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Abstract: High purity ammonia-oxidizing archaea (AOA) culture containing a single AOA strain 

was enriched from the filtering materials of biological aerated filter. The concentration of AOA 

reached 3.27×10
7
 copies/mL, while its proportion was 91.40%. The AOA amoA gene sequence 

belonged to Nitrososphaera cluster. Ammonia concentration significantly influenced the growth of 

AOA in culture, while total organic carbon (TOC) concentration had no obvious effect. The 

optimum ammonia concentration, temperature, pH and DO concentration for growth of AOA were 

1 mM, 30 ˚C, 7.5 and 2.65 mg/L, respectively. Under the optimum growth conditions, the AOA 

abundance and ammonia oxidation rate were 3.53×10
7
 copies/mL and 2.54×10

-10
 mg/(copies·d). 

 

Keywords: ammonia-oxidizing archaea (AOA); biological aerated filter (BAF); enrichment; 

growth conditions; ammonia oxidation rate 

 

1 Introduction 

Nitrification played an important role in nitrogen removal from wastewater[1]. Nitrification 

consists of nitritation (NH4
+
→NO2

-
) and nitrataion (NO2

-
→NO3

-
). It had been long believed that 

ammonia oxidizing bacteria (AOB) was the main microorganisms involved in the nitritation 

process. However, the discovery of ammonia-oxidizing archaea (AOA) demonstrated that archaea 

could oxidize ammonia as well. 

 

Similar to AOB, AOA owned amoA gene as well, which could code for ammonia monooxygenase, 

i.e. the key enzyme responsible for ammonia oxidation. Compared to AOB, AOA could be easier to 

find in various natural environments[2-3], which implied its importance in nitrogen cycle. 
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Although AOA distributed widely in nature, its cultivation and isolation was extremely difficult. Up 

till now, some AOA isolates had been obtained, such as, Nitrosopumilus maritimus SMC1 from 

aquarium[4], strains PS0 and HCA1 from coastal marine[5], N. devanaterra Nd1 and Nitrosotalea 

sp. Nd2 from acidophilic agricultural soil[6-7], Nitrososphaera viennensis EN76 from garden soil 

[8], Candidatus Nitrosocosmicus franklandus from arable soil[9]. Besides that, cultures containing 

a single strain of AOA as the only ammonia-oxidizer were also enriched, including “Candidatus 

Nitrosocaldus yellowstonii”[10], “Candidatus Nitrosotalea devanaterra”[11], “Candidatus 

Nitrosoarchaeum koreensis”[12] and so on, and most of them were enriched from natural 

environments. However, few studies had been conducted on the enrichment of AOA from 

wastewater treatment plants (WWTPs)[13]. 

 

Previous studies had confirmed the existence of AOA in wastewater treatment processes[14-18]. 

Nevertheless, the reported abundance, distribution and diversity of AOA varied a lot under different 

conditions. Most studies indicated that AOB were the dominant strains in the wastewater treatment 

process. Meanwhile, only a few studies showed that AOA strains outnumbered AOB strains in 

wastewater treatment process. Furthermore, the role of AOA in nitrogen removal in wastewater 

treatment process was still unclear. 

 

Based on the known AOA amoA gene sequences from literatures, AOA could be divided into five 

major clusters: Nitosopumilis cluster, Nitrososphaera cluster, Nitrosocaldus cluster, Nitrosotalea 

cluster and Nitrosophaera sister cluster[19]. According to these studies, only a few AOA amoA 
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sequences were collected from wastewater treatment process, and most of them belonged to 

Nitrososphaera cluster. 

Compared with AOB, AOA could thrive at low dissolved oxygen (DO) level and have a higher 

ammonia affinity[20]. Many biological reactions, such as, autotrophic nitrogen removal and 

denitrifying sulfide removal (DSR) process, were more adapted to the environments with low DO 

level[21-22]. Therefore, compared with AOB, AOA could be easier to accompany with nitrogen 

and sulfide removal[23-24]. Furthermore, it has been found that the biotransformation of 

micropollutants were involved with the cometabolism of ammonia-oxidizing microorganisms[25]. 

For example, Nitrososphaera gargensis, a kind of AOA culture, could degrade two kinds of 

pharmaceuticals, mianserin and ranitidine[26]. Thus AOA could play an important role in pollutants 

removal, and the investigation of AOA in WWTPs is necessary. 

