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Abstract.   Adaptive management is widely advocated to improve environmental manage-
ment. Derivations of optimal strategies for adaptive management, however, tend to be case 
specific and time consuming. In contrast, managers might seek relatively simple guidance, such 
as insight into when a new potential management action should be considered, and how much 
effort should be expended on trialing such an action. We constructed a two-time-step scenario 
where a manager is choosing between two possible management actions. The manager has a 
total budget that can be split between a learning phase and an implementation phase. We use 
this scenario to investigate when and how much a manager should invest in learning about the 
management actions available. The optimal investment in learning can be understood intui-
tively by accounting for the expected value of sample information, the benefits that accrue 
during learning, the direct costs of learning, and the opportunity costs of learning. We find that 
the optimal proportion of the budget to spend on learning is characterized by several critical 
thresholds that mark a jump from spending a large proportion of the budget on learning to 
spending nothing. For example, as sampling variance increases, it is optimal to spend a larger 
proportion of the budget on learning, up to a point: if the sampling variance passes a critical 
threshold, it is no longer beneficial to invest in learning. Similar thresholds are observed as a 
function of the total budget and the difference in the expected performance of the two actions. 
We illustrate how this model can be applied using a case study of choosing between alternative 
rearing diets for hihi, an endangered New Zealand passerine. Although the model presented is 
a simplified scenario, we believe it is relevant to many management situations. Managers often 
have relatively short time horizons for management, and might be reluctant to consider further 
investment in learning and monitoring beyond collecting data from a single time period.

Key words:   adaptive management; Bayesian experimental design; decision analysis; expected value of 
perfect and sample information; monitoring costs; optimal sample size.

Introduction

Adaptive management is widely advocated to improve 
environmental management, and to help determine 
appropriate levels of monitoring effort to support better 
management decisions (Walters and Hilborn 1978, 
Walters and Holling 1990, Johnson and Williams 2015). 
Adaptive management aims to strike a balance between 
learning about the system being managed, and actually 
managing it (Holling 1978, Walters 1986), a balance 
referred to as the “dual-control problem” in the literature 
on operations research (Wittenmark 1995). Learning 
about a system entails both monitoring costs and lost 
opportunity costs, since experiments in which two or 
more actions are trialed concurrently inevitably means 

that a suboptimal action will be at least partly imple-
mented. Thus, learning about the system will draw on 
resources that might be used for management. However, 
the information gained from monitoring and experimen-
tation might improve management in the future. Adaptive 
management aims to balance the longer-term benefits of 
learning with its shorter-term costs, helping to determine 
the appropriate investment in learning.

The academic literature on adaptive management has 
proliferated, yet examples of successful implementation 
are rare (Johnson and Williams 2015). Various reasons 
restrict the use of adaptive management including lack of 
institutional support and commitment, and insufficient 
funding for adequate monitoring programs (Walters 
2007, Johnson and Williams 2015). The computational 
burden required to optimize adaptive management is 
another potential concern (Martell and Walters 2008). 
Further, the academic literature tends to emphasize 
solutions to specific adaptive management problems 
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(e.g., Gregory et  al. 2006, Tyre et  al. 2011, Shea et  al. 
2014), and drawing general conclusions appears difficult. 
In contrast, managers might seek relatively simple 
guidance, such as insight into when a new potential man-
agement action should be considered, and how much 
effort should be expended on trialing such actions 
(Walters and Green 1997, McDonald-Madden et  al. 
2010).

To help generalize adaptive management beyond indi-
vidual case studies, we constructed an adaptive man-
agement problem where a manager is choosing between 
two possible management actions in two decision phases: 
a learning phase and a final decision phase. The manager 
has a total budget to spend over these two phases. In the 
first time period, both actions can be implemented and 
the results monitored. At the end of this learning phase, 
the remaining budget will be spent on implementing the 
action with the highest expected efficiency. The man-
agement goal is to maximize the total expected benefit 
over the two phases. We use this framework to inves-
tigate the following questions. First, when should we 
invest in learning more about the value of the man-
agement actions? Second, if investing in a learning phase 
is expected to be beneficial, how much of the total budget 
should we invest? Third, how should the amount spent on 
the learning phase be split between the two available 
actions given their current expected performance and our 
uncertainty about these values? Finally, when do we 
expect the largest benefits from investing in learning?

While this is a simplified scenario, we believe it is rel-
evant to many management situations (e.g., see the 
frameworks proposed by Walters and Green 1997, 
MacGregor et  al. 2002). The two phases will at best 
approximate sequential decisions over many time steps, 
however, managers often have relatively short time 
horizons for management, and might be reluctant to con-
sider further investment in experimentation and moni-
toring beyond collecting data from a single time period. 
As we show in this paper, one advantage of this simplified 
scenario is that analytical expressions for the optimal 
level of experimentation (i.e., optimal number of samples 
of each management action during the first phase) can be 
obtained for particular special cases, and numerical solu-
tions can be obtained efficiently in other cases.

