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Characterizing Width Two
for Variants of Treewidth

Hans L. Bodlaender∗ Stefan Kratsch †

Vincent J.C. Kreuzen‡ O-joung Kwon§ Seongmin Ok¶

September 30, 2014

Abstract

In this paper, we consider the notion of special treewidth, recently
introduced by Courcelle [16]. In a special tree decomposition, for each
vertex v in a given graph, the bags containing v form a rooted path.
We show that the class of graphs of special treewidth at most two
is closed under taking minors, and give the complete list of the six
minor obstructions. As an intermediate result, we prove that every
connected graph of special treewidth at most two can be constructed
by arranging blocks of special treewidth at most two in a specific tree-
like fashion.

Inspired from the notion of special treewidth, we introduce three
natural variants of treewidth, namely spaghetti treewidth, strongly
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chordal treewidth and directed spaghetti treewidth. All these param-
eters lie between pathwidth and treewidth, and we provide common
structural properties on these parameters. For each parameter, we
prove that the class of graphs having the parameter at most two is
minor closed, and we characterize those classes in terms of a tree of cy-
cles with additional conditions. Finally, we show that for each k ≥ 3,
the class of graphs with special treewidth, spaghetti treewidth, di-
rected spaghetti treewidth, or strongly chordal treewidth, respectively
at most k, is not closed under taking minors.

1 Introduction

Treewidth and pathwidth are one of the basic parameters in graph algorithms
and they play an important role in structural graph theory. Numerous prob-
lems which are NP-hard on general graphs, have been shown to be solvable
in polynomial time on graphs of bounded treewidth [2, 6]. Courcelle [15] pro-
vided a celebrated algorithmic meta-theorem which states that every graph
property expressible in monadic second-order logic formulas (MSO2) can be
decided in linear time on graphs of bounded treewidth.

In this paper, we discuss a relatively new notion of special treewidth,
introduced by Courcelle [16]. A special tree decomposition is a tree decom-
position where for each vertex of a given graph, the bags containing this
vertex form a rooted path in the tree. Courcelle developed this parame-
ter to reduce the difficulty in representing tree decompositions algebraically.
The monadic second-order logic (MSO2) checking algorithm for treewidth in
the meta-theorem is based on the constructions of finite automata, and he
observed that these constructions become much simpler when working with
special tree decompositions compared to standard tree decompositions.

Courcelle asked several questions on properties of special treewidth. One
of the questions was how to characterize the class of graphs of special treewidth
at most k by forbidden configurations. In this context, he showed that the
graphs of special treewidth one are exactly the forests, but if k ≥ 5, then
the class of graphs of special treewidth at most k is not closed under taking
minors.

In this paper, we prove that the class of graphs of special treewidth at
most two is closed under taking minors, and provide the minor obstruction
set. We also sharpen Coucelle’s bound, and show that for k ≥ 3, the class
of graphs of special treewidth at most k is not closed under taking minors.
The graph K4 denotes the complete graph on four vertices, and the other
five graphs are depicted in Figure 1 and Figure 2.
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Parameter Graph Class
treewidth chordal graphs
pathwidth interval graphs

special treewidth RDV graphs
directed spaghetti treewidth DV graphs

spaghetti treewidth UV graphs
strongly chordal treewidth strongly chordal graphs

treedepth trivially perfect graphs

Table 1: Graph parameters which can be defined by the clique number of a
supergraph from a class of graphs. Graph classes are defined in Section 2.

Theorem 5.8. A graph has special treewidth at most two if and only if it
has no minor isomorphic to K4, D3, S3, G1, G2, or G3.

To show this, we first prove that every block of special treewidth at most
two must have pathwidth at most two. But it is not a sufficient condition for
having special treewidth two, and we establish a precise condition how those
blocks can be attached to obtain a graph of special treewidth two.

Inspired by special treewidth, we introduce new three variants of treewidth.
From the results by Courcelle, we observe that having bounded special treewidth
is a much stronger property than having bounded treewidth. We can natu-
rally ask whether there exist elegant width parameters lying between special
treewidth and treewidth, which establish a link from pathwidth to treewidth.

Two variants, spaghetti treewidth and directed spaghetti treewidth, are
defined by taking different models of tree decompositions. While in the
intersection model of special treewidth, we associate each vertex with a rooted
path, in a spaghetti tree decomposition, the bags containing each vertex form
a ‘usual’ path in a tree (that is, without the condition of being rooted), and
in a directed spaghetti tree decomposition, the bags containing each vertex
form a directed path in a tree with a given direction. The strongly chordal
treewidth of a graph G is defined as the minimum of the clique number of H
minus one over all strongly chordal supergraphs H of G. These parameters
are at most the pathwidth and at least the treewidth of the graph.

Each of these new parameters can be alternatively defined as the mini-
mum of the clique number of all supergraphs where the supergraphs belong
to a certain graph class. Another related notion is treedepth [9, 10], and it
can be defined as the minimum of the clique number of all trivially perfect
supergraphs of a given graph. Table 1 gives an overview of the parameters
and the corresponding classes.
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Graph classes Minor obstructions for Minor obstructions for
2-connected graphs general graphs

tw ≤ 2 K4 (see [3, 37]) K4 (see [3, 37])
spghtw ≤ 2 K4, D3 K4, D3

sctw ≤ 2 K4, S3 K4, S3

dspghtw ≤ 2 K4, D3, S3 K4, D3, S3

spctw ≤ 2 K4, D3, S3 6 graphs
pw ≤ 2 K4, D3, S3 [4, 13] 110 graphs [28]
td ≤ 3 K4, C5 [19] 12 graphs [19]

Table 2: Summary of results. tw, spghtw, sctw, dspghtw, spctw, pw and
td denote treewidth, spaghetti treewidth, strongly chordal treewidth, di-
rected spaghetti treewidth, special treewidth, pathwidth, and treedepth re-
spectively.

We expect that these new parameters can be used to provide a link be-
tween pathwidth and treewidth by yielding new structural or algorithmic
results. As a similar approach, Fomin, Fraigniaud, and Nisse [23] intro-
duced a parameterized variant of tree decompositions, called q-branched tree
decompositions, and provided a unified method to compute pathwidth and
treewidth. In this paper, we study common structural properties of our no-
tions.

For each of the three parameters, we show that the class of graphs having
width at most two is closed under taking minors. Moreover, we precisely
describe how those graphs look like in terms of trees of cycles with specific
conditions depending on the parameter. Trees of cycles were used to char-
acterize treewidth two [11] and pathwidth two [8]. In Table 2, we see an
overview of the different parameters and the minor obstruction sets for these
classes. As 2-connected graphs play a special role in several proofs, the 2-
connected graphs in the obstruction sets are given in the second column. In
addition, for each of these parameters and each value k ≥ 3, we show that
the class of graphs with the parameter at most k is not closed under taking
minors.

Our characterizations in terms of forbidden minors fit in a line of research,
originated by the ground breaking results in the graph minor project by
Robertson and Seymour [36]. From the results of Robertson and Seymour,
for every minor-closed class G of graphs, there exists a finite obstruction set
ob(G) of graphs such that for each graph H, H ∈ G if and only if H has
no minor isomorphic to a graph in ob(G). For several minor-closed graph
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D3 S3

Figure 1: The graphs D3 and S3. The graph S3 is called the 3-sun.

G1 G2 G3

K4 S3

D3

Figure 2: The graphs G1, G2, G3 of the minor obstruction set for graphs of
special treewidth two, which are not 2-connected.

classes, the obstruction set is known, for example, planar graphs ({K5, K3,3}
[38]), graphs embeddable in the projective plane [1], graphs of treewidth at
most two ({K4}, see [18, Proposition 12.4.2]), graphs of treewidth at most
three (a set of four graphs [3]), graphs of pathwidth at most two (a set of 110
graphs [28]), and outerplanar graphs ({K4, K2,3}). The obstruction set of
graphs of treedepth at most three (and smaller values) was given by Dvořák,
Giannopoulou and Thilikos [19]; it contains exactly twelve graphs.

This paper is organized as follows. In Section 2, we give a number of
preliminary definitions and results, including the trees of cycles and paths of
cycles models for 2-connected graphs of treewidth and pathwidth two. In
Section 3, we give the characterizations of graphs of spaghetti treewidth at
most two. Section 4 discusses graphs with strongly chordal treewidth at most
two. In Section 5, we discuss graphs of special treewidth at most two, and
obtain similar results for graphs of directed spaghetti treewidth at most two.
Section 6 considers classes with special treewidth, strongly chordal treewidth,
spaghetti treewidth, or directed spaghetti treewidth, respectively, at most k,
for k ≥ 3. We show that none of these classes is closed under taking minors.
Some final remarks are made in Section 7.
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2 Preliminaries

Unless stated otherwise, graphs are considered to be undirected and simple.
Let G = (V,E) be a graph. For a vertex set S ⊆ V , we denote G[S] as
the subgraph of G induced on S. For v ∈ V and e ∈ E, we denote G − v,
G − e, G/e as the graphs obtained from G by removing v, removing e, and
contracting e, respectively. For a pair of vertices u, v ∈ V which are not
adjacent in G, we denote G + uv as the graph obtained from G by adding
an edge uv. A subset S of V is a clique of G if all vertices in S are pairwise
adjacent in G. The clique number of a graph, denoted by ω(G), is defined
as the size of a maximum clique in the graph. A vertex v in a graph G is
a simplicial vertex if the neighborhood of v forms a clique. The length of a
path is the number of edges in the path.