 

In this study, AOA contained culture was enriched, which was from the filtering materials of 

biological aerated filter in a WWTP. Culture growth and ammonia oxidation was investigated. 

Besides that, the environmental factors including ammonia concentration, pH, temperature and DO 

concentration on AOA in culture were also investigated. Orthogonal experiments were designed to 

obtain the optimum condition for the growth of AOA strain. 

 

2 Material and methods 

2.1 Sources of the samples 

Filters materials was sampled from a biological aerated filter (BAF) in a full-scale municipal 

WWTP. (ShenZhen, China). The treatment capacity of the BAF was 50,000 m
3
/d. The height of the 
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BAF was 7 m, while the height of the filter layer was 3.5 m. The samples were taken from seven 

sampling points simultaneously. The sampling points were equally distributed along the filter layer 

vertically. The main characteristics of influent and effluent of BAF were listed in the Table S1. The 

BOD, ammonia, nitrite, nitrate, total nitrogen (TN) and suspended solids (SS) concentrations were 

analyzed using the standard methods[27]. DO concentration and pH value were measured by DO 

meter (YSI-550A, YSI, USA) and pH meter (FE20, METTLER TOLEDO, Switzerland), 

respectively. 

 

2.2 The preparation of initial inoculums 

10 mL of the filter materials sample was mixed and transferred into a centrifuge tube and 10 mL of 

sterile water was added. After that, the centrifuge tube was placed on vortex mixer for 20 min to 

separate biofilms from filters and form the cell suspension. The cell suspension would be used as 

the initial inoculums for further enrichment.  

 

2.3 Optimization of the AOA enrichment 

During the experiments, different kinds of mediums and antibiotics were used to optimize the 

enrichment of AOA. Two types of medium (A and B) were used in experiments. Medium A was a 

synthetic medium as described by De la Torre et al.[10], which was the combination of the filtered 

mixtures of 10 mL KH2PO4 (0.03 mol/L), 1 mL NH4Cl (1 mol/L), 1 mL NaHCO3 (1 mol/L), 1 mL 

selenium tungstic acid (Table S2), 1mL vitamin mixtures (Table S3) and 1 mL trace elements 

(Table S4) as well as the mixtures of 1 g/L NaCl, 0.4 g/L MgCl2· 6H2O, 0.5 g/L KCl, 0.1 g/L CaCl2 

and 0.1 g/L KBr.  
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Medium B was another kind of synthetic medium, which was the combination of the filtered 

mixtures of 1 mL NH4Cl (1 mol/L), 2 mL NaHCO3 (1 mol/L), 1 mL sodium pyruvate (0.5 mol/L), 1 

mL Fe-EDTA solution (Table S5) and 1 mL trace elements (Table S4) and the mixtures of 1 g/L 

NaCl, 0.4 g/L MgCl2· 6H2O, 0.5 g/L KCl, 0.1 g/L CaCl2 and 0.2 g/L KH2PO4.  

 

Antibiotics were used to select against the co-cultured bacteria in initial phase of enrichment 

process. As shown in Table S6, 7 kinds of antibiotics were prepared, and each kind of antibiotics 

were combined with medium A and medium B, respectively. Therefore, 14 batch tests were 

designed to obtain the optimum medium and antibiotics for AOA enrichment.  

 

The pH value of mediums was adjusted to 7.0 and the concentration of ammonia was kept at 

0.5-1.0 mM during the enrichment process. Enrichment cultures were incubated at 37 ℃ in dark 

without shaking. At the end of each cycle (12 days), the amount of AOA, AOB, archaea and 

eubacteria in enrichment cultures were measured by qPCR and 10% of the culture was transferred 

to 90 mL fresh medium for next cycle. After 3 cycles, culture was filtrated to exclude AOB and 

contaminated fungi before further enrichment. 

 

2.4 DNA extraction, PCR amplification and construction of clone libraries 

DNA was extracted from the frozen AOA cells harvested from the enrichment culture using Fast 

DNA SPIN Kit for Soil (MP, USA). The concentration of DNA was measured by a NanoDrop 

Spectrophotometer (ND-2000, Thermo Fisher Scientific, Germany). The amoA genes, Eubac gene 
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and Arch gene were amplified by PCR using the primers listed in Table S7. 