There exists a substantial literature addressing the 
optimal sample size when choosing between two, or more, 
treatments in clinical trials, when the objective is to max-
imize the total number of successful treatments (Hardwick 
and Stout 2002, Ghosh et al. 2011). However, we found 
that these studies consider scenarios that differ from that 
considered here in one or more of the following four 
respects: (1) the cost of performing experiments is ignored 
(e.g., Colton 1963), (2) the number of trials is assumed to 
be the same for the two treatments (e.g., Canner 1970, 
Willan and Kowgier 2008), (3) they consider dichotomous 
responses (success or failure) from the trials (e.g., Cheng 
1996, Hardwick and Stout 2002, Cheng et al. 2003), or (4) 
they consider testing a new action against a known one 

(e.g., Grundy et al. 1954). As far as we are aware, the sce-
nario considered in this study (including sample costs, 
unequal allocation of trials during the experimental phase, 
a measure of benefit size obtained from each trial, and two 
uncertain actions) has not been addressed in this literature 
nor in the literature on natural resource management.

Another approach to evaluating the expected value of 
experimentation is value of information (VOI) analysis 
(Raiffa and Schlaiffer 1961). VOI is a broad term for an 
analysis that estimates the expected potential value of 
gaining new information about a system. VOI has been used 
in various disciplines to determine the maximum amount 
that should be invested in gaining information before 
making a decision (Maxwell et al. 2015). In particular, VOI 
has been applied to environmental management dilemmas 
to determine the potential management benefit of resolving 
uncertainty both for one off (Runge et al. 2011, Maxwell 
et al. 2015) and dynamic decision processes (Williams et al. 
2011, Williams and Johnson 2015), and to determine 
whether or not monitoring should be performed (Hauser 
et al. 2006, McDonald-Madden et al. 2010).

VOI analyses may consider the value of resolving all 
uncertainty about a system (Expected Value of Perfect 
Information, EVPI), the value of resolving some sources 
of uncertainty (expected value of partial information), or 
the value of resolving some of the uncertainty via addi-
tional sampling (expected value of sample information, 
EVSI; Runge et al. 2011). Such analyses provide an upper 
bound on how much should be invested in gathering 
information before taking a management decision, and 
can identify when the benefits of learning are expected to 
be the greatest. However, such analysis does not tell us 
the optimal amount to invest in learning when accounting 
for monitoring and lost opportunity costs.

At least two decision phases must be considered to 
capture the trade-off between the expected benefits and 
costs of experimentation. We relate the solution of our 
two-time-step process to the EVSI, and highlight the 
trade-off between the value of sample information and 
lost opportunity costs. By nesting the experimental design 
question within a decision question, we take the same 
approach as in Bayesian experimental design (Chaloner 
and Verdinelli 1995); indeed, EVSI is very closely related 
to a Bayesian preposterior analysis, and provides simi-
larly relevant information to a decision maker.

Methods

We consider the case when a manager has two actions 
to choose from, i = {1, 2}. The manager has a total budget 
B to spend on implementing the actions. For each action, 
one unit of management costs ci and results in a benefit 
xi. We assume that the benefit of each action is uncertain 
such that xi is an unknown random variable, with the 
uncertainty represented by a normal distribution with 
mean mi and standard deviation si.

Before presenting the two-step adaptive management 
model, we first consider the expected value of sample 



1212 Ecological Applications 
 Vol. 27, No. 4ALANA L. MOORE ET AL.

information. This gives us the expected benefit of infor-
mation acquired from a particular experimental design. 
EVSI essentially ignores costs associated with obtaining 
the experimental results; whether or not experimentation 
occurs, the same amount will be invested in implementing 
the expected best action. We then consider a two-step 
adaptive management (AM) scenario, made up of an 
experimental phase and an implementation phase. We 
use this framework to investigate the trade-off between 
investing in experimentation and saving resources to 
implement the best action. We highlight the relationship 
between the AM solution and EVSI.

Expected value of sample information

In the case that the manager must choose between the two 
actions in the absence of any further information, or 
reduction in uncertainty, the optimal decision is to invest the 
entire budget in the action i that maximizes the expected net 
benefit, with the expectation taken over the prior distri-
bution. The expected net benefit in the face of uncertainty is

The expected value of sample information (EVSI) is 
the difference between the expected value after a given 
sampling regime is implemented (reduction but not elim-
ination of uncertainty) and the expected value in the face 
of uncertainty. Hence, to calculate EVSI, we need to cal-
culate the pre-posterior distribution, that is, the expected 
net benefit from having additional information, taken 
with respect to the prior distribution.

Suppose that our sampling design is to observe n1 units 
of action 1 and n2 units of action 2. We then observe a 
mean response pi for the units under action i, and these 
have an individual variation of σ2

i
. We assume the pi are 

independently distributed according to

and the unconditional distribution, given the prior for 
xi, is

Combining the prior and the observed data, using 
Bayes’ Theorem, the posterior distribution for the 
per-unit benefit, yi, is normal with mean

and variance

After observing the new information, we would choose 
the action with the highest expected efficiency, with the 
expectation taken over the posterior distribution

Because we wish to estimate this value prior to making 
the observation of {p1, p2}, we now need to take the 
expectation of this quantity with respect to the prior dis-
tribution. The only random variables are p1 and p2. 
Thus, the pre-posterior expectation for the maximum 
efficiency is

where

is normally distributed with mean

and variance

Because Δ is normally distributed, the modulus (absolute 
value) of Δ has a folded-normal distribution. Thus

In the case that sampling is obtained for free and the 
entire budget B is spent on implementing the action with 
the highest expected posterior efficiency, the total 
expected benefit with sampling is
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The expected value of sample information (EVSI) is 
the difference between the expected benefit with 
sampling and the expected benefit in the face of 
uncertainty
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(Eqs. 9 and 10). The derivation of the expected value of 
perfect information (EVPI) and a comparison with EVSI 
can be found in Appendix S1.

