

Tor V. cholerae O1 and V. cholerae O139 have been the dominant biotypes in Bangladesh (Longini et al. 

2002). In 2004, V. cholerae O1 was the dominant serogroup (ICDDR,B 2004). Therefore, the El Tor V. 

cholerae O1 was selected as the reference pathogen for cholera risk modelling. Only one study (Bui et al. 

2011) has examined the dose-response relationship for El Tor V. cholerae O1 Inaba. The best fit model 

for illness (Pill) was the approximated beta-poison relation: 

 

Where c = concentration of V. cholera and V is the volume ingested and with α = 0.169 and β = 2,305 

(N50 = 137). 

The D/R is based on data from Levine and co-workers (Black et al. 1987, Levine et al., 1981 and 1988). 

Approximately 60 fasting volunteers, who were students and other healthy adults from Maryland, USA, 

were administered V. cholera (Doses: 103 to 106) with 2 g of NaHCO3. The NaHCO2 increases infectivity 

and pathogenicity by lowering the acidity as a standard meal of fish, rice; custard and skim milk does 

(Levine et al. 1981). The analytical methods for determining the doses in the D/R study and in our study 

should ideally be equivalent. The method used in the D/R studies originates from Cash et al. (1974) and A
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was based on culture techniques. We have also used culture techniques. We therefore assume that the 

methods are comparable. 

 

Quantification of human exposure to flood water 

Here we estimate the risk from exposure to flood water by direct ingestion and hand to mouth 

exposure. During the field study in Dhaka (12 Nov. to 15 Nov. 2013) 26 individuals and a group of 

children were interviewed about their behavior during floods. Information was collected on the age of 

the participants and the frequency and duration of water contact via direct ingestion and hand to mouth 

contact. The social status of the interviewees was estimated by questioning, from their appearance and 

from their place of living. Slum areas (e.g. Koreil, UTM, WGS84 N23 46.971, E90 24.704) and areas with 

mixed middle class/poor inhabitants (e.g. Rajabagh N23 44.559, E90 25.092) were visited. In general, the 

exposure was related to social status and age. The small children (under approximately 5 years) in the 

slum areas were the most exposed group and the upper middle class adults the least exposed. 

The interviews revealed the following results: 

1. Small children (< 5 years) in slum areas are in contact with the flood water throughout the day.  

2. Adults in slum areas and poor areas wade through or remain in the water from one to several 

hours either because of the need to get to and from work or by remaining in the flooded area. 

3. Children (> 5 years) in poor areas and slum areas are exposed during trips to school and often 

play in the water: e.g. running, playing soccer, cricket and even water polo. 

4. Street vendors may stay in the flood water for extended periods and are exposed to 

contaminated water through hand contact and splashing from vehicles. A
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5. Middle class and upper middle-class adults try to avoid contact either by staying home during a 

flood or by being transported by car or rickshaw. Most say they get wet hands. 

6. Middle class and upper middle-class children usually have restricted access to the flood water by 

the parents but may be exposed going to and from school. 

The literature reveals different approaches to the quantification of oral intake during contact with 

water. Scheets et al. (2011) examined the amount of water swallowed, and the frequency and duration 

of swimming events (freshwater, seawater and in swimming pools) in the Netherlands by 

questionnaires. They found that on average children ingested 37 ml during 79 minutes of bathing in 

freshwater. Dorevitch et al. (2011) examined the ingestion during water recreation in swimming pools 

by analyzing cyanuric acid uptake by the participants. 23 adults were studied in shallow swimming pools 

(“splash pools”), and they found a mean ingestion of 3.5 ml (median 2 ml) with an upper confidence 

(95%) limit of 10.6 ml during 60 minutes activity. Exposure data during flooding in the Netherlands was 

collected via questionnaires by de Man et al. (2014). The study revealed that children swallowed 1.7 ml 

(mean, 95% Confidence Interval 0 - 4.6 ml) per flood exposure event and adults ingested 0.016 ml 

(mean, 95% CI 0 - 0.068 ml) due to hand-mouth contact during flooding events. Based on the field 

interviews above, we have selected 4 typical exposure groups for the assessment of the cholera risk. The 

exposure groups and their expected exposure to flood water are shown in Table 1, and an example of 

the probability density function (PDF) for the volume ingested can be seen in Figure 2. Thus, PDFs are 

developed for the exposure groups and applied as inputs to the QMRA modelling. 