A graph G is connected if for each pair of vertices v, w ∈ V , there exists
a path from v to w in G. A graph G is 2-connected, if |V | ≥ 3 and G[V −X]
is connected for every vertex set X ⊆ V with |X| ≤ 1. A vertex v of a
connected graph G is a cut vertex if G − v is not connected. A block of a
graph G is a maximal connected subgraph of G without a cut vertex.

A graph H is a minor of a graph G, if H can be obtained from G by a
series of deletion of a vertex, deletion of an edge, and contraction of an edge.
A subdivision of a graph G is a graph obtained from G by replacing some
edges of G with independent paths between their end vertices.

2.1 Graph Classes

Several of the notions we look at can be defined in terms of intersection
graphs. Let F be a finite family of graphs. The intersection graph of F is
the graph GF whose vertices are the members of the family such that two
distinct vertices f , f ′ of GF are adjacent, if and only if the corresponding
graphs have a common vertex.

A chord in a cycle of a graph, is a pair of adjacent vertices on the cycle
that are not consecutive on the cycle. A graph is chordal, if each cycle with
length at least four has a chord. Alternatively, a graph is a chordal graph,
if and only if it is the intersection graph of subtrees of a tree [24]. (See
also [14, 26].) A graph is an interval graph if it is the intersection graph of
subpaths of a path.

For three variants of intersection graphs of paths on a tree, we follow
the terms in the paper by Monma and Wei [31]. A graph is an undirected
vertex path graph (shortly, an UV graph) if it is the intersection graph of a
set of paths in a tree. UV graphs are also known as path graphs [25] or VPT
graphs [27]. A directed tree is a directed graph whose underlying graph is a
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tree, and it is called a rooted tree if it has exactly one specified vertex called
the root and every arc of it is directed to the root. A graph is a directed
vertex path graph (shortly, a DV graph) if it is the intersection graph of a
set of directed paths in a directed tree. A graph is a rooted directed vertex
path graph (shortly, an RDV graph) if it is the intersection graph of directed
paths in a rooted tree.

A graph G is strongly chordal if G is chordal and every even cycle of
length at least six in G has a chord, called an odd chord, dividing the cycle
into two odd paths of length at least three.

The following relations are well known [14].

(interval) ( (RDV) ( (strongly chordal) ( (chordal),

(RDV) ( (DV) ( (UV) ( (chordal).

2.2 Tree Decompositions

The notions of pathwidth and treewidth were first introduced by Robertson
and Seymour [34, 35].

Definition 2.1. A tree decomposition of a graph G = (V,E) is a pair (T,B =
{Bx}x∈V (T )) where T is a tree and for all x ∈ V (T ), Bx ⊆ V which are called
bags, satisfying the following three conditions:

(T1) V =
⋃

x∈V (T ) Bx.

(T2) For every edge uv of G, there exists a vertex x of T such that u, v ∈ Bx.

(T3) For every vertex v in G, the bags containing v induce a subtree in T .

The width of a tree decomposition (T,B) is max{|Bx| − 1 : x ∈ V (T )}. The
treewidth of G, denoted by tw(G), is the minimum width of all tree decom-
positions of G. A path decomposition of a graph G is a tree decomposition
(T,B) where T is a path. The pathwidth of G, denoted by pw(G), is the
minimum width of all path decompositions of G.

We observe the following relations.

Theorem 2.1 (folklore; see Bodlaender [7]). Let k be a positive integer.

1. A graph has treewidth at most k if and only if it is a subgraph of a
chordal graph with clique number at most k + 1.

2. A graph has pathwidth at most k if and only if it is a subgraph of an
interval graph with clique number at most k + 1.
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For a tree decomposition I = (T, {Bx}x∈V (T )) of a graph G = (V,E) and
S ⊆ V , we denote P (I, S) as the set of the vertices x in T such that Bx

contains a vertex in S. For x ∈ V , P (I, {x}) is denoted shortly as P (I, x).

2.3 Special Treewidth, Directed Spaghetti Treewidth,
Spaghetti Treewidth and Strongly Chordal Treewidth

Courcelle [16] introduced the notion of special treewidth. Directed spaghetti
treewidth and spaghetti treewidth are natural variants of this notion.

A special tree decomposition of a graph G is a tree decomposition (T,B)
where T is a rooted tree and for every vertex v in G, the bags containing v
induce a directed path in T . The special treewidth of G, denoted by spctw(G),
is the minimum width of all special tree decompositions of G.

A directed spaghetti tree decomposition of a graph G is a tree decomposi-
tion (T,B) where T is a directed tree (not necessarily rooted) and for every
vertex v in G, the bags containing v induce a directed path in T . The directed
spaghetti treewidth of G, denoted by dspghtw(G), is the minimum width of
all directed spaghetti tree decompositions of G.

A spaghetti tree decomposition of a graph G is a tree decomposition (T,B)
where for every vertex v in G, the bags containing v induce a path in T . The
spaghetti treewidth of G, denoted by spghtw(G), is the minimum width of all
spaghetti tree decompositions of G.

From the definitions, we can easily deduce that

tw(G) ≤ spghtw(G) ≤ dspghtw(G) ≤ spctw(G) ≤ pw(G).

For a positive integer k, we can observe the following from the definitions.

• A graph has special treewidth at most k if and only if it is a subgraph
of an RDV graph with clique number at most k + 1 [16].

• A graph has spaghetti treewidth at most k if and only if it is a subgraph
of an UV graph with clique number at most k + 1.

• A graph has directed spaghetti treewidth at most k if and only if it is
a subgraph of a DV graph with clique number at most k + 1.

The strongly chordal treewidth of a graph G, denoted by sctw(G), is the
minimum k such that G is a subgraph of a strongly chordal graph with clique
number k+ 1. Farber [21] showed that every RDV graph is strongly chordal.
(See also [14].) Since a strongly chordal graph is chordal, we have that

tw(G) ≤ sctw(G) ≤ spctw(G).
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Figure 3: A path of cycles with four simplicial triangles and five edge sepa-
rators.

2.4 Models for Treewidth Two and Pathwidth Two

2-connected graphs of treewidth two and of pathwidth two have characteriza-
tions in terms of trees of cycles [11] and paths of cycles [8], respectively. The

cell completion G̃ of a 2-connected graph G = (V,E) is the graph, obtained
from G by adding an edge vw for all pairs of nonadjacent vertices v, w ∈ V
such that G[V − {v, w}] has at least three connected components.

Definition 2.2 (Bodlaender and Kloks [11]). The class of trees of cycles is
the class of graphs recursively defined as follows.

• Each cycle is a tree of cycles.

• For each tree of cycles G and each cycle C, the graph obtained from G
and C by taking the disjoint union and identifying an edge and its end
vertices in G with an edge and its end vertices in C, is a tree of cycles.

Theorem 2.2 (Bodlaender and Kloks [11]). Let G be a 2-connected graph.

The graph G has treewidth two if and only if the cell completion G̃ of G is a
tree of cycles.

An edge in a tree of cycles G is called an edge separator if it is contained
in at least two distinct chordless cycles of G. We distinguish two different
types of chordless cycles on a tree of cycles. A triangle of a tree of cycles
G is called a simplicial triangle if it contains a simplicial vertex; all other
chordless cycles are called body cycles. Every simplicial triangle of a tree of
cycles contains at most one edge separators.

Definition 2.3 (Bodlaender and de Fluiter [8]). A path of cycles is a tree of
cycles G for which the following holds.

1. Each chordless cycle of G has at most two edge separators.
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2. If an edge e ∈ E is contained in m ≥ 3 chordless cycles of G, then at
least m− 2 of these cycles are simplicial triangles.

See Figure 3 for an example of a path of cycles. A triangulated path
of cycles has been called 2-caterpillar [33]. Every path of cycles can be
represented by a sequence of chordless cycles. This structure will be used to
characterize special treewidth two in Section 5.

Definition 2.4 (Bodlaender and de Fluiter [8]). Let G be a path of cy-
cles. Let C = (C1, . . . , Cp) be a sequence of chordless cycles such that each
chordless cycle in G appears exactly once in the sequence of cycles, and for
1 ≤ i ≤ p−1, Ci shares exactly one edge ei with Ci+1. Let E = (e1, . . . , ep−1)
be the corresponding set of common edges. The pair (C,E) is called a cycle
path model for G.

Theorem 2.3 (Bodlaender and de Fluiter [8]). Let G be a 2-connected graph.

The graph G has pathwidth two if and only if G̃ is a path of cycles.

To obtain similar characterizations for spaghetti treewidth two and strongly
chordal treewidth two, we will observe the structure of trees of cycles with
exactly one of the conditions in Definition 2.3.

2.5 Simple Cases

The main body of our paper discusses the cases where the special treewidth,
spaghetti treewidth, directed spaghetti treewidth or strongly chordal treewidth
is at most two. We now briefly discuss the much simpler case when these
parameters are at most one.

Proposition 2.4. Let G be a graph. The following are equivalent.

1. G is a forest.

2. G has treewidth at most one.

3. G has spaghetti treewidth at most one.

4. G has strongly chordal treewidth at most one.

5. G has directed spaghetti treewidth at most one.

6. G has special treewidth at most one.
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Proof. Since the treewidth, spaghetti treewidth, special treewidth, directed
spaghetti treewidth or strongly chordal treewidth of a graph equals the max-
imum of the parameter over the connected components of a graph, it is
sufficient to show this proposition for connected graphs.

