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Summary (English)

In recent years, animal welfare in industrial slaughterhouses has become a sig-
nificant concern for consumers, farmers, and meat producers. Different groups
have different interpretations of animal welfare. For the majority of consumers,
the definition of animal welfare is highly influenced by their values and experi-
ences, whereas meat producers are interested in the stress animals endure and
the effect this has on meat quality.

Pigs that arrive at slaughterhouses are more sensitive than usual for several
reasons. Not all animals are accustomed to transportation and in some cases,
they are transported over long distances. Upon arrival, it is common to mix
pigs from different farms in one area. Such mixing can lead to fights between
pigs, causing additional stress or harm. The unfamiliar environment can also in-
creases their stress levels. Some industrial slaughterhouses handle up to 62,000
pigs per week. Ensuring the welfare of such a large number of pigs using only
personnel is a complicated task.

Video surveillance of humans has been widely used to ensure safety and order in
various situations. Methods have been developed to detect individual actions or
abnormal behavior in small groups and dense crowds. In recent years, surveil-
lance has also been used to monitor animals. Research has mainly focused on
monitoring laboratory animals and farm animals. In both cases, animals are
usually in a constrained environment and cameras cover all areas where animals
are present. Non-intrusive markers or extracted features are used for tracking
in order to obtain better results. Laboratory environments can be highly con-
trolled and therefore no light or shadow noise are present in videos.

In slaughterhouses, the main focus is on monitoring large groups of animals in
locations where additional markers cannot be used and pigs can leave or enter
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the surveyed area. In addition, pigs have a specific walking pattern, making
motion analysis challenging. The first aim of this thesis was to monitor the
movement of pigs without using any additional markers or feature extraction in
an unconstrained environment.

In video surveillance, the behavior of humans and animals is monitored based
on extremes: an event is present/event is not present, objects behave nor-
mally/objects behave abnormally, action 1/action 2/action 3, and so on. The
motion of humans and animals is continual with transitions from one action to
another. The second aim of this thesis was to propose a method to monitor
motion as a continuous process using common classification methods.

In this thesis, monitoring was performed by employing optical flow (OF) using
color images. This approach has not previously been used in this context. The
color images provide better results than thermal images. An OF-based approach
together with low-level statistics has previously been used to monitor chicken
welfare. However, this approach is not suited to pigs, and instead modified an-
gular histograms were used. In addition, a framework for continuous motion
monitoring, using the principles of multivariate statistics and statistical process
control is presented. The proposed framework increases event detection by 25%
when compared to discrete motion monitoring. A lens correction method us-
ing a moving reference object is also proposed. Three tests indicated that the
method performed well. This thesis presents promising ideas for a new approach
for assignable cause identification in a highly auto-correlated process.



Summary (Danish)

I de seneste år er dyrs trivsel i industrielle slagterier blevet en væsentlig be-
kymring for forbrugere, landmænd og kødproducenter. De tre segmenter har
forskellige fortolkninger af dyrs trivsel. For de fleste forbrugere er dyrs trivsel
stærkt påvirket af deres værdier og erfaringer. Kødproducenter er interesseret i
stress dyrene kan holde til, fordi det påvirker kødkvaliteten.

Grise der ankommer til slagterierne er mere følsomme end normalt af flere grun-
de. I nogle tilfælde transporteres grisene over lange afstande. Ikke alle dyr er
vandt til transport. Ved deres ankomst, er det almindeligt at grise fra forskellige
landmænd samles i et område. Den blanding kan forårsage kampe mellem svin,
hvilket kan føre til yderligere stress eller skader. Det ukendt miljø øger også
deres stressniveau. I nogle industrielle slagterier håndteres der op til 62.000 svin
om ugen. Sikring af velvære af sådanne store antal svin udelukkende ved brug
af personale er en kompliceret opgave.

Videoovervågning af mennesker har været meget anvendt til at sikre sikkerhed
og orden i flere situationer. En række metoder er blevet udviklet til at fange indi-
viduelle handlinger eller unormal adfærd i små grupper og tætte folkemængder.
I de senere år er overvågning også blevet anvendt til dyr. Forskningen har ho-
vedsagelig fokuseret på overvågning af forsøgsdyr og husdyr. I begge tilfælde
er dyrene i begrænsede miljøer og kameraer dækker alle områderne hvor der
er dyr. For at opnå bedre resultater bruges ikke-invasive markører eller særlige
egenskaber til sporing. Laboratoriemiljøer er meget kontrollerede; intet lys eller
skygger i videoerne.

På slagterier det primære fokus at overvåge store grupper af dyr på steder, hvor
der ikke kan bruges yderligere markører. Grisene kan også forlade eller komme
ind i det overvågede område. Desuden har grise et specifikt gangmønster, hvor-
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for bevægelsesanalyse ikke er ligetil. Det første formål med denne afhandling er
at overvåge grises bevægelse uden brug af yderligere markører i et ubegrænset
miljø.

I videoovervågning er adfærden hos mennesker og dyr overvåget på grundlag af
ekstremer: en begivenhed er enten til stede eller ej, objekter opfører sig normalt
eller ej, handling 1, 2, eller 3, osv. I naturen er menneskers og dyrs bevægelse
kontinuerlig med overgange fra en handling til en anden. Det andet formål med
denne afhandling er at foreslå en metode til overvågning af bevægelser som en
kontinuerlig proces ved hjælp af standard klassificeringsmetoder.

I denne afhandling blev overvågningen udført med optisk bevægelse (optical flow,
OF) på farvebilleder. Denne tilgang er ikke tidligere brugt i denne sammenhæng.
Farvebillederne giver bedre resultater sammenlignet med termiske billeder. Bru-
gen af OF og basal statistik er tidligere brugt til at overvåge kyllingevelfærd.
Dog er den tilgang ikke brugbar på grise, hvorfor modificerede vinkelhistogram-
mer blev brugt. Dertil er en metode for overvågning af kontinuerlig bevægelse
ved brug af principper fra multivariat statistik og statistisk processkontrol også
præsenteret. Den viste metode øger detektionen af hændelser med 25% sam-
menlignet med en diskret bevægelsesovervågning. En metode til linsekorrektion
med et ikke-stationært referenceobjekt er præsenteret. Tre test indikerer at me-
toden virker. Denne afhandling præsenterer lovende idéer til en ny tilgang til at
identificere årsagssammenhænge i meget korrelerede processer.
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Chapter 1

Introduction

This thesis considers automatic description and detection of animal welfare at
slaughterhouses. The concept of animal welfare is first described in this chapter,
which is followed by the aim of this project, the contribution of this thesis and
the data used for the analysis.

1.1 Animal welfare

Animal welfare is a major concern for many consumers, farmers, and meat pro-
ducers. Different aspects of animal welfare are of interest to different groups [1].
In recent years, there has a been growing concern among consumers regarding
not only the quality and price of meat, but also criteria such as animal wel-
fare and the environmental effects of livestock production. These criteria are
influenced by the values and emotional experiences of the individual [2]. Meat
producers are interested in the aspects of animal welfare that can affect meat
quality and price.

D. M. Broom (1986) [3] defines welfare as the ability of an individual to, "cope
with its environment. Coping can sometimes be achieved with little effort and
expenditure of resources, in which case the individual’s welfare is satisfactory."
Specific effects of a failure to cope with the environment include increased rates
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of mortality and disease, in addition to a decrease in size and the number of
offspring. Both psychological and physical stress must be overcome in order
for an individual to cope with their environment [4]. Psychological stress can
be caused by changes in surroundings or inadequate handling, while unsuitable
climate or inadequate supplies of oxygen, water, and food can lead to physical
stress. Farmers (as well as meat producers) are interested in the aspects of an-
imal welfare that can affect the health of the livestock and the meat quality.

The inappropriate handling of pigs during transportation both to and within
slaughterhouses increases the levels of glucose, lactate, and other components
in the blood [5, 6] before slaughter, which can affect meat quality. Furthermore,
transportation (including loading and unloading of animals on and from vehi-
cles), can cause notable injury [7]. Stressful events, such as animals tripping
over and stepping on each other, are common during unloading, and can cause
visible injuries such as bruises and scratches, which can affect the meat quality.
After unloading, pigs that are unfamiliar with each other may start fighting,
causing additional psychological or physical stress.

In some industrial slaughterhouses, an average of 62,000 pigs are handled every
week. Tracking and ensuring a stress-free environment for such a large number
of animals using only human labor is difficult. Visual surveillance is very useful
in automating labor-intensive tasks and conducting detailed behavior monitor-
ing. A. R. Frost et al. (1997) [8] suggest creating an integrative system, in which
information about animals is collected in various ways to ensure animal welfare.
In this thesis, a methodology for pig behavior analysis in slaughterhouses is
presented, which can be used to create such an integrative system.

1.2 Project aim

The research presented in this thesis focuses on monitoring pigs in a slaughter-
house. The aim of this thesis is to provide a tool that can help ensure animal
welfare by detecting undesirable events, (referred to in this thesis as events)
such as animals tripping over and stepping on each other. Such events most
commonly occur when animals are unloaded from transportation vehicles at a
slaughterhouse. In this study, animal unloading was recorded using a GoPro
HERO2 ( c©2013 Woodman Labs, Inc.) camera, generating the data set unload-
ing. Two additional data sets were used for pig movement analysis: entrance,
recorded using the same camera, and thermal, recorded using a thermal camera.

Several methodological hurdles had to be overcome to achieve the aims of this
thesis. The first hurdle was related to monitoring a herd in an unconstrained
environment. Several publications (as reviewed in the subsequent sections of
this thesis) discuss tracking and monitoring individual animals, but in a con-
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strained environment. The second hurdle concerned frame distortions due to
the camera position. The third hurdle pertained to the general surveillance
framework. It is common to use discrete classification in detecting abnormal
behavior. However, as will be explained later, motion is continuous. To over-
come these challenges, methodologies of image analysis, multivariate statistics,
and statistical process control were combined. The solution allowed continuous
monitoring of animals using video recordings in a binary classification problem
where multiple variables must be analyzed.

1.3 Contributions

This thesis combines three academic disciplines: computer vision, multivariate
statistics, and statistical process control. Some of the methods and principles
used in this thesis are well known, though to the best of our knowledge, have
not previously been used in conjunction with other disciplines in the context
presented here. For example, the final crowd behavior classification is achieved
using principles of statistical process control, where continuous decision values
of support vector machines are used in conjunction with a cumulative sum chart.
Other methods such as lens correction and modified angular histograms are pro-
posed in this thesis. Since the main application aims to provide a procedure for
the detection of undesirable animal behavior, it is expected that it will be of
greatest interest for practitioners from agriculture and animal husbandry. Aca-
demics and computer vision specialists may also be interested in the proposed
ideas and methods of statistical process control in decision-making.

1.4 Data

This project uses three data sets. The first data set includes grayscale thermal
videos and is named thermal data set. The second and third data sets include
color videos recorded at the same slaughterhouse. The first color data set was
recorded while pigs were unloaded at the slaughterhouse and is named unloading
data set. The second color data set was recorded after unloading, when the pigs
had just entered the slaughterhouse, thus this data set is named entrance data
set. In the following subsections, more details of the three data sets are given.
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1.4.1 Thermal data set

Originally, the thermal data set was recorded for a pig counting project. Some
pre-processing was performed during the original project to remove noise created
by dirt and markings on the pigs. The sample frame is presented in Figure 1.1.

Figure 1.1: Example of the thermal data set.

In the video, the pigs move from left to right in a corridor. The camera view
encompasses the entire width of the surveyed corridor. This data set was consid-
ered the starting point for this thesis. The initial expectation was that the use
of thermal videos would allow the easy identification of pigs in a frame because
pigs are much lighter in color than the background. However, since thermal
cameras are restrictively expensive, this idea was not considered further.

1.4.2 Unloading data set

The general slaughterhouse entrance plan for the surveyed area is presented in
Figure 1.2. "Camera 1" was used to record the unloading process. The camera
was located above the entrance, pointing towards a truck. This camera position
resulted in foreshortening distortion, where pigs further away from the camera
appeared smaller than those closer to the camera. This video recording was also
subject to lens distortion, where objects closer to the optical axis of the camera
appear magnified. A detailed description of lens and foreshortening distortions
can be found in 2.3. A sample frame from the unloading data set is presented
in Figure 1.3.

The pigs in the truck were divided into pens, with approximately 20 pigs in each
pen. In the video, the unloading of one pen is referred to as a "clip," and the part
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Figure 1.2: Slaughterhouse plan of the surveyed areas. Green dots represent
camera positions.

Figure 1.3: Example of the unloading data set.

of the clip that is annotated is named "section". During transportation, pigs
are sedentary and are therefore slow and unwilling to move during unloading.
The personnel use specially designed sticks that make sounds to expedite the
unloading. Some pigs can start moving too fast, resulting in events such as
tripping over or stepping on each other. The unloading data set is used to
analyze events in Papers C and D.
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1.4.3 Entrance data set

"Camera 2" in Figure 1.2 was used to record the entrance data set. The camera
was positioned perpendicular to the surveyed area, thus only lens distortion was
present in the videos. A sample frame from the entrance data set is presented
in Figure 1.4. Very few undesirable events were present in this data set. When
pigs are encouraged to move, they will move from bottom to top of a frame.
If they are not encouraged to move in a certain way, they will make random
movements, lie down, or interact with each other. This data set is mainly used
to understand the pigs’ movement; the results are presented in Paper B.

Figure 1.4: Example of the entrance data set.

1.5 About this thesis

This thesis combines three main areas of statistics: Image Analysis (IA),Multivariate
Statistics (MS), and Statistical Process Control (SPC). Readers are not ex-
pected to be familiar with all areas and therefore a brief introduction to each
topic is presented in Chapters 2, 3, 4, and 5. A literature review and references
are provided for further in-depth self-study. These introductions can be read
in any order or can be disregarded if the reader is familiar with the topic. The
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remainder of the thesis will introduce new concepts and merge the three method-
ological areas; this material should be read in chronological order. Chapter 6
presents a proposed framework for monitoring pigs’ behavior and the methods
for each step. The methods are presented in the same order that they are used
in the proposed monitoring approach. The results are presented in Chapter 7,
and a discussion is presented in Chapter 8, followed by a conclusion.
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Chapter 2

Motion estimation and
object detection

As mentioned in Chapter 1, several steps are involved in monitoring animal be-
havior in video recordings. An overview of the image analysis steps is presented
in this chapter.

2.1 Optical Flow

Motion of objects in video recordings can be captured using two main ap-
proaches: (1) by identifying an object in each frame and track the coordinates
throughtout the recording; or (2) using Optical Flow (OF) ([9, pp. 239-258],[10,
pp. 5-34]), which estimates the relative motion for every pixel in a frame. The
second approach is used in this thesis because it is the most popular choice in
the literature on crowd monitoring. Additional reasons behind its use will be
discussed later in this chapter.

OF estimation has attracted a lot attention since the concept was first pub-
lished in [11]. Several methods for OF estimation have been proposed in the
literature, which are based on either gradient, phase correlation, and spatio-
temporal energy and others. The most popular methods are gradient based,
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such as Lucas-Kande [12] and Horn-Schunk [13]. The latter is used to estimate
OF in this thesis and is presented further is this chapter.

For the two-dimensional case, the grayscale pixel intensity at location (x, y) and
time t is noted as I(x, y, t). Assume that the intensity of pixel x = (x, y) does
not change over time. The movement of x from time t to time t + 1 is defined
as:

I(a, b, t) = I(x+ u, y + v, t+ 1) (2.1)

where (u, v) represents the components in the OF vector and (a, b) is a new
location of pixel intensity. If the movement is small, the first-order Taylor
approximation can be used:

I(x, y, t) ≈ I(x, y, t) +
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂t
dt (2.2)

Ix, Iy and It denote the partial derivatives. To estimate (u, v), we have to solve:

0 = It + Ixu+ Iyv (2.3)

which does not have a unique solution. The constant intensity assumption is
violated in practice due to changing illumination and the camera noise. One
more complication known as the aperture problem arises when the motion of
un-textured objects is of interest. To overcome these complications smoothness
and regularization constraints are imposed during the estimation process. The
regularization methods are based on (1) features of the image or (2) variations
in the brightness intensities of the pixels. The former estimates motion for
each pixel individually, while the latter considers information about neighboring
pixels and has smoothing properties. This is exactly the Lucas-Kanade and
Horn-Schunk methods, respectively.

Typically the variation regularized methods give better results, thus only the
Horn-Schunk approach will be considered. This method solves the minimization
problem:

min
u(x),v(x)

{∫

Ω

(|∇u(x)|2 + |∇v(x)|2)dΩ + λ

∫

Ω

(It + Ixu(x) + Iyv(x))2dΩ} (2.4)

where Ω is an image area and the vector components of pixel x ∈ R displacement
are defined as u ∈ R and v ∈ R. The first integral in Equation 2.4 is a high-
variation penalty, the second integral is a quadratic constraint, and λ is a weight
parameter.
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2.2 Optical flow filtering

OF is estimated for an entire image; therefore, filtering is employed to identify
only those OF vectors that belong to pigs. One of the most basic approaches
used in practice is based on the assumption that the background does not move;
therefore, thresholding vectors that are too short can be applied. However, set-
ting such thresholds is not possible in the analyzed case because pigs’ movements
can be very diverse. Some pigs might lie down and not move at all, while others
might run. The former behavior causes most of the difficulties. The OF vectors
of stationary pigs will be approximately the same length as other stationary
objects in the frame.

Two other approaches are applied to filter OF in this thesis: (1) blob detection
and (2) background subtraction with blob detection. The former detects regions
with common properties. The latter approach subtracts the image without pigs
from the current image and then identifies blobs in the remaining image. The
background subtraction with blob detection method is often preferred because
it is more robust. Median filtering, hole filling, and object dilation are used to
correct minor errors around and in the detected pigs.

2.2.1 Methodology of blob detection

Blob detection is a useful tool for segmenting images into regions with common
properties. Identified blobs can be used for tracking, texture analysis, object
recognition, and other feature analysis. The most primitive approach is based
on thresholding the pixel color values, but this method is very sensitive to cam-
era and illumination noise. A large number of methods can be used for blob
detection; it is not possible to discuss all of them in this thesis. In this section, a
rough classification of the methods is presented, and the method used for anal-
ysis is presented in greater detail.

Blob detection methods can be classified in two groups based on (1) derivatives
and (2) morphological operations. Hessian and Harris operator-based methods
use second- and first-order derivatives of image intensity functions, respectively.
The Laplace operator and affine shape adaptation are applied to achieve more
robust results.

Methods based on morphological operations use information about the local
maximum (minimum) to identify blobs in a grayscale image. This is achieved
by viewing images as topographic surfaces. The gravitation law indicates that
water on the topographical surface will end up in a basin. By continuing to fill
the surface with water, the watersheds will divide the surface into zones, with
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each containing a basin. This approach is known as watershed transformation
[14, p. 267-292]. Watershed transformation is not suitable for cases in which
plateaus are present on the surface. The alternative approach is based on a
flooding concept. Holes are made in each basin, and the surface is submerged
in water. The water will start filling the basins, and dams are installed where
water in each basin begins to connect. At the end of the process, dams repre-
sent the watersheds, and each watershed is labeled as a separate region. This
flooding approach is implemented in Matlab [15]. The algorithm repeats two
steps until the image is divided into the regions:

1 Select next unlabeled pixel i.

2 Using flood algorithm, label all the pixels in connection to i.

Numerous other methods can be used for blob detection, each of which has dif-
ferent properties. The choice of method usually depends on the complexity of
the images and the available computational time.

2.2.2 Other morphological operations

The theory of morphological operations in computer vision is not just used for
blob detection. It is a powerful tool for image manipulation because it analyzes
the shapes and forms of objects. Three other functions based on morphological
operations are used in this thesis: median filtering, hole filling, and dilation [14,
p. 55, 208, 65-70 ]. Median filtering can be used to remove noise in an image.
This method works by replacing a pixel’s color value with the median color
value of neighboring pixels. A hole in a grayscale image is an area with minimal
quantities that are not at the edge of an image. The hole-filling method removes
areas with minimal quantities. The structuring element must be presented first
to explain the dilation method. A structuring element is a shape (e.g., disk,
diamond, or square) that is used to analyze or modify a given image. If B is
a structuring element and E is a shape in an image that will be dilated, then
shape dilation function is:

δB(E) = {e|Be ∩ E 6= �} (2.5)

In this thesis, the morphological operations described above are used in the pig
identification step in a frame.
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2.2.3 Methodology and literature review of background
subtraction

One way to identify moving objects in a frame is to use background subtraction.
The background of an image is a monitored scene without moving objects, while
the foreground is a frame with only moving objects. All background subtrac-
tion methods have three common steps: (1) establish the background frame;
(2) subtract the background frame from the current frame, and (3) remove the
noise and label the objects. A large number of background subtraction methods
have been proposed in the literature. The choice of method depends on the
overall complexity of the scene and the available computation time. [16] consid-
ers the following challenges when comparing background subtraction methods:
gradual illumination and sudden illumination changes; dynamic backgrounds
(some parts of the background can be of a dynamic nature); camouflage (back-
ground and foreground objects are similar in color); shadows; bootstrapping
(background image is not available without the foreground image); and camera
noise. A comparison of several background subtraction methods based on speed,
memory, and accuracy can be found in [17].

The background subtraction method used in this thesis is based on the HSV
(hue-saturation-value) color system and a bit-wise comparison. In the first step,
images are converted from the RBG to the HSV color system. HSV is a cylin-
drical color representation, in which H represents a color attribute, S represents
the ratio of colorfulness to brightness, and V represents the ratio of brightness
to a similarly illuminated white. [18] suggests that HSV color representation is
a useful tool in eliminating shadows and bright areas in an image. In the second
step, a fast bit-wise comparison XOR is performed between the current frame
and the background frame. The comparison is performed for each element of
the pixel vector. If both elements are 0 or 1, it returns 0; otherwise, it returns
1. The accuracy of the presented background subtraction method is compared
to the blob detection method in Section 7.2.

2.3 Lens and foreshortening distortions

It is common to use a radial lens distortion that allows survey a larger area of
interest. A perspective projection, which creates a foreshortening distortion, is a
less common but possible distortion used to cover a larger area of interest. The
correction of individual distortions is widely discussed in the literature, but the
combination of distortions is not. Little research has been done to evaluate the
effects on estimated motion from distorted videos. [19] combines lens distortion
correction and OF estimation. In practice, if the lens parameters are known,
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correction can be performed.