Table 1  Exposure groups for which the cholera risk has been estimated and models for quantification of exposure to flood 

water. 

Group Exposure description Exposure/day Reference A
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Small children in the 
slum and poor areas 

The children stay partly emerged 
in the water for several hours. 
Considered exposed as children in 
recreational water 

37 ml 

Gamma distribution 

r = 0.64, λ = 58 

Scheets et al. 2011 

Adults in slum and in 
poor areas 

Wading one hour/day on the way 
to work or another business. 

Lognormal 

µ = 3.5 ml 

σ = 3,6 ml 

Dorevitch et al. 2011 

Middle class/upper 
middle-class children 

Exposed on the way to school 
etc., but exposure usually 
restricted by parents.   

Mean: 1.7 ml 

95% CI: 0 - 4.6  

*
de Man et al. 2014 

 

Middle class/upper 
middle-class adults 

Avoid exposure but exposed via 
hands  

Mean: 0.016 ml  

95% CI 0 - 0.068  

*
de Man et al. 2014 

 

*
 The set of 100,000 exposure volumes underlying the assessment by de Man et al. (2014) of the infection risk from 

exposure to waterborne pathogens in urban floodwater was used for the Monte Carlo simulation. The data set 
was kindly provided by Dr. Heleen de Man, Institute for Risk Assessment Sciences, Utrecht University, the 
Netherlands. 

 

 

Figure 2 The probability density function is describing the volume ingested by children (< 5 years) living in poor areas of 

Dhaka. This PDF is applied as input to the QMRA modelling. 

 

Sampling and microbial analyses A
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Information on water quality was obtained through a sampling programme. The samples for this study 

were taken by the Institute of Water Modelling, Dhaka, Bangladesh from three locations in Dhaka 

(Rajarbagh (N23°44.541'; E090°25.003'), Shantinagar (N23°44.868'; E090°24.572'), and Paltan 

(N23°44.157'; E090°24.930')). Seven wet weather samples were taken hourly (11.00 to 17.00) from the 

flood water on 8 September 2013 and 7 dry weather flow samples (every 4 hours from 10 am to 10 am) 

were taken from the drainage system on 15/16 September 2013. 

500 ml water samples were aseptically collected in sterile Nalgene plastic bottles following APHA 

procedures (APHA, 1998). The samples were placed in an insulated box with ice packs and immediately 

transported to the Environmental Microbiology Laboratory of the International Centre for Diarrhoeal 

Disease Research, Bangladesh (ICDDR,B) for analysis. 

The samples were analyzed for Enterococci, E. coli, V. cholerae and V. cholerae O1 El Tor (Inaba and 

Ogawa). 

For the analysis of E. coli, 5 ml water samples from three different dilutions were analyzed by membrane 

filtration (APHA 1998, Islam et al. 2011). Enterococci were analyzed according to ISO 7899-2:2000. V. 

cholerae and V. cholerae O1 El Tor were quantified by a 3 x 3 MPN procedure. 1, 0.1 or 0.01 ml of 

sample were inoculated into 10 ml alkaline peptone water and sub-cultured. Following overnight 

incubation colonies were subjected to further characterization to determine if they were V. cholerae 

according to Hara-Kudo et al. (2001) and Islam et al. (1995, 2011). V. cholerae strains were then 

serotyped according to the method described by Kelly et al. (1992) to identify V. cholerae O1 El Tor, 

Inaba or Ogawa. 

 

Quantitative Microbial Risk Assessment A
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A quantitative microbial risk assessment (QMRA) was performed by Monte Carlo simulation (@Risk, 

Palisade, Industrial Edition; Version 6.0.1) using Latin Hypercube sampling and 40.000 iterations. The 

dosages were sampled from a Poisson distribution with an average calculated from the measured 

concentration in the dry weather samples, with the dilution of the drainage water sampled for the 

entire duration of modelled time series shown in Table 2, and the ingested volume sampled from 

distributions presented in Table 1, assuming a maximum exposure time of one day. The risks were then 

calculated for the four exposure groups shown in Table 1.  