 

The PCR amplification was performed using Mighty AmpTM (Takara,China) by the following 

procedure: 2 min initial denaturation at 98℃, followed by 35 cycles of 98℃ for 30 s, annealing at 

55℃for 30 s, and 72℃ for 1 min; and final extension at 72℃ for 5 min. The PCR products were 

pooled by 1.2% agarose gel electrophoresis to check the presence of the target gene. After purifying 

with MiniBest Agarose Gel DNA Extraction Kit Ver.3.0 (Takara，Japan) and inserted into 

pMD
®
19-T Vector (Takara, Japan), ligated vectors were transformed into Escherichia coli DH5α 

competent cells. The positive clones were sent to The Beijing Genomics Institute (BGI) for 

sequencing. The obtained sequences sharing at least 97% amoA gene nucleotide identity were 

assigned to one operational taxonomic units (OTUs) using Mothur v.1.26.0[28]. The representative 

sequences were aligned to the database of the National Center for Biotechnology Information 

(NCBI) using BLAST. Neighbor-joining phylogenetic trees were constructed with the obtained and 

similar sequences using MEGA 5.1 (bootstrap value was set at 1000 replicates to estimate the 

reliability of phylogenetic reconstruction).  

 

2.5 Quantification of PCR 

All quantification reactions were performed with a qPCR system (LightCycler1.5, Roche Applied 

Science, Germany). After purification, the PCR products were ligated into pMD
®
19-T Vector 

(Takara, Japan) and transformed into Escherichia coli DH5α competent cells. Then the plasmid 

DNA, which used for making the standard curve, was extracted from the positive clones. The 

concentration of the plasmid DNA was determined with Nanodrop2000 and the process was 
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repeated above five times to ensure the accuracy of measurement. The gene copy numbers were 

calculated based on the detected concentration of plasmid. The standard samples were diluted for 

eight-gradient serial dilutions of plasmid DNA and the threshold cycle (Ct) value was determinate. 

Then, the standard curve between Ct value and the logarithm of the copy numbers was established. 

The qPCR was amplified in a 20-µL reaction mixture consisting of 10 μL SYBR Premix Ex Taq
TM

Ⅱ, 0.8 µL of each primer, 2 µL of template DNA, and complemented with RNase-free water. The 

reaction conditions were: initial denaturation at 95℃ for 30 s, followed by 40 cycles of 95℃ for 5 s, 

annealing for 30 s (AOA and AOB at 55℃, Archaea at 53℃and Eubacteria at 60℃), and final 

extension at 72℃ for 1 min. The dissolution curve was measured immediately after the PCR 

reaction at 65- 95°C. The results were accurate when the melting temperature (Tm) value was above 

80°C and the dissolution curve was single peak. The correlation coefficients (R
2
) were 0.9988 for 

AOA amoA, 0.9996 for AOB amoA, 0.9976 for eubacteria and 0.9982 for archaea. 

 

2.6 Growth experiments of culture 

The growth experiments were conducted in 500 mL Erlenmeyer flasks. 10 mL culture S1 (the 

culture with the AOA proportion of 91.40%, which will be described below) and 190 mL medium 

D (medium B + bran hydrolysate, which will be described below) were transferred into Erlenmeyer 

flasks and cultivated at 37℃. The ammonia oxidizer activity and growth were assessed by analyzing 

of ammonia concentrations and the abundance of AOA amoA genes. 

 

2.7 Orthogonal experiments 

The orthogonal experiments were carried out in 150 mL Erlenmeyer flasks. 100 mL medium D was 
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added into the triangle bottle. Four independent effective variables including initial ammonia 

concentration, temperature, pH and DO concentration, were selected. Each operating variables was 

sat at three levels. The ranges and levels of the variables in actual units were presented in Table 1. 

The abundances and ammonia oxidation rates of AOA were measured or calculated as responses. 

To achieve the designated DO concentration, different amount of medium were added into 

Erlenmeyer flasks. The concentration of ammonia was adjusted by adding NH4Cl (1 g/L). The pH 

value was adjusted to the designated value by HCl (1 mol/L) or NaOH (1 mol/L). 