In pig monitoring cases, both types of distortions are present and neither the
lens parameters nor the camera position is known. Radial lens distortion has
two sub-types: (1) pincushion distortion and (2) barrel distortion. The former
creates an effect in which lines slant inwards although they are straight in real
life. The latter creates an effect in which lines bend outwards. Radial distortion
can be defined as:

xD = x(1 + κD1g
2 + κD2g

4) + 2p1xy + p2(g2 + 2x2)

yD = y(1 + κD1g
2 + κD2g

4) + 2p2xy + p1(g2 + 2y2)
(2.6)

where g =
√

(x− xc)2 + (y − yc)2, xD, yD; and x, y are distorted and undis-
torted image points, respectively; xc, yc distortion center; κD1 and κD2 are lens
distortion coefficients; and p1, p2 are tangential distortion coefficients, which can
be caused when the lens is not perfectly aligned.

An object seen in a 3D-perspective projection can be remapped in 2D using the
following formula:

xD = lx
xsx
kzlx

yD = ly
ysy
kzly

(2.7)

where sx, sy and lx, ly are the size of the frame and the surveilled area, respec-
tively; lz is the distance from the surveilled area to the center of camera; kz is
the distance from the 3D point to the camera center; and x, y is a point in 3D
space.

A new method is proposed in Paper C and Section 6.2 providing a correction
method for combination of lens and foreshortening distortions. The method is
fast and simple to implement. Unfortunately, the application of this method is
narrow because it is common to use more cameras to account for distortion.

2.4 Surveillance

Surveillance has received extensive attention due to its many possible appli-
cations. It is used to ensure public safety at special events, identify people,
manage crowds, and detect abnormalities. In recent years, surveillance has also
been used to ensure animal welfare and detect health-related events. Automated
monitoring is not labor intensive, and it allows people to analyze multiple areas
simultaneously. Also, accurate positions and times of events can be tracked.
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A large number of methods have been developed to accommodate different sit-
uations and events of interest. In this section, an overview of the surveillance
concept is presented. A flowchart of a general framework for visual surveillance
using a single camera is presented in Figure 2.1.

Video

Motion estimation
and object detection

Object classification

Object tracking

Behavior understand-
ing and description Person identification

Figure 2.1: General surveillance framework using a single camera.

Information from several cameras can be combined at any step in the frame-
work. For each step, a large number of methods are proposed. The choice of
method depends on general objectives, surveyed objects, lighting, and camera
position, among other factors. In most cases, the background of the image must
be identified to estimate motion and detect objects of interest. In some cases,
the entire crowd is of interest. In other cases, individual objects are of interest.
Object tracking is one of the most researched areas in surveillance, and it is
highly challenging. The method used must be able to handle occlusions and
interacting objects [20]. The patterns of moving objects can be used to design
public places, ensure safety, and track persons of interest. An in-depth overview
of available methods can be found in [21, 22, 23].

One special use for surveillance is in crowd monitoring. Large, dense crowds
are common at music events, protests, and religious gatherings. The are two
approaches to analyze motion that are based on: (1) non computer vision and
(2) computer vision methods. The approach that is not based on computer
vision uses principles of psychology and sociology. It often includes other in-
formation that is not directly available in images, such as planning of an area,
prior knowledge of human interactions, and group behavior. A computer vi-
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sion approach extracts features that are sometimes modeled and then used for
classification. The three most-used features, for dense crowd analysis, are (1)
density, (2) speed, and (3) location. Individual people are rarely identified and
tracked in dense crowds due to complications in separating objects and prob-
lems that arise when objects occlude or interact. In the review paper [24] it
is stated that individual object-tracking techniques are only reasonable for up
to ten people. In this thesis, computer vision methods are applied because no
social and psychological studies have been conducted on the movement of pig
herds. The most common technique for estimating motion in computer vision
approach is based on OF. The framework is presented in Figure 2.2.

Video

Feature extraction

Event/behavior
modeling

Classification

End of video

Figure 2.2: Dense crowd monitoring flowchart.

In computer vision approach it is common directly threshold ([25, 26, 27, 28])
features ([29, 30, 27, 28, 31]). The hidden Markov model ([25, 32]), social force
model [33], social entropy measure [34], or a mixture of dynamic textures [26]
are also used to model a crowd. The most commonly used classification methods
are the Support Vector Machines (SVM) ([34, 29, 30]), K-mean [33], and neural
network [31] methods.

Animal behavior monitoring is used mainly in two areas: laboratories and indus-
trial farms. The aim of animal monitoring in laboratories is to track individual
animals and measure the length and frequency of their activity. To ensure that
animals are not disturbed by surroundings, the environment is highly controlled,
and non-intrusive marking is used. In laboratories, mainly rats [35, 36], mon-
keys [37], and fish [38] are monitored. In some cases, insects [39, 40] and bats
[41] are also monitored.

Livestock behavior monitoring is receiving more attention because it can be
used to ensure animal welfare [8]. As in laboratory animal monitoring, the most
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common aim is to identify, track, and sometimes categorize behavior. Preg-
nant cows’ locomotion and posture were monitored in [42]. [43, 44] correlated
low-level statistical measures to chicken welfare. Pig tracking and monitoring
in pens have attracted extensive attention. Pigs in each image can be identi-
fied using markers [45], features [46] or applying shape matching technique [47].
Monitoring pigs using trackers is the most stable approach. [46] successfully
tracked three pigs for eight minutes in a constrained area using features extrac-
tion method.

Multiple methods have been proposed for monitoring animal and human behav-
iors. Choosing the most optimal method depends on several factors, including
the objective, monitored the environment, objects and their densities, and visi-
bility.
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Chapter 3

Multivariate Statistics

In this section, two multivariate statistical methods for behavior classification
are discussed: Principal Component Analysis (PCA) and SVM. Both methods
work well with correlated and high-dimensional data. PCA has already been
used in monitoring processes and SVM has been used for a large variety of data
classification problems, including in behavior analysis studies. In addition, the
Locally Scatterplot Smoothing (LOESS) is presented, which is used for smoothing
noisy observations.

3.1 Principal component analysis

PCA [48] is a statistical method that maps correlated data into another space
where the data is uncorrelated. An orthogonal linear transformation is em-
ployed, and a new coordinate system is built such that the first axis in the
transformed space is the linear projection of the greatest data variance and the
second axis is the second greatest variance, etc. The new axes are named the
principal components. The transformation of the data matrix X is defined as:

T = XW (3.1)

where W is the weights or loadings and T is the principal component scores.The
number of principal components is usually chosen using a threshold of the ac-
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cumulated variance explained by the components.

PCA is commonly used as a primary tool in the investigatory analysis of data to
highlight patterns and reduce dimensions. Sometimes more advanced methods
are built based on PCA. In image analysis, PCA is used in face recognition
[49, 50], feature extraction for crowd monitoring [51], and trajectory segmenta-
tion [52]. PCA is also applied to monitor the quality of manufacturing processes
where multiple variables are monitored [53, 54].

In this thesis, PCA is used to monitor the movement of pigs in the thermal data
set. The results of the analysis are presented in Paper A and Section 7.1.

3.2 Support Vector Machines

SVM [55, pp. 417-458] is a supervised classification method that maps data
into a higher dimensional space where the classes can be separated using hyper-
planes. SVM can be adapted for regression problems as well, but it will not be
discussed further here because the problem analyzed in this thesis is classifica-
tion.

Let a training data set be defined as (x1, y1), (x2, y2), ..., (xN , yN ) where xi ∈ IR
and yi ∈ −1, 1. The hyper-plane separating the two classes is defined by:

{x : f(x) = xTβ + β0 = 0} (3.2)

where ‖β‖ = 1. The classification is performed by:

G(x) = sign(xTβ + β0) (3.3)

G(x) is the signum function of the distance from x to the hyper-plane. In
this thesis, f(x) is referred as Classification Decision Value (CDV). If the
classes are perfectly separable then f(x) can be defined such that yi · f(xi) >
0 ∀i; therefore, the data is separated with the largest margin. The SVM
is an optimization problem where the margin 1

‖β‖ between the two classes is
maximized. The optimization problem for non-overlapping classes is:

arg min
β,β0

‖β‖
subject to yi(xTi β+β0) ≥ 1, i = 1, ..., N

(3.4)

Normally the two classes cannot be perfectly sepereated and the above opti-
mization will not be enough. Let ξi be a slack variable that defines the degree
of misclassification of data point xi:

yi(x
T
i β + β0) ≥ 1− ξi (3.5)
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The optimization problem is then a trade-off between a large margin and a small
misclassification:

arg min
β,β0

‖β‖ subject to
{
yi(x

T
i β + β0) ≥ 1− ξi,∀i

ξi ≥ 0,
∑
ξi ≤ C (3.6)

where C is a constant.

When the data cannot be separated directly using a linear hyper-plane then more
complicated separation functions must be used. The nonlinear classification is
achieved by using kernel functions to map the data into another feature space
where the linear hyper-plane will separate the classes. The following kernel
functions have been used in the literature:

dth Degree polynomial: K(x,x′) = (1 + 〈x,x′〉)d

Radial basis: K(x,x′) = exp(−γ‖x− x′‖2)

Neural network: K(x,x′) = tanh(κ1〈x,x′〉+ κ2)

(3.7)

To identify the best kernel function and parameters cross-validation is the most
commonly used method. Some benefits of the SVM classification method include
the following:

• Classes are separated with the largest margin.

• Linear and non-linear separation functions can be employed.

• The method can deal with correlated variables.

• The method is used for outlier and novelty detection.

One drawback of the SVM method is that it can only solve binary classification
problems. This drawback is overcome by splitting multi-class problems into
multiple binary problems. Another drawback of this method is that the struc-
ture of SVM cannot be interpreted.

SVM is applied in many areas. In computer vision, the method is used for
human action recognition [56], face recognition [57, 58], gene analysis [59], and
crowd density estimations [60]. In this thesis, SVM is used for pig behavior
classification. The results are discussed in Papers B, C, D and Chapter 7.

3.3 Locally weighted scatterplot smoothing

Locally Weighted Scatterplot Smoothing (LOWESS) or LOESS ([55, p. 191-198],
[61, p. 309 - 376]) is a non-parametric regression method used to smoothing scat-
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terplots. A linear or non-linear least square regression model fit fitted locally
to a subset of the data. The fitted functions over this local subset is a polyno-
mial of degree up to 2. In addition, the weights can be chosen to include the
data from the local subset with different proportions. The LOWESS solves the
optimization problem at each point x0:

max
α(x0),βj(x0),j=1,...,d

N∑

i=1

Kλ(x0, xi)


yi − β0(x0)−

d∑

j=1

βj(x0)xji




2

(3.8)

where Kλ(x0, xi) is a weight function, (x0; y0) data point from the local subset
and β0(x0) +

∑d
j=1 βj(x0)xji polynomial of order d.

The use of LOESS gives advantage of not having a single model for the entire
data. It is useful, when a single model approach does not provide smoothing
due to local dynamics of in the data.



Chapter 4

Statistical process control

SPC is widely used to control and improve the quality of processes by variance
reduction and specific cause elimination. This is usually achieved through a
so-called control chart. The process monitoring is done in two phases: phase I
refers to a chart estimation state using historical data, and phase II is an online
monitoring state.

The main approach to cluster SPC control charts is based on the monitored char-
acteristics’ type and quantity as well as expected shifts in the process. Common
characteristics in the manufacturing process, such as temperature, pressure, di-
ameter, and weight, are usually expressed numerically on a continuous scale.
However, some characteristics are only expressed in two classes: conforming or
non-conforming. Such characteristics are known as attributes and the charts
atribute control charts. In some cases, processes are complex, and multiple
characteristics are monitored. Univariate control charts are used when one
characteristic is monitored. If several characteristics are monitored, the charts
are known as multivariate control charts.

A certain amount of variability is always present in all stable processes. If a
process is operating only under natural variability, which is known as variation
due to chance causes, then the process is said to be in-control. Variability that
is not natural to the process is generated by assignable causes. A process is
said to be in an out-of-control state when assignable causes are present in the
process.
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4.1 Chart establishment

Typically, a control chart consists of: (1) Centet line, (2) Lower Control Limit
(LCL), and (3) Upper Control Limit (UCL). The center line represents an
average in-control value of quality characteristics. The LCL and UCL are the
bounds around the center line indicating acceptable levels of variability. A
strong connection exists between control limits and statistical hypothesis testing.
Choosing control limits corresponds to choosing a critical region in hypothesis
testing. The general framework of a control chart is as follows:

UCL = µw + Lclσw

Center line = µw

LCL = µw − Lclσw
(4.1)

where µw is the mean value of a quality characteristic, σw is the standard de-
viation of a characteristic, and Lcl is the distance from the center line to the
control limits.

As mentioned in the introduction to this chapter, there are two phases in for
process monitoring. In phase I, historical data that is believed to be in control is
collected. It is assumed that data is in-of-control in phase I to ensure that only
in-control data is included in chart estimation for phase II. Any out-of-control
points detected in phase I control chart are investigated and removed if neces-
sary. After the data is cleaned and additional data is collected if necessary, the
final control limits are established for online monitoring.

Two types of errors are associated with determining whether processes are in-
control or out-of-control. A type I error is made when a process is declared
out-of-control, when it is actually in-control. A type II error is made when a
process is declared in-control, when it is actually out-of-control. In some cases,
the probability of a type II error is analyzed for different charts to indicate the
size of the shift that the chart can detect.

The charts performance are commonly compared usingAverage run-length (ARL).
The ARL0 for in-control state is defined:

ARL0 =
1

p
(4.2)

where p is the type I error. If the type I error is fixed during in phase I, then
ARL0 of two charts can be compared during phase II. The average run-length
for out-of-control state ARL1 is defined as:

ARL1 =
1

1− ψ (4.3)
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where ψ is a probability of not detecting a shift on the first subsequent sample.
For a good control chart it is expected, that the in-control ARL0 is as large as
possible while out-of-control ARL1 as small as possible.

The principles of SPC are used to detect abnormal behaviors and locate abnor-
mally moving pigs in a frame. The results are published in Papers A, B, D and
chapter 7.

4.2 Univariate control chart

In most cases, the available data for monitored processes is continuous, and
only one characteristic is available. A large variety of charts has been proposed
for monitoring continuous processes. The majority of charts are built based on
normality and independence assumptions. Appropriate charts are chosen based
on the sample size and expected shift size. An overview of the charts is presented
in Figure 4.1.

Sample size

Shift size Shift size

Chart types:
1. x̄, R
2. x̄, S

Chart types:
1. CUSUM
2. EWMA

Chart types:
1. Individual x̄
charts.

Chart types:
1. CUSUM
2. EWMA

n > 1 n = 1

Large Small Large Small

Figure 4.1: Flowchart for selecting the appropriate control chart for continu-
ous characteristic monitoring.

Often it is not possible to inspect every produced object because the tests are
either too time-consuming, expensive or destructive. In such cases, sampling is
employed. The most commonly used chart for monitoring a sample mean is the
x̄ chart. x̄ is used for smaller sample sizes, and it measures the average range
of a sample. The x̄ control chart for phase I is:

UCL = ¯̄x+A2R̄

Center line = ¯̄x

LCL = ¯̄x+A2R̄

(4.4)
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where the ¯̄x is the mean of the sample means; R̄ is the mean of the sample
ranges; and A2 is a factor for control limits (the values can be found in [62, p.
700]). In most cases, x̄ is used in conjunction with the R̄ or s̄ charts to obtain
a better overview of the process. The R̄ chart is:

UCL = D4R̄

Center line = R̄

LCL = D3R̄

(4.5)

where D3 and D4 are factors for control limits. The s̄ chart is:

UCL = B4s̄

Center line = s̄

LCL = B3s̄

(4.6)

where B3 and B4 are factors for control limits and s̄ is the average of sample
standard deviations. Special adaptations of the chart are available to monitor
varying sample sizes.

In some cases, the sample size is n = 1; therefore, individual measurements
are available. In such cases, Shewhart control charts are applied, which are
defined in Equation 4.1. If data is normally distributed, the moving range
of two successive observations is used to estimate the process variability. The
Shewhart chart for individuals is sensitive to violations of normality assumption.
If normality is violated, the control limits should be derived according to the
distribution or charts such as Exponential Weighted Moving Average (EWMA),
which is less sensitive to normality assumption violations. The EWMA control
chart, which are defined in Equation 4.7, is useful to detect small shifts and can
handle auto-correlation.

UCL = µ0 + Lclσ

√
λ

2− λ (1− (1− λ)2i)

Center line = µ0

LCL = µ0 − Lclσ
√

λ

2− λ (1− (1− λ)2i)

(4.7)

where Lcl is the factor of control limit width, 0 < λ ≤ 1 is the smoothing
parameter, and µ0 is equal to the initial EWMA value i = 0:

EWMAi = λzi + (1− λ)EWMAi−1 (4.8)

The last chart mentioned in Figure 4.1 is the Cumulative Sum (CUSUM) chart.
Several versions of the CUSUM chart are available, but the general framework
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is:

C+
i−1 = max[0, zi − (M +K) + C+

i−1]

C−i−1 = max[0, (M +K)− zi + C−i−1]
(4.9)

where C+
i−1 and C−i−1 are the plotted statistics, M is the target value of zi,

and K is called "slack". When the values C+
i−1 and C−i−1 exceed the predefined

threshold H, the process is declared out-of-control. This chart is very useful for
including the past history of the process in the decision making. The CUSUM
chart accumulates deviations from the mean, and the chart signals when the
accumulated values reach the predefined value.

The CUSUM chart is used to monitor pig behavior; the results are published in
Paper D and chapter 7.

4.3 Attribute monitoring

Several charts can be used for attribute monitoring. The choice of the chart
is based on two criteria: (1) whether the fraction of nonconforming units is
analyzed or the count of nonconforming units and (2) the size of the expected
shift. An overview of the attribute charts is presented in Figure 4.2.

Data type

Shift size Shift size

Chart types:
1. p
2. np

Chart using p:
1. CUSUM
2. EWMA

Chart types:
1. c
2. u

Chart using p:
1. CUSUM
2. EWMA
3. RL

Fraction Counts of defects

Large Small Large Small

Figure 4.2: Flowchart for selecting the appropriate control chart for attribu-
tive characteristic monitoring.

The most basic attribute chart is known as the p-chart which measures the
fraction of nonconforming units in a sample. The underlying distribution of
this chart is Binomial. If the units in a sample are independent and n units are
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included in the sample, D nonconforming units are expected in the sample. D
follows a Binomial distribution. The sample nonconforming fraction is estimated
as follows:

p̂ =
D

n
(4.10)

To establish the chart, m good process samples must be collected, where m is
at least 20 ≤ m ≤ 25. Three standard deviation control limits for the p-chart
are:

UCL = p̄+ 3

√
p̄(1− p̄)

n

Center line = p̄ =

∑m
i=1Di

mn

LCL = p̄− 3

√
p̄(1− p̄)

n

(4.11)

The sample size must be considered carefully because it can affect the false
alarm rate. Usually, large sample sizes are required for small p̄ values. One
technique used to choose the sample size is based on the desired shift size ∆
that should be detected quickly:

n ≥
(
Lcl
∆

)2

p̄(1− p̄) (4.12)

The p-chart can be modified to accommodate the varying sample size.

In some cases, the actual number of nonconforming units in a sample is easier
to interpret than the fraction. To monitor the count of nonconforming units,
the np-chart is employed. If the size of the sample n is constant, the control
chart is defined as:

UCL = np̄+ 3
√
np̄(1− p̄)

Center line = np̄

LCL = np̄− 3
√
np̄(1− p̄)

(4.13)

More than one defect is often possible in a unit. A unit is declared as noncon-
forming if the unit has at least one defect (nonconformity). A chart showing the
total number of nonconformities in a unit or the average number of nonconfor-
mities per unit can be applied. These charts are known as c-chart and u-chart,
respectively. These charts are based on the Poisson distribution:

p(z) =
e−czc

!z
(4.14)

where z is the number of nonconformities. The mean and variance of the Poisson
distribution is a parameter c > 0, so the c-chart control chart for the total
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number of nonconformities is:

UCL = c̄+ 2
√
c̄

Center line = c̄ =

∑m
i=1

∑n
j=1 xij

m

LCL = c̄− 2
√
c̄

(4.15)

The u-chart is used when the number of inspected units per sample varies.

UCL = ū+ 2
√
ū

Center line = ū =

∑m
i=1

∑n
j=1 xij

mn

LCL = ū− 2
√
ū

(4.16)

As shown in Figure 4.2, the charts described above are most suitable for de-
tecting shifts larger than 1.5σ. Extensions exists to the p-chart, c-chart, and
u-chart to detect smaller shifts than 1.5σ in a process. These extensions are
based on the EWMA and CUSUM control charts presented in Section 4.2.

An alternative approach to monitor an attribute process is to use Run-Length
(RL) between two nonconforming units. [63] presents a RL-CUSUM chart when
the time between events follows an exponential distribution. [64] presents RL-
CUSUM and RL-Shewhart charts to find the sum of two recent RLs.

All the methods described above assume that the samples are independent. In
some cases, this assumption is violated, and using standard methods increases
the false alarm rate. Several attempts have been made to develop control charts
for correlated attributes. [65] derives more suitable control limits for the RL
chart for the sum of two recent RLs charts. [66, 67] suggest using a two-state
Markov chain to construct an attribute control chart.

The attribute control charts presented in this section are not employed in this
thesis. It is, however, necessary to be familiar with the principles of attribute
control charts to understand the choices of some methods in this thesis.

4.4 Auto-correlated quality characteristics

The common assumptions for control charts are that the process follows normal
distribution N(µ, σ) and samples are independent. Some control charts can
tolerate violations of normality to a certain degree but not the violation of
the independence assumption. The violation of independence usually results in
increased numbers of false alarms. Two main approaches are available to deal
with an auto-correlated process: (1) model-based and (2) model-free.
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The time-series models are the most common way to deal with serial correlations
in a process. A process can be modeled using a Autoregressive Moving Average
(ARMA) model. The ARMA(p, q) of the auto-regressive order p and moving
average order q is:

zt = εt +

p∑

i=1

φizt−i −
q∑

j=1

θjεt−j (4.17)

where εt is white noise, φi are the coefficients of the auto-regressive part, and θj
are the coefficients of the moving average part. The ARMA model is validated
by analyzing the residuals. Equation 4.17 is used to predict the process charac-
teristic z at time t. Denote ẑt as the one-step prediction of a characteristic at
time t. The error between the predicted and observed characteristics at time t
is:

et = zt − ẑt (4.18)

The one-step prediction error is monitored using the standard univariate control
charts described in Section 4.2. The residuals should be normal and indepen-
dently distributed with mean zero and constant variance. EWMA can also be
used to monitor an auto-correlated process.