 

 

Risk assessment locations 

Three areas in Dhaka with known flood occurrences were selected a priori for the risk assessment. The 

locations are either close to the sampling sites or chosen on the basis of the field interviews. The 

locations are: a slum area approximately 200 m east of the Bir Shreshtha Mostafa Kamal Stadium 

(BSMK-Stadium, N23° 43.560', E090° 25.890'), mixed middle class/poor residential areas in Rajarbagh 

(N23° 44.559', E090° 25.092') and Paltan (N23°44.208', E090° 24.710') near the sampling sites. 

 

Results 

Urban sewer model results 

A model was prepared using SewerGems to analyze the performance of the existing sewer system. The 

sewer model was developed using information from engineering plans. Much of the sewer system was A
cc

ep
te

d 
A

rti
cl

e



17 

 

This article is protected by copyright. All rights reserved. 

not functioning properly, so it was difficult to determine the extent of sewer connections from these 

plans. In order to address this uncertainty in the existing system, scenarios were set up considering the 

sewer system to be connected to 20%, 65% and 100% of the service area respectively. Figure 3 shows 

the overflow from sewer manholes if 65% of the population is connected to the sewer system in order 

to represent the condition of 2004.  
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Figure 3  Flood Manholes with 65% connection rate 
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Flood model results  

The central part of Dhaka is protected from flooding by an embankment. The storm water is then 

evacuated using pumps at the outlets. There are also large detention ponds which can store water 

during storm events. A 1D-2D coupled model was developed based on the existing drainage network 

and digital elevation model (DEM) of the city. During September 2004, a major flood occurred which 

inundated a large part of the city for several days. The observed inundation is shown in Figure 4, and the 

model simulated inundation maps are shown in Figure 5. It can be seen that there is a good agreement 

between the observed and simulated flood locations. It would have been useful if also flood depths had 

been recorded to provide a better basis for the calibration of the flood model, but unfortunately 

observed flood depths are not available. 
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Figure 4  Observed flooding for the September 2004 flood. The observed locations of the flood are indicated by the light blue 

shaded color. The green triangles indicate water logged areas. 

 

Figure 5   Model simulated flooding of September 2004 

 

In addition to the simulation of the flood extent, the transport and dilution of the sewage water 

transported on the surface were simulated by use of the 2D advection-dispersion model. I.e. the 

concentrations in the urban flood water come from the concentrations in the dry weather flow, which 

are mixed and transported in the rain and surface runoff. The model results are shown in Figure 6, and 

they display the maximum concentrations (dilution) of sewage in the flood water on the surface of 

Dhaka City.  A
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Figure 6 The pollution map computed for the flood in September 2004. The map shows the dilution factor of wastewater in 

the flood water. The concentration is represented as a dilution factor of the wastewater concentration. 

 

The health risk was subsequently computed for the three selected locations as shown in Table 2. In 

Table 2 it can be observed that the mean event dilution ranges from 1.12 10-3 to 5.83 10-3 for the 

locations, where the risk assessments are carried out. However, it should be noted that locations with a 

dilution factor in the order of 0.75 show a large spatial variation due to the mixing with the dry weather 

flow and the transport of the flood water. 

Table 2  Model results of the drainage water dilution at the three risk assessment locations A
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 Rajarbag BSMK-Stadium Paltan 

Flood duration (hours) 23 7 9 

 Dilution factor
 

Depth (m) Dilution factor Depth (m) Dilution factor Depth (m) 

Maximum 0,009576 0.14 0,00755 0.19 0,00227 0.45 

Minimum  0,000225 0.45 0,00328 0.55 0,00077 0.74 

Average 0,002275 0.30 0,00583 0.35 0,00112 0.50 

 

Results of the microbial analyses 

The results of the microbial analyses are shown in Table 3. 

Table 3  Enterococci, E. coli, V. cholerae and V. cholerae O1 El Tor in samples from wet weather and dry weather periods. 