Table 1 Experimental range and levels of the independent variables 

Range 

and 

level 

Ammonia 

concentration 

(mM) 

Temperature 

(℃) 
pH 

DO 

concentration 

(mg/L) 

1 25 7 2.03 

2 30 7.5 2.65 

3 37 8 2.88 

 

3 Results 

3.1 Description of the BAF 

The main characteristics of influent and effluent in BAF were shown in Table S1. The 

concentrations of BOD decreased substantially from 38.0 mg/L to 6.9 mg/L and the concentration 

of SS decreased from 44 mg/L to 10 mg/L, which suggested that most of the BOD and SS were 

removed after treatment of BAF. The concentration of ammonia was decreased from 10.6 mg/L to 

3.3 mg/L and nitrate was increased from 2.7 to 9.0 mg/L. It was mainly due to that the nitrification 

reactions occurred in the BAF and the ammonia was mainly oxidized to nitrate. The temperature of 

the water was kept at 24℃ and pH decreased from 7.5 to 6.6, which might cause by nitrification in 

BAF. Due to the aeration from the bottom of BAF, the DO concentration increased from 0.94 mg/L 
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to 4.57 mg/L.  

 

Filter samples collected from different heights of BAF filter layer were analyzed by qPCR. The 

abundance of AOA was ranged between 6.32×10
3
 copies/ng DNA and 3.8×10

4
 copies/ng DNA, the 

ratio of AOA/AOB varied from 845 to 2784 (Fig.S1). The results suggested that AOA were 

dominant strains in the filter layer of BAF. The distribution and relative abundance of AOA amoA 

genes in BAF were showed in Fig.S2. Based on AOA amoA genes sequences, 6 clone libraries were 

constructed and 8 OTUs were observed at 3% nucleotide cut-off. OTU-5 and OTU-8 were the 

dominant OTU types in the filter layer of BAF. OTU-8 was the dominant strain between the height 

of 2 m and 3.5 m and OUT-5 was dominant strain between the height of 4 m and 5 m. The 

phylogenetic tree of AOA amoA gene in BAF was shown in Fig.S3. 

 

3.2 Establishment of highly purified AOA cultures 

The cell suspension was used as the initial inoculums for AOA enrichment. Based on qPCR results, 

the concentrations of AOA, AOB, archaea and eubacteria in initial inoculums 4.37×10
4
 copies/mL, 

9.72×10
2
 copies/mL, 2.21×10

7
 copies/mL and 1.15×10

9
 copies/mL，respectively. At the initial 

stage of the enrichment, different kinds of medium and antibiotics were used and compared as 

described in section 2.4. 

 

The concentrations of AOA, AOB, archaea and eubacteria were measured after 3 cycles (12 days 

per cycles) and the results were shown in Table 2. According the results, medium B was found 

more favorable for AOA growth and the highest AOA proportion was 41.23% while the combined 
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antibiotics comprised of streptomycin, kanamycin, ampicillin, carbenicillin and tetracycline were 

added. The concentrations of AOA in the culture (hereafter referred to as culture F1) were 1.13×

10
7
copies/mL, about 258 times of the initial inoculums. Besides, AOB amoA genes were not 

detected in the culture F1. 

 

Table 2 The effects of mediums and antibiotics on AOA enrichment 

No. 
Antibiotics 

addition 
Medium 

AOA 

(copies/mL) 

AOB 

(copies/mL) 

Archaea 

(copies/mL) 

Eubacteria 

(copies/mL) 

AOA 

proportion 

1 a A 8.35×10
4
 6.38×10

4
 8.31×10

5
 9.25×10

6
 0.83% 

2 b A 1.04×10
5
 3.01×10

2
 9.16×10

5
 3.12×10

6
 2.58% 

3 c A 1.31×10
5
 1.86×10

2
 6.28×10

5
 1.09×10

6
 7.63% 

4 d A 1.15×10
5
 NA 5.91×10

5
 8.98×10

5
 7.72% 

5 e A 9.27×10
4
 NA 5.36×10

5
 8.73×10

5
 6.58% 

6 f A NA NA 2.39×10
5
 5.31×10

5
 NA 

7 g A NA NA 2.24×10
5
 4.96×10

5
 NA 

8 a B 7.85×10
6
 6.37×10

4
 9.21×10

6
 9.23×10

7
 7.73% 

9 b B 9.16×10
6
 4.28×10

2
 1.03×10

7
 4.39×10

7
 16.96% 

10 c B 9.71×10
6
 1.02×10

2
 1.16×10

7
 2.69×10

7
 25.22% 

11 d B 1.13×10
7
 NA 1.33×10

7
 1.45×10

7
 41.23% 

12 e B 8.97×10
6
 NA 1.06×10

7
 1.23×10

7
 38.01% 

13 f B 4.16×10
4
 NA 3.11×10

6
 1.04×10

7
 0.34% 

14 g B 3.17×10
4
 NA 3.23×10

6
 9.17×10

6
 0.26% 

NA=Not determined 

 