We assume that G is connected. It is well known that a connected graph
has treewidth at most one, if and only if it is a tree. Courcelle [16] has shown
that trees have special treewidth at most one. From the inequalities tw(G) ≤
spghtw(G) ≤ dspghtw(G) ≤ spctw(G) and tw(G) ≤ sctw(G) ≤ spctw(G),
we conclude that all of the statements are equivalent.

The following result was observed in the case of special treewidth by
Courcelle [16]. The same proof can be used to obtain this result for other
width measures, as shown below.

Lemma 2.5. Let G = (V,E) be a graph and let v ∈ V such that v is adjacent
to all vertices of V − {v} in G. Then

spctw(G) = spghtw(G) = dspghtw(G) = pw(G) = pw(G− v) + 1.

Proof. If we have a special tree decomposition, spaghetti tree decomposition,
directed spaghetti tree decomposition or path decomposition of G, we may
assume that all bags contain v because v is adjacent to all vertices of V −{v}.
All other bags can be deleted. Such a special tree decomposition, spaghetti
tree decomposition, or directed spaghetti tree decomposition is also a path
decomposition, as the bags containing v form a path. From this observation,
it follows that the first four terms are equal.

If we take a path decomposition of G with v belonging to each bag of
width k, we obtain a path decomposition of G−v of width k−1 by removing
v from all bags. If we have a path decomposition of G − v, we can obtain
one of G by adding v to each bag. This shows that the last two terms are
equal.

3 Characterizations of Spaghetti Treewidth

Two

In this section, we characterize the class of graphs of spaghetti treewidth
at most two. We first define a variant of the trees of cycles to characterize
2-connected graphs of spaghetti treewidth two.

Definition 3.1. A chain tree of cycles is a tree of cycles G = (V,E) for
which the following holds.

11



• If an edge e ∈ E is contained in m ≥ 3 chordless cycles of G, then at
least m− 2 of these cycles are simplicial triangles.

We show the following theorem. Let D3 be the graph having two specified
vertices and three internally vertex-disjoint paths of length three between
those vertices; see Figure 1.

Theorem 3.1. Let G = (V,E) be a graph. The following are equivalent.

1. G has spaghetti treewidth at most two.

2. Each block of G is either a 2-connected subgraph whose cell completion
is a chain tree of cycles, or a single edge, or an isolated vertex.

3. G has no minor isomorphic to K4 or D3.

We need the following lemma.

Lemma 3.2. The spaghetti treewidth of a subdivision of D3 is three.

Proof. Let H be a subdivision of D3 consisting of two vertices, say a and b,
of degree three and three independent paths au1u2 . . . ulb, av1v2 . . . vmb and
aw1w2 . . . wnb, where l,m, n ≥ 2. Let U = {ui : 1 ≤ i ≤ l}, V = {vi : 1 ≤
i ≤ m}, W = {wi : 1 ≤ i ≤ n}. It is easy to see that spghtw(H) ≤ 3. We
shall prove spghtw(H) ≥ 3.

Suppose that H has a spaghetti tree decomposition I = (T, {Bx}x∈V (T ))
of width two. We may assume that none of Bx is a singleton.

If P (I, a) ∩ P (I, b) = ∅, then there exists y ∈ P (I, a) which separates
P (I, a)−{y} from P (I, b) in T . Since u1 is contained in some bag of P (I, a)
and ul is contained in some bag of P (I, b), By contains some ui. Similarly,
By contains some vj and wk. As a ∈ By, the size of By is at least four. It
contradicts to that the width of I is two.

Now we assume that P (I, a) ∩ P (I, b) 6= ∅. Note that P (I, a) ∩ P (I, b)
forms a path in T . By the same reason as above,

U ′ := (P (I, a) ∩ P (I, b)) ∩ P (I, U) 6= ∅.

Similarly, we obtain

V ′ := (P (I, a) ∩ P (I, b)) ∩ P (I, V ) 6= ∅,

W ′ := (P (I, a) ∩ P (I, b)) ∩ P (I,W ) 6= ∅.

Since every bag of P (I, a) ∩ P (I, b) has two vertices a and b, no two of
U ′, V ′,W ′ have a common vertex. We may assume that V ′ lies between U ′
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and W ′ in P (I, a)∩P (I, b). Since H[V ] has at least one edge, we must have
P (I, V ) − V ′ 6= ∅. We choose x ∈ V ′ and y ∈ P (I, V ) − V ′ such that they
are neighbors in T . Then |Bx∩By| ≤ 1. Since |By| ≥ 2, it contradicts to the
2-connectedness of H.

The following lemma is a key lemma to obtain a subdivision of D3 as a
subgraph.

Lemma 3.3. Let k ≥ 1. Let G = (V,E) be a 2-connected graph and let

u, v ∈ V . If G̃[V − {u, v}] has k components of size at least two, then G has
k internally vertex-disjoint paths of length at least three from u to v.

Proof. We claim that if G̃[V −{u, v}] has a component H such that |V (H)| ≥
2, then G[V (H)] has an edge. Suppose that G[V (H)] has no edges. Since
|V (H)| ≥ 2, there are two vertices x and y of G[V (H)] such that xy ∈
E(G̃) − E. From the definition of a cell completion, G[V − {x, y}] has at
least three components. It leads a contradiction because every vertex in
V − {x, y} is connected to u and v in G[V − {x, y}].

We assume that G̃[V − {u, v}] has k components G1, G2, . . . , Gk where
each Gi has at least two vertices. By the claim, each G[V (Gi)] has a compo-
nent G′i having at least one edge. Since G is 2-connected, G has k internally
vertex-disjoint paths of length at least three from u to v along each G′1,
G′2, . . . , G

′
k, as required.

3.1 Characterization with Cycle Model

We characterize 2-connected graphs of spaghetti treewidth two in terms of
trees of cycles.

Theorem 3.4. Let G = (V,E) be a 2-connected graph. Then G has spaghetti

treewidth two if and only if the cell completion G̃ of G is a chain tree of cycles.

We first show that if a 2-connected graph G has spaghetti treewidth two,
then G̃ is a chain tree of cycles.

Proposition 3.5. Let G = (V,E) be a 2-connected graph. If G has spaghetti

treewidth two, then G̃ is a chain tree of cycles.

Proof. Suppose spghtw(G) = 2. Since G is 2-connected and tw(G) ≤ 2, by

Theorem 2.2, G̃ is a tree of cycles. So, it is sufficient to check that every edge
separator of G̃ is contained in at most two body cycles of G̃.

Suppose that an edge separator uv is contained in three body cycles in
G̃. So, G̃[V − {u, v}] has three components having at least two vertices.
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Figure 4: The induction step in Proposition 3.6.

By Lemma 3.3, G has three internally vertex-disjoint paths of length at
least three from u to v, and therefore, G has a subgraph isomorphic to a
subdivision of D3. By Lemma 3.2, spghtw(G) ≥ 3, which contradicts to the
assumption.

We prove the other direction.

Proposition 3.6. Every chain tree of cycles has spaghetti treewidth two.

For a tree of cycles G, let G(G) be the set of body cycles of G and let
D(G) be the set of simplicial triangles of G. A subset P of D(G) is called
a potential set of G if each edge separator of G is contained in exactly two
cycles of G(G)∪P . Briefly, we will show that a chain tree of cycles G with a
fixed potential set P admits a special type of a spaghetti tree decomposition.
For a potential set P of G, let F (G,P) be the set of all non-edge separator
edges contained in cycles of G(G) ∪ P .

Lemma 3.7. Let G = (V,E) be a chain tree of cycles with a potential set P,
and let uv be an edge separator of G. Let H be a component of G[V −{u, v}]
such that H ′ := G[V (H) ∪ {u, v}] and H ′ is not a chordless cycle. Let C ′ be
the chordless cycle of H ′ containing the edge uv. Then

1. {C : C ∈ P , V (C) ⊆ V (H ′)} ∪ {C ′} is a potential set of H ′ if C ′ is a
triangle having two edge separators in G, and

14



2. {C : C ∈ P , V (C) ⊆ V (H ′)} is a potential set of H ′ if otherwise.

Proof. Since H ′ is not a chordless cycle, C ′ has at least two edge separators
in G. If either C ′ is a cycle of length at least 4 or C ′ has three edge separators
in G, then C ′ is still a body cycle of H ′, and there is nothing to prove. If
C ′ is a triangle having only one edge separator f other than uv in G, then
f is contained in exactly one cycle of {C : C ∈ P , V (C) ⊆ V (H ′)}, and C ′

is a simplicial triangle of H ′. Thus, {C : C ∈ P , V (C) ⊆ V (H ′)} ∪ {C ′} is a
potential set of H ′.

Proof of Proposition 3.6. Let G = (V,E) be a chain tree of cycles. Since
G is 2-connected, it is sufficient to show that spghtw(G) ≤ 2. Let P be
a potential set of G. We claim that G has a spaghetti tree decomposition
I = (T, {Bx}x∈V (T )) of width two such that

(GC) there exists an injective function g from F (G,P) to V (T ) where P (I, u)
and P (I, v) have a common end vertex g(uv) in T for uv ∈ F (G,P).

