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Summary
The impact of aberrant centrosomes and/or spindles on asymmetric cell division in embryonic development indicates the tight regulation of
bipolar spindle formation and positioning that is required for mitotic progression and cell fate determination. WD40-repeat protein 62
(WDR62) was recently identified as a spindle pole protein linked to the neurodevelopmental defect of microcephaly but its roles in mitosis
have not been defined. We report here that the in utero electroporation of neuroprogenitor cells with WDR62 siRNAs induced their cell cycle

exit and reduced their proliferative capacity. In cultured cells, we demonstrated cell-cycle-dependent accumulation of WDR62 at the spindle
pole during mitotic entry that persisted until metaphase–anaphase transition. Utilizing siRNA depletion, we revealed WDR62 function in
stabilizing the mitotic spindle specifically during metaphase. WDR62 loss resulted in spindle orientation defects, decreased the integrity of

centrosomes displaced from the spindle pole and delayed mitotic progression. Additionally, we revealed JNK phosphorylation of WDR62 is
required for maintaining metaphase spindle organization during mitosis. Our study provides the first functional characterization of WDR62
and has revealed requirements for JNK/WDR62 signaling in mitotic spindle regulation that may be involved in coordinating neurogenesis.
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Introduction
The bipolar spindle is a highly organized microtubule-based

superstructure with essential functions in faithful sister chromatid

segregation during cell division (Compton, 2000). During mitosis,

the minus ends of spindle microtubules in anti-parallel

arrangements are focused at the poles and anchored at

centrosomes. Centrosomes consist of paired centrioles surrounded

by proteinaceous pericentriolar material (PCM). In the early

stages of mitosis, the separation of duplicated centrosomes is

accompanied by a considerable expansion of the PCM via the

recruitment of c-tubulin- and c-tubulin-associated proteins (e.g.

NEDD1, pericentrin and cdk5rap2) that facilitates astral

microtubule nucleation and bipolar spindle assembly (Fong et al.,

2008; Haren et al., 2009; Lüders et al., 2006; Oshimori et al., 2009;

Zimmerman et al., 2004). Moreover, MTOC activity and proper

positioning of centrosomes are required to specify the plane of

division and dictate precise cellular segregation into daughter cells

(Lesage et al., 2010; Megraw et al., 2011). Importantly, defects in

centrosome-directed functions result in aberrant bipolar spindle

formation, cell cycle progression and are linked to human disease

(Nigg and Raff, 2009; Zyss and Gergely, 2009). Proteins with

critical roles in centrosome/spindle regulation have been revealed

by genetic studies linking centrosomal protein mutations with

autosomal recessive primary microcephaly (MCPH) in which

defects in neuronal progenitor cell division are regarded as

underlying disease development (Thornton and Woods, 2009).

WD40-repeat protein 62 (WDR62) was first characterized as

involved in the assembly of signaling complexes associated with

cytoplasmic stress granule formation (Wasserman et al., 2010).

More recently, WDR62 gene mutations were linked to MCPH and

more severe brain malformations, thus implicating critical

contributions by WDR62 to cortical development (Bilgüvar

et al., 2010; Nicholas et al., 2010; Yu et al., 2010). WDR62 is

170 kDa protein characterized by 13 annotated WD40 domain

repeats that span the N-terminal half of the protein (Wasserman

et al., 2010). WD40 repeat proteins facilitate protein–protein

interactions and are involved in large protein complex formation

(Stirnimann et al., 2010). WDR62 binds components of the c-Jun

N-terminal kinase (JNK) pathway to potentiate stress-stimulated

signal transduction (Cohen-Katsenelson et al., 2011; Wasserman

et al., 2010). The observed diverse intracellular distribution of

WDR62 suggests pleiotropic functions that may be dependent on

cellular context (Bilgüvar et al., 2010; Nicholas et al., 2010;

Wasserman et al., 2010). For example, WDR62 is localized to

stress granules in response to cell stress (Wasserman et al., 2010).

In post-mitotic neurons WDR62 is localized to the nucleus,

whilst in neuronal progenitors undergoing mitosis, WDR62 is

present at centrosomes/spindle poles (Bilgüvar et al., 2010;

Nicholas et al., 2010). Global proteomic analyses also identified

WDR62 as a mitotically regulated protein (Dephoure et al., 2008;

Santamaria et al., 2011). Although these observations are

consistent with a cell cycle regulatory function that may be
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indispensable for cell divisions associated with neurogenesis, the
precise contributions of WDR62 in cell cycle regulation are

unknown.