Although the proportion of AOA in the culture F1 achieved by 41.23%, a lot of co-cultured 

microorganisms still existed. To obtain highly purified AOA culture, filters were used for further 

enrichment. 10 mL of the culture F1 was filtrated through filters and mixed with 90 mL medium B 

(antibiotics were added as well). After 3 cycles, AOA amoA genes could not be detected in the 

cultures, which implied that medium B was no longer suitable for AOA’s growth. It is possible due 

to the fact that the co-exist microorganisms might provide some substances, which were necessary 

for AOA growth. To avoid the situation, vitamin solution, bran hydrolysate and sterilized domestic 
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sewage were selected as complement and added in medium B, respectively (named as medium C, 

medium D and medium E, severally). 10 mL of the cultures were filtrated and separately 

transferred to 90 mL medium C, D and E. After 3 cycles, the abundances of AOA in the cultures 

were measured and the results were shown in Table 3. No AOA amoA genes could be detected in 

the cultures with medium C, showing that vitamin was not the necessary substances for growth of 

AOA. The abundance of AOA in cultures with medium D achieved by 3.27×10
7
 copies/mL and 

the proportion of AOA was reached to 91.40%. The abundance of AOA in cultures with medium E 

was 7.61×10
6
 and the proportion of AOA was 50.3%. The results showed that medium D was 

more suitable for the growth of AOA.  

 

Table 3 Effects of different mediums and pore sizes of filter for AOA enrichment 

 

Medium 

Pore size of 

filer (μm) 

AOA 

(copies/mL) 

Archaea 

(copies/mL) 

Eubacteria 

(copies/mL) 

AOA 

proportion 

B 
0.45 NA 2.05×10

6
 1.92×10

6
 NA 

0.8 NA 4.13×10
7
 1.71×10

7
 NA 

C 
0.45 NA 3.11×10

7
 6.28×10

6
 NA 

0.8 NA 8.51×10
6
 7.55×10

7
 NA 

D 
0.45 3.27×10

7
 3.31×10

7
 2.69×10

6
 91.4% 

0.8 2.85×10
7
 3.46×10

7
 8.91×10

6
 65.5% 

E 
0.45 7.61×10

6
 9.03×10

6
 6.11×10

6
 50.3% 

0.8 5.95×10
6
 1.24×10

7
 1.49×10

7
 21.8% 

NA=Not determined 

 

Furthermore, compared to filters with pore size of 0.8 μm, more eubacteria could be screened out 

by filters with pore size of 0.45 μm. The culture with the AOA proportion of 91.40% was used for 

further analysis, and was referred to as culture S1. 
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The phylogenetic tree of AOA amoA gene sequences of culture S1 was shown in Fig.1. According 

to the results, only OTU-8 was found, suggesting that culture S1 contained a single AOA. The 

obtained AOA amoA gene sequences belong to Nitrososphaera cluster. The OTU-8 was 

substantially correlated with the HZNAOA7 from Dongjiang sediment and the similarity was above 

99%. Meanwhile, the AOA amoA genes sequences of culture S1 was found less than 95% of 

identity with the two isolated pure AOA strains. 

 

Fig.1 Phylogenetic tree of AOA amoA gene sequences in culture S1 

 

The results of ammonia oxidation by culture S1 were shown in Fig.2. The growth of culture S1 was 
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very slow and the generation time was more than 20 hours during the tests. Ammonia was 

completely converted to nitrite after 12 days; the AOA abundance increased accordingly and 

achieved the highest amount (3.31×10
7
 copies/mL) on the 10th day. The highest ammonia 

oxidation rate (ammonia oxidation by per AOA in one day) of culture S1 was  2.27×10
-10

 mg/

（copies·d）on the 7th day and decreased gradually with the decrease of ammonia concentration.  
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Fig.2 Ammonia oxidation by the enrichment culture S1 

 

3.3 Influence of environmental factors on ammonia oxidation by culture S1 

Five factors may influence ammonia oxidation by archaea including ammonia concentrations, 

temperature, pH, DO and total organic carbon (TOC) concentrations were assessed during the tests. 