/100 ml 

Geometric mean and one 
standard deviation 

E. coli Enterococci V. cholerae 

Wet weather 

Rajarbagh 10
6.8±0.7 

10
5.9±0.2

 10
3.8±0.8

 

BSMK-Stadium 10
7.2±0.2

 10
5.9±0.1

 10
4.0±1.0

 

Paltan 10
7.5±0.6

 10
6.1±0.1

 10
4.0±0.9

 

Dry weather flow 

Rajarbagh 10
7.5±0.5 

10
6.2±0.2

 10
4.1±0.8

 

BSMK-Stadium 10
7.7±0.5

 10
6.0±0.1

 10
4.3±0.5

 

Paltan 10
7.7±0.6

 10
6.1±0.2

 10
4.2±0.8

 

 

The concentrations of E coli and Enterococci ranged from 106 to 108 per 100 ml, which is typical for raw 

sewage (Feachem et al., 1983). The concentration of non-O1, O139 V. cholera ranged from 103 to 105 

per. 100 ml. Taking both weather flow and wet weather results into account, it was found that on A
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average the concentration of E. coli was 1.4 log units higher than the concentration of Enterococci and 

3.4 log units higher than the concentration of non O1, O139 V. cholera. The concentrations were higher 

(13% to 49% on average) under dry weather conditions compared to wet weather conditions. No trends 

were observed in the temporal variation seen over the individual sampling days. 

V. cholerae O1 El Tor, Ogawa was found in two samples (300 and 300 per. 100 ml) in Paltan and in one 

sample in Razarbag (360 pr. 100 ml) under dry weather flow conditions. The detection limit of the 3 x 3 

MPN-setup was 300 per 100 ml. We have used the average dry weather flow concentration of V. 

cholerae O1 El Tor (46 V. cholerae O1 El Tor/100 ml) for the risk assessment. 

 

Health modelling results  

The averages and 95th percentiles of cholera risk are shown in Table 4. The highest estimated risk is 5.6 ∙ 

10-3 per day of flooding for children in the Paltan slum area and the lowest risk is 10-6 or lower for the 

middle-class adults. The 5-percentiles, the median risks and most of the 95 percentiles were all below 

the detection limit of the simulation, due to sampling from a Poisson distributed dose, where most 

events result in zero ingestion.  

Children have a higher average risk than adults. For the middle class in Razarbag, the childrens’ risk is 

about 70 times higher than the adult risk. In the poor/slum areas the childrens’ risk is about 10 times 

higher than the adults’ risk. The population in the slum/poor areas has higher risks than the middle 

class. For the children, the average risk is 109 times higher in Paltan and 19 times higher in Razarbag. For 

adults the average risk is 145 times higher in Razarbag and higher in Paltan, where the adult risk was 

undetectable for the middle class. A
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Table 4  Estimated daily average and 95 percentiles health risk at the time of the lowest modeled dilutions (i.e. highest 

concentration of V. cholerae) at the three model locations for the four selected exposure groups. All 5 percentiles 

and medians were 0. 

Location and Dilution factor Estimated cholera risk during the highest modelled concentrations 

 Children Adults 

 Average 95 percentile Average 95 percentile 

Razarbag      

Slum/Poor 2.2 ∙ 10
-3

 0 2.1 ∙ 10
-4

 0 

MiddleClass 1.2 ∙ 10
-4

 0 1.5 ∙ 10
-6

 0 

Paltan      

Slum/Poor 5,6 ∙ 10
-3

 0,059 5.5 ∙ 10
-4

 0 

Middle Class 5.2 ∙ 10
-5

 0 0 0 

East of BSMK-Stadium     

Slum/Poor 1.1 ∙ 10
-3

 0 1.1 ∙ 10
-4

 0 

*Middle Class 2.6 ∙ 10
-4

 0 3.1 ∙ 10
-6

 0 

*No middle class in this area 

 