In this study, we have shown for the first time that WDR62
depletion with siRNA resulted in reduced cell proliferation in the

developing embryonic mouse brain. Exploiting human cell
cultures to define underlying biochemical mechanistic links, we
revealed WDR62 to be a mitotic phosphoprotein localized to

spindle poles from prophase to metaphase in a process that
requires microtubule-dependent transport. Importantly, WDR62
was required for proper progression through mitosis and its

depletion led to spindle orientation defects, metaphase spindle
abnormalities, centrosome–spindle uncoupling and reduced
centrosome integrity. Furthermore, we demonstrated that
WDR62 phosphorylation by JNK in mitosis was involved in

the regulation of metaphase spindle architecture. Our studies
provide the first functional analyses of WDR62 in neurogenesis,
centrosome/spindle organization and cell cycle regulation with

important implications for centrosome-associated pathologies
characterized by microcephaly.

Results
WDR62 knockdown in vivo results in reduced proliferation
of neuroprogenitors

WDR62 was recently identified as the second most commonly
mutated gene linked to primary microcephaly or microcephaly

accompanied by severe cortical malformations (Bilgüvar et al.,
2010; Nicholas et al., 2010; Yu et al., 2010) albeit that its
functions during brain development are unknown. The detection

of WDR62 in neural precursors of the developing cerebral cortex
(Nicholas et al., 2010) suggests its importance in regulating
neuroprogenitor cell cycle progression. To investigate this, we
performed in utero electroporation of embryonic mouse (E14)

brain to co-introduce a GFP expression construct together with
experimentally validated WDR62 siRNAs or non-targeting
control siRNAs (Fig. 1A). We then examined the proliferative

properties of the cortical progenitor cells. Twenty-four hours
post-electroporation, a single dose of BrdU was administered to
label cells undergoing S-phase DNA replication before the

embryonic brains were finally harvested at 48 h (E16) to identify
progenitor cells expressing Ki67 or phospho-histone H3 (pHH3)
as markers of actively cycling and mitotic cells, respectively
(Fig. 1).

We revealed that the treatment of cortical progenitors with
WDR62 siRNA in vivo caused a significant decrease in Ki67

marker expression compared with control siRNA treatment
(Fig. 1B,C). Moreover, WDR62 knockdown reduced the
proliferative capacity of the progenitor compartment, as judged
by a significant increase in the cell cycle exit index [defined as the

fraction of GFP+BrdU+ cells which do not immunostain for Ki67
versus all GFP+BrdU+ cells (GFP+BrdU+Ki672/GFP+BrdU+)]
compared with control treatment (Fig. 1D). Similarly, we found

a significant decrease in the fraction of WDR62-siRNA-treated
cells that express the mitotic marker pHH3 (Fig. 1F,G), as well as
a concomitant increase in their cell cycle exit (Fig. 1H).

Importantly, the incorporation of BrdU by cortical cells was not
significantly affected by siRNA treatment (Fig. 1E,I), and we
excluded apoptosis as a contributing factor in our analysis by

showing no differences in cleaved caspase 3 staining in the
different cell populations (data not shown). Thus, the depletion of
WDR62 in vivo resulted in reduced proliferation and enhanced cell

cycle exit indicative of altered neuroprogenitor self-renewal during
cortical development.

Cell-cycle-dependent WDR62 localization as a spindle
pole protein

A requirement for WDR62 in sustaining the proliferative capacity
of neuroprogenitors suggests important cell cycle regulatory
functions and is consistent with the shared centrosome

association observed for the different MCPH proteins. In
addition, the multi-compartment localization of WDR62
(Bilgüvar et al., 2010; Nicholas et al., 2010; Wasserman et al.,

2010; Yu et al., 2010) prompted our analysis of the intracellular
distribution of endogenous WDR62 throughout the cell cycle. As
three commercially available antibodies detected human but not

murine WDR62 protein by immunofluorescence, we analyzed
human cell cultures. Immunofluorescence analysis in HeLa
cells using antibodies recognizing distinct WDR62 epitopes

consistently revealed a cytosolic and nuclear distribution of
WDR62 during interphase (Fig. 2A; supplementary material Fig.
S1A,B). During interphase, WDR62 was only weakly associated
with centrosomes marked by c-tubulin co-staining (supplementary

material Fig. S1A). In contrast, we observed prominent WDR62
colocalization with c-tubulin in mitotic cells indicating
centrosome/spindle accumulation of WDR62 under these

conditions (Fig. 2A). All three WDR62 antibodies consistently
revealed dynamic WDR62 association with centrosomes in mitotic
cells emphasizing the specificity of this localization (Fig. 2A;

supplementary material Fig. S1A,B). With staining for nuclear
pore complex proteins, we demonstrated that the initial stages of
WDR62 centrosomal accumulation during prophase preceded
nuclear envelope breakdown (Fig. 2B). Further higher

magnification imaging and detailed dissection of the kinetics of
WDR62 centrosomal association revealed WDR62 accumulation
around c-tubulin-stained centrosomes beginning at prophase