The model-free approach is based on un-weighted batch average control charts.
Auto-correlated observations are divided into batches, and the average of each
batch is used for monitoring. The most important step in this approach is de-
termining the batch size. In general, the batch size must be large enough to
decrease the auto-correlation between the batch averages to acceptable levels.
The batch averages are monitored using the univariate control charts described
in Section 4.2.

The data analyzed in this thesis is highly auto-correlated. The results of the
monitored auto-correlated data are presented in Paper D and chapter 7.

4.5 Multivariate control charts

Some processes are complicated and defined by multiple characteristics. Moni-
toring each characteristic using individual charts is not optimal because it de-
mands a lot of attention. In addition, in some cases, only combined charac-
teristics indicate an out-of-control process, while individual characteristics do
not due to potential correlation among these characteristics. To deal with such
situations, a group of charts known as multivariate control charts [68] have been
developed. The classical approaches (Hotelling T 2 control chart and χ2 control
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chart) defined in equations 4.19 and 4.20, respectively, are commonly used.

T 2 = n(x̄− ¯̄x)′S−1(x̄− ¯̄x)

UCL =
w(m− 1)(n− 1)

mn−m− w + 1
Fα,w,mn−m−w+1

(4.19)

where S is the estimated covariance matrix, ¯̄x is a vector of in-control charac-
teristic average values, n is the sample size, w is the number of quality charac-
teristics, and m is the number of subgroups.

χ2 = n(x̄− µ)′
∑−1

(x̄− µ)

UCL = χ2
α,w

(4.20)

where
∑

is the known covariance matrix and µ is a vector of the mean values
of the in-control characteristics. The LCL for both charts is equal to 0. The
difference between these charts is that the χ2 control chart is used when the
covariance matrix and means are known for a process, and the Hotelling T 2

control chart is used when they are estimated from a process. For this reason,
the Hotelling T 2 control chart has different control limits for phase II than
those presented in Equation 4.19. In summary, these charts combine multiple
characteristics to declare an out-of-control state. When the process is declared
out-of-control, individual charts can be analyzed to detect the possible cause.

Other approaches are e.g. a multivariate EWMA control chart, regression ad-
justment, and multiway PCA for batch monitoring [53, 69, 70]. Only the latter
will be presented because it is the only one used in this thesis. The multivariate
batch process data is three-dimensional; J characteristics are observed over time
K and L batches are recorded. JxK data is collected for each batch, resulting
in a 3D data array X(LxJxK). [53] suggests unfolding this data into 2D and
apply an ordinary PCA. This unfolding is performed such that vertical slices
LxJ are stacked next to each other, resulting in a transformed data matrix
Xtrans(LxJK). The unfolding process is presented in Figure 4.3. The PCA is

Figure 4.3: Unfolding data matrix

used on the transformed data. Typically only a few principle components will
be needed to explain the majority of the process variation. Three charts are
monitored to fully understand the process:
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1 a sum of the square of residuals (SSE) of individual batches

SSEi =

K∑

k=1

J∑

j=1

ε(i, kj)2 (4.21)

2 elliptical contours in the joint chart of the first two principal components.
The center coordinates of the contours are (0, 0) and their axis length in
the direction of rth principal component in phase I are:

±S(r, r)B1,L−2−1
2 ,α

√
(L− 1)2

L
(4.22)

3 the Hotelling statistics T 2:

T 2 = t′QS
−1tQ

L

(L− 1)2
∼ BR

2 ,
L−R−1

2 ,α (4.23)

where tk is the score of the kth principle component, Q is the number of
principal components used for the analysis, L is the number of historical
in-control batches, R retained number of pricipal components, and B is
beta distribution.

The analyzed process in this thesis is multivariate. PCA-based control charts
are used in Paper A. CUSUM chart is used for motingoring SVM CDV and
results are presented in Paper D and chapter 7.



Chapter 5

Markov chains

A Markov Chains (MC) are a sequence of random variables which transitions
from one state to another in a finite state space. The transition to the next
state only depends on the current state. Only MC is introduced here and an
extended discussion of both MC can be found in [71].

A sequence of discrete random variables {zt : t ∈ N} is a MC if it satisfies
property:

Pr(zt+1|zt, ..., z1) = Pr(zt+1|zt) (5.1)

Equation 5.1 means the next random variable is conditioned only on the most
recent variable. The most important characteristic of MC is the transition
probabilities:

ϑij(t) = Pr(zs+t = j|zs = i) (5.2)

Equation 5.2 is called the homogeneous probabilities, which means the transition
probability does not depend on time. Γ(t) is a transition matrix ϑij(t) is the
probability of a process to move from state i to j. The transition matrix has
the following properties:

• The row of transition probabilities sums to 1.
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• The rth transition of the transition probabilities is defined using the Chapman-
Kolomogorov equation for conditional probabilities:

Γ(t+ r) = Γ(t)Γ(r) (5.3)

• The transition of unconditional probabilities is:

r(t+ 1) = r(t)Γ (5.4)

• The Markov chain is stationary if it has a stationary distribution τ , which
satisfies

τΓ = τ

τ1′ = 1
(5.5)

• The MC is said to be reversible if:

τiϑij = τjϑji (5.6)

• If it is possible to reach all states from all states in the process, then Γ is
said to be irreducible.

• If a m state MC {zt} is stationary and irreducible, the auto-correlation
function for lag k is:

ρ(k) = Corr(zt, zt+k) =

∑m
i=2 gihiw

k
i∑m

i=2 gihi
(5.7)

where wi are eigenvalues and can be estimated using the eigendecomposi-
tion.

The transition probability matrix is estimated element by element:

ϑi,j =
fi,j∑
fi,·

(5.8)

where fi,j is the number of transitions from state i to state j and i, j = 1, ...,m.
It can be shown that Equation 5.8 is the maximum likelihood estimation of Γ
conditioned on the first observation.

Markov chains have previously been used for auto-correlated attribute monitor-
ing [72, 66]. The Markov chain is also used in behavior classification problems
[32, 32]. I propose to use MC for assignable cause identification. The results
are presented in Sections 6.7 and 7.8.



Chapter 6

The use of image analysis
for statistical process

control

This chapter presents the proposed framework for ensuring the welfare of pigs
at a slaughterhouse using video surveillance. The overall real-time monitoring
scheme is presented in Section 6.1. The individual steps and the method training
are discussed in the following sections of this chapter.

6.1 Methodology scheme

It is common to use video surveillance to ensure public safety and well-being.
The general framework for surveillance and object tracking is presented in sec-
tion 2.4. Pigs are commonly tracked using either markers, extracted features or
shape matching, and are usually in a constrained environment, e.g. pens. The
tracking approach is not suitable for the present thesis. Tracking a large number
of pigs, which are able to leave and re-enter the surveyed area using extracted
features can be computationally expensive. Individually marking pigs is the
most efficient method for tracking, yet this is not possible in slaughterhouses
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due to the large number of pigs. The shape-matching method can become inef-
fective when dealing with large numbers of pigs as the outlines disappear if pigs
are in close proximity. [46] first proposed the method for monitoring pigs with-
out using markers or features, though pigs are in a constrained environment.
Monitoring individual humans in large dynamic crowds without special markers
or trackers is rarely attempted when subjects can leave and re-enter the sur-
veyed area. The OF is the preferred approach for monitoring crowd movement
in such cases. Large crowds are common at public events, where humans move
in an unconstrained environment. Most commonly, the entire crowd movement
is analyzed to detect abnormal behavior without identification of individuals.
In this thesis, the pig herd is monitored using the human crowd approach, as
individual pigs are difficult to identify due to their similarities and density. In
general, human crowd monitoring involves the following steps: motion estima-
tion, object identification, feature extraction, event modeling and classification.
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Figure 6.1: The illustration of discrete and continuous SVM. The grey points
are CDV, the black line is smoothed CVD, the red dash rectan-
gle indicates an event, the green background indicates in-control
events based on discrete SVM and the red background indicates
out-of-control events.
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A detailed description of OF, which is used for motion estimation, is presented
in section 2.1. There are multiple methods suggested in the literature for object
identification in a frame. The literature review of object identification is pre-
sented in section 2.2. The choice of method is usually dependent upon the visual
properties of the surveyed objects, background illumination and other factors.
There are multiple feature extraction methods proposed in the literature, and
the overview is presented in section 2.4. There are vast differences between the
body shape and movement of pigs and humans. In this thesis, the Modified An-
gular Histogram (MAH) was used to summarize the pig herd movement. The
difference between pig and human movement is discussed in section 6.3. Event
modeling and classification is performed in the final surveillance step. In some
cases, features are directly used for classification. An overview of possible meth-
ods for human crowd modeling and classification is presented in section 2.4. In
this thesis, the method used for classification of the features is SVM (see sec-
tion 3.2), which is commonly used for dense crowd monitoring and can handle
correlation between the variables.

Motion is continuous, where one event merges into another event over time. In
most cases, the continuation of the motion is disregarded when using standard
computer vision methods for surveillance. In this thesis, the continuous classifi-
cation values together with the principles of SPC are used in decision making to
accommodate the continuity of motion. The majority of classification methods
make a final decision based on probabilities, scores or other continuous values.
Figure 6.1 illustrates the SVM decision-making process. The grey points are
SVM CDV that gradually drift from one state to another and are highly auto-
correlated. In a standard discrete approach, if an event is detected then CDV
are above or below 0. Utilizing the continuity and auto-correlation of CDV
can result in earlier detection of events and a decrease in misclassification. A
smoothing method is applied to reduce noise that can result in misclassification.
The principles of SPC are employed to make a final decision based on a CDV
that allows early event detection and a further decrease in misclassification. The
performance comparison using discrete and continuous SVM is presented in sec-
tion 7.7. The proposed real-time monitoring framework is presented in Figure
6.2.
In an analyzed case, declaring an event is not sufficient; it is also important to
locate the event in a large area. In this thesis, the location of the undesirable
event in a surveyed area based on principles of SPC and MAH is presented. The
detailed procedure is presented in section 6.6.
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Figure 6.2: Flowchart for monitoring the behavior of pigs in a slaughterhouse.
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6.2 Methodology for lens and foreshortening dis-
tortions correction

The first two steps in surveillance are motion estimation and object detection.
In this thesis, OF is employed to capture the motion of the pigs, and the back-
ground subtraction, together with blob detection are used to identify pigs in a
frame. An additional step must be added to the procedure, as two distortions:
radial lens and foreshortening, are present in the videos. This thesis contributes
a proposed procedure for the simultaneous correction of both distortions. In
most published surveillance cases, only radial lens distortion is present. In such
cases, the image is first corrected and then the motion is estimated. The pro-
posed approach corrects the estimated OF field instead of correcting a frame.
This method requires a large number of moving objects of approximately the
same size to be recorded in a video. The measurements of these objects are used
to build a correctional model. In this thesis, the pigs are all approximately 6
months of age and weigh 100-110kg.

In most cases, the magnitude of distortion depends on the position of an ob-
ject in the surveillance area relative to a camera. For example, in the case of
foreshortening distortion, objects near the camera appear larger. In radial lens
distortion, objects that are closer to the focal point of a camera appear larger.
The correction method proposed in this thesis is based on the assumption that
OF vectors and the size of the objects are distorted proportionately to their
distance to the focal point of the camera. This assumption is illustrated in
Figure 6.3 for foreshortening distortion. It is assumed that objects are moving
at the same speed in the illustration. The smaller the object is, the longer the
OF vectors. Using this relation, the OF vectors are corrected instead of the
image. The correction is achieved by recording the length and width of the
objects, so the measurements are perpendicular to the X and Y coordinate sys-
tem. The measurements are assigned to the bottommost and leftmost points of
an object, respectively. Multiple measurements are taken throughout the entire
frame. The length and width measurements are modeled using a third-order
polynomial which has also been used in [19] for distortion correction:

Z(x, y) =

4∑

j=1

4∑

i=1

βjix
4−jy4−i (6.1)

The results of estimated length and width measurements for entire area of intres
in unloading data set is presented in Figure 6.4. The defined field is used to cor-
rect lens and foreshortening distortions. The length and width Ilw = {ml;mw}
are estimated for every point in the image, before being rescaled to [o; r] using
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Figure 6.3: Illustration of the relation between OF vector lengths and pig
sizes. Black arrows represent OF vectors, green arrows represent
size measurements, and the measurements are assigned to the red
points.

the following formula:

f(z) =
(o− r)(z −min(Ilw))

max(Ilw)−min(Ilw)
+ r

r = 1

o =
max(Ilw)

min(Ilw)

(6.2)
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(b) Pig’s width.

Figure 6.4: The length and width of the pigs over the area of interest (marked
as dots), and the 3rd order model fit used for correction of lens
and foreshortening distortions.

The distortion correction field is used to adjust the OF vectors. This is achieved
by multiplying the real values of the OF vector with the width distortion correc-
tion coefficients and the imaginary value with the length distortion correction
coefficients.

This simple approach can be applied to any type of distortion or combination
of distortions. It is easy to implement the method, though it can only be used
when references are available. The results and validation of the method are
presented in Section 7.3.

6.3 Modified angular histograms

There are many human crowd movement feature extraction methods proposed
in the literature (see section 2.4). None of these address the specific movement
pattern of a single object in a group of large objects recorded in close proximity.
The data resulting from such a pattern often contain noise, and identifying the
movement direction and/or speed can be challenging. For example, humans do
not have a specific walking pattern. As shown in [73], a polar histogram of
crowd OF vectors has a single peak (with a moderate amount of noise) that
represents the movement direction. As a result, current methods for monitoring
human crowds usually assume that the OF vector angle values are Gaussian
distributed.
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Recent dense crowd-monitoring methods [74, 75, 76] use the principles of hy-
drodynamics. Each frame is represented by small particles, and the density and
velocity of the particles are monitored in order to cluster and track movement.
The speed and direction of a particle are the spatial-temporal averages of OF
vectors over the surface area of the particle. An advantage of such methods is
that they average out the noise created by the OF estimation. The principles
of hydrodynamics give valuable results in the above papers.

In this thesis, MAH was used to summarize the OF of the moving pig herd,
and for motion analysis and event detection. The MAH is based on a polar
histogram [73], built using one-degree intervals. To decrease the number of bins
in the histogram, the Doane’s formula was used to estimate the number of bins
in the MAH:

k = 1 + log2(n) + log2

( |g1|
σg1

)
(6.3)

σg1 = sqrt(
6(n− 2)

(n+ 1)(n+ 3)
(6.4)

where g1 is the sample skewness, n is the number of observations, and k is the
number of bins.

Figures 6.5c and 6.5d indicate that the MAH of a pig herd’s movement is bi-
modal. Pigs trot as they move forward giving the observed "S-shape" movement
when recorded from above. Due to the trot and the elongated body shape, the
OF vectors point in multiple directions. Figure 6.5a demonstrates that the an-
gles of the OF vectors are approximately symmetrical to the rotational axis,
indicating a trot. Furthermore, in Figure 6.5b, the vectors representing move-
ment directions are not the longest, which means that the movement direction
is in a valley of the MAH and not in a peak, which is around bin 26 in Figures
6.5c and 6.5d. The vectors of the movement direction are 2.7 times shorter than
the two peaks. In addition, if we apply particle advection on the recordings,
the true information of a movement’s direction and speed may be lost since
only 8% of all estimated OF vectors are caused by the movement direction. We
assume that the direction of movement is from the top to the bottom of the
image in Figure 6.5b. This means that particle advection or similar methods to
analyze all vectors would most likely average out the vectors representing the
true movement direction. The detailed results for the performance of MAH can
be found in paper Papers B and C.
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Figure 6.5: Illustration of pig’s OF, which moves from the top to the bottom
of the image. Figure 6.5a indicates that vectors are pointing in
multiple directions, and Figure 6.5b indicates that vectors in the
direction of the movement are not the longest. The movement is
summarized in MAH in Figures 6.5c and 6.5c.
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6.4 Decision making

In surveillance, final decisions are often based on discrete classification. This
means that classification is performed in extremes: either an event is present or
it is not. However, in most cases, motion is continuous, and therefore an event
can transition from one to another. In this thesis, the continuity of motion
is achieved by analyzing continuous values of the classification method. Most
classification methods assign the class based on continuous probabilities, scores,
or other types of decision values. The SVM makes decisions based on continuous
decision values CDV, which measure the distance to the separating hyperplane
(see section 3.2). The sample of CDV is presented in Figure 6.1. The values are
highly auto-correlated and noisy, thus smoothing must be applied. In statistical
process control, the primary choice for monitoring noisy, auto-correlated data is
the EWMA chart. The analysis indicates that analyzed data are homoscedastic,
and therefore it is not possible to identify the optimal smoothing parameter. In
this thesis, LOESS is used to smooth the data locally and does not require a
specific model. Monitoring is performed using the CUSUM control chart, which
collaborates previous observations in decision-making. As such, the transition
from one action to another can be captured early on. In addition, the CUSUM
chart was used in monitoring crowd congestion in [77]. The CDV is expected
to be positive for in-control processes and negative for out-of-control processes
in the analyzed data. Therefore, only the lower-limit of the CUSUM chart is
of interest. Three parameters must be identified to establish the chart: (1)
smoothing span N ; (2) (M + K); and (3) threshold h. The parameters can
be chosen to optimize: (1) the total classification rate; (2) the early detection
rate; or (3) based on the SPC approach. The early detection rate refers to the
number of frames classified as out-of-control before the event is annotated. The
results of the parameter selection are presented in section 7.7.

6.5 Method training

There are two phases in establishing a control chart (see chapter 4). In phase I,
historical in-control data are collected and checked for outliers. In phase II, the
process is monitored online. Collecting historical in-control data from videos
is not always a straightforward process. In most cases, motion is a continuous
process, where the beginning and end of actions or events are not clear. For
example, according to the Oxford English Dictionary, a stampede is defined as,
"a sudden panicked rush of a number of horses, cattle, or other animals" [78].
This definition raises two questions relating to annotations: (1) the number of
animals and (2) the speed at which they must move. In video analysis, it is com-
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mon to use human annotators to answer the questions "how many" and "how
fast." However, several studies [79, 80, 81] indicate that human annotation quite
often depends on personal understanding. [79] compares spatial, temporal, and
behavioral annotation for human actions of different annotators. The image
annotators had an agreement rate of 89%-97% for temporal action annotation.
The majority of disagreement occurs at the beginning and end of the action,
which is around 25-50 frames. The annotators agree on 80% of the action la-
bels. The error rates are dependent upon the quality of the videos, the number
of labeled actions, and the number of tracked objects. In our experience, the
annotation becomes complicated when large crowds are monitored. The anal-
ysis in this thesis only includes two easily distinguishable actions. However,
detecting the beginning and end of the action is a much more difficult task.

In the proposed framework for pig behavior monitoring, the parameters for the
control chart and classification model must be established. The selection of the
historical in-control data can affect the performance of both steps. [58] com-
pares different representation approaches, features, and classification methods
for gender classification problems. The results show that the SVM method us-
ing global features performs very well in classification problems, yet the same
conditions must be present in the training and testing sets.

The literature for control chart parameter estimation is reviewed in [82]. They
conclude that it is very important to select a sufficiently large, true represen-
tation of in-control data in phase I because it can affect the performance of
the chart in phase II. An inappropriated training set will lead to the incor-
rect establishment of the distribution, and therefore to inappropriate control
chart parameters in phase II. This might result in undetected shifts in a process
and/or an increased number of false alarms. In addition, [82] states that the
size of the sample influences the parameter estimation. A larger data set for
phase I must be collected for a multivariate chart than for a univariate case.
Where auto-correlation is present, the data set must be even larger than for the
time independent data.

After evaluating the published results regarding annotation precision and the
sensitivity of the models, it is recommended in this thesis that only unambigu-
ous frames be used for the training set. As it is very difficult to numerically
define a stampede, other indicators are used. The result of a stampede is often
an event such as animals tripping over or stepping on each other. Therefore,
only frames showing the event are used for the out-of-control training class. It
is also difficult to identify whether pigs are moving "normally" when the driver
is encouraging them. Thus, frames showing no personnel and no events are used
as in-control training frames. For SVM model estimation, both in-control and
out-of-control frames should be used, while only in-control frames should be
used for establishing the control chart
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6.6 Identification of stationary pigs
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Figure 6.6: Identification of stationary pigs.

In this section, individual MAH of moving and stationary pigs are compared.
In addition, the method for locating a stationary pig in a frame is presented.
For illustration, all pigs are identified in one frame from an entrance data set.
In this frame, all but one pig is moving. A MAH is built for each pig, and the
median and 25th and 75th percentiles are estimated for all moving pigs. The
comparison of MAHs is presented in Figure 6.6. The MAHs of moving pigs are
within the 25th and 75th percentiles, while the MAH of the stationary pig is
not. The comparison demonstrates that not all angles indicate whether a pig is
moving. A sequential feature selection using SVM is used to identify the most
important angles in the identification of a stationary pig. From entrance data
set, a total of 540 pigs (294 stationary and 246 moving) are manually identified,
annotated, and used for sequential feature selection. The results of sequential
feature selection indicate that only four vectors are of great importance. All
vectors point towards the direction of movement and are presented in Figure
6.7.
The procedure to identify a stationary pig in a frame is performed in two stages:
(1) a training stage (which is offline) and (2) a testing stage, which can be
implemented for real-time monitoring. In the training stage, the median and
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Figure 6.7: The results of sequential feature selection.

25th and 75th percentiles of selected angle bins of moving pigs are estimated. In
the testing stage, only those OF vectors within selected angle bins are monitored.
The vector is declared as out-of-control if it is not within the 25th to 75th
percentile range. The density of the out-of-control vectors will be largest in an
area where stationary pigs are present. The density is tracked over the patch
of 61x61 pixels. The threshold is employed to detect the out-of-control density.
The overview of the training and testing stages is presented in Figure 6.8.

6.7 Assignable cause identification in auto-correlated
process

In a classic SPC, binomial distribution is used to identify assignable causes. Bi-
nomial distribution requires independent observations, but those from record-
ings are highly auto-correlated. In this case, events can be defined using two
parameters: frequency of occurrence and length of event. This thesis proposes
a method based on MC to identify assignable causes.
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Video
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and filtering
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(a) The training procedure.
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Interpolation

Thresholding.
Is a stationary
pig present?

YesNo

(b) The testing procedure.

Figure 6.8: Training and testing flowcharts of the method for stationary pig
detection.

To define a two-state MC where state I is the in-control state, and state II is
the out-of-control state, the transition matrix is as follows:

(
p 1− p

1− q q

)
(6.5)

The probability that the process will stay in state I is p and in state II is
q. Therefore, (1 − p) indicates how frequently the process moved from state
I to state II or the frequency of the process becoming out-of-control. The q
indicates the duration of the out-of-control state. If the transition matrices can
be established under different circumstances, a comparison can be performed.