We prove it by induction on the number of edge separators of G.
If G has no edge separators, then G is a chordless cycle. Let G be a

chordless cycle c1c2c3 · · · cmc1 for some m ≥ 3. We construct a tree decom-
position I = (T, {Bx}x∈V (T )) of G and define a function g from E to V (T )
such that

– T is a path p0p1p2p3 · · · pm−1,

– Bp0 = {cm, c1}, Bpm−1 = {cm, cm−1},

– for each 1 ≤ i ≤ m− 2, Bpi = {cm, ci, ci+1}, and

– g is the function from E to V (T ) such that g(cmc1) = p0 and g(cici+1) =
pi for all 1 ≤ i ≤ m− 1.

We can easily check that I is a spaghetti tree decomposition of G having
width two and it satisfies the condition (GC).

Now suppose that G has an edge separator uv. Let H1, H2, . . . , Hk be the
components of G[V − {u, v}] where k ≥ 2 and let Gi = G[V (Hi) ∪ {u, v}].
Note that exactly two graphs of {Gi}1≤i≤k have a cycle in G(G)∪P . Without
loss of generality, we assume that G1 and G2 have a cycle in G(G) ∪ P .

We first check that for each j ∈ {1, 2}, Gj admits a spaghetti tree de-
composition satisfying the condition (GC). We may assume that Gj is not a
chordless cycle. For each j ∈ {1, 2}, let Pj = {C : C ∈ P , V (C) ⊆ V (Gj)},
and let Cj be the chordless cycle of Gj containing the edge uv. We define

15



• P ′j := Pj ∪ {Cj} if Cj is a triangle having two edge separators in G,

• P ′j := Pj if otherwise.

In both cases, by Lemma 3.7, P ′j is a potential set of Gj and Cj is contained
in G(Gj) ∪ P ′j. By the induction hypothesis, Gj has a spaghetti tree decom-
position Ij = (T j, {Bj

x}x∈V (T j)) of width two such that there is an injective
function gj from F (Gj,P ′j) to V (T j) which satisfies the condition (GC). Let
wj = gj(uv).

We construct a new tree decomposition (T, {Bx}x∈V (T )) and define the
function g from F (G,P) to V (T ) such that

– T is obtained from the disjoint union of T 1, T 2 and the path z3 · · · zk
by adding edges z3w1, zkw2, and

– for all 1 ≤ i ≤ 2 and x ∈ V (Ti), Bx = Bi
x,

– for all 3 ≤ i ≤ k, Bzi = V (Gi), and

– g(e) = gi(e) if e ∈ F (Gi,P ′i) for i ∈ {1, 2}.

This case is depicted in Figure 4. Clearly, P (I, u) and P (I, v) form paths in
T . So, (T, {Bx}x∈V (T )) is a spaghetti tree decomposition of G having width
two. Because the only P (Ij, u) and P (Ij, v) are changed in each T j and
uv /∈ F (G,P), g is injective, as required.

Proof of Theorem 3.4. If spghtw(G) = 2, then by Proposition 3.5, G̃ is a

chain tree of cycles. If G̃ is a chain tree of cycles, then by Proposition 3.6,
spghtw(G̃) = 2. Since G is 2-connected and spaghetti treewidth does not
increase when taking a subgraph, spghtw(G) = 2.

3.2 The Minor Obstruction Set for Spaghetti Treewidth
Two

We provide the minor obstruction set for the class of 2-connected graphs of
spaghetti treewidth two.

Theorem 3.8. Let G = (V,E) be a 2-connected graph. The graph G has
spaghetti treewidth two if and only if it has no minor isomorphic to K4 or
D3.

Proof. Suppose G has spaghetti treewidth two. If G has a minor isomorphic
to K4, then spghtw(G) ≥ tw(G) ≥ 3. If G has a minor isomorphic to D3,
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then G has a subgraph isomorphic to a subdivision of D3. By Lemma 3.2,
spghtw(G) ≥ 3 and it contradicts to our assumption on G.

Now suppose that G has no minor isomorphic to K4 and spghtw(G) ≥ 3.

Since G is 2-connected, by Theorem 2.2 and 3.4, G̃ is a tree of cycles but not a
chain tree of cycles. So, G̃ has an edge separator uv such that uv is contained
in three body cycles. Therefore, G̃[V − {u, v}] has three components having
at least two vertices, and by Lemma 3.3, G has three internally vertex-disjoint
paths of length at least three from u to v. Thus, G has a minor isomorphic
to D3.

Using the following lemma, we have the results for general cases.

Lemma 3.9. Let k be a positive integer. A graph has spaghetti treewidth at
most k if and only if every block of it has spaghetti treewidth at most k.

Proof. The forward direction is trivial. For the converse direction, suppose
every block of a graph G has spaghetti treewidth at most k. We may assume
that G is connected. We prove by induction on the number of cut vertices
of G. We may assume that G has a cut vertex v. Let H1, H2, . . . , Hk be
the components of G − v and let Gi = G[V (Hi) ∪ {v}]. By the induction
hypothesis, there exists a spaghetti tree decomposition Ii of Hi having width
at most k. We can obtain a new tree decomposition I from the disjoint
union of the decompositions Ii by just connecting bags among the bags in⋃

1≤i≤k P (Ii, v) so that P (I, v) forms a path. It shows that G has spaghetti
treewidth at most k.

Proof of Theorem 3.1. By Theorem 3.4, (1) implies (2), and with Lemma 3.9,
(2) also implies (1). By Theorem 3.8 and Lemma 3.9, (1) and (3) are equiv-
alent.

4 Characterizations of Strongly Chordal Treewidth

Two

In this section, we characterize the class of graphs of strongly chordal treewidth
at most two with cycle model and we provide the minor obstruction set for
the class. We introduce another variant of a tree of cycles, called a tree of
two-boundaried cycles. The name ‘two-boundaried’ comes from the property
that every chordless cycle of it may attach with other chordless cycles on at
most two edges.

Definition 4.1. A tree of two-boundaried cycles is a tree of cycles G for
which the following holds.
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• Each chordless cycle of G has at most two edge separators.

We mainly show the following. The graph S3 is depicted in Figure 1.

Theorem 4.1. Let G = (V,E) be a graph. The following are equivalent.

1. G has strongly chordal treewidth at most two.

2. Each block of G is either a 2-connected subgraph whose cell completion
is a tree of two-boundaried cycles, or a single edge, or an isolated vertex.

3. G has no minor isomorphic to K4 or S3.

Unlike D3, it seems to be tedious to characterize the subgraph minimal
graphs containing S3 as a minor, because S3 has maximum degree four. So,
we first show that the class of graphs of strongly chordal treewidth at most
two is closed under taking minors.

We use the following fact that S3 has strongly chordal treewidth three.

Lemma 4.2. The strongly chordal treewidth of S3 is three.

Proof. If we add one odd chord in the cycle of length six in S3, then the
resulting graph is a strongly chordal graph with clique number four. There-
fore, sctw(S3) ≤ 3. If there exists a strongly chordal graph H having S3 as a
subgraph, then the cycle of length six in H[V (S3)] must have an odd chord.
Thus, ω(H) ≥ 4 and it implies that sctw(S3) ≥ 3.

The following lemma will be used to find S3 as a minor.

Lemma 4.3. Let G = (V,E) be a 2-connected graph having treewidth two

and let uv be an edge separator of G̃. If C is a chordless cycle of G̃ containing
uv, then G has two internally vertex-disjoint paths from u to v such that they
have no vertices of C except u and v.

Proof. We have two cases.

Case 1. uv ∈ E. The edge uv is one of the required paths. Since uv is an
edge separator of G̃, G̃[V − {u, v}] has at least one component having no
vertices of C. Thus, G[V − {u, v}] has a component H having no vertices of
C, and G has a path from u to v in G along H.

Case 2. uv ∈ E(G̃)−E. By the definition of a cell completion, G[V −{u, v}]
has at least three components. Therefore, G[V −{u, v}] has two components
H1 and H2 which contain no vertices in C. Clearly, there are two internally
vertex-disjoint paths from u to v in G along H1 and H2.
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4.1 Contractions on Graphs of Strongly Chordal Treewidth
Two

We show that the class of graphs of strongly chordal treewidth at most two
is closed under taking minors.

Proposition 4.4. The class of graphs of strongly chordal treewidth at most
two is closed under taking minors.

We will use a known characterization of strongly chordal graphs. For
an integer n ≥ 3, a graph G is called an n-sun if G is a graph with 2n
vertices which are partitioned into two parts U = {u1, u2, . . . , un} and W =
{w1, w2, . . . , wn} such that U induces a clique, W induces an independent set
and each vertex wi in W is adjacent to uj if and only if i ≡ j or i ≡ j + 1
(mod n). Note that S3 is the 3-sun.

Theorem 4.5 (Farber [22]). A graph G is strongly chordal if and only if G
is chordal and it has no induced subgraph isomorphic to a sun.

Since taking subgraphs does not increase strongly chordal treewidth, it is
enough to show the following.

Proposition 4.6. Let G = (V,E) be a strongly chordal graph of ω(G) ≤ 3
and let e ∈ E. Then G/e is strongly chordal.

We will prove, by induction on the size of odd cycles C in G which contain
the contracted edge e, that C/e has an odd chord. For the base case, we need
a lemma.