Two-step adaptive management

To calculate the EVSI we assumed that we knew the 
sampling design; the number of units ni of each action 
to be trialed. The EVSI tells us the maximum additional 
amount we could spend on a particular sampling design 
to achieve the same expected net benefit. However, in 
the case that we have a total budget B to spend on both 
experimentation and implementation, EVSI does not 
tell us how much of that budget to invest in monitored 
trials. The more we invest in experimentation, the more 
likely we are to finally choose the best management 
action, but experimentation incurs additional moni-
toring costs (resulting in less money to spend on imple-
mentation) and lost opportunity costs of trialing the 
worst action.

To analyze this trade-off we consider a two-step 
adaptive management process, made up of an experi-
mental phase, consisting of monitored trials, and an 
implementation phase, in which the remaining funds are 
used to implement the action with the largest posterior 
efficiency. During the experimental phase, the addi-
tional cost of monitoring the outcome of each trial is ki 
for each unit of management. We assume that the data 
will have a standard deviation of σi, representing the 
observed variation in benefit among different units of 
management.

The total expected net benefit over the two time-steps 
is the expected benefit from the experimental phase plus 
the expected benefit of spending the remaining funds on 
the action that is found to have the highest expected 
efficiency (Eq. 11)

Let the total cost of the experimental phase be given by 
Cexperiment  =  (c1+k1)n1  +  (c2+k2)n2. Eq.  14 can be re-
written as

Written in this way, we can more easily see the trade-off 
between investing in experimentation and saving 
resources for implementing the best action; the more we 
spend on the experimental phase, the larger the expected 
value of sample information (EVSI) and the larger the 
incidental benefits of experimentation (n1m1 + n2m2). 
However, the lost opportunity costs incurred by using up 
resources during sampling, (Cexperiment/B)Es, are also 
greater.

The number of trials of each action that maximizes the 
total net benefit can be found efficiently using numerical 
methods. We generated the numerical results using 
Wolfram Mathematica V8.0.4 (Wolfram Research, 
Champaign, Illinois, USA). We used a built in optimi-
zation function, FindMaximum, to find the optimal 
non-zero allocation to the learning phase and compared 
this to the expected reward under no experimentation 
(Data S1). We also derived explicit analytic solutions for 
several special cases (Appendix S2).

Example: Choosing between supplementary feeding 
options for hihi nestlings

We illustrate the model by determining the optimal 
proportion of the total budget to use on trialing two sup-
plemental feeding treatments for hihi (Notiomystis cinta) 
nestlings, an endangered New Zealand bird whose 
recovery program is based on supplementary feeding 
(Walker et al. 2013). There is evidence that sugar water 
improves adult survival (Armstrong and Ewan 2001, 
Chauvenet et al. 2012); sugar water is currently provided 
to five out of six extant populations (L. Walker, personal 
observations). An alternative full dietary supplement 
(Wombaroo Lorikeet & Honeyeater Food, Wombaroo 
Food Products, Glen Osmond, South Australia, 
Australia) has also been trialed in both adult and, more 
recently, juvenile populations (Armstrong et  al. 2007, 
Walker et  al. 2013). Walker et  al. (2013) investigated 

(12)

Es =B×Ee,

=
B

2

�
m1

c1

+
m2

c2

+Θ

�
2

π
e

−μ2

2Θ2 +μerf

�
μ

Θ
√

2

��
.

(13)

EVSI=E
s
−E

u
,

=
B

2

�
m1

c1

+
m2

c2

+Θ

�
2

π
e

−μ2

2Θ2 +μerf

�
μ

Θ
√

2

��

−
B

2

�
m1

c1

+
m2

c2

+
����
m1

c1

−
m2

c2

����

�
,

=
B

2

�
Θ

�
2

π
e

−μ2

2Θ2 +μerf

�
μ

Θ
√

2

�
− �μ�

�

(14)

L=n1m1+n2m2+ (B−n1

�

c1+k1

�

−n2

�

c2+k2

�

)Ee,

=n1m1+n2m2+
�

B−n1

�

c1+k1

�

−n2

�

c2+k2

��

×
1

2

�

m1

c1

+
m2

c2

+Θ

�

2

π
e

−μ2

2Θ2 +μerf

�

μ

Θ
√

2

��

,

(15)

L=n1m1+n2m2+

(
1−

Cexperiment

B

)
Es

=n1m1+n2m2+Es−
Cexperiment

B
Es

=n1m1+n2m2+Eu+EVSI−
Cexperiment

B
Es

=Eu+EVSI+n1m1+n2m2−
Cexperiment

B
Es.



1214 Ecological Applications 
 Vol. 27, No. 4ALANA L. MOORE ET AL.

experimentally the effects of neonatal supplementary 
feeding using four alternative treatments on nestling 
growth, nestling survival and juvenile survival to breeding 
age (recruitment). The following illustrative example is 
based on data and cost estimates from Walker et  al.’s 
study.