The methodology for estimating the transition matrix is well known and is
widely used in many areas. The proposed method is promising, but additional
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work must be done to validate it. The MC-based approach is compared to
binomial distribution in Section 7.8.
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Chapter 7

Results

7.1 Motion monitoring using PCA

The multivariate control chart based on PCA (see section 4.5) is used in the first
instance to monitor pigs’ motion in thermal data. Such a chart is established in
two phases, as described in section 4.1. The objective of the analysis in thermal
data set was to detect pigs that moved in the opposite direction, (i.e. from
right to left) or that did not move at all. Each frame in a video was represented
by two histograms: (1) a histogram of the pigs’ OF vector angles and (2) a
histogram of the pigs’ OF vector lengths. OF was estimated for entire frame
and then filtered using pixel color thresholding. The histograms were stacked
next to each other and each frame was represented by a vector of length J . The
information in the K frames was collected into a matrix, representing a scene.
L scenes were collected and a 3D array obtained, representing a video. An
illustration of the unfolding is presented in Figure 4.3. In phase I, an analysis of
the sum of squared error, score plots, and Hotelling’s statistics did not reveal any
outliers. As suggested in the literature, only two Principal Components (PCs)
were considered for monitoring. In phase II, the new observations were collected
and mapped in the PC space and the score plot was analyzed using equation
7.1.

±S(r, r)F2,L−2,α2

√
L2 − 1

L(L− 2)
(7.1)
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where S is sample covariance matrix, r is index of principle component, F rep-
resents the F-distribution, and L is the number of historical in-control batches.
A score plot of new observations is presented in Figure 7.1. The results indi-
cate that most errors appear close to the control limits. The method correctly
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Figure 7.1: Results of Phase II. The blue dots represent normal movement,
and red dots represent undesirable movement.

classifis 66% of the observations. There are several possible reasons for the
moderately low classification rate:

• Some errors could have accrued due to annotation. All the frames in the
video were annotated. In some cases, it is difficult to determine where one
action ends and another begins.

• Better classification accuracy can be achieved using additional principle
components, but monitoring multiple charts is not optimal.

The multivariate PCA does not give the desired precision in pig motion monitor-
ing. A different approach for frame annotation and other classification methods
should be considered. Some additional results for this study case are presented
in Paper A.
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7.2 Pig identification in a color frame

Input: Current frame

Color inten-
sity adjustment

Blob detection

Hole filling

Blob dilation

Output: frame with
identified pigs

(a) Blob analysis

Input:
1. Background frame
2. Current frame

Color inten-
sity adjustment

Background
substraction

Median filtering

Blob detection

Hole filling

Blob dilation

Output: frame with
identified pigs

(b) Background subtraction.

Figure 7.2: Flowcharts of blob analysis and background subtraction methods.

The first step in video surveillance is motion estimation and object detection as
shown in flowchart 2.1. In this thesis, the motion of the pigs was estimated using
the OF Horn-Schunck algorithm, implemented in Matlab [83] with a five-frame
delay. Two approaches for pig identification in a frame were considered in this
thesis. The approaches were based on: (1) blob detection and (2) background
subtraction. The first approach applied blob detection directly to the original
frame. The second approach first subtracted the background frame from the
original and then identified blobs in the remaining frame. Some basic frame
processing (image color intensity adjustment; hole filling; median filtering; and
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blob dilation) was performed before and after subtracting the background frame,
in order to improve the performance of both methods. An overview of the iden-
tification step is presented in Figure 7.2. The surveyed area in a frame was

(a) Unloading, background subtraction. (b) Unloading, blob analysis.

(c) Entrance, background subtraction. (d) Entrance, blob analysis.

Figure 7.3: Comparison of two methods for pig identification in a frame. The
frames on the left represent the background subtraction method,
while the frames on the right represent blob analysis. The top
frames are from the pig unloading recordings, while the bottom
frames are from the entrance recordings.
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not affected by dynamic background or extreme illumination changes, though
lighting reflections were visible in the entrance videos. The identification errors
might have been caused by markings on the pigs’ backs, skin coloring, or shad-
owing. It is expected that a combination of background subtraction and blob
detection methods perform better in noisy frames.

The approaches were compared using two different types of frames from: en-
trance data and unloading data sets. The results are presented in Figure 7.3.
Due to light reflection on the floor in the entrance data set, the background
subtraction method performed better. The blob detection method classified
light reflections as pigs. The blob detection method performed better for the
unloading data set. The background subtraction method made some classifica-
tion errors around the edges of the pigs’ bodies. These results indicate that
most efficient method for identifying pigs in the videos was dependent upon the
surveyed area.

7.3 Lens correction

It is common in image studies in farms and slaughterhouses to use radial lens
distortion, which is also used in the video recordings of the unloading and en-
trance data sets. The camera was positioned at an angle in the entrance data
sets, thus creating additional distortion, which is called foreshortening distor-
tion. As discussed in section 2.3, formulas have been proposed to correct indi-
vidual distortions but not a combination of distortions. A method to correct a
combination of distortions using moving reference measures and correcting the
OF field instead of a frame is proposed in section 6.2. The direct validation of
the method is not straightforward since the ground truth is unknown. Three
indirect tests were used to validate the results:

1 Lens focal point estimation. The estimated focal point should match the
visually observed focal point.

2 A single pig measurement. These measurements were recorded as the pig
entered and left the area of interest. The measurements, such as length
and width, were taken over 21 frames and corrected using the proposed
model. The corrected measurements should be the same over 21 frames.

3 Classification performed with and without lens distortion. Three perfor-
mance measures were compared: (1) total classification rate; (2) frames
with event classification rates; and (3) frames without event classifica-
tion rates. The data sets were randomly divided into training and testing
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sets. The classification rates were computed for the testing sets and boot-
strapped until the mean of each of the three rates converged, which oc-
curred after 10 bootstrap samples. Analysis was performed using a t-test
was. It was expected that lens correction would normalize the OF vectors
over the entire frame, allowing events to be detected independently of the
event location in a frame.

The results of the first indirect test are presented in Figure 7.4. The lens
focal point is where the distortion was smallest, and is represented by the
yellow circuit. Visual inspection also suggested that the lens focal point
was in approximately the same location.

Figure 7.4: Detected lens focal point. Purple vectors represent the magnitude
of the distortion, and the yellow circuit represents the estimated
lens focal point.

The recorded and corrected measurements for a single pig are presented in Figure
7.5. The length and width measurements of the pig before correction increased
approximately linearly, and after correction, they were assumed to be constant.
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Figure 7.5: The length and width of one pig sampled over 21 frames. In frame
1, the pig is fully visible in the area of interest for the first time;
in frame 21, it is visible for the last time.

The results of the classification test suggest that lens correction did not affect
the correct classification rate of frames without events. However, the method
significantly improved the performance classification of frames with events by
23%.

The proposed lens and foreshortening distortion correction method uses mea-
surements of moving objects as references. In the proposed method, the OF
vectors are corrected, rather than correcting the image and then estimating the
OF. This method could be applied to correct any type of distortion or com-
bination of distortions. The method is also presented and discussed in Paper
C.

7.4 Results of stationary pig identification

This section presents the results of the stationary pig identification. A video
clip of 150 frames from the entrance data set was used for the experiment. At
the beginning of the video clip, seven pigs moved from top to bottom in Figures
7.6. However, the second pig stopped. The proposed method (see section 6.6)
is used to detect the stationary pig.

For the method training, 382 pigs were individually identified and annotated.
277 pigs were annotated as stationary and 105 as moving. The sample density
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Figure 7.6: Indexed pigs in the image are used for further analysis. Green
lines represent OF vectors. As can be seen from the figures, pig
number 2 did not move forward.

of the testing stage of out-of-control vectors is presented in Figure 7.7. There
are some out-of-control vectors over the entire frame, but the highest peak is
over the stationary pig.

The proposed method identified the stationary pig in 12 out of 30 frames (see
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Figure 7.7: Identification of a stationary pig.

Figure 7.8). In 18 frames, the pig did not take any steps, but its body continued
moving due to inertia. The same method could be used to identify a pig that
is moving too fast, which can indicate stress. The method is also presented in
Paper B.

7.5 Motion features of a pig herd

In the video surveillance, motion estimation and object detection are followed
by: (1) event or action modeling and (2) classification. In crowd monitoring,
features such as density and velocity are often estimated for an event detection.
As described in section 6.3, usual measures are not sufficient when surveyed
animals are large and have a specific walking pattern, such as a trot. In this
section, the efficiency of basic statistics (such as mean, variance, skewness, and
kurtosis) of the combined and selected herd OF vectors are analyzed. This
follows Dawkins [44, 43], who related these basic statistical summaries to the
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Figure 7.8: Identification of a stationary pig.

welfare score of chicken broilers.

The artificial frames were constructed using sampled pigs from the entrance data
set in order to evaluate the performance of the low-level statistics proposed by
Dawkins. Two groups of frames with different numbers of pigs were constructed.
In the first group, all pigs were moving; in the second group, only one pig did
not move. The number of pigs in each group ranged from 2 to 36. 30 frames
for each group and for each number of pigs were constructed. The low-level
statistics were estimated for each frame and a t-test was performed to identify
if the stationary pig is present in a frame. The test was repeated 500 times.
The results in Figure 7.9 show that only mean statistics can be used for motion
analysis in a herd of up to 5 pigs.

As suggested in section 6.6, the MAH bins varied in their power to differen-
tiate between moving and stationary pigs. Four vectors, pointing towards the
direction of movement, were the most important in the identification of a sta-
tionary pig. The test, as described above, was performed to investigate whether
the low-level statistics of selected bins could be used to detect stationary pigs.
The results in Figure 7.10 show that low-level statistics are not suitable for
identifying stationary pigs in a large herd when selected features are used.

The test indicates that the low-level statistics cannot be used to identify abnor-
mal pig behavior. The case study is also presented in Paper B.
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Figure 7.9: p-values of the two-sample t-tests for the low-level statistics be-
tween the two groups. Solid lines represent mean values, while
dashed lines represent ± one standard deviation from the mean.

7.6 Motion classification

The results of the event detection are presented in this section. As described
in section 6.1, SVM (see section 3.2) is the most commonly used method for
event detection. In this thesis, SVM performs classification based on two sets
of features: (1) MAH (see section 6.3) and (2) the relative number of pigs. For
illustration purposes, the mean MAHs of four unloading data set subgroups are
presented in Figure 7.11. The groups were as follows: (1) freely walking pigs;
(2) pigs were encouraged, but no event was present; (3) pigs were encouraged,
and tripped; and (4) pigs were encouraged and stepped on each other. As can
be seen, the subgroups containing events had higher peaks than those without
events. The relative pig count is estimated by counting the number of pixels
classified as pigs (see section 7.2). The mean density measures for each subgroup
are presented in Table 7.1. The subgroups, which contain events have a higher
relative count of pigs than those without events.
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Figure 7.10: p-values of the two-sample t-tests for the mean, variance, and
kurtosis of an out-of-control area. Solid lines represent mean
values, while dashed lines represent ± one standard deviation
from the mean.

The variables used for SVM were the average of the two highest bins in the (1)
left peak, and (2) right peak, as well as (3) the average of the two smallest bins
in the valley, and (4) the number of pixels classified as pigs. The MAH values
of the bins were highly correlated. Therefore only the peaks, valley information
and relative count of the pigs were used. The data were divided into training sets
(75% of the frames) and testing sets (25% of the frames), to identify the optimal
SVM scaling parameter σ. In total, 93% of all frames were classified correctly,
including 90% of the frames with events, and 94% of the frames without events.
A total of 12 separate events were present in the analyzed data set, and the
method identified some of the frames from each the events. The results of this
analysis are also presented in Paper C.
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Figure 7.11: Mean MAH of four sub-classes.

7.7 Continuous motion monitoring

The SVM CDV (see in section 6.4) monitored for continuous motion monitoring
in this thesis. The CDV were noisy and auto-correlated, and data therefore
had to be smoothed. The LOESS was used for smoothing and the CUSUM
chart was used for decision making. Three parameters had to be determined in
this approach: (1) the smoothing span N ; (2) (M + K), and (3) the threshold
H. The parameters could be chosen to optimize the (1) total classification
rate, (2) early detection rate, or (3) could be based on the SPC approach.
The best parameters for the optimization of each criterion are presented in this
section. The parameters to be considered were N = 5, 10, 20, ..., 60, (M +K) =
0, 0.05, 0.1, ..., 0.6, and H = 0.001, 0.004, ..., 0.01. For this analysis, 15 clips from
unloading data set were used. In each clip, one or two sections were annotated.
In total, 11 sections were declared as "out-of-control", and 7 as "in-control".

Two sets of parameters were identified to optimize the total classification rate
(N = 45, (M +K) = 0.35, H = 0.05 and N = 50, (M +K) = 0.35, H = 0.001)
and one set of parameters was identified to optimize the early detection rate
(N = 35, (M + K) = 0.6, H = 0.001). The performance of the identified
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Movement sub-classes Number of pixels
moving freely 98403
encouraged but moving ok 135261
encouraged and tripped 150449
encouraged and stepped on each other 208412

Table 7.1: Average pixel counts for different sub-classes.

Set 1 Set 2 Set 3
SVM CUSUM p-val CUSUM p-val CUSUM p-val

Total 95.6 % 99.8 % 0.998 99.8% 0.998 97.7% 0.966
In 99.8 % 100 % 0.977 100% 0.977 96.4 % 0.186
Out 74.3% 99.3% 0.002 99.4% 0.002 99.9% 0.002

Table 7.2: EDCs comparison of three CUSUM parameter sets. For all pa-
rameter sets, events are detected earlier compared to the standard
approach (p < 0.05).

parameters was compared to discrete SVM. A Wilcoxon signed-rank test was
used for the comparison. The total, in-control and out-of-control classification
rate comparison is presented in table 7.2. The early detection rate comparison
is presented in Figure 7.12 and Table 7.3.

The comparison indicates that there was no significant improvement in the to-
tal and in-control frame classification rates. SVM correctly classified most in-
control frames, meaning that significant improvement was not possible. How-
ever, the CUSUM chart significantly improved the out-of-control frame classifi-
cation with all sets of parameters. The set 3 parameters detected events earlier
than set 1 and 2.

Parameters were identified based on the SPC approach as explained later in this

Set p-value Number of frames detected earlier than SVM
1 0.006 81.18
2 0.006 81.81
3 0.006 139

Table 7.3: EDCs comparison of three CUSUM parameter sets. For all pa-
rameter sets, events are detected earlier compared to the standard
approach (p < 0.05).
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Figure 7.12: EDCs comparison of three parameter sets.

section. The false alarm rate was fixed to the discrete SVM misclassification
rate of annotated in-control frames, α = 0.1705. For different combinations of
N and (µ+K), a minimum value of H was identified, such that the in-control
classification rate of annotated frames using a CUSUM chart was 99.8295%. A
total of 35 sets of parameters N , (µ+K) and H were identified. The early de-
tection rates and the out-of-control classification rates are compared in Figure
7.13.

The CUSUM chart detected events from 59 to 82 frames, or approximately
2 − 2.7 seconds earlier. The out-of-control classification rates are achieved up
to 98%− 100%, which was 25% more than discrete SVM.

The results presented above indicate that all sets of identified parameters per-
form better than discrete SVM. The case study is also presented in Paper D.
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Figure 7.13: Comparison of the SVM and CUSUM chart. The p values in-
dicate that a CUSUM chart detects events significantly earlier
and correctly classifies significantly more frames with events, at
a 0.05 significance level. The CUSUM chart can detect events
from 59 to 82 frames earlier than SVM.

7.8 Comparison of two methods for assignable
cause identification

Once an undesirable behavior has been identified in a surveyed area, it is also
important to find the cause of disturbance. In this section, the two approaches
are used to identify assignable causes based on (1) binomial distribution (see
section 4.1) and (2) MC (see chapter ch:MarkovChain). A discussion and the
results of the binomial distribution approach are also presented in Paper C.

The unloading data set was divided into three subsets according to the drivers



7.8 Comparison of two methods for assignable cause identification 67

that unloaded the trucks, in order to investigate their influence on the behavior
of the pigs. Each set was classified using discrete SVM and the number of
out-of-control frames was counted. A logistic regression model was built to
describe dependent (ratios of out-of-control frames and a total number of frames
per driver) and independent variable (drivers). The estimated coefficients are
presented in Figure 7.14. A pairwise comparison of the influence of the drivers on
the pigs’ behavior was performed using ANOVA, and the results are presented in
Table 7.4. The p-values indicate that the drivers all had a different influence on
behavior at a significance level of 0.05, although Figure 7.14 shows that Drivers
2 and 3 were more similar than Driver 1.

p-value
Driver 1 vs. 2 0.001
Driver 1 vs. 3 0.001
Driver 2 vs. 3 0.0002352

Table 7.4: P-values for ANOVA test comparing drivers. All the drivers per-
form differently at significance level α = 0.05.
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Figure 7.14: Estimated coefficients and confidence intervals for logistic regres-
sion model.

In the first step, the transition matrices (see section 6.7) for each driver are
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estimated for the performance comparison based on the MC approach. In the
second step, the p and 1−q probabilities are compared using ANOVA and results
indicate that all comparisons are significantly different at significance level 0.05.
The coefficients for the logistic regression are presented in Figure 7.15.
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Figure 7.15: Estimated coefficients and confidence intervals for logistic regres-
sion model.

As with the binomial distribution, the p-values indicated that the drivers all in-
fluenced the pigs’ behavior to differing degrees, with a significance level of 0.05,
although Figure 7.15 shows that Drivers 2 and 3 were more similar than Driver
1. However, using the MC-based approach can give a better understanding of
the differences in performance. For example, Driver 3 was 1.06 times more likely
to have longer events, and 1.4 times more likely to have more frequent events
than Driver 2. Driver 1 was on average 2.84 and 2.06 times more likely to have
longer and more frequent events, respectively, than Drivers 2 and 3.

Using both binomial distribution and the MC-based approach in the perfor-
mance comparison of the three drivers gives a similar overall conclusion. How-
ever, a more precise, detailed performance interpretation can be obtained with
the MC-based approach.



Chapter 8

Discussion and conclusion

8.1 Discussion

The aim of this thesis is to provide a tool to ensure pig welfare at a slaugh-
terhouse by monitoring the herd behavior using video surveillance. Various
methods have been proposed in the literature for tracking pig movement. The
methods use markings, features or other techniques for tracking pigs in a con-
strained environment. However, these methods are not suitable when monitor-
ing a dense pig herd in an unconstrained environment (when pigs can leave and
re-enter the surveyed area). Such cases are common in human crowd surveil-
lance, and OF-based approaches, instead of individual tracking, are used. How-
ever, these methods cannot be directly applied when monitoring pigs. Pigs have
a specific walking pattern (such as a trot), and appear large when the video is
recorded from above.

In this thesis, an OF-based approach is proposed to monitor pig herds. There
are various methods proposed in the literature to summarize OF, but these
approaches are not suitable when monitoring pigs from above. To summarize
movement and accommodate a trotting movement, MAH is used. MAH is easy
to construct and interpret and there are several advantages of using such an ap-
proach. For example, individual pigs do not have to be identified and tracked.
Another advantage is that animals can leave and enter the surveyed area with-
out critical information being lost. The third advantage of using MAH together
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with SPC is that it can be used to detect undesirable behavior in a herd.

It is common to use radial lens distortion for convenient surveillance. There
are several methods proposed in the literature for distortion correction. In
this project, additional distortion (foreshortening distortion) was present in the
videos. A method for correcting a combination of distortions is proposed. This
method corrects OF vectors, rather than a frame. This method is fast and easy
to implement, and it can be applied any distortion or combination of distor-
tions can be present in a frame. A disadvantage is that the length and width of
multiple objects throughout the frame must be recorded in order to train the
method, which is not always possible.

The detection of events or any abnormal behavior in human and animal surveil-
lance is based on discrete classification. The disadvantage of this approach is
that it performs in extremes: either the event is present or it is not. Most types
of motion are continuous and do not have a clear beginning or end. In this
thesis, the principles of SPC were applied for continuous behavior monitoring
in order to capture the transitions between events. Most classification methods
perform final classification based on continuous decision values such as proba-
bilities, scores, etc. Pig behavior was classified using SVM and continuous SVM
decision values instead of discrete SVM. The continuous values were noisy, thus
LOESS smoothing was applied, and the CUSUM chart was used for final behav-
ior classification. The suggested approach increases the early detection of events
and decreases the false alarm rate. This approach is suitable for monitoring pig
behavior as well as human behavior.

It is common to perform a comparison study between different groups to detect
assignable causes. Comparison studies often use binomial distribution, which is
based on the assumption that events are independent. In the case of pig surveil-
lance, the source of assignable causes can be due to the lack of driver experience,
the length of transportation time, or the fattening institutions. The observa-
tions from the video are highly auto-correlated, therefore, a new approach must
be developed. A method based on MC is proposed in this thesis. This method
performs a comparison of the frequency of the event occurrence and the length
of the event. The method shows promise, yet more research must be done to
validate the approach.

8.2 Conclusion

The increased attention paid to animal welfare and the large numbers of animals
being slaughtered every day have created a great interest in an automated pig
behavior monitoring system. This thesis aims to provide a tool for monitoring
pig behavior using video surveillance to ensure animal welfare. Several data sets
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recorded at a slaughterhouse were analyzed. Events such as pigs tripping over
and stepping on each other are of interest as they are associated with stress.

The main contribution of this thesis is a proposed framework for monitoring
large herds of animals in an unconstrained environment. The work is based on
a human surveillance framework. The OF is used to estimate the motion of the
pigs. The proposed MAH is used to summarize this motion, and SVM is used
to detect abnormal behavior. Continuous SVM decision values (rather than
discrete classification) are used in the final decision making. This approach is
unique to this thesis and has not previously been proposed. LOESS smoothing
is applied to SVM CDV to remove the noise, and the final decision is made
based on the CUSUM chart. The use of continuous SVM increases the event
detection rate by 25%.

In order to locate pigs moving abnormally within a herd, MAH together with
principles of SPC are proposed. This method located a stationary pig in 12 out
of 30 frames.

The videos used for the analysis were recorded with radial lens and foreshorten-
ing distortion. A method for correcting a combination of distortions is proposed.
The method corrects the OF vectors instead of a frame. Three indirect tests
indicated that the method performs well.

A new approach is proposed for the analysis of assignable causes of abnormal be-
havior. The method is based on MC, and future work should focus on validating
this approach.
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Abstract. We propose a new approach for monitoring animal movement
in thermal videos. The method distinguishes movements as walking in
the expected direction from walking in the opposite direction, stopping
or lying down. The method utilizes blob detection combined with opti-
cal flow to segment the pigs and extract features which characterize a
pig’s movement (direction and speed). Subsequently a multiway princi-
pal component analysis is used to analyze the movement features and
monitor their development over time. Results are presented in the form
of quality control charts of the principal components. The method works
on-line with pre-training.