Lemma 4.7. Let G = (V,E) be a chordal graph and let e ∈ E. If G/e = S3,
then either G is not strongly chordal or ω(G) = 4.

Proof. Let V = {w, v1, v2, . . . , v6} and let us assume that for some i ∈
{1, 2, . . . , 6}, e = wvi, and after contracting wvi in G, the contracted vertex
is again labeled by vi. Suppose G/e = S3 where v1v2 · · · v6v1 is the cycle of
length six and v2v4v6 is the triangle in the middle. By symmetry, we may
assume i = 1 or 2. We may also assume that both w and vi have degree at
least two in G, otherwise one of G− w and G− vi is isomorphic to S3.

If i = 1, then the number of edges between {w, v1} and {v2, v6} is at least
three because G is chordal. So, one of G−w and G− v1 must be isomorphic
to S3. Therefore, G is not strongly chordal.

Now we assume that i = 2. We first claim that each of w and v2 is
adjacent to exactly one of v1 and v3, and the neighbors of w and v2 are
distinct. If v2 is adjacent to both v1 and v3, then v1v2v3v4v5v6v1 is an even
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Figure 5: The cycle C of length at least nine in Proposition 4.6 and two even
cycles C1 and C2. The second picture depicts the last case that C1 has four
edges and f and f ′ meet at u.

cycle of length six in G without chords v1v4, v2v5, v3v6. So, G is not strongly
chordal. By the same reason, w cannot be adjacent to both v1 and v3. If v2
is adjacent to neither v1 nor v3, then w must be adjacent to both v1 and v3,
and we already see that it is impossible. Thus, each of w and v2 is adjacent
to exactly one of v1 and v3 and the neighbors are distinct. By symmetry, we
may assume that w and v2 are adjacent to v1 and v3, respectively.

Since G is chordal and v1 is only adjacent to w and v6 which form a cycle
with other vertices in G, wv6 must be an edge of G. By the same reason,
v2v4 ∈ E. Since wv2v4v6 is a cycle of length 4, we have either v2v6 ∈ E or
wv4 ∈ E. If v2v6 /∈ E (or wv4 /∈ E), then G− v3 (or G− v1) is isomorphic to
S3, and therefore G is not strongly chordal. If v2v6, wv4 ∈ E, then w(G) = 4,
as required.

Proof of Proposition 4.6. Note that the cycles affected by the contraction of
e are the cycles containing e. As G/e is again chordal, we shall only consider
the odd cycles in G of length at least seven which contain e. Let C be one
of such cycles. We shall show, by induction on the length of C, that

– for every edge e ∈ E, C/e has an odd chord in G/e.

Suppose the length of C is seven. Since G/e is chordal, if C/e has no odd
chord, then V (C/e) induces a graph isomorphic to S3 in G/e. By Lemma 4.7,
either G[V (C)] is not strongly chordal or ω(G[V (C)]) = 4, contradicting to
our assumption on G. Thus, C/e must have an odd chord.

Now suppose that C has length at least nine and the assertion holds for
all odd cycles shorter than C. Since G is chordal, C has a chord, say f = uw,
connecting two vertices at distance two on C. See Figure 5. Let v be the
common neighbor of u and w in C, and let C ′ be the cycle (C−v)+f . Since
C ′ is an even cycle of length at least eight in G, it has an odd chord of C ′,
say f ′. Let C1, C2 be the two distinct cycles in C ′ + f ′ containing f ′ such
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that C1 contains the edge f . If e /∈ E(C2) then f ′ is an odd chord of C/e.
Thus we may assume that e ∈ E(C2). We consider two cases.

Case 1. C1 has length at least six. Here, the cycle (C1−f)+uv+vw has length
at least seven in G. So by the induction hypothesis, ((C1− f) + uv + vw)/f ′

has an odd chord h in G/f ′. This chord was a chord in (C1 − f) + uv + vw
where the part avoiding f ′ has odd edges with at least three edges. Therefore,
h is an odd chord of C/e.

Case 2. C1 has length four. See the second picture in Figure 5. If f does
not meet f ′, then any chord of the cycle C1 is an odd chord in C/e. So, we
may assume that C contains the path u− v−w− x− y and f ′ = uy ∈ E. If
ux ∈ E, then it is an odd chord for C/e. We may assume that ux /∈ E and
wy ∈ E.

Since C2 is a cycle of G, there exists a vertex z in C2 other than u and
y such that uyz is a triangle in G. We claim that G[{u, v, w, x, y, z}] is
isomorphic to S3. Since ω(G) ≤ 3, G has no edges ux, yv, wz. If G has one
of edges xv, vz, zx, then one of the sets {x, v, u, y}, {v, z, w, y}, {z, x, u, w}
form a cycle of length four in G, and this cycle forces one of the edges ux,
yv, wz. Therefore, G also has no edges xv, vz, zx. So, G[{u, v, w, x, y, z}] is
isomorphic to S3, contradicting to the assumption that G is strongly chordal.

We conclude that for every even cycle of length at least six in G/e has
an odd chord. Therefore, G/e is strongly chordal.

Proof of Proposition 4.4. Let G be a graph and suppose that there exists
a strongly chordal graph H of ω(H) ≤ 3 such that G is a subgraph of
H. Clearly, taking a subgraph does not increase strongly chordal treewidth.
Also, for e ∈ E, G/e is a subgraph of H/e and by Proposition 4.6, H/e is
also strongly chordal. Therefore, sctw(G/e) ≤ 2.

4.2 Characterization with Cycle Model

We characterize the class of strongly chordal treewidth two in terms of a
cycle model.

Theorem 4.8. Let G = (V,E) be a 2-connected graph. Then G has strongly

chordal treewidth two if and only if the cell completion G̃ of G is a tree of
two-boundaried cycles.

Proposition 4.9. Let G = (V,E) be a 2-connected graph. If G has strongly

chordal treewidth two, then G̃ is a tree of two-boundaried cycles.

Proof. Suppose G has strongly chordal treewidth two. Since G is 2-connected
and has treewidth two, by Theorem 2.2, G̃ is a tree of cycles. Suppose that
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Figure 6: Triangulating each chordless cycle in Proposition 4.10.

a chordless cycle C of G̃ has edge separators {viwi}1≤i≤k where k ≥ 3. By
Lemma 4.3, for each 1 ≤ i ≤ k, G has two internally vertex-disjoint paths
P i
1, P

i
2 from vi to wi in G such that they have no vertices of C except vi and

wi. So, C − v1w1 − v2w2 · · · − vkwk with the paths
⋃

1≤i≤k{P i
1, P

i
2} in G has

a minor isomorphic to S3. By Lemma 4.2 and Proposition 4.4, sctw(G) ≥ 3
and it contradicts to the assumption on G.

For the opposite direction, we prove the following.

Proposition 4.10. A tree of two-boundaried cycles has strongly chordal tree-
width two.

Proof. Let G = (V,E) be a tree of two-boundaried cycles. We will construct
a graph G′ from G by triangulating each chordless cycle such that G′ is a
strongly chordal graph with ω(G′) = 3.

By the definition of a tree of two-boundaried cycles, each chordless cycle
of G has at most two edge separators. For convenience, we choose up to
two non-edge separator edges in each chordless cycle and call them also edge
separators so that each chordless cycle has exactly two edge separators. Note
that for any chordless cycle C of G and edges u1v1 and u2v2 in C, we can
triangulate C into C ′ with maximum clique size at most three so that every
triangle in C ′ has an edge other than u1v1, u2v2, which is not contained in any
other triangles of C ′. Let G′ be the graph obtained from G by triangulating
each chordless cycle as described. See Figure 6.

Since ω(G′) = 3, it remains to prove that G′ is strongly chordal. Suppose
that G′ is not strongly chordal. Since G′ is a chordal graph and ω(G′) = 3, by
Theorem 4.5, G′ has an induced subgraph isomorphic to S3. However, since
every triangle of G′ has an edge which is not contained in other triangles of
G′, it leads a contradiction.
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4.3 The Minor Obstruction Set for Strongly Chordal
Treewidth Two

We provide the minor obstruction set for the class of graphs of strongly
chordal treewidth at most two.

Theorem 4.11. Let G be a 2-connected graph. The graph G has strongly
chordal treewidth two if and only if it has no minor isomorphic to K4 or S3.

Proof. If G has a minor isomorphic to K4 or S3, then by Lemma 4.2 and
Proposition 4.4, sctw(G) ≥ 3. Suppose G has no minor isomorphic to K4

and sctw(G) ≥ 3. Then, by Theorem 4.8, G̃ is a tree of cycles but not a

tree of two-boundaried cycles. Therefore, G̃ has a chordless cycle having at
least three edge separators. As we already observed in Proposition 4.9, by
Lemma 4.3, we can easily show that G has a minor isomorphic to S3.

Proof of Theorem 4.1. From the definition of strongly chordal treewidth, the
strongly chordal treewidth of a graph is the maximum of this parameter over
all blocks of it. With this observation, by Theorem 4.8, the statements (1)
and (2) are equivalent. Also, Theorem 4.11 implies that (1) and (3) are
equivalent.

5 Characterizations of Directed Spaghetti

Treewidth Two and Special Treewidth Two

In this section, we mainly characterize the class of graphs having special
treewidth at most two, and the class of graphs having directed spaghetti
treewidth.

A graph is called a mamba2 if it is either a 2-connected graph of pathwidth
two, or a single edge, or an isolated vertex. The notion of mambas reflects
the linear structure of them, and we will define head vertices of mambas
which have a key role in our characterization.