Consider the case when management has a total budget 
B to spend on supplementary feeding over T years. The 
manager has two possible supplementary feeding treat-
ments: sugar water (N−) and Wombaroo Lorikeet & 
Honeyeater Food (N+). The goal is to determine the pro-
portion of the budget to spend on trialing the two treat-
ments in the first year. The management benefit of each 
treatment is measured as the mean additional mass at age 
20  d; where additional is in reference to the expected 
average mass with no supplementary feeding. We con-
sider the management units to be birds and consider costs 
in units of hours per bird per year.

We assume that sugar water is provided using general 
feeding stations in all situations (i.e., during the exper-
iment and during the management-only phase). During 
the experimental phase, the managers additionally feed 
the dietary supplement to the nestlings directly. If sugar 
water (N−) is found to be the preferable treatment, then it 
would be administered only via the general feeding sta-
tions, as it is known to be provisioned to nestlings by 
parents (Thorogood et  al. 2008, Walker et  al. 2013). 
However, for Wombaroo (N+), it is unclear whether it 
would be possible to administer the supplement via the 
feeders or if it would be necessary to continue directly 
feeding juveniles in the nests (L. Walker, personal observa-
tions). Therefore, we considered two scenarios. In sce-
nario (1), we assumed that the full dietary supplement 
(N+) will continue to be administered to juveniles directly. 
In scenario (2), we assumed that, after the experimental 
phase, N+ could be administered via the general feeding 
stations. In this case, a larger quantity of the dietary sup-
plement would be required, but the cost associated with 
administering the supplement would be much less.

Estimates for the cost of implementing both man-
agement options (general feeders and direct feeding of 
nestlings), together with estimates of the cost of moni-
toring the results were obtained from data provided by 
L. Walker and A. Baxter (unpublished data; personal com-
munication). A summary of the parameters used for the 
results presented are given in Table 1, while an overview 
of the cost data can be found in Appendix S3.

Results

When and how much should we invest in learning?

Recall that Eu is the expected benefit in the face of 
uncertainty, that is, if no experimentation occurs. 
Consequently, from Eq. 15, we see that it is beneficial to 
invest in experimentation if there exists a sampling design 
{n1, n2} (not = {0,0}) such that the expected benefit from 
the experimentation phase outweighs the lost oppor-
tunity costs incurred by using resources for experimen-
tation, i.e., when

There is no simple rule for when learning is worthwhile 
due to the large number of parameters involved in deter-
mining the threshold. Nonetheless, general tendencies 
can be observed (summarized in Box 1, Table 2).

If monitoring costs are negligible it is nearly always 
optimal to spend some of the budget on learning 
(Figs. 1–3a, c; Appendix S4: Fig. S1a). Note that if both 
actions are uncertain, trialing the expected best action will 
never be worse than directly implementing it, but there 
may be no expected advantage when the means are very 
different. In the case that the benefit of one action is 
known, if the uncertain action is expected to be worse, then 
whether or not it is worth trialing it will depend on how 
uncertain we are about its performance, the budget and the 
monitoring precision (Figs. 1–3c; Appendix S4: Fig. S2).

If monitoring costs are significant, it is not beneficial to 
invest in learning if one action is expected to be much 
better than the other, monitoring variance is large, mon-
itoring costs are large, or the budget is small (Figs. 1–3b, 
d). For example, if the expected benefit of the two actions 
differs, then investing in learning is worthwhile only 
when the budget is sufficiently large (Fig. 2b, d).

Note that the graphs in Fig.  1 are not perfectly sym-
metric around m2 − m1 = 0. When the benefit of action 1 is 
known with certainty (Fig. 1c, d), it is optimal to spend less 
on the learning phase if the expected benefit of action 2 is 
less than the expected benefit of action 1 than if it is greater 
(see also Figs. 2c, d and 3c, d). Intuitively, this is because 
there is a smaller probability that action 2 is better than 
action 1. When both actions are uncertain, this argument 
no longer applies: there is the same probability that the 
expected worse action will be found to be better. In this 

(16)EVSI+n1m1+n2m2 >

Cexperiment

B
Es.

Table 1.  Parameter estimates for the hihi example.

Parameter Units Treatment N− Treatment N+

Management cost, ci h·bird−1·yr−1 (1) 1.13,(2) 1.13 (1) 2.14,(2) 2.651
Monitoring cost, ki h·bird−1·yr−1 (1) 1.55,(2) 1.55 (1) 1.55,(2) 0.033
Management effect (mass above reference mass) g/bird

Mean, mi m1 = 3 m2 = {0, 3, 6} g
SD, si 6 6

Budget, B h [50, 2,000]
Monitoring SD/accuracy, sigi g/bird 6 6
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case, we observe the opposite behavior: it is optimal to 
spend a larger proportion of the budget on the learning 
phase when the expected value of action 2 is 5 units smaller 
than action 1 than when it is 5 units larger (Figs. 1–3a, b). 
This is primarily because the solution depends substantially 
on the ratio of the means to prior variances: the optimal 
proportion to spend on the learning phase is a decreasing 
function of the ratio of the prior expected benefit to prior 
standard deviation (Appendix S4: Fig. S11).