For each influence factor, the abundance of AOA and ammonia oxidation rate were measured and 

compared, the results were shown in Fig. 3. When the initial ammonia concentration was 1 mM, the 

highest abundance of AOA was achieved at 3.18×10
7
 copies/mL. The growth of AOA in culture 

S1 was inhibited when ammonia concentration was 3 mM (see Fig. 3 (a)). For the DO 
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concentrations, the optimum level was 2.03 mg/L and the growth of AOA was inhibited while DO 

concentration was higher than 4 mg/L (see Fig. 3(b)). As shown in Fig. 3(c), the optimum pH was 

7.5 for the growth of AOA, meaning that the AOA in culture S1 was mesophilic and neutrophilic. 

The temperature ranged from 20 to 45℃ was found suitable for the growth of AOA and the 

optimum temperature was 37℃ (see Fig. 3(d)). In addition, AOA in culture S1 could not survival 

under extreme temperature conditions. Besides, during the experiments, the AOA abundances and 

ammonia oxidation rates were maintained at 3.0×10
7
 copies/mL and 2.0 ×10

-10
 mg/（copies·d）

while the TOC concentration was adjusted at 0, 19, 37, 56 and 75 mg/L by adding C6H12O6 (2.5 

g/L), meaning that TOC concentration might have no influence on growth of AOA. 

0.0

5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

2.5x10
7

3.0x10
7

3.5x10
7

4.0x10
7

 

A
O

A
 a

m
o

A
 g

e
n

e
 c

o
p

ie
s 

(c
o

p
ie

s/
m

L
)

Ammonia conentration (mM)

 AOA abundance

0           0.5          1.0          2.0          3.0          4.0          5.0

A
m

m
o

n
ia

 o
x

id
a
tio

n
 ra

te
 (m

g
/(c

o
p

ie
s
·

d
))

0.0

5.0x10
-11

1.0x10
-10

1.5x10
-10

2.0x10
-10

2.5x10
-10

3.0x10
-10

 Ammonia  oxidation rate

 

(a) 



  

16 

 

0.0

5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

2.5x10
7

3.0x10
7

3.5x10
7

4.0x10
7

A
m

m
o

n
ia o

x
id

atio
n

 rate ( m
g

/(co
p

ies
·

d
) )A

O
A

 a
m

o
A

 g
en

e 
co

p
ie

s 
(c

o
p

ie
s/

m
L

)

 

DO concenration (mg/L)

1.55        2.03        2.65        2.88       3.41        4.35        4.91
0.0

5.0x10
-11

1.0x10
-10

1.5x10
-10

2.0x10
-10

2.5x10
-10

 

0.0

5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

2.5x10
7

3.0x10
7

3.5x10
7

4.0x10
7

A
m

m
o

n
ia o

x
id

atio
n

 rate ( m
g

/(co
p

ies
·

d
)A

O
A

 a
m

o
A

 g
en

e 
co

p
ie

s 
(c

o
p

ie
s/

m
L

)

 

pH

5             6             7           7.5           8             9             10

0.0

5.0x10
-11

1.0x10
-10

1.5x10
-10

2.0x10
-10

2.5x10
-10

 

 

(b) 

(c) 



  

17 

 

0.0

5.0x10
6

1.0x10
7

1.5x10
7

2.0x10
7

2.5x10
7

3.0x10
7

3.5x10
7

A
O

A
 a

m
o

A
 g

en
e 

co
p

ie
s 

(c
o

p
ie

s/
m

L
)

A
m

m
o

n
ia o

x
id

atio
n

 rate ( m
g

/(co
p

ies
·

d
) )

 

4         10         20         25         30         37        45        50

0.0

5.0x10
-11

1.0x10
-10

1.5x10
-10

2.0x10
-10

2.5x10
-10

 

Fig.3 Effects of environmental factors on AOA’s growth (a) Ammonia concentrations (b) DO 

concentrations (c) pH (d) Temperature 

 

Based on the results, the orthogonal experiments were designed to obtain the optimum conditions 

for the growth of AOA and the results were shown in Table 4. The optimum conditions were 

obtained while the ammonia concentration was 1mM, temperature was 30℃, pH was 7.5 and DO 

concentration was 2.65 mg/L, respectively. Under the optimum condition, the AOA abundance and 

ammonia oxidation rate were 3.51×10
7
 copies/mL and 2.41×10

-10
 mg/（copies·d）. The order of 

environmental factors on target index was evaluated by range analysis (R). The R values of 

environmental factors were shown in Table 5. According to the results, the R values of ammonia 

concentration for AOA abundance and ammonia oxidation rate were highest (2.73 and 1.92), 

suggesting that ammonia concentration was the primary factor for AOA’s growth. 