Keywords: Optical flow, blob detection, multiway principle compo-
nents, quality control.

1 Introduction

Animal well-being has become a concern for consumers and [1] suggests that the
stress level of pigs before slaughter influences meat quality. To ensure animal
well-being the pigs should be constantly monitored and in case of a stressful
situation actions should be taken. However it is difficult to keep track of many
animals and therefore some automated behavior analysis methods should be im-
plemented. For this paper, pigs were filmed in a constrained area walking from
left to right. However, some pigs can change direction or stop walking. Such
events can block the movement of other pigs. There can be different reasons for
the change in movements such as not feeling good or an obstacle appeared in
the path. The classification is challenging, because it is quite normal for pigs to
slow down or even stop to sniff for no reason but out of curiosity.
The automated video analysis will allow the slaughter house to make sure all
animals are walking in order and intervene when necessary. It is important, that
the analysis provides a fast overview of the area with easily interpretable results.
No animal crowd monitoring and analysis methods have been suggested in the
literature. Previous research has mainly focused on analyzing human crowd be-
havior in surveillance videos. A good overview of the methods can be found in
[2]. The choice of method greatly depends on the video type and what we are
looking for in the videos. There are methods available for tracking individual
objects, usually used for pattern search in movements. However, in our thermal
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videos it is very complicated to identify the individual pigs because of physi-
cal similarities and the fact that each pig does not necessarily appear in many
frames. Therefore we instead propose to use optical flow which often is used for
object tracking and action recognition. This method gives a great overview of
the surveillance area.

2 Methodology

In this section the methodology is presented in details. It takes two distinct steps
to perform the analysis. In the first step, the visual analysis is performed using
optical flow, blob detection and optical flow quantification. The second step is
the behavioral analysis based on quality control charts. Here multiway PCA is
performed and quality control chats are built for the principal components.
We used different sections from 5 thermal videos. In total 2460 frames were
available for training. For testing representative sections from 2 thermal videos
were extracted with a total of 2284 frames. To validate the test results the 2284
frames were manually annotated and classified.

2.1 Visual Analysis

As mentioned above we are not just interested in detecting moving pigs but also
the stationary ones. To do so we merged two methods: optical flow and blob
detection. First optical flow is applied and then filtered by a simple threshold
to remove the noise. The threshold is half of the overall average length of the
vectors from optical flow. The results of this step for one frame are shown in
Figure 1.

(a) Optical flow. (b) Blob detection.

Fig. 1: Visual analysis step. First we calculate optical flow and then use blob
detection. In (b) grey represents the actual blobs and white represents blobs
extended by 5 pixels.

To separate those optical flow vectors representing pigs from the background
we created a binary mask using morphological erosion and opening. These are
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particularly convenient as both are obtained as by-products of optical flow. Al-
ternatively a simple threshold could be used. All blobs were extended by 5 pixels
to include the vectors along the edges in the further analysis.
For each frame two histograms were used to quantify optical flow. The first rep-
resents the lengths of the optical flow vectors and the second the angles. The
number of bins were selected by

2.2 Quality Control

Multiway PCA is used in batch monitoring in statistical process control[3] . In-
vestigating the quality of a current batch requires historical data of good batches.
Data consist of repeated measurements monitored throughout the process. A
collection of batches can be presented in 3D matrix and a special unfolding
technique to a 2D matrix will allow to apply ordinary PCA. By monitoring the
score plots of principal components it is possible to track changes in the process.
For multiway PCA application on thermal videos we need to define what we
mean with ”the batch”. We use the concept of a scene: a constant number of
consecutive frames in a video is a scene. The number of frames per scene was
found by minimizing the prediction sum of squared residuals (SSE) on a training
set including all PC.

Scene 1
Scene 2

Scene N

Frame1
Frame2

Frame K

Scene 1
Scene 2

Scene N

Frame1 Frame2 Frame K

   Length        Angle

Fig. 2: Unfolding the data matrix.

As it was mentioned above a special unfolding technique has to be performed
such that the ordinary PCA can be applied. LetN be the number of scenes and
K the number of frames in each scene. Each frame is represented by the counts
from the two histograms which are stacked next to each other. The unfolding is
done by reshaping the scene to a row vector, i.e. the K frames of a scene are
stacked after each other as shown in Figure 2. All the unfolded scene vectors are
stacked on top of each other forming the final matrix. Let J be the total number
of bins per frame, then the unfolded matrix has the dimension N × JK. This
unfolding technique allows for comparison among scenes.
A score matrix t, loading matrix p and residual matrix E were obtained after per-
forming PCA on the unfolded matrix. R is the number of principal components.
Let X be unfolded matrix then it can be presented as:

X =

R∑

r=1

tr ⊗ pr + E (1)
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In statistical quality control a training state is usually called phase I. In
this phase we collect good scenes, build a quality control chart and check if
all our scenes are statistically in control. The control limits used in this phase
are different from the limits used in the second phase. In [4] they suggest three
methods for checking good batches. First Hotelling’s T2 statistics:

Ds = t′RS
−1tR

I

(I − 1)2
∼ BR

2 ,
I−R−1

2 ,α (2)

where S ∈ RR×R is an estimated covariance matrix and B is a beta distributed
random variable. The second test is a sum of square of residuals of individual
batches:

Qi =

K∑

k=1

J∑

j=1

E(i, kj)2 (3)

For the third test the PCA scores are used. Score plot of the first two principal
components and confidence internals are used to identify outliers. The confidence
intervals are ellipsoids with center at 0 and axis length:

±S(r, r)B1, I−2−1
2 ,α

√
(I − 1)2

I
(4)

In phase II we perform on-line monitoring. For the on-line monitoring new
confidence intervals for the score plot must be calculated:

±S(r, r)F2,I−2,α2

√
I2 − 1

I(I − 2)
(5)

A visual analysis was done for every frame when on-line monitoring had
started. Every set of 25 frames form a scene which is transformed into a score
through the multiway PCA. The score is added to the quality control chart.
[3] suggests not waiting for all measurements from a batch but to estimate the
remaining batch measurements. However, there is no reason to do so here since
a scene only requires 25 frames, thus control chart is updated every few seconds.

3 Results

As mentioned above, two phases are required to perform the analysis of thermal
videos. In this section results of each phase will be discussed.

3.1 Phase I

Figure 3 shows Hotelling’s T 2 statistics (a) and SSE (b) for every scene, and
the scores of the two first principle components (c). The first two principal
components were chosen naively as Hotelling’s T 2 statistics combines the PCs
equally weighted causing increased misclassification when including additional
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Fig. 3: Training data.

components. Analyzing many plot is not an option as well, because the aim
is to give an easy to interpret overview of the video. These three plots all have
points exceeding the confidence interval thus indicating that there might be some
outliers. However, after inspecting each scene no unusual behavior was noticed.
Figure 3(d) shows the explained variance by each of the 32 variables. The most
important variable is the 8th variable from the angle histogram. This bin rep-
resents vectors with the smallest angles. A small angle is when pig is walking
straight. The second most important variable is the 3rd bin of speed. The faster
the pigs are going the heavier the tail of the speed histogram will be.

3.2 Phase II

Each of the 2284 frames were manually annotated as not moving if at least one
pig was not moving. A scene was declared as not moving if more than half of
the frames were annotated as not moving. Table 1 shows that 66% of all scenes
were classified correctly and at the individual frame level 78% of all frames were



6 Monitoring Stationary of Pigs in Thermal Videos

classified correctly. As it can be seen in Figure 1 most of the errors appeared
very close to the limits. It is important to remember, that it is very difficult
to annotate movements just by looking at a single frame or even a sequence of
frames. Some errors could appear due to annotation.

Annotated
Classified

Moving Not moving

Moving 17 8

Not moving 21 36

P
C
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PC1
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−80

−60

−40

−20

0

20

Table 1: Results of phase II.

4 Conclusion

Our suggested method can classify 66% of scenes and 78% of the frames correctly.
It is difficult to get higher results due to the complexity of annotation. Also some
pigs may slow down to sniff around but this situation should not be considered
as not moving. However, these situations will create additional variance.
Future improvements could be to analyze clusters or individual pigs and new
methods for vector quantification. In scenes with many pigs and lots of action
some details can get lost in the histograms.
With better quantification of the optical flow vectors it would be possible to
determine some patterns of behavior or actions through classification based on
score plots.

References

1. P.D. Warriss, S.N. Brown, S.J.M. Adams, and I.K. Corlett, Relationships between
subjective and objective assessments of stress at slaughter and meat quality in pigs,
Meat Science 38 (1994), no. 2, 329–340.

2. Weiming Hu, Tieniu Tan, Liang Wang, and S. Maybank. A survey on visual surveil-
lance of object motion and behaviors. IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, 34(3):334–352, 2004.

3. Paul Nomikos and John F. MacGregor. Monitoring batch processes using multiway
principal component analysis. AIChE Journal, 40(8):13611375, 1994.

4. Paul Nomikos and John F. MacGregor. Multivariate SPC charts for monitoring
batch processes. Technometrics, 37(1):41, February 1995.



80 Appendix 1



Appendix B

Appendix 2

R. Gronskyte, L. H. Clemmensen, M. S. Hviid, M. Kulahci, "Monitoring
pig movement at the slaughterhouse using optical flow and modified angular
histograms", Biosystems Engineering, vol. 141, pp. 19-30, 2016.



Research Paper

Monitoring pig movement at the slaughterhouse
using optical flow and modified angular
histograms

Ruta Gronskyte a,*, Line Harder Clemmensen a, Marchen Sonja Hviid b,
Murat Kulahci a,c

a DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
b Danish Meat Research Institute, Taastrup, Denmark
c Department of Business Administration, Technology and Social Sciences, Luleå University of Technology, Luleå,
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We analyse the movement of pig herds through video recordings at a slaughterhouse by

using statistical analysis of optical flow (OF) patterns. Unlike the previous attempts to

analyse pig movement, no markers, trackers nor identification of individual pigs are

needed. Our method handles the analysis of unconstrained areas where pigs are constantly

entering and leaving. The goal is to improve animal welfare by real-time prediction of

abnormal behaviour through proper interventions. The aim of this study is to identify any

stationary pig, which can be an indicator of an injury or an obstacle. In this study, we use

the OF vectors to describe points of movement on all pigs and thereby analyse the herd

movement. Subsequently, the OF vectors are used to identify abnormal movements of

individual pigs. The OF vectors, obtained from the pigs, point in multiple directions rather

than in one movement direction. To accommodate the multiple directions of the OF vec-

tors, we propose to quantify OF using a summation of the vectors into bins according to

their angles, which we call modified angular histograms. Sequential feature selection is

used to select angle ranges, which identify pigs that are moving abnormally in the herd.

The vector lengths from the selected angle ranges are compared to the corresponding

median, 25th and 75th percentiles from a training set, which contains only normally

moving pigs. We show that the method is capable of locating stationary pigs in the re-

cordings regardless of the number of pigs in the frame.

© 2015 IAgrE. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Today many consumers are increasingly interested in the

welfare of the animals used for commercial meat production.

Animal behaviour during the production process can be used

to evaluate animal welfare (Brandt, Rousing, Herskin, &

Aaslyng, 2013). However, constant monitoring of animals by

humans in industrial farms is nearly impossible. Such

constraint has created great interest in automated livestock
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monitoring. There have been several attempts to identify (Tu,

Karstoft, Pedersen, & Jørgensen, 2013; Guo, Zhu, Jiao, Ma, &

Yang, 2015) and track pigs (Oczaka et al., 2014; McFarlane &

Schofield, 1995; Kashiha et al., 2013a; Lind, Vinther,

Hemmingsen, & Hansen, 2005; Ahrendt, Gregersen, &

Karstoft, 2011) as well as chickens (Dawkins, Cain, &

Roberts, 2012; Kashiha, Pluk, Bahr, Vranken, & Berckmans,

2013b; Nakarmi, Tang, & Xin, 2014), and cows (Huhtala,

Suhonen, M€akel€a, Hakoj€arvi, & Ahokas, 2007; Porto,

Arcidiacono, Anguzza, & Cascone, 2015) in farms. Different

movement and density measures have proved useful in

ensuring animal welfare (Rushen, Chapinal, & Passill, 2012;

Dawkins et al., 2012; Kashiha et al., 2013b; Youssef,

Exadaktylos, & Berckmans, 2015; Nakarmi et al., 2014; Porto

et al., 2015). The animals can be tracked either by using

radio tags attached for example to the animal's ear (Ng, Leong,

Hall, & Cole, 2005; Tøgersen, Skjøth, Munksgaard, &

Højsgaard, 2010; Ruiz-Garcia & Lunadei, 2011; Porto, Arcidia-

cono, Giummarra, Anguzza, & Cascone, 2014), passive tran-

sponders injected into the animal's body (Prola, Perona, Tursi,

& Mussa, 2010; Caja et al., 2005) or by video surveillance. A

computer vision approach is non-intrusive and can be

adapted to different animals. The cases mentioned above,

which all employ computer vision, monitor animals in farms

where all areas of interest can be covered with one or a few

cameras. When the videos are recorded in constrained areas,

which the animals cannot leave, additional markers (Kashiha

et al., 2013a) or features (Ahrendt et al., 2011) can be used to

track the animals' movement. Ahrendt et al. (2011) propose a

method to track individual pigs and can follow three pigs in a

constrained area over an 8-min period without losing track.

However, monitoring pigs in slaughterhouses creates addi-

tional challenges: (1) large numbers of animals, which are very

similar to each other, are often present in small areas, and (2)

even multiple cameras cannot cover all of the process line,

thus animals can leave and come back into a monitored area.

The disadvantage of using themarking technique proposed by

Kashiha et al. (2013a), which consists of stamping a specific

pattern on the back of the pigs, is that additional peoplewould

be needed as well as it being time-consuming to uniquely

mark 12,400 (Danish Crown, 2014) pigs per day. Tracking in-

dividual features as proposed by Ahrendt et al. (2011) or using

tags as proposed by Ng et al. (2005), Prola et al. (2010) and Caja

et al. (2005) would be too computationally expensive for a real-

time monitoring system. These disadvantages can be over-

come by using our proposed technique and by analysing all

pigs as a herd with the caveat that the ability to track an in-

dividual pig is lost.

In dense crowd surveillance of humans, it is rarely

attempted to identify the individual subjects. In most of

these cases, optical flow (OF) is used (Helbing, Johansson, &

Al-Abideen, 2007; Andrade, Blunsden, & Fisher, 2006; Ali &

Shah, 2008). OF is a pattern that represents relative motion

between two consecutive frames in a video and is presented

as a vector field of motion over the entire frame (Wedel &

Cremers, 2011). Each OF vector indicates the direction and

the distance of movement of a single pixel. OF estimation is a

non-intrusive and computationally cheap method. A stan-

dard consumer camera is sufficient to record the movement

and can be mounted such that it does not interfere with the

usual routine of the subjects. This paper describes a case

study for monitoring the welfare of pigs while unloading

from trucks at a slaughterhouse that can handle up to 62,000

(Danish Crown, 2014) pigs per week. The majority of pigs in

our recordings are crossbreeds between Duroc, Danish

Landrace and Yorkshire (Dx(LxY)). Pure Duroc is typically red

in colour. Thus, some crossbred pigs are coloured. Our re-

cordings mainly contain pigs that are white with only a few

coloured pigs. The colour similarities make the separation of

the nearby pigs computationally expensive. The similarities

in the body size also make it challenging to track individual

pigs. Pigs weighed 100e110 kg and were approximately 6

months of age.

To the best of our knowledge, only a few attempts have

been made in the literature to monitor livestock using OF

(Dawkins et al., 2012; Dawkins, Lee, Waitt, & Roberts, 2009).

To quantify the behaviour of an individual animal, Dawkins

et al. (2012) used low-level statistics such as the mean,

variance, skewness and kurtosis of the OF vectors of

chickens and found a strong correlation between statistics

and the Bristol Gait Score, which assesses leg weakness. In

this paper, we show that the low-level statistics used by

Dawkins et al. (2012) are not optimal when the animals are

recorded in proximity and have a specific walking pattern

such as trot. In addition, low-level statistics are not suitable

for monitoring large numbers of pigs as they average out the

few pigs that are moving abnormally. We refer to a specific

walking pattern (trot) as “local movement”. We define “global

movement” of an animal as the overall speed and direction of

the animal. OF vectors of monitored pigs show not only the

global movement but also the local movement of the ani-

mals. Low-level statistics of the OF vectors do not represent

the global movement of the animals when a strong local

movement, i.e. trot, is present. In this paper, we propose to

use modified angular histograms (MAH), which summarise

the OF vector lengths within the corresponding angle range.

By using MAH, we can filter the local movement out of the OF

vectors, leaving only the global movement for further

analysis.

Two abnormalities are of interest: (1) pigs moving too

quickly and (2) pigsmoving too slowly or being stationary. The

former can indicate stress as it may happenwhen animals are

encouraged to move too quickly or are agitated by external

disturbances. The lattermay indicate that an animal is injured

or sick, or that there is an obstacle in its path. Identifying

abnormally moving pigs will allow for possible interventions

to ensure the welfare of the animals. The suggested method

can be used for real-time monitoring although additional

research is needed to account for the correlation between

MAH from consecutive frames.

2. Methods and materials

2.1. Data

In this study, pigs were video-recorded in a slaughterhouse

just after unloading from trucks. The daily process was

recorded to capture the normal pigmovement. A GoProHERO2
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(©2013 Woodman Labs, Inc, California, USA) camera was used

for recording and placed so that the optical axis of camerawas

perpendicular to the pigs' moving path. The frame rate is

approximately 30 frames per second, and the length of the

videos is 17 min 35 s. The frame size is 1920 pixels in height

and 1080 pixels in width. There is lens distortion present in

the recording.

The distortion is corrected by adjusting for the size of the

pigs, which is observed to be approximately constant

(Gronskyte, Clemmensen, Hviid, & Kulahci, 2015). A 3rd order

polynomial is used to model the length and width of the pigs

and correct for distortion:

Zðx; yÞ ¼
X4

j¼1

X4

i¼1

pijx
4�jy4�i (1)

where Z is the length or width of the pig, x and y are the vector

positions in the frame and the pij is the estimated polynomial

coefficient. The effect of the lens correction is presented in

Fig. 1. The strongest correction is around the lens focal point.

Five sets of images are used for the analysis: (set A) six

frames sequence of a single pig moving, (set B) six frames

sequence with six pigs moving and one stationary pig, (set C)

190 frames with multiple pigs where some of them are sta-

tionary, and (set D) eight frames sequence with 29 pigs with

two of them stationary and the restmoving. The experimental

set (set E) consists of 150 frames sequence, of which 30 frames

show one stationary pig. The sets A, B, D were used for illus-

tration purposes, while set C was used for the final method

training and set E for the method testing.

2.2. Overview of the method

There are four steps in the training method (1) OF estimation

and filtering for each frame in the video, (2) MAH estimation

based on the OF for fully visible pigs in each frame, (3) selec-

tion of the relevant angles in the MAH, and (4) estimation of

the median, 25th, and 75th percentiles of these for normally

behaving pigs. The testing part, which can be developed to be

real-time, includes five steps: (1) OF estimation and filtering,

(2) MAH estimation, (3) comparison of the selected bins to the

estimated percentiles, (4) interpolation and (5) thresholding.

The summaries of the training and testing procedures are

presented in Figs. 2 and 3.

2.3. Optical flow

Tracking individual pigs is a complicated task due to similar-

ities of their body shape, therefore OF is used instead. The OF

of the pigs is determined using the Vision Toolbox in MAT-

LAB® (Matlab, 2012a), which uses the Horn-Schunck (Horn &

Schunck, 1981) method with a five frame delay. The OF vec-

tors span over an entire frame and subsequently the relevant

vectors are filtered to identify only those that represent the

pigs. Currently, the OF estimation is off-line and performed

using implemented functions in MATLAB®. Thus more

development is needed to make the method feasible for on-

line applications. For our off-line version, the OF for a single

frame requires an average of 0.2669± 0.0082 s CPU to compute.

Filtering the OF vectors is performed in two steps. First, a

colour decorrelation stretch (Matlab, 2012b) is used to enhance

the red colour of the pigs. The decorrelation stretch removes

the correlation between the RGB colour channels, thus

enhancing colours. Secondly, blob detection, which is a by-

product of the OF estimation, (Matlab, 2012a) is used to

separate the pigs from the background. Blob detection is a

computer vision method that detects regions that differ in

properties. Although Tu et al. (2013) and Guo, Zhu, Jiao, and

Chen (2014) present some elaborate methods for the identifi-

cation of pigs which can handle illumination issues, our

simple pig identification approach works well in our case as

no significant illumination or area changes are present in the

analysed recordings.

2.4. Dawkin's low-level statistics

Dawkins et al. (2012) analysed the mean, variance, skewness

and kurtosis of the OF vector lengths and showed high cor-

relations to welfare measures. Mean (m) and variance (s2) are

the classic probability measures for the expected value (E[$])

and the spread of the data around the expected value of the

random variable X. Skewness is a measure of asymmetry of a

probability distribution and is defined as:

g1 ¼ E

"�
X� m

s

�3
#

(2)

Kurtosis measures the peakedness of a probability distri-

bution and is defined as:

b2 ¼
E
h
ðX� mÞ4

i
�
E
h
ðX� mÞ2

i�2 (3)

2.5. Modified angular histogram

To quantify filtered OF vectors we span the vector angle range

[�p; p] and divide it into a constant number of bins. A median

length of vectors is estimated within each bin of a corre-

sponding vector angle range. We call this a modified angular

histogram. A detailed motivation and description of the MAH

are given below.

2.5.1. Motivation for the modified angular histogram
In this subsection, the movement of a single pig from data set

A (six frames of a single pig moving) is analysed. The elon-

gated body shape and asymmetric front and back leg steps

make a pig'smovement resemble the letter “S”when observed

from above, thus resulting in the OF vectors pointing in mul-

tiple directions. Figure 4a shows the OF vectors of a single pig

moving from the top of the figure to the bottom. The forward

movement corresponds to the angle range between

�
p
4;

3p
4

�
. The

angles of the OF vectors presented in Fig. 4a are symmetrically

distributed around a rotational symmetry axis in Fig. 4b. The

symmetry axis is diagonal to the pig's body. Patterns of the

local movements are detected by OF, and thus a wide range of

angles is registered. As a result, not all OF vectors represent

the global direction and speed of the pig.
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2.5.2. Estimation of modified angular histogram
We propose to use MAH to quantify and summarise the op-

tical flow vectors of each frame. The idea is to summarise OF

vectors with similar angles, and thereby obtain a median di-

rection for each part of the pig. To do this, the angle range [�p;

p] needs to be divided into a set of bins, as in a histogram. We

use Doane's formula (Doane, 1976) to obtain the number of

bins:

k ¼ 1þ log2ðnÞ þ log2

���g1

��
sg1

�
(4)

sg1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ðn� 2Þ
ðnþ 1Þðnþ 3Þ

s
(5)

where g1 is the estimated skewness, n is the number of ob-

servations, k is the number of bins. For our data, we obtain 31

bins. The median lengths of all OF vectors that fall into the

given angle range are calculated for each bin. The median is

chosen instead of the mean, due to the mean's sensitivity to

outliers.