The solution for the optimal proportion to spend on the 
learning phase displays a number of interesting critical 
thresholds (Figs. 1–3). For example, as the difference in 
the expected prior benefit of the two actions increases, a 
point is eventually reached beyond which it is not worth 
investing in learning (Fig. 1). At this point, the optimal 
solution drops suddenly from spending a large amount on 

learning to nothing at all. Where this point occurs depends 
notably on the prior variance of each action. The more 
uncertain we are about the performance of each action, 
the greater the difference between the prior mean benefits 
before we stop investing in learning, since if the overlap 
between the two prior distributions is small the best action 
is known with high probability. Similar thresholds are 
observed for the budget (Fig. 2; Appendix S4: Fig. S1), 
monitoring cost (Appendix S4: Fig. S1) and monitoring 
variance (Fig.  3). These thresholds are more prevalent 
when monitoring costs are significant.

This threshold behavior can be better understood by 
observing that the optimal (non-zero) investment in 
experimentation is a local, but not necessarily global, 
optimum (Fig. 4). The expected net benefit (ENB = [expected 
benefit without experimentation] − [expected benefit with 

Box 1. Summary of key results

When and how much should we invest in learning?

It is worthwhile investing in learning if

EVSI+n1m1+n2m2 >
Cexperiment

B
E

s
, for some {n1, n2} not equal to 0.

(Figs.  1–3; Appendix S4: Figs. S2 and S4).

Analytic solutions suggest a maximum of one-third of the budget should be invested in learning. This 
is an upper bound when monitoring costs are significant. When monitoring costs are negligible, it may 
be optimal to spend more than one-third on learning if the prior mean benefit differs between actions 
and either the sampling variance is (reasonably) large or the budget is small.

The optimal solution is characterized by several interesting critical thresholds.

Significant monitoring costs result in a higher proportion of the budget being spent on learning when 
the expected performance of the two actions is the same. In contrast, when monitoring costs are negligible, 
a higher proportion of the budget is spent on learning when the expected performance of the two actions 
differ (Table  2).

How should we split the resources spent on learning between the two actions?

It is optimal to spend more on the most uncertain or the expected best action (Figs.  5 and 6; Appendix 
S4: Fig. S6).

If the prior distributions differ, it is sometimes optimal to only trial one of the actions (expected best 
or most uncertain) if the budget is small or sampling variance is large.

Table 2.  Conditions when largest percentage of the budget is spent on learning.

Variable k = 0 k > 0

Mean benefit of action, i, mi m1 and m2 differ, but difference is < threshold m1 and m2 are the same
Standard deviation of the 

benefit of action, i, si

s1 and s2 are the same

Sample variance of action, i, σi Large, but < threshold
Total budget, B Small, but > threshold
Cost of monitoring action, i, ki – 

–
Large if misi are small
Small if misi are large

Coefficient of variation, si/mi Constant Uncertainty about the expected benefit  
of action i is large relative to the 
expected benefit, i.e., when the 
coefficient of variation is large 
(Appendix S4: Fig. S9)
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experimentation]) is a concave function of the amount 
invested in the experiment. Note that no experimentation 
results in zero expected net benefit. When the expected net 
benefit of experimentation is positive, the optimal solution 
is found at the maximum of this curve (e.g., at an investment 
of ~50 in Fig. 4a). However, as, for example, the sampling 
variance increases, EVSI and also the expected net benefit 
decrease, but an optimal allocation can still be found, until 
the whole curve drops below 0 (Fig. 4b), in which case, no 
investment in learning is warranted.

Analytical results for the optimal number of trials can 
be derived for several, potentially common, special cases 
(Appendix S2). These analytic solutions suggest a 
maximum of one-third of the budget should be spent on 
the learning phase. Numerical results showed that this 
limit is occasionally exceeded when monitoring costs are 
negligible, means differ, and either sampling variance is 
(reasonably) high or the budget is small (Figs. 2 and 3). 
However, for the parameter ranges we explored, it is 
usually optimal to spend less than 20% of the budget on 
learning. When monitoring costs are significant, the 
optimal allocation of effort to the learning phase is 

always less than a third. Moreover, in this case the ana-
lytic solution derived assuming identical parameters 
(Appendix S2: Eq. S3) is an upper bound.

For both negligible and significant monitoring costs, the 
highest proportion of the budget is spent on learning when 
the budget is fairly small (Fig. 2; Appendix S2: Eq. S3). As 
the budget increases relative to implementation and mon-
itoring costs, we spend more on monitoring in an absolute 
sense, but a smaller fraction of the total budget. For 
example, in the hihi supplementary feeding example, as the 
budget increases the optimal number of trials of each 
treatment increases, but the total proportion spent on the 
learning phase decreases (Fig. 6; Appendix S4: Fig. S10).