 

 

Temperature (℃) 

(d) 
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Table 4 The results of orthogonal experiments 

No. 

Ammonia 

concentration 

(mM) 

Temperature 

(℃) 
pH 

DO 

concentration 

(mg/L) 

AOA 

abundance 

(×10
7
 copies/mL) 

Ammonia oxidation 

rate 

(×10
-10

mg/（copies·d）) 

1 1 25 7 2.88 2.96 2.13 

2 1 30 7.5 2.65 3.51 2.41 

3 1 37 8 2.03 3.09 2.54 

4 2 25 7.5 2.03 1.17 0.93 

5 2 30 8 2.88 1.25 0.89 

6 2 37 7 2.65 1.97 0.74 

7 3 25 8 2.65 0.32 0.59 

8 3 30 7 2.03 0.59 0.49 

9 3 37 7.5 2.88 0.46 0.45 

 

Table 5 Range analysis of orthogonal experiments 

 
Ammonia 

concentration 
Temperature pH 

DO 

concentration 

R of AOA abundance 2.73 0.30 0.29 0.37 

R of ammonia oxidation rate 1.92 0.20 0.04 0.16 

 

3.4 Verification experiments 

According to the results of previous experiments, the optimum ammonia concentration, 

temperature, pH and DO concentration for AOA growth were 1 mM, 37℃, 7.5 and 2.03 mg/L, 

respectively. The results were different from the results obtained from orthogonal experiments. 

Hence, the two conditions were compared and the results were shown in Table 6. Based on the 

results, the optimum condition sat by orthogonal experiments (test No.2), was more suitable for 

culture S1 while AOA abundance and ammonia oxidation rate were 3.53×10
7
copies/mL and 

2.54×10
-10

 mg/d. Therefore, the optimum ammonia concentration, temperature, pH and DO 

concentration for culture S1 were 1 mM, 30℃, 7.5 and 2.65 mg/L, respectively. 
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Table 6 The results of verification experiments 

No. 

Ammonia 

concentration 

(mM) 

Temperature 

(℃) 
pH 

DO 

concentration 

(mg/L) 

AOA amoA 

gene abundance 

(10
7
 copies/mL) 

Ammonia oxidation 

rate 

(10
-10

 mg/（copies·d）) 

1 1 37 7.5 2.03 3.38±0.09 2.18±0.07 

2 1 30 7.5 2.65 3.53±0.11 2.54±0.16 

 

4 Discussion 

During the experiments, AOA culture S1 originated from a BAF process containing a single AOA 

strain affiliated with Nitrososphaera cluster was enriched. The AOA proportion of initial inoculums 

was only 0.04%. During the first enrichment stage, medium B, was found more suitable for the 

growth of AOA. The medium had also been used for the isolation and enrichment of AOA from soil 

environments (Nitrososphaera viennensis EN 76) and hot springs (Nitrosocaldus yellowstonii 

HL72)[8, 10]. After the first enrichment, the AOA proportion increased to 41.23%. During the 

second enrichment stage, it was found that the filter with the pore size of 0.45 μm was more 

suitable to eliminate the co-existence bacteria, which implied that the size of AOA was smaller than 

0.45 μm. Most kinds of the AOA were reported as rod or coccoid archaea, with the size ranged 

between 0.15 to 0.95 μm. After filtration, medium B was found no longer suitable for the growth of 

AOA in culture. Therefore, bran hydrolysate was added in the medium, and the AOA proportion 

was finally achieved by 91.40% (Fig.4). This phenomenon indicated that AOA might depend on 

certain kind of co-existed bacteria in culture which could provide some kinds of substances with 

the similar function as bran hydrolysate. According to Tourna et al[8], the generation time of 

Nitrososphaera viennensis EN 76 could increase from 23 days to 2 days by the addition of 

pyruvate.  
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During the experiments, we tried to eliminate the co-cultured microorganisms and obtained the 

pure AOA strain. Plate screening and serial dilution method was used but eubacteria could not be 

thoroughly removed. We also tried to isolate it under the inversed fluorescent microscope with the 

manipulate arm, but the methods did not work either. After the enrichment, OTU-8 was the only 

OTU remained in culture S1, which was the dominate strain at the height from 2 to 3.5m in the 

filter layer of BAF.  