(a) A sample frame. (b) OF vector lengths before correction.

(c) OF vector lengths after correction.

Fig. 1 e OF vector lengths before (b) and after (c) correction. The dot in (a) is the lens focal point where the correction is

strongest. The area marked by the red square is most affected by the correction.

Fig. 2 e Illustration of the training procedure.

b i o s y s t em s e n g i n e e r i n g 1 4 1 ( 2 0 1 6 ) 1 9e3 022



2.5.3. Feature selection
Due to a high correlation between the MAH bins, not all bins

have to bemonitored to identifymoving and stationary pigs. A

simple feature filtering approach, together with sequential

feature selection using the Support Vector Machines (SVM)

algorithm is used to identify themost important bins. SVM is a

non-parametric supervised classification method that

constructs a hyperplane in higher dimensions for classifica-

tion. In our case, we use SVM to separate moving pigs from

stationary pigs. A detailed description of the method can be

found in Hastie et al. (2009). Sequential feature selection is

widely used to select the most important features within a

large set of variables that are highly correlated. The method

selects a subset of features by sequentially adding more fea-

tures until a minimal cross-validation misclassification error

is reached. A simple feature filtering is used to help sequential

filtering to converge. It is done by performing a t-test of the

difference in means between moving and stationary pigs on

each feature and then comparing the p-values.

2.6. Statistical process control

Statistical process control (SPC) is an approach tomonitor and

control the process and to ensure the process output is con-

forming to the specification. The monitoring is performed

using control charts that were originally introduced by She-

whart (Montgomery, 2007, p.207e265). For variables of in-

terests that are expected to vary around a constant level, the

chart consists of a central line, which is for example themean

or target value of the variable for a good process, as well as

upper and lower control limits (UCL, LCL). The process is

considered “in control”when themonitored variable is within

the pre-defined control limits. Otherwise, it is deemed “out-of-

control”. Traditionally the main focus has been the central

tendency (mean) of the process. Three standard deviations

around the mean are used as control limits. The mean and

standard deviation are estimated using historical, in-control

process data. As mentioned in Section 2.5.2, the median,

25th, and 75th percentiles are employed instead of the mean

and standard deviation in the analysed case to decrease the

influence of errors accrued in the estimation of the OF vectors.

Fig. 3 e Illustration of the testing procedure.

(a) All identified OF vectors (b) Angles of identified OF vectors.

Fig. 4 e Identified OF vectors for the moving pig and rotational symmetry axis for OF vector angles in radians. The angle

range
h
�p

4;
p
4

i
represents vectors pointing to the right,

�
�p;�3p

4

�
and

�
3p
4 ;p

�
vectors pointing to the left,

�
� 3p

4 ;�p
4

�
vectors

pointing backwards,

�
p
4;

3p
4

�
vectors pointing forward.
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3. Results

3.1. Interpretation of MAH

The MAH of the pig in Fig. 4 is presented in Fig. 5a. Two peaks

and two valleys are present in the MAH. The same pattern is

present in the vector count histogram in Fig. 5b. The middle

peak in the histograms represents amovement to the left, and

the two peaks on the sides represent a movement to the right.

In a circular plot, the two peaks on the sides would have

merged to one peak. The rightmost valley represents the

vectors in the global movement direction, and the leftmost

valley represents vectors in the opposite direction of the

global movement. An overview of the vector lengths and an-

gles is presented in Fig. 6.

The MAHs verify that the OF vectors capture not only the

forward motion of the pig but also the local movements of its

body. The vectors in the global movement direction are fewer

and smaller in length than vectors representing local move-

ment; indicating that the body of the pig wiggles rapidly from

side to side while it slowly moves forward.

3.2. Performance of Dawkins low-level statistics on
large animals

From data set D (eight frames with 29 moving and two sta-

tionary pigs), OF vectors of all pigs are extracted, and all pigs

are labelled on the basis of manual assessment of the video

sequence as moving or stationary. By sampling from these

pigs at randomwith replacement, two sets of artificial frames

are made consisting of the corresponding OF vectors. An

artificial frame is a collection of one or several pigs' optical
flow vectors, disregarding the location in time and space of the

pigs. In the first set, only moving pigs are sampled, and in the

second set one stationary pig and otherwise moving pigs are

sampled. 30 artificial frames are sampled per set with the

same total number of pigs in both sets. We varied the number

of pigs from 2 to 36 with an increment of 2 and for each

number of pigs we repeat the experiment 500 times. For each

frame, the mean, variance, skewness and kurtosis of the

length of all OF vectors are estimated. Two-sample t-tests for

(a) The MAH of vector median
lengths.

(b) The MAH of vector counts.

Fig. 5 e The MAHs of the pig presented in Fig. 4.

Fig. 6 e The lines represent the 150 times enlarged OF

vectors of a single pig, and the arrows represent the

directions. Red colour represents vectors that fall in the

middle peak of the MAH, yellow vectors fall in the side

peaks, blue vectors fall in the left valley and green vectors

fall in the right valley.
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the difference in means between the two groups are per-

formed for each of the low-level statistics with an increasing

number of pigs per frame. A summary of the p-values of the

two-sample t-tests is presented in Fig. 7.

When the number of pigs is large, there is no difference

between frames with and without stationary pigs for the low-

level statistics. For variance (see Fig. 7b) and kurtosis (see

Fig. 7d), there are no differences between the two groups,

whereas for the mean (see Fig. 7a) and skewness (see Fig. 7c)

there are statistically significant differences for up to 9 and 5

pigs per frame, respectively. Due to the OF vectors pointing in

multiple directions and the large number of pigs per frame,

the out-of-control pigs' vectors are averaged out, as the

number of pigs increases.

3.3. Comparison of MAHs from moving and stationary
pigs

In this section, we compare MAHs of moving and stationary

pigs. We consider two types of out-of-control situations: (1) an

animal is stationary or moving slower than it should be

moving and (2) an animal is moving too quickly. The number

of out-of-control situations can be related to the welfare of the

animals. As an illustration, if pigs are encouraged to move too

quickly, they will start tripping or stampeding. In contrast, if

all animals are moving and some animals are not, this can

indicate that animals have some physical problems. Data set B

(frames with six moving and one stationary pig) is used for

comparison of moving and stationary pigs (the data are

illustrated in Fig. 8). The results of the comparison are used to

detect stationary pigs.

First, using all OF vectors of moving pigs', themedian, 25th,

and 75th percentiles are estimated. Then, all pigs in data set B

are identified individually. MAHs are constructed for each

identified and fully visible pig.

Figure 9 represents the MAHs of moving and stationary

pigs. The moving pigs lie between the 25th and 75th percen-

tiles, while the MAH for the stationary pig does not. If indi-

vidual pigs can be identified, abnormally moving pigs are

detected by comparing individual pigs' MAHs to correspond-

ing angle percentiles. In our case, individual pigs cannot be

identified. Thus the abnormal movement is detected by

comparing the lengths of individual OF vectors to their cor-

responding bins.

3.4. The results of feature selection

As described earlier, it is difficult to separate pigs when they

are close to each other. Therefore, it can be difficult to identify

individual animals in a video sequence. Thus, it is not possible

to compare histograms from individual pigs inmost cases.We

suggest analysing individual OF vectors instead. Figure 9

shows that not all bins have the same differentiation power,

and since computational power is important in a real-time

procedure, we perform feature selection to identify the set of

median OF vectors (bins) with the best discrimination power.

Fig. 7 e p-values of the two-sample t-tests for the low-level statistics between the two groups. The solid black lines

represent mean values while solid grey lines represent ±one standard deviation from the mean. The black dashed line

represents 0.05 significance level.
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We used the 190 manually annotated frames from set C (190

frames of multiple pigs where some of them are stationary) to

determine the set of bins for the best two-class separation.

Fully visible pigs are individually detected and annotated

in each frame. A total of 540 pigs are annotated, of which 294

pigs are annotated as stationary, whereas 246 pigs are anno-

tated as moving. The sequential selection identifies that the

most important bins in the MAH are: 23, 26, 27 and 28 (see

Fig. 5). The direction and length of the vectors are shown in

Fig. 10. As it can be seen from this figure, all selected bins point

in the moving direction.

3.5. Monitoring and identification of abnormal
movement

In this section, we show how the results of this comparison in

Section 3.3 can be applied to locate stationary pigs in a video

recording. The same principles can also be applied to identify

pigs that are moving at high speed. To identify pigs with

abnormalmovement, we propose tomonitor the four selected

angle bins. A vector is declared out-of-control if its length is

outside the 25th and 75th percentile range for the corre-

sponding angle. To directly monitor the vectors that are

Fig. 8 e Indexed pigs in the image are used for further analysis. Green lines represent OF vectors. As can be seen from the

figures pig number 2 is not moving forward.
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within selected angles using low-level statistics is not optimal,

as a few abnormally moving pigs in a large group will be

averaged out, just like they would be by applying low-level

statistics directly on a vector length. To make the moni-

toring independent of the number of pigs in a frame, we

suggest monitoring the concentration of out-of-control vec-

tors over the frame.

It is expected that a certain number of the control pixels will

be declared out-of-control in normally moving pigs (false

alarms). Thus, we will monitor the density of such occurrences

rather thansingleoccurrences.Thedensityof theout-of-control

pixels is higher in the areas where abnormal movement is pre-

sent, in comparison to those areas where normal movement is

present. The out-of-control pixel density is tracked within a

small patch of 61 � 61 pixels. The density is assigned to the

middle pixel of each patch. A 2D interpolation of all patches is

used to obtain a smooth density map for each frame.

The results of the detection and location of a stationary pig

are presented for a video sequence (set E). The MAHs of 382

pigs, of which 277 are stationary, and 105 are moving from set

C, are used formodel training. TheMAHs of themoving pigs in

the set C are used to estimate the median, 25th and 75th per-

centiles. The test set E consists of 150 frames, where one pig is

stationary in approximately 30 frames. In the experiment, the

vectors within the selected angles (corresponding to 23rd,

26th, 27th and 28th bins in MAH) are monitored.

The density map of one of the frames is presented in

Fig. 11a. All pigs have some out-of-control pixels. However,

one peak covering a large area is higher than the rest. This

peak identifies a pig that is not moving. Thresholding is

used to separate out the high peak that covers a large area.

The threshold value that best separates moving and sta-

tionary pigs is determined in a training stage, and set to

0.43. In Fig. 11b, the stationary pig is clearly marked. In 11

frames out of approximately 30, the stationary pig is iden-

tified as stationary. In the first 18 frames, the pig is not

moving forward, but its body is still moving due to inertia.

No false alarms, declaring an out-of-control situation when

it is not present, were detected during the experiment.

Choosing a lower threshold value would increase the false

alarm rate, corresponding to moving pigs being identified as

stationary.

3.6. Performance of modified angular histograms on
large animals

In this section, we illustrate the performance of the proposed

monitoring algorithm based on MAH and feature selection.

Two groupswith different numbers of randomly sampled pigs

are estimated using data set D (eight frames with 29 moving

and two stationary pigs). For each frame, the out-of-control

density map is estimated. The thresholding is performed,

and the out-of-control areas are determined. The mean,

variance, skewness, and kurtosis are estimated for out-of-

control areas of each frame, and a two-sample t-test is per-

formed for the low-level statistics as in Section 3.2. It is ex-

pected that a certain number of pixels will be declared out-of-

control over normallymoving pigs, but the largest (maximum)

area will be over abnormally moving pigs.

The t-test indicates that on average we fail to reject the null

hypothesis that the samples from the two groups have an

equal mean with unequal variances at significance level 0.05

for kurtosis (see Fig. 12c) and also in most cases for the mean

(see Fig. 12a). On average the null hypothesis is rejected for the

variance statistic (see Fig. 12b) if the number of pigs is less

than 20. As discussed earlier, a pig's abnormal behaviour can

be averaged out if there is a large number of pigs in the frame.

Fig. 9 e MAH of moving pigs: pig 1 e blue, pig 3 e orange,

pig 4 e yellow, pig 5 e brown, pig 6 e pink, pig 7 e grey,

and stationary pig 2 e red. The median (solid green line),

25th and 75th (green dash lines) percentiles of all moving

pigs.

Fig. 10 e The SVM feature selection identified four

important angle bins (bin 28, 27, 26, and 23) in MAH, which

discriminates moving pigs from stationary pigs. The

median vectors of those four angle bins are illustrated in

the figure.
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The t-test indicates that the skewness and maximum area

measures are different between the two groups for all inves-

tigated numbers of pigs. An in-depth analysis confirms that

the area for the out-of-control pigs will be larger while for the

in-control pigs it will be smaller.

4. Discussion

Detecting number of abnormalities in a sequence of frames

can be used to enhance animal welfare in two aspects:

Fig. 11 e Identification of the stationary pig (pig no. 2 in Fig. 8) in the frame. On the left, the density map of the out-of-control

vectors is illustrated. The density is highest for the stationary pig on the left figure.

Fig. 12 e p-values of the two-sample t-tests for the mean, variance and kurtosis of out-of-control area. The solid black lines

represent mean values while solid grey lines represent ±one standard deviation from the mean. The black dashed line

represents 0.05 significance level.
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� To compare the number of abnormalities in herds of pigs

that come from different farmers, different drivers who

transport the pigs from farm to a slaughterhouse, or during

different work shifts. The comparison will identify situa-

tions where additional inspection must be performed to

determine causes of animal stress. In some recordings, it

can be seen that pigs are encouraged to move forward too

intensely leading to pigs tripping and stampeding. The

cause of rushing can be a lack of training or time pressure.

In such cases, an inspection can be performed to identify

the reason and action can be taken to improve animal

welfare.

� To develop a real-time monitoring that will analyse the

number of abnormalities and detect sudden changes in a

pig herd. Sudden changes can be a result of an obstacle

falling onto a path or some animals that are severely

injured or sick. The real-time monitoring would be partic-

ularly useful to inform the operators to slow down when

encouraging pigs too much.

In SPC, counts of out-of-control situations can be used for

cause identification. However, in our case there are two

complications. (1) The method should take into consideration

whether the estimated location of an out-of-control pig is

consistently identified. For example, it is important that

approximately the same location is identified as out-of-

control in a sequence of frames. The detection of an out-of-

control pig in only a single frame is certainly a false alarm.

(2) A high correlation between sequential frames in the video

is present. Most of the current SPC methods for continuous

real-time monitoring have been developed based on the

assumption that observations are independent. The frames

from videos certainly violate this assumption (unless the

frame rate is very low). Thus, there is a need for an SPC

method that would take into account correlation between

frames. However, this correlation can also be used for making

predictions, early detection of events as well as reducing

excessive variation due to noise.

Several types of abnormalities are of interest inmonitoring

pigs in slaughterhouses. When pigs are moving too slowly or

not moving when they should be moving can indicate sick or

injured animals, while pigs moving too quickly can indicate

stressed animals. Our proposed method can locate stationary

pigs, but the similar principles can be used to locate pigs

moving too quickly or too slow.

5. Conclusion

In this paper, we analyse the movement of individual pigs as

well as movement of the entire pig herd, to provide informa-

tion that can be used for real-time behaviour monitoring and

welfare assurance. In addition, the potential differences be-

tween monitoring a small vs. large number of animals are

discussed. Pig movement is recorded with simple cameras

that do not interfere with the usual animal behaviour. Due to

similarities in the appearance of the animals, it is computa-

tionally expensive to track individual animals. Therefore, the

movement of animals in a herd is analysed using optical flow

(OF). The analysis indicates that pigs possess a specific

walking pattern due to their elongated body shape and trot-

ting movement. Also, a varying number of pigs can be present

in a frame and pigs can enter and leave the frame. As a result,

low-level statistics of the OF are not efficient for monitoring

pigs' behaviour. We suggest using modified angular histo-

grams (MAHs) of the OF for analysis of pigs' movements. The

MAHs indicate that a small fraction of all identified OF vectors

represents the pig's actual direction and speed.

We propose a method for abnormal movement detection

and location in various sizes of pig herds using information

obtained fromMAHs.We consider abnormalities such as a pig

being stationary when it should be moving, as it can indicate

an injured animal or an obstacle in the path. The method can

also be used for detecting pigs moving either too slowly or too

quickly in comparison to normally moving pigs. The results

indicate that the method successfully identifies a stationary

pig without any false alarms.

Two problemsmust be solved to make themethod work in

real-time. The SPC method has to take into account the cor-

relation that is present between frames in a video sequence.

This correlation violates the assumption of independence.

The consistency in the estimation of out-of-control pigs given

their location should also be analysed.
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a b s t r a c t

Humane handling and slaughter of livestock are of major concern in modern societies. Monitoring animal
wellbeing in slaughterhouses is critical in preventing unnecessary stress and physical damage to live-
stock, which can also affect the meat quality. The goal of this study is to monitor pig herds at the slaugh-
terhouse and identify undesirable events such as pigs tripping or stepping on each other. In this paper, we
monitor pig behavior in color videos recorded during unloading from transportation trucks. We monitor
the movement of a pig herd where the pigs enter and leave a surveyed area. The method is based on opti-
cal flow, which is not well explored for monitoring all types of animals, but is the method of choice for
human crowd monitoring. We recommend using modified angular histograms to summarize the optical
flow vectors. We show that the classification rate based on support vector machines is 93% of all frames.
The sensitivity of the model is 93.5% with 90% specificity and 6.5% false alarm rate. The radial lens dis-
tortion and camera position required for convenient surveillance make the recordings highly distorted.
Therefore, we also propose a new approach to correct lens and foreshortening distortions by using mov-
ing reference points. The method can be applied real-time during the actual unloading operations of pigs.
In addition, we present a method for identification of the causes leading to undesirable events, which cur-
rently only runs off-line. The comparative analysis of three drivers, which performed the unloading of the
pigs from the trucks in the available datasets, indicates that the drivers perform significantly differently.
Driver 1 has 2.95 times higher odds to have pigs tripping and stepping on each other than the two others,
and Driver 2 has 1.11 times higher odds than Driver 3.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Today most consumers are not interested in meat quality alone
but also in the welfare of the animal (Verbeke and Viaene, 2000;
Napolitano et al., 2010; Kehlbacher et al., 2012). Moreover, high
levels of stress before slaughter can affect the meat quality
(Warriss et al., 1994; Brandt et al., 2013). Bruises caused before
slaughter can also impair the value of meat sold with skin. In this
paper, the behavior of pigs in a large and automated slaughter
house that can handle up to 62,000 pigs per week is analyzed. It
is difficult to keep track of that many pigs and ensure that they
remain stress-free during handling. To complicate matters further,
pigs which are unfamiliar with each other (e.g. coming from
different fattening) can potentially attack each other causing
unnecessary stress and physical damage (Oczak et al., 2014). In this
study, pigs are filmed upon arrival at the slaughter house during

the unloading of a truck. During transportation, pigs are usually
sedentary therefore they often move slowly during unloading. To
speed up the process, truck drivers are allowed to use specially
designed sticks with sound effects. Pigs often react differently
and some start moving too fast, resulting in a stampede. Conse-
quently, they can start tripping and may step on each other. This
situation can increase the stress level and may cause injuries
(Broom, 2005). Most of the undesired situations, such as pigs trip-
ping or stepping on each other, happen when animals are moving
too fast and densely confined in an area. Consequently, we want a
process where they move as fast as possible while ensuring that
the animals remain stress-free and unharmed. The aim of this
paper is to monitor pig herds at the slaughterhouse and determine
when pigs stampede or about to stampede and give notice to the
personnel to slow down the unloading and avoid events where pigs
are tripping or stepping on each other. In our previous work, we
proposed monitoring pig herd movement based on video surveil-
lance without identifying individual animals (Gronskyte et al.,
2015). Previous studies by Ahrendt et al. (2011) and Kashiha
et al. (2013) tracked several individual pigs in a constrained area,

http://dx.doi.org/10.1016/j.compag.2015.09.021
0168-1699/� 2015 Elsevier B.V. All rights reserved.
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which means that all pigs at all time were visible, whereas we ana-
lyzed the herd movement in an ‘‘unconstrained” area, allowing for
pigs to enter and then leave the surveyed area.

The videos provided for this analysis were recorded at an angle
with radial lens distortion. As a result of lens and foreshortening
distortions, some additional steps had to be taken before the final
behavior could be classified. Optical Flow (OF) was used to monitor
the pig herd movement. Initially OF is estimated for an entire
frame, thus pigs are identified and OF is filtered to only analyze
movement of the pigs. Due to the special trot of pigs, averages of
OF vectors are not suitable for behavior monitoring (Gronskyte
et al., 2015) as proposed by Dawkins et al. (2009, 2012). Instead,
we propose in Gronskyte et al. (2015) monitoring discriminant
herd movement features extracted from a modified angular his-
togram (MAH) (Gronskyte et al., 2015) using Support Vector
Machines (SVM) (Hastie et al., 2009, pp. 417–458). A MAH of a sin-
gle frame describes the distribution of the OF vectors’ median
lengths over the entire angle range. The analysis based on MAH
can be used in cases where monitored objects present a specific
walking pattern. The overview of the described approach is pre-
sented as a flowchart in Fig. 1. The results of the SVM can also be
studied on the basis of several frames, rather than a single frame.
In this context, we will describe the possibilities of identifying
the causes of the stampede.

In the following section a brief literature review on behavior
monitoring is presented. In Section 2 the data are presented. The
method is presented in Section 3 followed by the summary of
the results given in Section 5 and the conclusion in Section 6.