For a fixed budget, the optimal proportion to spend on 
learning is an increasing function of monitoring costs 
when parameters are equal and the prior expected ben-
efits are zero (Appendix S2). This is because although the 
optimal number of trials is a decreasing function of mon-
itoring cost, it does not decrease as fast as monitoring and 
implementation costs increase. Interestingly, when the 
prior mean benefits are positive, the optimal number of 
trials decreases more quickly than when they can be 

Fig.  1.  Proportion spent on learning as a function of the difference in the prior expected benefits (m2  –  m1) and sampling 
standard deviation (σi). Contours indicate the proportion of the budget spent on the learning phase for various shades of gray (dark 
gray,  0; white,  1). Parameters values are: prior expected benefit of action 1 m1  =  10 (vary m2), total budget B  =  500, costs of 
implementing actions 1 and 2 are c1 = c2 = 5. The standard deviation of the sampling data is assumed to be the same for both actions, 
σ1 = σ2. Panels a and c assume zero monitoring cost, k1 = k2 = 0; panels b and d assume a monitoring cost of 3 units, k1 = k2 = 3. 
Panels a and b assume both actions are uncertain with standard deviations s1 = s2 = 10; panels c and d assume the benefit of one is 
known, s1 = 0, but that the benefit of action 2 remains uncertain, s2 = 10. See Appendix S4: Fig. S1 for a cross section of panels a 
and b at σ1 = σ2 = 40.
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assumed to be zero (Appendix S4: Fig. S3). Consequently, 
when the management actions are expected to have a 
large benefit (more than ~4 for the default parameters), 
the optimal proportion of the budget to spend on the 
learning phase is a decreasing, rather than increasing, 
function of monitoring costs (Appendix S4: Fig. S3).

When monitoring costs are negligible, the amount 
spent on the learning phase is an increasing function of 
the difference in the prior mean benefit (until the threshold 
is reached; Fig.  1a, c). Consequently, the largest per-
centage of the budget is invested in experimentation when 
the prior means are different, but not too different. In 

Fig. 3.  Proportion spent on experimentation as a function of the ratio of sample to prior variance for action 2. Parameters are 
B = 500, m1 = 10, c1 = c2 = 5. (a, b) s1 = s2 = 10, σ1 = σ2. (c, d) Benefit of action 1 is assumed to be known. Black dashed line, m2 = 5; 
thin black line, m2 = 10; thick black line, m2 = 15. The gray line is the corresponding analytic solution assuming parameters are equal 
and either monitoring is free or mean benefits are zero.
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contrast, when monitoring costs are significant, the 
largest percentage is spent on learning when the prior 
mean benefits are the same (Fig. 1b, d).

When all other parameters are equal, we spend the 
maximum proportion of the budget on learning when the 
prior standard deviations of the two actions are the same 
(Appendix S4: Fig. S4). That is, if we are more confident 
about one action than the other, we will tend to spend less 
on experimenting. In Appendix S2, we derive an analytic 
solution for the case when the benefit of one action is well 
known (s1 = 0), the prior mean benefits are the same, and 
either m2 or k2 is zero (Appendix S2: Eq. S6). We also show 
that this solution is a good approximation for non-zero m2 
and k2 if the prior variance is large relative to the expected 
benefit m2. Our numerical results support this finding: in 
general, if we fix the uncertainty about one action and 
increase the uncertainty about the other, the amount spent 
on learning converges to the analytical solution derived 
(Appendix S4: Fig. S4). Presumably we are only enter-
taining the second action because we think that its perfor-
mance is roughly the same as action 1, but we are not sure 
whether it will do much better or much worse. In this case, 
s2 will be large (relative to m2). Hence, the analytical result 
gives us a rough rule of thumb of investment in assessing a 
very uncertain action against a known outcome.

As highlighted by the analytic results (Appendix S2), 
the ratio of sampling variance to prior variance also plays 

an important role in determining when to invest in 
learning. As the sampling variance increases, more sam-
pling is required to be similarly confident about the 
benefit of each action, initially increasing the amount 
spent on the learning phase. However, the percentage 
gain from investing in learning is a decreasing function of 
sample variance (Appendix S4: Fig. S5). Consequently, 
when the expected performance differs between actions 
or monitoring costs are significant, investing in learning 
is eventually no longer beneficial. At this critical threshold, 
the optimal strategy switches from investing a significant 
amount in learning to investing nothing (Figs. 1 and 3).

If we invest in learning, what is the split between  
the two actions?

When only the prior mean efficiency differs between 
actions, it is optimal to spend a larger proportion of 
the learning-phase budget on the action with the 
highest expected performance (Fig.  5a, b, s2  =  10). 
When the two actions are expected to perform equally 
well but the uncertainty about their performance 
differs, it is optimal to spend more on the most 
uncertain action (Fig.  5a, b, m2−m1  =  0). When the 
prior mean efficiencies and prior variances both differ, 

Fig.  4.  Expected net benefit vs. the amount invested in 
experimentation (Cexperiment  =  (c1  +  k1)n1  +  (c2  +  k2)n2) for: 

AM  =  EVSI+n1m1 +n2m2 −
Cexperiment

B
E

s
 (thick solid line), 

expected value of sample information (EVSI; dashed line), and 
expected value of perfect information (EVPI; thin solid line). 
Parameters are c1 = c2 = 5; k1 = k2 = 3; s1 = s2 = 10; m1 = 10, 
m2 = 15; B = 500. (a) σ1 = σ2 = 20 (σ2/s2 = 4), (b) σ1 = σ2 = 37 
(σ2/s2 = 13.7).
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s2 = 5; thin black line, s2 = 10; thick black line, s2 = 20. A sudden 
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the split is weighted toward the action with the highest 
expected return (Fig.  5a, b). That is, even if we are 
more uncertain about action 2, we may still spend more 
on trialing action 1 if we believe it is expected to be the 
better action.