Discussion 

In this work, an urban flood model, which represents the observed flood in Dhaka in 2004, has been 

applied to compute the concentrations of sewage and V. cholerae O1 El Tor in the flood water. This was 

used as input to a QRMA model, which estimated the risk of cholera caused by contact with flood water 

during the 2004 flood event. Hence, the estimation of the health risk is based on a calculation of the 

dilution of drainage/sewage water at three locations in Dhaka. The average risks were estimated to be in 

the range between below “detection limit” of the Monte Carlo simulation and 5.6 ∙ 10-3. Typical average 

values were 10-3 for children and 10-4 for adults in poor/slum areas and 10-5 for children and 10-6 for 

adults in middle-class areas. The results are well in accordance with the overall incidence of severe 

cholera in Dhaka City, which was estimated to be approximately 280 per 100,000 in 2010  (ICDDR, B A
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2011). However, direct comparison between the calculated risks due to direct exposure to flood water 

and the estimated incidence would require an analysis of the population distribution and risk 

assessment in all the flooded areas. Deen et al. (2008) report an annual incidence of culture-positive 

cholera cases in cholera endemic slum areas in Kolkata, India and Jakarta, Indonesia to be 7.0/1000 and 

2.0/1000 respectively for the small children (< 5 years) and 1.2/1000 and 0.27/1000 respectively for 

children (≥ 5 years). Hence, our risk estimates seem to be in a realistic range. 

A number of factors influence the uncertainty of the risk estimation. The water ingestion was 

determined by transferring exposure data obtained from studies in Europe and North America to Dhaka. 

This was based on the findings of our field studies, which indicate similar behaviors in the identified 

exposure groups in Dhaka and in the studies cited above.  We do not know with certainty if the 

estimated ingested volumes are correct; however, the field study clearly showed that children in the 

slum areas are without any doubt highly exposed, whereas middle-class adults have a lower exposure. 

The dose-response relation used was based on healthy adult volunteers in North America. The 

populations in Dhaka may be more vulnerable due to generally poorer health status or may have higher 

immunity than adult North Americans, since having had cholera reduces the risk of subsequently 

becoming ill (Ali 2012),. We have used the only published dose response relation for V. cholerae O1 El 

Tor. It has a low infectious dose and may be seen as a worst case. For comparison, the classical V. 

cholera usually appears less infective and requires higher doses for infection, i.e. N50 in the 103 - 109 

range, where the high N50 was found in studies without administration of NaHCO3 (Hass et al. 1999, 

CAMRA 2014). We detected V. cholerae O1 El Tor Ogawa in the wastewater, whereas the dose-response 

relation was determined for V. cholerae O1 El Tor Inaba. However, the attack rates of Inaba and Ogawa 

biotypes seem not to be significantly different (Levine et al., 1984). The calculated risks are based on 3 

samples out of 21 with concentrations corresponding to the detection limit of the method. A sensitivity A
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analysis showed close to linearity between concentration and risk at the used concentration. Errors in 

the estimation of the concentration will therefore influence the risk estimate.  A more thorough field 

investigation of the spatial and temporal variation of the environmental concentrations will reduce the 

uncertainty related to the concentration and improve the risk estimations. Hence, the absolute risk 

estimates determined in this study should be interpreted with caution. They are, however, in 

accordance with observed incidences, and the geographical distribution can be used to identify high-risk 

locations. Finally, it must be mentioned that the present analyses are just carried out for one flood event 

in 2004. In order to get a more comprehensive picture of the health risk, it is recommended that the 

mean annual burden of disease is computed similarly to the computations of the mean annual flood 

damage. However, this is outside the scope of the present paper.  

Our risk model indicates that the direct contact with drainage and flood water may be a significant route 

of primary cholera transmission, particularly in poor/slum areas. However, we cannot estimate the 

contribution of direct exposure to flood water to the total cholera disease burden. Other microbial risk 

studies have also identified the environmental exposure as an important route of transmission in slum 

areas. Labite et al (2010) analyzed the burden of waterborne (non-cholera) infectious disease in a slum 

area in Accra, Ghana and found that open drains and recreational activities accounted for 90% of the 

burden of disease, whereas ingestion of flood water (1 ml/year) accounted for 2% of the burden of 

disease, and the drinking water-related disease burden accounted for 6% of the disease burden. 