We first show that every block of a graph of directed spaghetti treewidth
at most two, or special treewidth at most two is a mamba. For directed
spaghetti treewidth, we directly obtain a characterization of width at most
two for general cases. For special treewidth, we will see how the different
mambas are glued to make graphs of special treewidth at most two.

2Mambas are a type of snakes.
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5.1 Mambas

We obtain the following characterization of 2-connected mambas as a corol-
lary of the results in Section 3 and Section 4.

Corollary 5.1. Let G be a 2-connected graph. The following are equivalent.

1. G has pathwidth two (equivalently, G is a mamba).

2. G has special treewidth two.

3. G has directed spaghetti treewidth two.

4. G has no minor isomorphic to K4, D3 or S3.

5. The cell completion G̃ of G is a path of cycles.

For the direction (3) ⇒ (4), we prove that every DV graph with clique
number at most three is strongly chordal. This gives a relation between
directed spaghetti treewidth and strongly chordal treewidth when the pa-
rameter is at most two. A sun is called even (or odd) if the size of the central
clique is even (or odd).

Theorem 5.2 (Panda [32]). Every DV graph has no induced subgraph iso-
morphic to an odd sun.

Lemma 5.3. Every DV graph with clique number at most three is strongly
chordal.

Proof. Let G be a DV graph with clique number three. Since G is a DV
graph, by Theorem 5.2, G has no induced subgraph isomorphic to an odd
sun. Since ω(G) ≤ 3, G has no induced subgraph isomorphic to an even sun.
Therefore, by Theorem 4.5, G is strongly chordal.

Proof of Corollary 5.1. By Theorem 2.3, (5) implies (1), and from the in-
equalities between the parameters, (1) implies (2) and (2) implies (3).

(3) ⇒ (4) : If G has directed spaghetti treewidth two, then G has
spaghetti treewidth at most two. Also, by Lemma 5.3, if G has directed
spaghetti treewidth two, then G has strongly chordal treewidth at most two.
Since G is 2-connected, by Theorem 3.8 and 4.11, G has no minor isomorphic
to K4, D3 or S3.

(4) ⇒ (5) : Suppose G has no minor isomorphic to K4, D3 or S3. Since

G is 2-connected, by Proposition 3.5 and 4.9, G̃ is both a chain tree of cycles
and a tree of two-boundaried cycles. By the definition of a path of cycles, G̃
is a path of cycles.
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The graphs of directed spaghetti treewidth at most two are exactly the
graphs whose block is a mamba.

Theorem 5.4. Let G = (V,E) be a graph. The following are equivalent.

1. G has directed spaghetti treewidth at most two.

2. Each block of G is a mamba.

3. G has no minor isomorphic to K4, D3 or S3.

Proof. Similarly in the proof of Lemma 3.9, we can easily verify that G has
directed spaghetti treewidth at most two if and only if every block of it
has directed spaghetti treewidth at most two. So, all directions are easily
obtained from Corollary 5.1.

5.2 Characterizing Graphs of Special Treewidth Two

A result like Theorem 5.4 does not hold for special treewidth two: we can
have a graph with special treewidth at least three, where each block has
special treewidth at most two. For instance, the graphs G1, G2, and G3 in
Figure 2 have special treewidth three but one can easily observe that each
block is a mamba. Thus, for a graph to have special treewidth at most two,
it is necessary but not sufficient that each block is a mamba. An additional
condition, expressing how the different mambas are attached to each other,
is given below; adding this condition gives a full characterization.

Head vertices of mambas play a central role in the characterizations.

Definition 5.1. Let G = (V,E) be a mamba. A vertex v ∈ V is a head
vertex of G, if there is a path decomposition (T, {Bx}x∈V (T )) of G having
width at most two such that T = p1p2 · · · pr and v ∈ Bp1 .

We define mamba trees, which are recursively constructed by attaching
mambas at head vertices. We will show that mamba trees precisely charac-
terize the connected graphs of special treewidth at most two. In the next
section, we characterize this class using forbidden minors.

Definition 5.2. The class of mamba trees is the class of graphs recursively
defined as follows.

• Each mamba is a mamba tree.

• For each mamba tree G and each mamba M , the graph obtained from
a disjoint union of G and M by identifying a vertex of G with a head
vertex of M is a mamba tree.
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Theorem 5.5. A graph has special treewidth at most two, if and only if it
is a disjoint union of mamba trees.

Let I be a special tree decomposition with a root bag R. A bag By is a
descendant of Bx in I, if Bx belongs to the path of I linking By to the root
R. If By is a descendant of Bx and they are neighbor bags, then Bx is called
a parent of By, and By is a child of Bx.

Proposition 5.6. The special treewidth of a mamba tree is at most two.

Proof. Let G = (V,E) be a mamba tree. If G is a mamba, then by Corol-
lary 5.1, G has special treewidth at most two.

Otherwise, we know from Definition 5.2 that G is constructed by taking a
mamba tree G′ and a mamba M , and identifying a vertex in G′ with a head
vertex in M . Let v be this vertex. From Definition 5.1 we know that since v
is a head vertex, there is a path decomposition Iv = (T v, {Bv

x}x∈V (T v)) of M
of width at most two such that v is in the first bag B1. Now iteratively we
get a special tree decomposition I of G of width at most two from a special
tree decomposition I ′ = (T ′, {B′x}x∈V (T ′)) of G′ by attaching T v to T ′ and
making B1 the child of the lowest bag of P (I ′, v) in I ′. So, we conclude that
every mamba tree has special treewidth at most two.

Proposition 5.7. Every connected graph having special treewidth at most
two is a mamba tree.

Proof. Let G = (V,E) be a connected graph of special treewidth at most
two. We prove by induction on the number of vertices in G. If |V | ≤ 3, then
this is always true. We may assume that |V | ≥ 4.

We choose a special tree decomposition I = (T, {Bx}x∈V (T )) of G having
width at most two such that

∑
x∈V (T )|Bx| is minimum. Note that T is a

rooted tree and if B is a bag of I, then B has at most one child B′ such
that |B ∩ B′| ≥ 2, otherwise, there must be a vertex of G where the bags
containing it do not form a rooted path.

We choose a maximal rooted path P = B1−B2−· · ·−Bn in T such that
for all 1 ≤ i ≤ n− 1, |Bi ∩Bi+1| = 2 and Bi is a child of Bi+1 in T . We show
that G[

⋃
1≤i≤n Bi] is 2-connected, and so, it is a mamba. To show this, we

analyze some cases forcing edges in the graph.

Claim 5.7.1. Let t ∈ V (T ) and let B′ be the parent of Bt such that Bt ∩
B′ = {v1, v2} and Bt − B′ = {w}. If there is no child B′′ of Bt such that
|Bt ∩B′′| = 2, then w is adjacent to both v1 and v2.

26



Proof. Suppose vi is not adjacent to w in G for some i ∈ {1, 2} and let vj be
the vertex in Bt ∩ B′ other than vi. If Bt has no child containing vi, we can
simply remove vi from Bt. In the below of Bt in T , if there exists a component
T ′ of T − t containing a bag with vi, then we cut the branch T ′ from T , and
attach this on B′, and remove vi from Bt. Since T ′ has no bag containing
w or vj, the modified decomposition is a special tree decomposition and∑

x∈V (T )|Bx| is decreased by one, contradiction.

Claim 5.7.2. Let Bt be a bag of I and let B′ be a child of Bt such that
Bt∩B′ = {v1, v2} and Bt−B′ = {w}. If Bt is a non-root bag with the parent
B′′ such that |Bt ∩B′′| = 1, then w is adjacent to both v1 and v2.

Proof. Suppose vi is not adjacent to w in G for some i ∈ {1, 2} and let vj be
the vertex in Bt ∩ B′ other than vi. If Bt ∩ B′′ 6= {vi}, then we can remove
vi from the bag Bt. Thus, we may assume that Bt ∩ B′′ = {vi}. Let L be
the bag of P (I, vj) where the distance from L to the root is maximum. If Bt

has a child Bz containing w, let Tz be the subtree of T − t containing z.
Let I ′ = (T ′, {Bx}x∈V (T ′)) be a decomposition obtained by removing Bt,

and connecting B′ and B′′, and adding a new bag {w, vj} on the bag L, and
attaching Tz on the new bag so that Bz is a child of the bag {w, vj}, if exists.
The resulting decomposition is a special tree decomposition and

∑
x∈V (T )|Bx|

is decreased by one, which leads a contradiction.

Claim 5.7.3. Let Bt be a non-root bag of I with a child B′ and the parent
B′′ such that Bt ∩ B′ = Bt ∩ B′′ = {v1, v2}. If Bt − B′ = {w}, then w is
adjacent to both v1 and v2.

Proof. Suppose vi is not adjacent to w for some i ∈ {1, 2} and let vj be the
vertex of {v1, v2} other than vi. Similarly in Claim 5.7.2, we first remove the
bag Bt, and connect B′ and B′′, and add a new bag {w, vj} on the below of
the path P (I, vj), and if there is a component of T − t containing a bag with
the vertex w, then cut and attach it on the new bag {w, vj}. The resulting
decomposition is a special tree decomposition and

∑
x∈V (T )|Bx| is decreased

by one, which leads a contradiction.