When the prior distributions differ, it is sometimes 
optimal to only trial one of the actions if the budget is 
small or sampling variance is large, relative to the prior 
variance, (Fig. 5; Appendix S4: Figs. S6 and S7). In these 
situations, investing in learning may still be optimal, but 
lost opportunity costs are minimized by only trialing the 
expected best action.

When do we get the largest benefits from  
investing in learning?

The largest percentage gains in the objective function 
are observed when the budget is large (Appendix S4: 
Figs. S8b and S9), the means are similar (Appendix S4: 
Figs. S5, S6a, and S9), the efficiency of each action is 
uncertain (Appendix S4: Fig. S8c), and sampling pro-
vides precise results (Appendix S4: Figs. S5 and S8d).

Choosing between supplementary feeding  
options for hihi nestlings

For the parameters used, the total proportion of the 
budget to spend on the learning phase depended very 
little on whether the prior expected benefit of the 
Wombaroo treatment (N+) was smaller, larger, or the 
same as the sugar water treatment (N−; Fig. 6a; Appendix 
S4: Fig. S10a). However, the optimal number of trials of 

each treatment did depend on the expected benefit of the 
Wombaroo treatment (Fig. 6b; Appendix S4: Fig. S10b).

Interestingly, there was only a small difference between 
the results for the two different scenarios (Fig.  6 vs. 
Appendix S4: Fig. S10). That is, for our cost estimates, 
whether or not Wombaroo would be fed directly to nest-
lings or could be administered via feeders, the optimal 
proportion to spend on the learning phase was more or 
less the same.

It is worth highlighting that these results depend on the 
reference mass. The optimal proportion to spend on 
experimentation depends on the ratio of the expected 
benefit to standard deviation of the prior (Appendix S4: 
Fig. S11). Consequently, if the reference mass is expected 
to be large (so that benefit above reference mass is small), 
then it will be optimal to spend more on experimentation 
than if the reference mass is small.

Discussion

The formal derivation of the net benefit of two-phase 
adaptive management for a simple setting provides some 
powerful intuitive guidance for thinking about the value 
of learning in a dynamic setting. The value of experimen-
tation arises out of two benefits and two costs (Eq. 15): 
the benefits associated with applying learning to subse-
quent management (EVSI), the transient benefits accrued 
during the learning phase, the direct costs of learning, 
and the opportunity costs of learning (the resources not 
available for subsequent management). Experimentation 
will be warranted when the benefits outweigh the costs 
(Eq. 16); otherwise, management should proceed in the 

Fig. 6.  Hihi supplementary feeding example, scenario (1). (a) Optimal proportion to spend on the learning phase as a function 
of the budget (for males). Black dashed line, mN+ = 0; black thin line, mN+ = 3 = mN−; black thick line mN+ = 6. In this panel, the 
gray line corresponds to the approximate solution, calculate assuming parameters are the same and either negligible monitoring 
costs or zero expected effect. (b) Corresponding optimal number of trials of each action. Black (top group of lines), action N− (sugar 
water treatment); gray (bottom group), action N+ (Wombaroo treatment). Target mass = 29; s = 6, σ = 6; mN− = 3.
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face of uncertainty. These qualitative insights, derived 
from quantitative results, provide a useful framework for 
evaluating experimentation.

More specific guidance for investment in learning 
becomes complicated quickly (Box 1, Table 2). The man-
agement scenario we have presented was as simple as we 
could make it while including all the relevant factors. 
Nevertheless, there were still 11 parameters to consider, 
making it difficult to extract general insights and ten-
dencies from numerical sensitivity analyses alone. By 
considering a simple scenario, we were able to derive ana-
lytical solutions for several special cases. These solutions 
provided greater insight into how parameter combina-
tions drive solution behavior, and a base against which to 
compare results when the assumptions leading to an ana-
lytical solution are violated. For example, the analytic 
solution is a good rule of thumb when trialing an unknown 
management action against a known one, even when the 
prior expected benefits differ and monitoring costs are 
significant (contrary to assumptions used to derive the 
result) (Appendix S4: Fig. S4). However, when consid-
ering two uncertain management actions, the optimal 
allocation of resources depends strongly on the param-
eters that were excluded from the analytical result.

The scenario analyzed gave rise to several unintuitive 
results. For example, there is a tendency to think that 
monitoring large projects is more important than moni-
toring small projects: sure, large projects should have 
more money spent on monitoring, but our results suggest 
that smaller projects should have a higher proportion of 
the budget spent on learning and monitoring. This also 
suggests benefits of cooperation and coordination of 
smaller projects.

An interesting feature of the solution is the existence of 
several critical thresholds that mark a jump from investing 
a lot in learning to not learning at all, or vice versa. For 
example, when the expected performance of the two 
actions differ, as sampling variance increases, we observe 
a critical threshold at which the optimal solution changes 
from spending a lot on the learning phase to spending 
nothing. While it is important for people developing and 
interpreting adaptive management models to be aware of 
such thresholds, managers implementing the policies need 
not be too concerned, since, at these thresholds investing a 
lot or not investing at all yield quite similar management 
outcomes. Consequently, it is not crucial to know precisely 
on which side of the critical threshold the system lies.