Similarly, a study from Bwaise III, an urban slum in Kampala, Uganda (Katukiza et al., 2013) found that 

open drainage canals and grey water in tertiary drains accounted for 63% of the disease burden, 

whereas the drinking water-related exposure accounted for 30% of the disease burden. Because V. 

cholera is a naturally occurring bacterium, the environmental compartment may be even more 

important for the primary transmission than what is the case for non-naturally occurring pathogens.  A
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Schwartz et al. (2006) found that the cholera epidemics in Dhaka are related to the flood levels, with a 

delay of 3 to 13 days after the rivers have reached the flood stage. The risk model presented here 

suggests that the direct ingestion of flood water should be considered as a plausible causal link between 

flooding and cholera risk.  

The relation between the estimated risks associated with the different exposure groups depends on the 

authors’ choice of the exposure models. The exposure models were chosen based on behavioral 

interviews with inhabitants of flood risk areas. We estimated the child/adult relation of cholera risk in 

slum areas to be 10. It is well known that the children under 5 years of age bear the highest burden of 

cholera. In Kolkata and Jakarta the child-adult cholera incidence ratios are 5.9 and 7.4 respectively (Deen 

et al., 2008), which is not significantly different from our results. Exposure via drinking water is probably 

more or less the same for children and adults, since they can be expected to use the same water source, 

and is therefore not a plausible explanation of the differences between adults and children. Children are 

in closer contact with the environmental sources than adults because they are playing, running, 

swimming, etc. Environmental exposure is therefore a more likely explanation for the differences 

between adults and children. However, a lower adult cholera risk is not only caused by lower ingested 

doses. Having had cholera reduces the risk of subsequently becoming ill both for children under 5 and 

older persons (Ali 2012). In an endemic setting as Dhaka, a higher immunity can generally be expected 

among adults. Our model does not take immunity into account. 

Large differences have been found between the slum/poor population and the middle class in Paltan 

and Razarbag which are both mixed population areas. For children the average cholera risk was 19 to 

109 times higher in the poor/slum areas than in the middle-class areas, and for adults the average risk 

was > 140 times higher. Diahrreal infections are known to be related to socio-economic factors. Of 

diahrreal patients from the poor Mirpur area in Dhaka (2008 – 2010) 89% lived in low-income housing A
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and only 8% in independent houses or high income residential areas (Chowdury, 2011), and Colombara 

(2013) found a 50% higher cholera risk for children under 5 years living in slum in Dhaka. 

Conclusions 

In the present study, a novel modelling approach has been developed and demonstrated for Dhaka City. 

The approach defines a consistent framework for analyses of the health risks associated with direct 

contact with urban flood water. The framework consists of a hydrodynamic model in combination with 

an advection-dispersion model, providing input to a quantitative microbial risk assessment. Based on 

computations of the health risk at three a priori selected locations, it was found that direct 

environmental exposure during flooding results in an estimated average cholera risk ranging from 5.2 ∙ 

10-5 to 2.2 ∙ 10-3, with small children in the slum areas having the highest risk. Hence, the computed 

health risk is in agreement with the overall incidence of severe cholera in Dhaka City, which in 2010 was 

estimated to be approximately 280 per 100.000. Contact with polluted flood water is therefore a 

plausible route of primary transmission of cholera and may partly explain the fall cholera peak in Dhaka. 

However, the absolute risk estimates should be interpreted with caution, due to a high uncertainty. The 

presented framework will be updated when new knowledge and data become available in order to 

reduce the uncertainties. The framework may be extended to include other important waterborne 

pathogens, for which credible dose-response relations have been published, such as E. coli (ETEC), 

rotavirus and Salmonella enterica typhi. 

An extension of the risk analysis to cover the entire flooded area and combine the estimated risks with 

population data will provide an estimation of the geographical distribution of the burden of cholera 

related to direct contact with flood water. This data can then be used to identify the most critical points 

for intervention and control of cholera. If other significant waterborne pathogens are included in the A
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assessment as well, the total burden of disease (expressed as DALY) from direct contact with flood water 

can be mapped and applied for identifying the most critical points for intervention and control of 

diarrheal diseases. 

This study does not analyse the risk of cholera from exposure via drinking water contaminated during 

flooding events. A study of the relation between flooding and drinking water quality will be necessary to 

implement the most cost-effective interventions, taking both exposure via drinking water and direct 

exposure to flood water into account.  
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