Claim 5.7.4. Let B be a non-root bag of I with a child B′ and the parent
B′′ such that B ∩ B′ = {w, v1} and B ∩ B′′ = {w, v2}. Then v1 is adjacent
to v2.

Proof. Suppose v1 is not adjacent to v2. Note that v1 is contained in neither
B′′ nor any child of B other than B′. So, we can remove v1 from the bag B and
reduce

∑
x∈V (T )|Bx|. It contradicts to the minimality of

∑
x∈V (T )|Bx|.
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Now we show that G[
⋃

1≤i≤nBi] is 2-connected. Since
∑

x∈V (T )|Bx| is

minimum, B1 − B2 6= ∅ and Bn − Bn−1 6= ∅. If B1 − B2 = {x}, then by
Claim 5.7.1, x is adjacent to both vertices in B1 ∩ B2. If Bn − Bn−1 = {x},
then by Claim 5.7.2, x is adjacent to both vertices in Bn−1 ∩Bn.

Suppose Bi−1, Bi, Bi+1 are three consecutive bags in P . We have two
cases. If Bi−1∩Bi = Bi∩Bi+1, then by Claim 5.7.3, the vertex w in Bi−Bi−1
is adjacent to both vertices in Bi−1 ∩ Bi. Suppose Bi−1 ∩ Bi 6= Bi ∩ Bi+1.
Let Bi−1 −Bi = {y} and Bi+1 −Bi = {z}. In this case, by Claim 5.7.4, y is
adjacent to z in G. From these analysis, it is easy to verify that G[

⋃
1≤i≤nBi]

is 2-connected, and therefore G[
⋃

1≤i≤nBi] is a mamba.
Now we show that G is a mamba tree.
We may assume that there exists a non-root bag B of I having the parent

B′ such that |B ∩ B′| = 1, otherwise G is a mamba. We choose such a bag
B so that the distance from B to the root is maximum and assume that
B ∩B′ = {v}. Let P be the union of B and all descendants of B. If |P | ≤ 3,
then G[P ] consists of either one or two blocks of size two, or a triangle. If
|P | ≥ 4, then G[P ] is a mamba and since v ∈ B, v is a head vertex of this
mamba. By the induction hypothesis, G[(V −P )∪ {v}] is a mamba tree. In
all cases, we conclude that G is a mamba tree.

Proof of Theorem 5.5. As the special treewidth of a graph is the maximum
of the special treewidth of its connected components, by Proposition 5.6 it
follows that any disjoint union of mamba trees has special treewidth at most
two. If a graph has special treewidth at most two, then by Proposition 5.7,
it is a disjoint union of mamba trees.

5.3 The Minor Obstruction Set for Special Treewidth
Two

This section is devoted to the proof of Theorem 5.8, given below.

Theorem 5.8. A graph has special treewidth at most two if and only if it
has no minor isomorphic to K4, S3, D3, G1, G2, or G3.

In Figure 2, the graphs G1, G2, G3 in the obstruction set are displayed.
From our structural characterization of graphs of special treewidth at

most two of the previous sections, we can easily check that the class is minor
closed.

Also, Proposition 5.7 immediately follows that every graph of {G1, G2, G3}
has special treewidth at least three, and a tedious case analysis shows that
each proper minor of a graph in {K4, S3, D3, G1, G2, G3} has special treewidth
at most two. So {K4, S3, D3, G1, G2, G3} is a subset of the obstruction set
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Figure 7: Blocks of obstructions that are not 2-connected

for the class of graphs of special treewidth at most two. Thus, Theorem 5.8
follows from the next lemma.

Lemma 5.9. If a graph G = (V,E) contains no minor isomorphic to K4,
S3, D3, G1, G2 or G3, then the special treewidth of G is at most two.

To show Lemma 5.9, we extend the standard minor notion to pairs of
a graph and a vertex. For pairs (G, v) and (H, v), with G = (V,E), H =
(W,F ), v ∈ V , v ∈ W , we say that (H, v) is a minor of (G, v), if we can obtain
H from G by a series of the following operations: deletion of a vertex other
than v, deletion of an edge, and contraction of an edge, such that whenever
we contract an edge with v as an endpoint, the contracted vertex is named
v. For pairs (G, v) and (H,w), we say (G, v) and (H,w) are isomorphic if
there is a graph isomorphism f from G to H with f(v) = w.

The following lemma is a key lemma to find a minor isomorphic to G1, G2

or G3. The pairs (H1, v) and (H2, v) are depicted in Figure 7, with v the
marked vertex.

Lemma 5.10. Let B be a 2-connected mamba and let z be a vertex which is
not a head vertex of B. Then (B, z) has a minor isomorphic to either (H1, v)
or (H2, v).

Proof. Since B is a 2-connected mamba, by Theorem 2.3, B̃ is a path of
cycles. Let (U, F ) be a cycle path model of B̃ with U = (C1, . . . , Cp) and
F = (f1, . . . , fp−1). We may assume that

1. C1 = C if B̃ has a chordless cycle C of length at least four containing
exactly one edge separator f1, and

2. Cp = C ′ if B̃ has a chordless cycle C ′ of length at least four containing
exactly one edge separator fp−1.

By removing repeated edges from F , we can obtain a linear ordering e1, . . . , er
of all edge separators of B̃. If r = 1, then we can easily observe that either
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(B, z) has a minor isomorphic to (H2, v), or there is a path decomposition of

B̃ having width two such that the first bag contains z. Therefore, we may
assume that r ≥ 2.

For each i ∈ {1, r}, let Ci be the set of all chordless cycles of B̃ containing
exactly one edge separator ei. We observe the following.

1. If Ci is not a simplicial triangle, then z /∈ V (Ci) but z can be a vertex
of degree two in a simplicial triangle in Ci.

2. If Ci is a simplicial triangle, then z /∈
⋃

C∈Ci V (C).

We fix i ∈ {1, r} and ei = uivi. If Ci is a simplicial triangle, then all
cycles in Ci are simplicial triangles. So, the second statement is true because
if z ∈

⋃
C∈Ci V (C), then it is not hard to construct a path decomposition of

B̃ where the first bag contains z. Also, in the first statement, if z ∈ V (Ci),
we can easily construct a path decomposition where the first bag contains z.

Suppose Ci is not a simplicial triangle and z is a vertex of degree two
in a simplicial triangle in Ci. In this case, since B̃[V (B) − {ui, vi}] has
two components of size at least two not containing v, using Lemma 3.3, B
has two internaly vertex-disjoint paths of length at least three from ui to
vi. Then (B, z) has a minor isomorphic to (H2, v). Since there is no path
decomposition of H2 having width two where the first bag contains v, we
conclude that z is not a head vertex.

Now we show that for each case, (B, z) has a minor isomorphic to either
(H1, v) or (H2, v). We may assume that there exist two vertex-disjoint paths

P1, P2 in B̃ where P1 links u1 to ur and P2 links v1 to vr.
We have two cases.

Case 1. z is the vertex of degree two in a simplicial triangle of B̃ having an
edge separator xy. If xy = e1 (or xy = er), then from the above observation,
C1 (or Cr) is a cycle of length at least four. So, in any cases, we have that

B̃[V (B) − {x, y}] has two components of size at least two, which have the
vertices of C1 and Cp, respectively. By Lemma 3.3, B has two internally
vertex-disjoint paths of length at least three from x to y. Therefore, (B, z)
has a minor isomorphic to (H2, v).

Case 2. z ∈ (V (P1) ∪ V (P2)) \ {u1, ur, v1, vr}. If we use a chordless cycle
which contains e1 and e2, then by Lemma 4.3, B has two internally vertex-
disjoint paths from u1 to v1 such that they have no vertices of (V (P1) ∪
V (P2)) \ {u1, v1, ur, vr}. By the same reason, B has two internally vertex-
disjoint paths from ur to vr such that they have no vertices of (V (P1) ∪
V (P2)) \ {u1, v1, ur, vr}.
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By symmetry, we may assume that z ∈ V (P1) \ {u1, ur}. On the path
P1, the distance between z and u1 (or ur) is at least one. So, by contracting
all edges of P2, we get a minor isomorphic to (H1, v) together with the paths
which we obtained before.

Proof of Lemma 5.9. Suppose that the lemma does not hold. Let G be a
minimal counterexample such that no minor of G is a counterexample. Since
the special treewidth of a graph is the maximum of the special treewidth of
its connected components, we may assume that G is connected. Since G has
no minor isomorphic to K4, S3, or D3, by Corollary 5.1, each block of G is a
mamba. We may also assume that G has at least two blocks.

We use the well known fact that the blocks of a connected graph form a
tree, called the block tree. We choose a block B of G corresponding to a leaf
of the block tree, and let B′ be the block having an intersection v with B. If
v is a head vertex of B, then from the minimality of G, G[(V −B) ∪ {v}] is
a mamba tree, and G is again a mamba tree. So, we may assume that every
block of G corresponding to a leaf of the block tree is not attached to the
remaining graph with a head vertex.

Since G has at least two blocks, G has at least two blocks B1 and B2

corresponding to leaves of the block tree, with cut vertices z1 and z2, respec-
tively. By Lemma 5.10, each (Bi, zi) has a minor isomorphic to either (H1, v)
or (H2, v). Since there exists a path from z1 to z2 in G, it implies that G has
a minor isomorphic to either G1, G2, or G3, which is contradiction.