The priors for the two management options influence 
the results quite substantially. That is, the perceived per-
formance of the two options (the prior means), and the 
uncertainty about their performance (the prior standard 
deviations) will influence the optimal extent of experi-
mentation. This makes intuitive sense because managers 
would be expected to entertain the possibility of experi-
menting on a new management action only if they 
thought that it might perform better than an alternative 
but were uncertain about its relative performance. 
However, prior distributions are rarely used in ecology 

(Morris et al. 2015), and they can be difficult to specify 
coherently (McCarthy 2007). If one were unwilling to 
specify a prior distribution, then one could set the prior 
standard deviation to be large, which would mean the 
posterior distribution would have the same shape as the 
likelihood function. In this case, the Bayesian estimates 
of the experimental results would be numerically equiv-
alent to those of a frequentist analysis, which do not 
incorporate priors. However, such a wide prior distri-
bution implies that extremely good (large positive values 
for the efficiency of management) or extremely poor out-
comes (large negative values) are conceivable. Inflating 
the uncertainty in the priors will tend to drive more exper-
imentation than might be warranted, emphasizing the 
need to specify priors thoughtfully with available data 
(McCarthy and Masters 2005) or rigorous methods for 
expert elicitation (Speirs-Bridge et  al. 2010). Although 
priors might be difficult to specify, decision-makers are 
inherently considering them when they begin to compare 
different management actions. Explicitly specifying the 
anticipated benefits and the degree of uncertainty about 
action outcomes can lead to better decisions about exper-
imentation. Hence, specifying priors should not be seen 
as an obstacle to the decision making process, but rather 
a useful tool to improve decisions.

Monitoring is the cornerstone of successful adaptive 
management (Moir and Block 2001). However, moni-
toring management outcomes is rarely a trivial task and 
can account for a large fraction of the total budget 
required to implement an adaptive approach to man-
agement (Walters 2007). For the two time-step process 
considered here, including monitoring costs substantially 
changed the solution, both in terms of quantitative value 
and qualitative behavior. For example, when monitoring 
costs were negligible, the amount spent on learning 
increased as the expected benefit of the two actions dif-
fered. In this case, little is to be lost by spending more on 
the learning phase and increasing the proportion of the 
learning-phase budget spent on the expected best action. 
However, when monitoring costs were significant the 
amount spent on experimentation was largest when the 
difference in the prior mean benefits was small. This is 
because the resulting probability of choosing the best 
management action without monitoring is lowest at this 
point (in contrast, when the expected difference in benefit 
is large, the probability the better looking action is 
actually better is large, hence there is less to gain from 
monitoring, see also MacGregor et  al. 2002, Maxwell 
et al. 2015). Further, the critical thresholds play a more 
important role when monitoring costs are significant; the 
minimum budget, maximum difference between prior 
means and maximum monitoring variance are more 
likely to be encountered within feasible parameter ranges.

Interestingly, in many ways, the optimal solution was 
simpler when monitoring costs were substantial. For 
example, the proportion of the budget spent on learning 
tended to be fairly constant across the region in which it 
was optimal to invest in learning. Further, the analytic 
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solution derived assuming identical parameters for the 
two actions (Appendix S2) is an upper bound on the 
optimal proportion to spend on learning. These results 
highlight the importance of accounting for monitoring 
costs when designing adaptive management plans.

We found that the largest expected proportional gains 
in the objective function rarely corresponded to when the 
largest proportion of the budget should be spent on 
learning. For example, larger proportional gains are 
expected when sampling variance is low, whereas, in 
general, a larger percentage of the budget should be spent 
on learning when sampling variance is high because more 
samples are needed. Similarly, although a larger per-
centage gain is expected for large budgets, a larger pro-
portion of the budget should be spent on learning when 
budgets are small.

We considered a two-step adaptive management 
approach in which the management horizon is divided 
into a learning phase and an implementation phase. 
Walters and Green (1997) propose a similar framework 
for evaluating experimental management actions for eco-
logical systems. These two approaches make a one-off 
decision about how much to invest in learning. This 
differs from many formulations of AM that assume a 
fixed budget per time-step and look at how to divide 
funds between alternative management actions, and 
monitoring, at each phase (e.g., Moore and McCarthy 
2010, Baxter and Possingham 2011); effectively deciding 
how much to invest in learning at each time-step. At best, 
the two time-steps will approximate sequential decisions 
over many time-steps. An interesting avenue of future 
research would be to compare the management policies 
derived under the two different modelling approaches.

EVSI tells us the expected value of a given sampling 
design, but it does not take into account lost opportunity 
costs associated with experimentation and monitoring. 
Consequently, while methods such as EVSI are useful for 
determining when learning is likely to be beneficial, and 
can provide upper bounds on additional funds that should 
be spent on experimentation, further analysis is needed to 
determine the fraction of the total budget to invest in 
learning. In contrast, adaptive management formula-
tions with long time horizons can be computationally 
challenging and difficult to implement in the real world. 
The approach presented here strikes a balance between 
complexity and utility. By considering a two-step AM 
process we are able to capture the trade-off between the 
benefit and costs of investing in additional information 
while remaining relatively simple.
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