 

Fig.4 Comparison of the AOA proportion in different cultures 

 

The influent was introduced from the bottom of BAF and the ammonia concentration of influent 

was 11.98 mg/L. The orthogonal experiments showed that optimum ammonia concentration for 

culture S1 was 1 mM (14 mg/L), which was agreed with the actual situation in BAF. Tolerance of 

ammonia concentration by culture S1 was about 4 mM. The optimum concentrations were similar 

to some previous works on AOA enrichment cultures, such as, culture AR (tolerance up to 4 mM) 

and “Candidatus Nitrososphaera gargensis Ga9.2” (optimum was 1 mM and tolerance was 3.1 
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mM)[29-30], but lower than “nitrosoarchaeum koreensis MY1” (tolerance up to 10 mM)[12, 31] 

and “Nitrososphaera viennensis EN76” (up to 15 mM)[8, 32]. The optimum temperature for culture 

S1 was 30℃ and the culture could still survive at 50℃ while it was seriously repressed. The 

optimum temperature for most AOA strains were ranged between 22℃ and 28℃, including 

“Nitrosopumilus maritimus SCM1” (28℃)[33], “Nitrosoarchaeum limnia BG20” (22℃)[34-35] and 

“Nitrosotalea devanaterra Nd1” (25℃)[11]. There were also some AOA strains, which could 

tolerance higher temperature. For example, the optimum temperature for “Nitrosocaldus 

yellowstonli HL72” enriched from hot spring sediment ranged from 65℃ to 72℃[10]; for 

“Nitrososphaera viennensis EN76” which was isolated from garden soil, the optimum temperature 

was 42℃[8]. In a word, the majority of AOA isolates and enrichment cultures are mesophilic or 

moderately thermophilic[36]. Previous studies have demonstrated that AOA could thrive in the 

environments with very low DO level and achieve higher ammonia oxidation rate than AOB[37]. 

“Ca.Nitrosopumilus maritimus” achieved maximum oxygen uptake rate at the DO concentration of 

0.96 mg/L[38]. Similar results also showed that AOA performed nitrification at the maximum 

growth rate with the DO level of 0.64 mg/L[39]. While, controversial result was also exhibited. 

High abundance of AOA was found in WWTP with the DO concentration of 3.25 mg/L[40]. In this 

study, the optimum DO concentration for AOA in culture S1 was 2.65 mg/L. Although most AOA 

could grow with bicarbonate or carbon dioxide as carbon source, the addition of simple organic 

compounds, such as pyruvate and carboxylic acids, could also strongly accelerate growth of AOA. 

Thus, some AOA might have a mixotrophic metabolism[41]. However, in this study, the TOC 

concentration ranged from 0 to 75 mg/L by adding sodium acetate had no influence of TOC on 

AOA growth and ammonia oxidation. 



  

22 

 

 

5 Conclusions 

The AOA culture S1 containing a single AOA strain was enriched from a biological aerated filter. It 

was found that the AOA amoA genes of culture S1 was achieved by 3.27×10
7
 copies/mL and the 

AOA proportion was 91.40%. The AOA amoA gene sequence in culture S1 was belong to 

Nitrososphaera cluster and substantially correlated with the HZNAOA7 from Dongjiang sediment. 

The optimum ammonia concentration, temperature, pH value and DO concentration for AOA 

growth in culture S1 were 1 mM, 30℃, 7.5 and 2.65 mg/L, respectively. Under the optimum 

condition, the AOA abundance and ammonia oxidation rate were 3.53×10
7 

copies/mL and  

2.54×10
-10

 mg/(copies·d).Besides that, TOC concentration showed no influence on AOA growth. 
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Highlights: 

• High purity AOA culture was enriched from the filtering materials of biological 

aerated filter. 

• The AOA amoA gene sequence belonged to Nitrososphaera cluster. 

• Ammonia concentration significantly influenced the growth of AOA in culture. 

• The concentration of AOA attained 3.27×10
7
 copies/mL, while its proportion was 

91.40%. 

 

 