1.1. Literature review

There is extensive research carried out on behavior monitoring
of humans, and farm, wild and laboratory animals. There have pri-
marily been two approaches to human behavior monitoring: track-
ing individuals or using OF. An overview of the human behavior

monitoring methods is given in Hu et al. (2004). Some of the meth-
ods focus on detecting a single action, like a snatch, in surveillance
videos (Ibrahim et al., 2010) or dense crowds trying to use escala-
tors (Ihaddadene and Djeraba, 2008). A large number of methods
focus on detecting any abnormality in the videos (Mehran et al.,
2009; Kratz and Nishino, 2009; Boiman and Irani, 2007). Animal
identification is an important step in most animal monitoring
methods, and it has been implemented in a variety of different
ways for different animals. Fish and rats are usually monitored
(Spink et al., 2001; Ardekani et al., 2013) in a highly controlled
environment, possibly using additional markers to identify individ-
ual animals, with the primary focus on monitoring repetition of a
specific action and/or the duration of the action. Some research
has also been done in monitoring insects, but they are particularly
challenging subjects to track due to their small size and similarity
(Hendriks et al., 2012). In bat movement analysis (Breslav et al.,
2012) the main interest is to identify individual animals and
compare their flying trajectories.

More research has been done in monitoring cows’, chicken
broilers’ and pigs’ behavior. A study by Cangar et al. (2008) used
a model-based monitoring tool to track locomotion and posture
of pregnant cows’ in a pen. Studies by Dawkins et al. (2009,
2012) and Roberts et al. (2012) on chicken behavior analysis use
low level features of OF to monitor chickens’ welfare. Pigs can be
tracked using radio tags that are attached to the animal’s ear (Ng
et al., 2005) or injected in the animal’s body (Prola et al., 2010;
Caja et al., 2005), or using video surveillance. For example, Tu
et al. (2013) and Guo et al. (2014) use background subtraction
methods to identify pigs in a frame. Their methods can handle illu-
mination changes, which is different from our case that involves
controlled illumination. Pigs were also tracked in a pen using
markers (Kashiha et al., 2013), features (Ahrendt et al., 2011) or
shape matching (Tillett et al., 1997). The feature based approach
successfully tracks pigs without loosing them for eight-minutes.
The computer vision methods are used to monitor not only the
pig’ behavior but also the activity levels in relationship to the cli-
mate in a pen (Costa et al., 2014), to measure pigs’ weight
(Kashiha et al., 2014) and to analyze pigs locomotion (Kongsro,
2013). None of the methods for animal monitoring in the literature
analyze cases where the animals can enter and leave the surveyed
area. Such unconstrained areas are on the other hand very common
in human crowd monitoring (Kratz and Nishino, 2009; Perko et al.,
2013) and the corresponding analysis is often carried out using OF
as we also propose in our study.

2. Animals and setup

The pigs were recorded at a Danish slaughterhouse during the
unloading process from the truck. The pigs were transported for
around 2 h from the fattening houses to the slaughterhouse in
commercial three-deck trucks. The pigs in the truck were divided
into pens of 15–23 pigs each. There were 9–15 adjustable size pens
in a truck. The majority of the pigs are crossbreeds between Duroc,
Danish Landrace and Yorkshire (Dx(LxY)). The recordings mainly
contain white-skinned pigs with a few colored pigs. Pigs weighed
100–110 kg and were approximately 6 months of age.

The setup of the unloading area is shown in Fig. 2. The pigs are
transferred from the trucks to unloading dock and from there they
enter the slaughterhouse. The average temperature of 14.8 �C was
recorded during the unloading.

A GoPro HERO2 (�2013 Woodman Labs, Inc) camera was used
for recording. A sample frame of the videos recorded is given in
Fig. 3. The entire frame is not analyzed as the pigs can only move
in a certain area of the frame.

Three videos, each of length 17 min 35 s, were recorded at the
rate of 29.97 frames per second. The frame height is 1920 and

Frame

Optical flow estima-

tion and correction

Indentification of pigs

Optical flow filtering

Modified Angular Histograms

Is event present?

(SVM)
PresentNot present

Fig. 1. Flowchart of the proposed pig behavior monitoring approach.
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width 1080, but the frames shown in this paper are cropped for
proprietary reasons. Every frame is analyzed and optical flow is
estimated using 5 frame reference delay. In each video, different
truck drivers were unloading the pigs.

3. Methods

3.1. Data annotation

Some of the videos contain recordings of a preparation for the
unloading which are not analyzed. In total 30,124 frames, where
the unloading operation is taking place, are analyzed and anno-
tated. During the unloading, pigs move from the truck towards
the entrance of the slaughterhouse as depicted in Fig. 3 and in this
paper this is referred to as pigs’ movement. Each frame is classified
by two classifiers through manual annotation. The first classifier
describes the movement of the pigs with three classes: 0 when
there is no undesirable event present, 1 when pigs are tripping
and 2 when pigs are stepping on each other. The second classifier
describes the presence of the truck driver: class 0 when the truck
driver is not present in the scene, class 1 when truck driver is pre-
sent but he is not encouraging the pigs and class 2 when the truck
driver is present and encouraging the pigs. The main focus is on the
three sub-classes: (1) when the driver is not present and pigs are
moving without any undesirable events (3718 frames), (2) when
the driver is encouraging the pigs to move causing them to trip
(541 frames), and (3) when the driver is encouraging the pigs to
move and they are stepping on each other (824 frames). This clas-
sification can be used during the unloading and alert the staff when
an undesirable event is happening or about to happen. In most of
the analyzed cases, the undesirable event is a result of stampede.
For the rest of the paper we use the term ‘‘event” to represent an
undesirable event, such as pigs tripping or stepping on each other.
Each event is presented in a series of frames and the number of
frames depends on the length of the event.

3.2. Movement analysis

In this section, the proposed pig movement analysis is pre-
sented. This analysis consists of three steps: (1) motion estimation,
(2) feature extraction and (3) frame classification. To estimate
the motion of the pigs, we use four steps: (i) optical flow estima-
tion, (ii) identification of pigs, (iii) optical flow filtering, and (iv)
distortion correction.

3.2.1. Optical flow determination and correction
In the analysis, MATLAB’s Computer Vision System toolbox

MATLAB (2015) which employs the Horn–Schunck method with
a five frame reference delay is used. As mentioned earlier, the OF
vector values had to be adjusted due to radial lens and foreshort-
ening distortions. The former, can be split into two types: (a) pin-
cushion distortion and (b) barrel distortion, which is present in the
videos in this study. The barrel distortion maps an image around a
sphere, thus a pig’s magnification decreases with distance from the
optical axis. The latter is a result of perspective projection, thus a
pig exiting the truck looks smaller than it exits the area of interest.
Fig. 4a shows that the absolute values of the OF vectors are shorter
at the lower part of the image than at the upper part. The values in
Fig. 4 are smoothed using a finite impulse response filter.

Only a few correction algorithms have been developed because
it would often be easier to adjust the camera or to account for the
distortion using lens specification. However, since this could not be
done for the available data, we needed to adjust the data for lens
and foreshortening distortions. Previous work by Altunbasak
et al. (2003) suggests to combine lens distortion correction and
OF determination. To account for both distortions, the pig length
and width are used as reference measurements because of the sim-
ilarity of the pigs in shape and size. Distortions in both X and Y
directions for each pixel in the frame are estimated using length
and width of 101 forward moving pigs respectively. This is done

Fig. 2. The setup scheme.

Fig. 3. The sample frame of the recorded videos. The red dash line represents an
area of interested and pigs moving direction is considered to be between two
arrows. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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because a solid reference is not available. The pigs used for refer-
ence are selected according to the following criteria: (1) the pig
has to stand straight, so that there is a straight line between the
tip of the nose and the tail, (2) the four points of interest (the tip
of the nose, the tail and the shoulders) are not occluded and clearly
visible, and (3) the line connecting the pig’s tail and nose is parallel
to the Y-axis and the line connecting the shoulders is parallel to the
X-axis. The length of the pig is calculated from the tip of the nose to
the end of the tail of the animal and is assigned to the pixel corre-
sponding to the tip of the nose pixel whereas the width is calcu-
lated as the width of the shoulders of the animal and assigned to
the furthest left pixel of the shoulder. A polynomial model is used
to model the changes in X and Y directions. The smallest sum of
squared errors is achieved using a 3rd order polynomial given as:

Zðx; yÞ ¼
X4
j¼1

X4
i¼1

pjix
4�jy4�i ð1Þ

where x and y are the vector positions in the frame, Z is the length
or width of the pig and pji are polynomial coefficients. Altunbasak
et al. (2003) also uses a 3rd order polynomial to correct for lens dis-
tortion. Surface plots for distortion in the X and Y directions can be
seen in Fig. 5.

The length and width of each pixel in the region of interest are
estimated using Eq. (1) and shown in Fig. 6 together with the iden-
tified focal point. The focal point is where the predicted length and
width are shortest. The predicted measures are then used to esti-
mate the correctional coefficient field. The function f ðxÞ re-scales
the I ¼ fX;Yg into interval ½a; b� as follows:

f ðxÞ ¼ ðb� aÞðx�minðIÞÞ
maxðIÞ �minðIÞ þ a ð2Þ

where a ¼ 1 because it is expected that the OF vectors in the area
with no distortion would remain unchanged and vectors in areas
with distortion would be scaled to b ¼ maxðIÞ

minðIÞ. The distortion correc-

tion field is used to adjust the OF vectors. This is done by multiply-
ing real values of the OF vector with the width distortion correction
coefficients and the imaginary value with the length coefficients.
Fig. 4b shows the absolute values of the OF vectors after the
correction.

3.2.2. Optical flow filtering
To monitor the pigs’ movements, the OF vectors representing

movement of the pigs need to be separated from the background.
At first, thresholding the pixel color values was considered.

(a) Before. (b) After.

Fig. 4. OF vectors absolute values before and after OF field correction.
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(b) Pig’s length.

Fig. 5. The length and width of the pigs over the region of interest (marked as dots), and the 3rd order model fit used for correction of lens and foreshortening distortions.
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However, this method is not feasible due to light reflections, as the
OF vectors of the light reflection or light source can have the same
length as the pigs’ movements. The approach employed to identify
individual pigs includes image color map adjustment, color filter-
ing, blob detection, image dilation and holes filling. The image
color map adjustment (MATLAB, 2015) increases the contrast in
an image, thus increasing the ability to identify the pigs. To
completely separate the pigs from the background, blob detection

is used. Blob detection (Bailey, 2011; Tuytelaars and Mikolajczyk,
2008) identifies regions in an image that differ from the surround-
ing areas. In addition, the region on which the pigs can walk is
selected out of the entire frame. As a result, all background is
eliminated. Image dilation (Soille, 2003, p. 68), which utilizes
square structural element with a 5 pixel distance from the center
to the edge, is used to include all pixels at the edge of the pigs’ bod-
ies. Holes filling (Soille, 2003, p. 208) is used to fill the holes on the
pigs’ bodies that appear due to markings or dirt.

3.3. Herd movement features

Due to elongated body shape and movement of the pigs, a lot of
OF vectors do not represent pigs’ actual movement direction and
speed. A pigs’ body movement resembles the letter ‘‘S”, therefore
the angles of the OF vectors are in all directions (Kongsro, 2013).
The vectors corresponding to the actual movement direction and
speed are represented in a valley of the MAH. Therefore we suggest
to use MAH to analyze pigs’ movement. Angle range is divided into
bins from �p to p using Doane’s formula (Doane, 1976) for
non-normal distribution:

k ¼ 1þ log2ðnÞ þ log2
jg1j
rg1

� �
ð3Þ

rg1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ðn� 2Þ
ðnþ 1Þðnþ 3Þ

s
ð4Þ

where g1 is the sample skewness, n is the number of observations, k
is the number of bins. These two values are taken as the averages of
skewness and the number of OF vectors in the training set
respectively. In each bin, the average length of the vectors is
registered. Fig. 7a shows the four examples of mean MAH for each
annotated sub-class described in Section 2 and Fig. 7b shows the
empirical distributions of mean MAH for the four sub-classes.

Fig. 7a and b indicates that when pigs are moving without any
events they tend to move slower and when an event is present pigs
on average tend to move faster. It is clear that peaks of freely
moving pigs are lower than the peaks when an event is present.
The difference between the peaks and the valleys of the histograms
changes within a sub-class.

The main focus is to estimate the relative measure of density
and not necessarily the number of pigs. The pig density is esti-
mated by counting the number of pixels that are classified as pigs.

Fig. 6. Lens and foreshortening distortions in the full frame are marked with
magenta arrows. The yellow circle represents lens focal point. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 7. (a) Mean MAH of four annotated sub-classes, and (b) empirical frequency histograms of sub-class MAH. The dashed gray line indicates freely moving pigs, solid gray
line is for encouraged pigs but moving without events, dashed black line is for encouraged pigs that are tripping and solid black line is for encouraged pigs that are stepping on
each other.
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Fig. 8 shows that when the pigs are moving freely there are usually
fewer pixels of pigs than when they are being encouraged to move.

For further analysis, we consider the following four variables:
the average of the two highest bins (1) in the left peak and (2) in
the right peak, (3) the average of two smallest bins in the valley
and (4) the number of pixels that are classified as pigs.

3.4. Movement classification

Figs. 8 and 9 show the differences in the average values of the
selected variables between sub-classes. However, as it can be seen
in Fig. 9, none of the variables separate the freely walking pigs
clearly from the pigs affected by events. We suggest to combine
information from all four variables to obtain a clear separation
among the sub-classes. For further analysis, the two sub-classes
containing events are merged to obtain the identification when
stampede is happening or about to happen and adequate actions
should be taken.

SVM with radial kernel basis function is applied to separate the
different sub-classes. To identify the optimal scaling parameter r,
we randomly divide three selected sub-classes into training (75%
of the frames) and testing (25% of the frames) datasets and for each
r, SVM model is estimated and error rates are recorded. The aver-
age error rates are shown in Fig. 10. The optimal r is calculated to

be 0.11 and the method’s overall classification rate is 93%, while
90% of the frames with events are classified correctly and 94% of
the frames without events are classified correctly.

4. Identification of assignable causes

Systems and processes are generally subjected to two types of
variation: common cause variation and assignable cause variation.
The former is defined as the variation that occurs due to chance
and it is perpetually present in any process. The latter, however
is due to unusual and unexpected disturbances, also known as
assignable causes which are to be detected and removed in order
to bring the process back to normal operating conditions. In our
study, we assume that a certain amount of stress is likely to be
imparted to the animals, irrespective of the handling conditions.
However, additional stress that can for example cause a stampede
can be introduced due to varying behaviors of truck drivers, differ-
ences in farms from which the pigs are coming from, problems
with the bridge connecting the truck to the unloading area, etc. It
will therefore be of great value to identify the presence of these
assignable causes in order to take actions, to alleviate their impact.
In industrial processes this is achieved by employing statistical
process control (SPC) techniques designed to monitor (real-time)
the performance of the processes and declare an out-of-control sig-
nal (e.g. a stampede is happening or about to happen) when more
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than an expected amount of variation is detected. A more in depth
implementation of SPC techniques in our study constitutes our
future work. In this section we provide a prelude to the identifica-
tion of assignable causes with an off-line approach and leave the
real-time implementation of appropriate statistical process control
techniques for our upcoming work.

In our case, our primary concern is the number of out-of-control
frames, i.e. frames where undesirable events such as tripping and
stepping on each other are present. The methodology presented
in Section 3.2 provides classification of each frame. A measure of
interest can then be the ratio of out-of-control frames to the total
number of frames. Under the assumptions that the probability p of
a frame being classified as out-of-control is the same for all frames

and that the frames are independent, the number of out-of-control
frames in a sample of n frames is binomially distributed as

PðxÞ ¼ n

x

� �
pxð1� pÞn�x ð5Þ

where x is a number of frames classified as out-of-control.
The drivers use specially designed sticks to encourage pigs to

move faster, if the pigs are heavily encouraged, it can cause stam-
pede. Hence to investigate the influence of the drivers on the
behavior of the pigs for example, we divide our data set in three
subsets according to drivers that are unloading the trucks. Each
driver is classified using the method described in Section 3.2 and
the number of out-of-control frames is counted. In total, 16632,
3558, 9934 frames are analyzed for Drivers 1, 2 and 3 respectively.
We then build a logistic regression model between dependent
(ratios of out-of-control frames and total number of frames per dri-
ver) and independent variable (drivers). The estimated coefficients
are presented in Fig. 11.

Pairwise comparisons of the drivers’ influence are performed
using the analysis of variance (ANOVA) (Johnson et al., 2010) as
the method takes into account the different sample sizes, and the
results are presented in Table 1. The p-values indicate that the
drivers are all different at a 5% significance level, even though
Fig. 11 shows that Drivers 2 and 3 are more similar than Driver
1. In depth analysis suggests, that Driver 1 has 2.79 and 3.10 times
higher odds to have an out-of-control frame (i.e. an event) than
Drivers 2 and 3, respectively. Driver 2 has only 1.11 time higher
odds than Driver 3.

As we stated earlier, this analysis is performed off-line and
therefore is of limited use. On the other hand it provides useful
information in terms of identifying the causes for excessive varia-
tion that can be easily reduced to normal levels by for example
providing better training for the drivers. We should also keep in
mind that the binomial distribution assumes independent observa-
tions. Clearly assuming successive frames to be independent is not
realistic. We are currently in the process of developing better
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Fig. 11. Estimated coefficients and their confidence intervals for the logistic
regression model.

Table 1
The p-values for the ANOVA test comparing the drivers.

p-value

Driver 1 vs. 2 <0.001
Driver 1 vs. 3 <0.001
Driver 2 vs. 3 0.00024
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Fig. 12. The length and width of one pig sampled in 21 frames. In frame 1 the pig is fully visible in the area of interest for the first time and in frame 21 for the last time.

Table 2
Classification performance comparison before and after corrections.

Before (%) After (%) p-value

Total classification rate 87 92 <0.001
Frames with events classification rate 67 90 <0.001
Frames without events classification rate 94 94 0.75
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methods performing real-time monitoring of this type of data.
Nonetheless, this rough analysis is provided as a starting point to
raise awareness about the techniques available to researchers in
monitoring system performance through image data.

5. Results

In this section the results of lens correction, pig identification
and movement classification are presented.

5.1. Lens correction

In Section 3.2.1, the method for foreshortening and lens distor-
tion correction is presented. In this section, the effectiveness of the
correction is discussed. As it can be seen in Fig. 4b, the high abso-
lute values of OF vectors are distributed over the entire image.
Before the correction the high values were concentrated in the
top part of Fig. 4a. The first indicator of a good correction is the
location of the identified focal point Fig. 6. Two indirect tests were

carried out to evaluate the performance of the correction. First the
length and width of a randomly selected single pig are sampled
every 4 frames spanning from the pig entering to exiting the area
of interest. In total 21 width and length measurements are taken.
The normalized measurements before and after the correction
are shown in Fig. 12. Before the correction the length linearly
increases as the pig moves over the bridge. After the correction
the length becomes stable. The width of the pig is almost constant
both before and after the correction.

The second test compares the performance of event detection in
the recordings with and without correction. Three performance
measures are compared: (1) total classification rate, classification
rates of (2) frames with and (3) frames without events. Both the
corrected and uncorrected recordings were randomly divided into
training and testing sets. Table 2 compares the classification rates
with and without correction using the two-sided t-test. The p-
values indicate a significant increase in the total classification rate
and classification rate of frames with events after correction. The
classification rate for frames without events is not affected by
distortions.
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Fig. 13. Two steps in pig identification: (a) color adjustment and (b) pixel color valued thresholding. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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5.2. Optical flow filtering

As it can be seen in Fig. 6, most of the pigs are dirty, therefore it
is not easy to separate them from the dark background. Adjusting
the intensity of the image to between ½0:3;0:8� enhances the pigs in
the image. Results of the adjusted color intensity can be seen in
Fig. 13a. Using pixel color value thresholding, most of the back-
ground was removed in the image, as shown in Fig. 13b. Some
errors appeared on the rails of the bridge, on some pigs’ backs
where dirt and markings are present, at the edges of the pigs’
bodies, and at the noses of the pigs. The final result can be seen
in Fig. 14.

5.3. Movement classification

In this section movement classification results are presented.
The overall classification rates is 92:47� 1:04%, while the model
sensitivity is 93:5� 1:12%, specificity is 89:72� 2:68% and false
alarm rate is 6:5� 1:12%. The area under receiver operating
characteristic (ROC) curves in Fig. 15 is 96:22� 0:52%. All the per-
formance measurements indicate a good classification model. In
addition, 12 separate events were present in the analyzed videos
and the proposed method identified some of the frames of all
events. There are several reasons for the method not identifying
the rest of the frames:

� There is no clear cut indication for when an action is over and
another starts, thus the transition between actions is difficult
to classify. For example, when an animal stops walking, its body
may still be moving due to large amounts of fat and also the
body shape.

� A stationary pig can still move its head and this can be
registered as a ‘‘movement”.

6. Conclusion

The main goal of this study is to prevent undesirable events that
can affect animal wellbeing in a slaughterhouse. Events such as
pigs tripping or stepping on each other are of the main interest,
and they are usually a result of stampede. The first hurdle is to con-
vert image data into numerical data that can be used for classifica-
tion of each frame based on the behavior of pig herd during the
unloading process. In previous works, pigs were individually iden-
tified and tracked. This method is not appropriate as there are too
many pigs in the surveyed area and pigs can leave and re-enter the
area. The chosen method for motion extraction from the images is
the optical flow (OF). To quantify the pigs’ movement we use mod-
ified angular histogram (MAH). We show that MAH is very useful
in understanding pigs’ body movement and analyzing general
movement direction and speed. We expect that MAH can be used
in any behavior monitoring case, where surveyed objects present
a specific walking pattern. Support Vector Machines (SVM) are
applied to selected angle histogram features and to the relative
number of pigs in the frame to classify pigs’ movements in each
frame. We also propose that the outcome of SVM can be used for
real-time monitoring. Once the classification is done, we then test
each data set selected according to different drivers.

Due to the quality of the recordings we had to consider a
problem that was not commonly discussed in the literature:
correction of lens and foreshortening distortions using moving
reference objects. The proposed algorithm is fast, easy and has
proven to be effective.

For future work we are considering to investigate the number of
successive out-of-control frames needed to make a decision to
alert the staff for real-time herd monitoring. In addition, the
analysis of the assignable causes will be implemented.
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Abstract

We present a procedure for monitoring crowd movements in videos based on

continuous decision values (CDV) obtained from the classification of individual

frames. The majority of classification methods performs the final classification

based on continuous values (probabilities, scores, etc.), which we propose to use

for the continuous monitoring by applying the principles of statistical process

control. The classification method, used as an example, is a support vector ma-

chines (SVM), and the continuous SVM classification decision values are used

for the monitoring. The SVM CDV are noisy and highly auto-correlated. Thus,

they are smoothed using locally weighted scatterplot smoothing and events are

detected using a cumulative sum (CUSUM) control chart. The total classifi-

cation rate is increased from 95.8% to 99.8% by using continuous monitoring

instead of discrete SVM. The classification rate of frames with an abnormal

event is increased from 77.3% to 99.3%. The proposed procedure also allows for

the detection of the events on average up to 139 frames earlier, than using the

discrete SVM classification approach. The method is applied to monitor a pig

herd while the pigs are being unloaded from the trucks. Events such as tripping

and stepping on each other are of interest.
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1. Introduction

Nowadays video surveillance is used in a large variety of areas to monitor

humans, vehicles, and animals. Human [1, 2] and vehicle [3, 4] monitoring is

used to ensure public safety, prevent undesired events and ensure the steady flow

of traffic. Analysis of animal movement is a useful tool to ensure animal welfare5

[5, 6, 7, 8], understand the movement of animals [9] and monitor laboratory

animal behavior [10]. The broad application area has attracted a great deal of

research interest. As a result, a large number of methods have been proposed.