6 Classes of Graphs having Width at most k

where k ≥ 3

In this section, we show that for each k ≥ 3, none of the classes of graphs
with special treewidth, spaghetti treewidth, directed spaghetti treewidth and
strongly chordal treewidth at most k is closed under taking minors.

Proposition 6.1. Let k ≥ 3. Each of the following classes of graphs is not
closed under taking minors.

1. The graphs of special treewidth at most k.

2. The graphs of spaghetti treewidth at most k.

3. The graphs of directed spaghetti treewidth at most k.

Proof. Note that trees can have arbitrary large pathwidth [20]. Let T =
(V,E) be a tree with pathwidth k. Let GT = (V ′, E ′) be a graph obtained by
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Figure 8: GT and G′T : an example of the construction in the proof of Propo-
sition 6.1.

taking two copies of T and adding edges between copies of vertices, that is,
V ′ = V1 ∪ V2 with Vi = {vi : v ∈ V }, for i ∈ {1, 2}, E = {{vi, wi} : {v, w} ∈
E, i ∈ {1, 2}} ∪ {{v1, v2} : v ∈ V }. See Figure 8 for an example.

The special treewidth of GT is at most three. With induction to the size
of T , we show that GT has a special tree decomposition of width at most
three such that for each v ∈ V , all bags that contain v1 also contain v2
and vice versa. This clearly holds when T consists of a single vertex. Let
x ∈ V be a leaf of T , with the parent y. By induction, we assume we have a
special tree decomposition of width at most three of GT−x, such that for each
v ∈ V − {x}, all bags that contain v1 also contain v2 and vice versa. Let i
be a bag of maximal depth in the tree decomposition with {y1, y2} ⊆ Xi. By
assumption, no descendant of i contains y1 or y2. Now add a new bag j to
the tree decomposition with i the parent of j and Xj = {y1, y2, x1, x2}. This
is a special tree decomposition of GT of width three and for each v ∈ V , all
bags that contain v1 also contain v2 and vice versa.

Now, consider the graph G′T obtained from GT by contracting all vertices
in {v2 : v ∈ V } to a single vertex w. Clearly, w is adjacent to all vertices of
V (G′T )− {w} in G′T . Hence, by Lemma 2.5, the special treewidth, spaghetti
treewidth, and directed spaghetti treewidth of G′T equal one plus the path-
width of G. So, G′T is a minor of GT and has special treewidth, spaghetti
treewidth, and directed spaghetti treewidth exactly k + 1.

Now, we prove that the graphs of strongly chordal treewidth at most k
are not closed under taking minors.

Proposition 6.2. Let k ≥ 3. The class of graphs of strongly chordal treewidth
at most k is not closed under taking minors.

For each k ≥ 4, we define SCk as follows. For each 1 ≤ i ≤ 3, let Ki
k

be the complete graph on the vertex set {vi1, vi2, . . . , vik}. The graph SCk is
obtained from the disjoint union of K1

k , K2
k , K3

k and the complete graph on
the vertex set {w1, w2, w3, w4} by
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w2

w1

w3

w4

Figure 9: The graph SC5.

– identifying v11v
1
2 with w1w2 (with identifying each end vertex), and v21v

2
2

with w2w3, and v31v
3
2 with w3w4,

– adding edges w3v
1
i for all 3 ≤ i ≤ n− 1,

– adding edges w1v
2
i for all 3 ≤ i ≤ n− 1,

– adding edges w2v
3
i for all 3 ≤ i ≤ n− 1.

See Figure 9. Note that ω(SCk) = k.
We first show that SCk+1 is strongly chordal. Let T be a tree. For a

vertex c ∈ V (T ) and r ≥ 0, we define T (c, r) as the subtree of T which
induces on the vertices v such that the distance between v and c is at most
r. For a positive integer k, a graph G = (V,E) is called a neighborhood
subtree tolerance graph with tolerance k if there exists a tree T , and a set
S = {T (cv, rv) : v ∈ V } of subtrees of T such that xy ∈ E if and only if
|V (T (cx, rx)) ∩ V (T (cy, ry))| ≥ k.

Bibelnieks and Dearing showed the following.

Theorem 6.3 (Bibelnieks and Dearing [5]). Let k be a positive integer. If G
is a neighborhood subtree tolerance graph with tolerance k, then G is strongly
chordal.

Lemma 6.4. Let k ≥ 3. The graph SCk+1 is a neighborhood subtree tolerance
graph with tolerance 1. Hence SCk+1 is strongly chordal.

Proof. Let A = a1a2 · · · a6, B = b1b2 · · · b5 and C = c1c2 · · · c7 be paths. Let
T be the tree obtained from the disjoint union of A,B,C and a new vertex
v by adding edges va1, vb1 and vc1. We define

1. Tv1k+1
= T (a6, 0), Tv2k+1

= T (b5, 0) and Tv3k+1
= T (c7, 0),

2. for each 3 ≤ j ≤ k, Tv1j
= T (a5, 2), Tv2j

= T (b4, 2) and v3j = T (c6, 2),
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3. Tw1 = T (a2, 4), Tw2 = T (a1, 6), Tw3 = T (c1, 6) and Tw4 = T (c4, 3).

We can easily check that the set of subtrees {Tv}v∈V (SCk+1) on the tree T
indeed forms a neighborhood subtree models with tolerance 1. Therefore, by
Theorem 6.3, SCk+1 is strongly chordal.

Lemma 6.5. Let k ≥ 3. The graph SCk+1/w1w4 has strongly chordal
treewidth at least k + 1.

Proof. We say w1 for the contracted vertex of SCk+1/w1w4. Then clearly,
w1v

1
k+1w2v

2
k+1w3v

3
k+1w1 is a cycle of length six in SCk+1/w1w4 and it does

not have an odd chord. So we should add an odd chord, to make it as
a subgraph of a strongly chordal graph. We can verify that as soon as
we add v1k+1w3, {w1, w2, w3, v

1
3, v

1
4, . . . , v

1
k+1} becomes a clique of size k + 2

in SCk+1/w1w4. The same result appears when adding v2k+1w1 or v3k+1w2.
Therefore, SCk+1/w1w4 has a strongly chordal treewidth at least k + 1.

Proof of Proposition 6.2. Since ω(SCk+1) = k + 1, by Lemma 6.4, SCk+1

has strongly chordal treewidth k. By Lemma 6.5, SCk+1/w1w4 has strongly
chordal treewidth at least k + 1. Therefore, the class of graphs of strongly
chordal treewidth at most k is not closed under taking minors.

7 Conclusions

In this paper, we consider the graphs of special treewidth, spaghetti treewidth,
directed spaghetti treewidth, or strongly chordal treewidth two. Similar to
treewidth, pathwidth and treedepth, these graph parameters can be defined
as the minimum of the maximum clique size over all supergraphs in some
graph class G, with G the class of chordal graphs (in case of treewidth) or a
subclass of the chordal graphs. (See the discussion in Section 1 and Table 1.)

Our main results are twofold: for each of the four parameters, we give
the obstruction set of the graphs with this parameter at most two. These
obstruction sets are summarized in Table 2 in Section 1. Secondly, we give
characterizations in terms of (special types of) trees of cycles of the cell
completion. A 2-connected graph has treewidth two, if and only if its cell
completion is a tree of cycles (see Section 2); for each of the other parameters,
a similar result with additional conditions on the tree of cycles exists. We
summarize these in Table 3. We have that the treewidth, spaghetti treewidth,
and strongly chordal treewidth of a graph equals the maximum of this pa-
rameter over the blocks of the graph. This is not the case for pathwidth
and for special treewidth. For special treewidth two, we have established a
precise condition (building upon the notion of head vertices) how blocks of
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special treewidth at most two can be connected to obtain a graph of special
treewidth two (see Section 5).

parameter cycle tree model connecting blocks
treewidth tree of cycles [11, 29] everywhere
pathwidth path of cycles [17, 8] !(not simple) [17]
spaghetti tw chain tree of cycles (Th. 3.4) everywhere
strongly chordal tw tree of 2-boundaried cycles everywhere

(Th. 4.8)
dir. spaghetti path of cycles (Cor. 5.1) everywhere
special tw path of cycles (Cor. 5.1) head vertices

Table 3: Models for cell completions of graphs with value of parameter at
most two. The second column gives the characterization for 2-connected
graphs; the last column shows how blocks of width at most 2 can be con-
nected: everywhere = each block has width at most 2 is sufficient; ! = no
simple characterization exist; head vertices = see Section 5.2.

We expect that similar characterizations are hard or impossible to ob-
tain for values larger than two. For instance, we see in Section 6 that the
classes of graphs of special treewidth, spaghetti treewidth, directed spaghetti
treewidth, or strongly chordal treewidth at most k, for k ≥ 3 are not closed
under taking minors.

It may be interesting to pursue a similar investigation for parameters that
are defined in a similar way by other subclasses of chordal graphs. Bodlaen-
der, Kratsch and Kreuzen [13] showed that special treewidth and spaghetti
treewidth are fixed parameter tractable; an adaptation of the algorithms by
Bodlaender and Kloks [12] or Lagergren and Arnborg [30] gives linear time
decision algorithms for each fixed bound on the width. We conjecture that
in a similar way, it can be shown that directed spaghetti treewidth is fixed
parameter tractable. Whether strongly chordal treewidth is fixed parameter
tractable, we leave as an open problem.
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