In some cases individual objects are identified, tracked and their motion is

analyzed [11, 12, 13, 14, 15]. Individuals are rarely identified and tracked in large10

dense crowds which are common in parades [16], music events, religious gather-

ings [17], subways [2], etc. The methods to analyze these cases are classified as

non-computer vision or computer vision based methods [18]. The former uses

principles of psychology and sociology. The latter approach extracts features

from the frame that are sometimes modeled and then used for classification.15

The analysis of a dense crowd using computer vision methods usually takes the

following steps: (1) feature extraction, (2) motion and behavior modeling and

(3) classification. The most important features are: crowd density, location,

speed and movement direction. The density of a crowd can be estimated from

the number of foreground pixels [19] or by applying pattern recognition tech-20

niques for a surveyed scene [20, 21] or combining both approaches. In most

cases, the relative speed is estimated using optical flow (OF). Other measure-

ments, such as kinetic energy, motion direction, distance, velocity, density, etc.

[22, 23, 24, 25, 26], are also used. Multiple crowd models such as hidden Markov

model [2, 27], a social force model [1], a social entropy measure [28] or a mixture25

of dynamic textures [29], have been proposed in the literature. Some methods

model crowd movement using information from a single frame, while others use

spatial-temporal informtion. The classification of a single frame is most com-

monly made using a thresholding approach [2, 29, 24, 25], using support vector

machines (SVM) [28, 22, 23], K-means [1] or neural networks [26]. Although30
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Figure 1: Flowchart of the proposed crowd monitoring approach.

some authors have built models and extracted features based on several frames,

classification is usually done for a single frame disregarding the classification of

the previous frames.

In most cases, human motion is continuous and transitions from one action

or event to another. This implies that actions and events do not have a clear35

start or end. In this paper, we propose a procedure that allows for monitoring

motion continuously. It is achieved by adding one more step, based on statistical

process control (SPC), to the framework of dense crowd monitoring. A flowchart

for crowd analysis is presented in Figure 1. Krausz et al. ([30]) employed an

SPC control chart to monitor a histogram symmetry measure to detect crowd40

congestion. In this paper, we show how multiple features can be used to detect

events by employing continuous classification values of SVM.

1.1. Statistical Process Control

Since late 1920’s, the principles of SPC have been used to improve and ensure

the quality of the processes. In the framework of SPC, any process exhibits two45

types of variability: common cause and assignable cause. The former variability

is inherent process variability and exists in most stable systems. For example,

in crowd movement monitoring, a source of such variability is from errors in the
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OF estimation, feature extraction or classification. It is difficult to determine

if one or more of these steps cause a classification error. For example, several50

OF methods are compared in [31] and it is concluded that most methods still

have problems in the OF estimation of objects with complex structure and fast

motion. Thus, errors can occur in the first step of motion analysis and affect

subsequent steps. If a process only exhibits common cause variation, then this

process is considered to be ”in-control”. In the analyzed case, the process is in-55

control when no abnormal behavior or undesired events occur in the video. The

latter variability occurs when changes in the process appare due to assignable

causes. Such causes can be any kind of unexpected event or abnormal behavior.

Further in this paper we will refer to an ”event” as any action of interest. A

process is considered to be ”out-of-control” when there is an assignable cause60

present in the system. In SPC, process monitoring is done with a control chart

on which the quality characteristics of interest is plotted. A process is in-control

when the quality characteristic remains between the predefined control limits

and out-of-control when it exceeds these limits. The control limits define the

acceptable level of common cause variation around the expected process mean.65

In this paper, we present three contributions, which combine the principles of

SPC and crowd monitoring using video recordings:

• We propose using SPC as a fourth step in crowd monitoring. The outcome

is an easily interpretable control chart, which decreases the misclassifica-

tion rate and enhances the early detection of events.70

• For the SPC charts, we propose to use continuous classification decision

values (CDV) instead of categorical classes. Most classification methods

assign a class based on a probability, score or any other type of decision

values. The CDV capture the smooth transition between events, allowing

events to be detected in the early stages of transition.75

• Care must be taken when selecting historical in-control data for training

the classifier and computing the in-control limits for the SPC chart. Man-

ual annotation of highly auto-correlated video frames is labor intensive
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and an error-prone task. In this paper, we propose some rules for frame

selection and annotation.80

1.2. Data

The proposed procedure is applied to monitor pig herd motion at the slaugh-

terhouses when the pigs are unloaded from a truck. During the transportation,

pigs are sedentary thus can be slow when moving out of the truck. Personnel

uses specially designed sticks to encourage pigs to move faster. Some pigs be-85

come agitated and may cause a stampede. This in turn results in undesirable

events such as tripping and stepping on each other. The aim of this case study

is to monitor the unloading and prevent undesirable events, such as tripping

and stepping on each other.

The videos are recorded using GoPro HERO2 ( c©2013 Woodman Labs, Inc)90

using 30 frames per second rate. The frame size is 1920 pixels in height and

1080 pixels in width. In a truck, pigs are divided into pens. A ”clip” represents

a video section where one pen is unloaded. In total 15 clips are used for the

analysis. In each clip, one or two sections of data are annotated as in-control

or out-of-control. Only those sections where behavior is clearly understood are95

annotated. As a result, 11 sections are declared as out-of-control, and 7 sections

are declared as in-control. In total, 13,518 frames are used. In this paper, only

the continuous movement monitoring based on SPC is discussed. The image

analysis and event detection using discrete SVM classification in the presented

case study are discussed in [7].100

The following sections discuss the individual steps of continuous motions

monitoring. The results of SVM classification and continuous monitoring based

on SPC are compared, and presented in section Results.

2. Methodology

In this section, the individual steps of the crowd monitoring based on CDV105

are presented. As discussed in the previous section, several classification meth-

ods are used to detect events in crowds. Our method of choice is SVM and
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in-depth motivation for the method can be found in [7]. We propose to use

SVM Classification Decision Values instead of classification itself to monitor

motion. CDV are noisy thus smoothing must be applied. We show that good re-110

sults can be achieved using Locally weighted scatterplot smoothing (LOWESS).

The smoothed values are monitored using a Cumulative Sum Control Chart

(CUSUM).

2.1. Support Vector Machines

Support Vector Machines (SVM) [32, p. 417-455] is a supervised machine

learning algorithm that classifies data into two classes. Support vector machines

construct hyper-planes in higher order space such that the distance to the hyper-

plane and the nearest training data points from two classes is the largest. Let’s

define a training dataset consisting of a finite set of 2D points(xi; yi) where

xi ∈ R and yi ∈ {−1; 1} represents two class labels and i = 1, ..., N . The

separating line between two classes is defined as:

{x : f(x) = xTβ + β0 = 0} (1)

where β is a unit vector. The classification rule for the two classes is:

G(x) = sign[xTβ + β0] (2)

where we can find a function f(x) = xTβ + β0 such that yif(xi) > 0 ∀i. The

SVM is defined as an optimization problem, where the data can be separated

with the largest margin 1
‖β‖ between the two groups. The optimization problem

for non-overlapping classes can then be written as:

arg max
β,β0

‖β‖

subject to yi(x
T
i β+β0) ≥ 1, i = 1, ..., N

(3)

In most of the cases, the two classes cannot be perfectly sepereated. Let ξi be

a measure called slack that defines the degree of misclassification of data point

xi:

yi(x
T
i β + β0) ≥ 1− ξi (4)
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Then the optimization problems is a trade-off between a large margin and a

small misclassification:

arg min
β,β0

‖β‖ subject to





yi(x
T
i β + β0) ≥ 1− ξi,∀i

ξi ≥ 0,
∑
ξi ≤ C

(5)

where C is a constant. In some cases, a better classification can be achieved by

representing data in higher dimensions. Let h(x) be a nonlinear basis function

that transforms data into an extended feature space of higher dimensions, than

f̂(x) = h(x)Tβ + β0, and the classification rule is:

G(x) = sign[h(x)Tβ + β0] (6)

In this paper, the values of f̂(xi) will be referred to as SVM classification decision115

value (SVM CDV) or simply CDV. The three most popular kernel types used

for data transformation are: (1) dth polynomial, (2) radial basis and (3) neural

network kernels. Cross-validation is used to find an optimal transformation

function as well as a set of hyper-parameters. In this paper, the leave-one-clip-

out cross-validation, which used 14 clips for training and one clip for testing,120

was used for indentification of the parameters. The advantages of using SVM

are that it avoids over-fitting, performs well using a low number of samples and

a high number of variables, and is not affected by cross-correlation.

2.2. Locally weighted scatterplot smoothing

Local regression (LOESS) or Locally Weighted Scatterplot Smoothing (LOWESS)

([32, p. 191-198], [33, p. 309 - 376]) is a non-parametric regression method used

to smooth scatter plots. Linear and non-linear least square regression models

are fitted locally for data span of size N . The fitted functions over this span can

be: constant, linear or a low-order polynomial. The most common polynomials

are of order d = 1 or 2. In addition, the weights can be chosen to include the

data from a span of N observations with different proportions. The LOESS

solves the optimization problem at each point x0:

max
α(x0),βj(x0),j=1,...,d

N∑

i=1

Kλ(x0, xi)[yi − β0(x0)−
d∑

j=1

βj(x0)xji ]
2 (7)
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where Kλ(x0, xi) is a weight function, (x0; y0) data point from the span and125

β0(x0) +
∑d
j=1 βj(x0)xji polynomial of order d.

The advantage of the LOESS is that the smoothing is not based on a single

model. If a single model approach does not provide reasonable smoothing due to

the process dynamics, then LOESS can be employed. However, LOESS model

can not be presented analytically in most cases.130

2.3. Cumulative Sum Chart

The CUSUM chart ([34, p. 408 - 419] is very effective in detecting small

shifts in a process. One more advantage of this chart is that it incorporates

a sequence of observations in decision making. For an in-control mean of µ0

CUSUM statistics for variable zi is given as:

C+
i = max[0, zi − (µ0 +K) + C+

i ]

C−i = max[0, (µ0 +K)− zi + C−i ]
(8)

where K is the slack variable introduced for reducing the number of false alarms

and with the starting values C+
i = C−i = 0. The C+

i monitors the deviations

that are above the process mean µ0, while C−i deviations that are below. The

process is declared as ”out-of-control”, when C−i or C+
i cross a pre-definde135

threshold H. The optimal K and H values are usually chosen by compromis-

ing between the false alarm rate and the early detection of an out-of-control

situation.

2.4. Phases I and II

The statistical process control is carried out in two phases. [34, p. 198-199].140

In phase I, which is off-line, historical data from an in-control process (train-

ing data) is collected, and the parameters of the control chart are estimated.

The control limits are estimated to confirm that collected historical data are

indeed in-control. The data points that are detected as out-of-control have to

be inspected and removed if necessary. A new chart based on cleaned data is145

established and used in phase II for on-line monitoring.
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The most commonly used structure for control charts is of the form:

UCL = µw + Lσw

Central line = µw

LCL = µw − Lσw

(9)

where UCL and LCL are the upper and lower control limits respectively, µw

and σw are process mean and standard deviation respectively, and L is a user

defined parameter to define the band within which the process is deemed in-150

control. Sufficient amount of data in phase I is needed for a proper estimation

of the parameters of the control chart. Some guidelines for univariate and

multivariate data are provided in [34].

2.5. Types of errors

There are two types of errors [34, p. 182-193] related to declaring the process155

”in-control” or ”out-of-control”:

• Type I error indicates the probability of declaring a process in a state of

out-of-control when it actually is in-control.

• Type II error indicates the probability of declaring the process in a state

of in-control when it actually is out-of-control.160

It is common to use the magnitudes of these errors to compare the performances

of the charts as well as to choose the control limits for a chart. This is usually

done by using the average run length ARL. The ARL0 for an in-control process

is defined as:

ARL0 =
1

p
(10)

where p is the type I error. If the type I error is fixed in phase I, then ARL0

of two charts can be compared during phase II. The average run-length for an

out-of-control process ARL1 is defined as:

ARL1 =
1

1− β (11)

9



where β is the probability of not detecting an out-of-control situation on the first

subsequent sample, i.e. Type II error. It is expected that an effective control

chart has the in-control ARL0 as large as possible while out-of-control ARL1

as small as possible.

3. The proposed procedure165

For the majority of the proposed methods for crowd monitoring and event

detection, the approach is based on classification. In this paper, we propose to

add one more step to the well-established crowd monitoring framework (Figure

1). This additional step decreases the number of misclassifications, increases the

early detection count for events and provides a real-time overview of whether170

actions taken to control a crowd is effective. We use the term ”early detection

count” (EDC) to indicate the number of observations declared as out-of-control

before an actual event is observed. Also, the proposed method results in a

decision that includes information of multiple consecutive frames hence taking

into account the history.175

In this case study, our classification method of choice is SVM, but the pro-

posed procedure can accommodate any classification method that can provide

a continuous decision value. The SVM CDVs are highly auto-correlated due to

high sampling frequency and noisy, thus smoothing must first be applied. A

sample clip of CDVs is presented in Figure 2. We propose to use LOESS with180

a fixed span N to smooth out the noise. The last step in the procedure is the

establishment of a CUSUM chart.

The SVM continuous decision value is expected to be positive for in-control

processes and negative for out-of-control processes. Therefore only C−i in equa-

tion 8 is of interest in our case. To establish continuous online monitoring,185

three parameters have to be chosen: (1) the span for LOESS smoothing, (2)

(µ0 + K) for the CUSUM chart in Equation 8 and (3) the threshold H. The

parameters are identified using two approaches: (1) by only optimizing the to-

tal classification rate or EDC and (2) based on the SPC procedure for choosing
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Figure 2: A sample of an in-control clip. The green box represents the data section that is

used for training as the in-control class. The horizontal gray line indicates the standard SVM

decision threshold. All observations above the line are in-control frames and all below are

out-of-control.

control chart parameters by fixing the Type I errors. For that we consider a190

systematic approach of varying the values of the these parameters within the

following ranges: N = 5, 10, 20, . . . , 60, (µ0 + K) = 0, 0.05, 0.1, . . . , 0.6 and

H = 0.001, 0.004, . . . , 0.01, 0.03 . . . , 0.09, 0.1. It should be noted that a span of

N = 30 represents approximately 1 second of a video.

As we discussed in the Introduction, a motion is continuous and does not195

start or end instantaneously. One must be very careful when selecting histori-

cal in-control data from videos. [35] compares spatial, temporal and behavioral

labeling of human action and concludes that errors accrue at each level of the

annotation. For example, the majority of temporal disagreements are at the

beginning and the end of an event. The various errors appear due to the an-200

notator’s understanding and interpretation of the scene. In our experience, the

complexity of annotation increases with the increased number of surveyed ob-

jects as well as with the increased number of action labels. Thus, we propose
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using only those frames where motion is clearly present and confirmed.

4. Results205

4.1. Parameter identification by only optimizing total classification or early de-

tection count

In this subsection, the optimal parameters are identified to optimize: (1) the

total classification rate and (2) the EDC. Two sets of parameters are determined

that achieve the highest total classification rate set 1 : N = 45, (µ0 +K) = 0.35210

H = 0.05 and set 2 : N = 50, (µ0 +K) = 0.35 H = 0.001. The identification of

parameters is shown in Figure 3.
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(a) H = 0.05.
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(b) H = 0.001.

Figure 3: Parameter identification aiming to optimize the total classification rate. The highest

classification rate is achieved with two sets of parameters.

The set of optimal parameters that optimize the EDC is set 3 : N = 35,

(µ0 +K) = 0.6 H = 0.001. The identification of the parameters is presented in

Figure 4.215

The performance of three identified parameter sets is compared. The total,

in-control and out-of-control classification rates are compared as well as EDC.

The Shapiro-Wilk normality test indicates that the difference between SVM and

CUSUM chart classification rates are not Gaussian distributed. Thus, Wilcoxon

singed-rank test is used to test the significance of the improved performance. A220

comparison of SVM classification and CUSUM chart is presented in Table 1.
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Figure 4: Parameter identification aiming to optimize the EDC. The earliest event detection

is achieved with parameters: N = 35, (µ0 +K) = 0.6 and H = 0.001.

The comparison indicates that there is no significant improvement of total

and in-control frame classification. SVM classifies correctly most in-control

frames. Thus, significant improvement is not possible. However, the CUSUM

chart significantly improves out-of-control frame classification with all sets of225

parameters.

The comparison of EDC of all three sets is presented in the Figure 5. The

set 3 parameters detects events earlier than sets 1 & 2.

The Wilcoxon signed-rank test is performed (Table 2) to compare the EDCs.

The comparison indicates that the CUSUM chart detects events earlier than230

SVM classification with all sets of parameters. The CUSUM chart, with set 3

parameters, can detect on average 139 frames earlier than SVM.

The results suggest that to obtain a better classification rate, a larger smooth-

ing span N for LOESS must be chosen. However, a large span will add lag to

the changes in the dynamic process, thus decreasing the EDC. The (µ0 + K)235
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Set 1 Set 2 Set 3

SVM CUSUM p-val CUSUM p-val CUSUM p-val

Total 95.6 % 99.8 % 0.998 99.8% 0.998 97.7% 0.966

In 99.8 % 100 % 0.977 100% 0.977 96.4 % 0.186

Out 74.3% 99.3% 0.002 99.4% 0.002 99.9% 0.002

Table 1: Comparison of SVM and CUSUM classification rates using three CUSUM parameter

sets. Only for the out-of-control case is the CUSUM classification rate significantly (p < 0.05)

better than the SVM.
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Figure 5: EDCs comparison of three parameter sets.

value closer to the in-control process mean must be selected to obtain better

EDC. A sample clip using different parameters is presented in Figure 6.

4.2. Parameter identification using SPC approach

The first step in parameter identification using SPC approach is to fix the

false alarm rate α. In this case, we fix the false alarm rate to the SVM mis-240
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Set p-value Number of frames detected earlier than SVM

1 0.006 81.18

2 0.006 81.81

3 0.006 139

Table 2: EDCs comparison of three CUSUM parameter sets. For all parameter sets, events

are detected earlier compared to the standard approach (p < 0.05).

classification rate of annotated in-control frames, which is α = 0.1705%. For

different combinations of N and (µ0+K) a minimal value of H is identified such

that the in-control classification rate of annotated frames using a CUSUM chart

is 99.8295%. Thirty-five sets of parameters N , (µ0 + K) and H are identified.

The pairs of parameters are shown in Figure 7. The EDC and out-of-control245

frame classification rates of SVM and CUSUM chart are compared. The results

for EDC are also presented in Figure 7.

The CUSUM chart significantly improves the EDC in comparison to SVM

at a significance level of 0.05, when the false alarm rate is fixed to α = 0.1705%.

The CUSUM chart can detect events from 59 to 82 frames earlier, which is250

approximately 2− 2.7 seconds.

The combinations of identified parameters (N , (µ0 + K) and H) achieve

between 98% − 100% correct out-of-control frame classification rate, using the

CUSUM chart. The Wilcoxon test indicates that CUSUM chart improves the

out-of-control classification by around 25% at a significance level 0.05 as pre-255

sented in Figure 7c.

5. Discussion

The above-presented results indicate that the classification rate and EDC

can be improved using a CUSUM chart for smoothed CDVs. Three parameters

have to be chosen in the proposed procedure: (1) the smoothing span N , (2)260

the (µ0 +K) and (3) the decision interval H.
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(a) CDV smoothed using set 1 parameters.
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(b) CUSUM chart of 6a.
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(c) CDV smoothed using set 2 parameters.
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(d) CUSUM chart of 6c.
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(e) CDV smoothed using set 3 parameters.
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(f) CUSUM chart of 6e.

Figure 6: A sample clip smoothed using different span N = 35, 45, 50 is presented on left.

The CUSUM chart of the smoothed clips is presented on the right. The red boxes represent

annotated events, the gray dash line represents SVM decision threshold, the solid gray line

represents (µ0 +K), gray points represents CDV and blue points smoothed CDV.
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classification.

Figure 7: Comparison of SVM and CUSUM chart. The p values indicate that a CUSUM

chart detects events significantly earlier and classifies significantly more frames with events

correctly with a 0.05 significance level. The CUSUM chart can detect events from 59 to 82

frames earlier than SVM.

The analysis of different parameter combinations based on our dataset re-

veals that the most important parameter is the smoothing span N . A large

span generates heavier smoothing, thus removing more noise and increasing the

classification rate. However, choosing a span too high does not improve the265

EDC.

The value of (µ0 + K) highly depends on the chosen N value. If a large N

is chosen, then the process is smooth and a value close to the in-control process

mean can be chosen for (µ0 + K). Choosing a small span and large (µ0 + K)
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will lead to an increased false alarm rate. If the values of N and (µ0 + K) are270

chosen appropriately, the decision interval H can be very small, leading to early

detection of out-of-control situations.

6. Conclusion

Nowadays, video surveillance is used in many fields. In this paper, the main

interest is crowd monitoring. The classic approach for detecting any kind of275

event is to use classification methods for crowd models or extracted features

from single or multiple frames. In this way, the motion is discretized, and it

has a clear beginning and an end. By treating motion in this way, important

information is lost. In this paper, we propose applying an additional step to the

crowd monitoring framework and analyze motion based on continuous decision280

values.

The majority of classification methods make a decision based on scores, prob-

abilities or decision values that are continuous. By monitoring these continuous

values, more information about the process is attained. In this paper, we ana-

lyze the support vector machines’ (SVM) classification decision values (CDVs)285

of pig herd movement. The values are highly auto-correlated and noisy, thus

smoothing is applied. Good smoothing results are obtained using local polyno-

mial smoothing (LOESS), and the process is monitored using a cumulative sum

(CUSUM) chart.

The results indicate that the procedure can outperform SVM classification290

alone. The total SVM classification rate of 95.8% can be improved up to 99.8%.

The early event detection count can be on average improved by 139 frames.

The proposed methodology can be used for any classifier that is based on a

continuous decision variable. In that sense, there potentially exist many other

possibilities of applications of the proposed methodology in continuous process295

surveillance through image analysis.
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