(Fig. 2C). This culminated in prominent WDR62 localization at
the spindle pole that enveloped centrosomes during metaphase
(Fig. 2C). In contrast, during anaphase and telophase, WDR62 no

longer showed obvious centrosomal association (Fig. 2A). These
results highlight a cell-cycle-dependent distribution of WDR62 to
the spindle pole.

To extend this analysis of mitotic WDR62 distribution, we
evaluated WDR62 colocalization with other key centrosomal
proteins. During prometaphase/metaphase, WDR62 surrounded

but did not show strict colocalization with the PCM proteins
NEDD-1, pericentrin, centrosome and Golgi-localized PKN-
associated protein (CG-NAP) or cdk5 regulatory subunit

associated protein 2 (cdk5rap2; Fig. 2D). In contrast, WDR62
colocalized with the microtubule cross-linker, nuclear mitotic
apparatus (NUMA) protein, and the dynactin complex component,
p150Glued, at spindle poles (Fig. 2E). Taken together, these results

identify WDR62 as a prominent spindle pole protein with dynamic
localization that peaks during prometaphase/metaphase.

WDR62 depletion delays completion of mitosis

To define the potential roles of WDR62 in cell division, as

suggested by its spatial and temporal regulation during mitosis,
we depleted WDR62 in HeLa cells with siRNA. Four individual
siRNAs all substantially silenced WDR62 when compared to a

non-targeting Con siRNA whereas levels of a- and c-tubulin
were unchanged (Fig. 3A), and depletion was sustained for at
least 72 h post-transfection (supplementary material Fig. S2A).

WDR62 function in mitosis 5097



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

Fig. 1. WDR62 depletion decreased cell proliferation within the embryonic cortex. (A) Neuro2a cells were transfected with individual mouse WDR62-targeting siRNA

(t1, t2, t3 and t4), a combined mouse WDR62 siRNA pool, non-targeting siRNA (Con siRNA) or not treated with siRNA (no siRNA) and immunoblotted for WDR62 and a-

tubulin. (B) Images of the coronal sections of embryonic mouse cerebral cortex electroporated with control or mouse WDR62 siRNA, together with GFP to label

electroporated cells. Embryos were pulse labeled with BrdU 24 h post-electroporation, and brain sections finally stained for Ki67 to identify actively proliferating cells at

time of harvest (48 h post-electroporation). Magnified panels (below) of the ventricular zone (VZ) highlight proliferating (GFP+/BrdU+/Ki67+, filled arrowheads) and non-

proliferating cells (GFP+/BrdU+/Ki672, open arrowheads). (C) Quantification of cell proliferation (GFP+/Ki67+) in brain sections from control and mouse WDR62-siRNA-

treated embryos. (D) The cell cycle exit index in response to WDR62 depletion was determined by counting GFP+/BrdU+/Ki672 cells and expressing this as a proportion of

GFP+/BrdU+ cells. (E) BrdU labeling index in control and WDR62-siRNA-treated brain sections used in the analysis depicted in B. (F) Coronal sections of embryos

electroporated with control or mouse WDR62 siRNA were stained for phospho-histone H3 (pHH3). Magnified panels (below) of the VZ highlight cells in M phase (GFP+/

BrdU+/pHH3+, filled arrowheads) and non-mitotic cells (GFP+/BrdU+/pHH32, open arrowheads). (G) The mitotic index in response to WDR62 depletion was determined by

the proportion of cells double labeled for GFP and pHH3 (GFP+/pHH3+). (H) A cell cycle exit index analysis performed with pHH3 and BrdU immunostaining was

determined by counting GFP+/BrdU+/pHH32 cells within the population of GFP+/BrdU+ cells (statistical analysis could not be performed because 100% of cells were

GFP+BrdU+pHH32 following WDR62 siRNA treatment). (I) BrdU labeling index in control and WDR62-siRNA-treated brain sections used in the analysis depicted in (F).

Scale bar: 100 mm, while all graphs plot means 6 s.e.m. (*P,0.05, **P,0.01, ns denotes not statistically significant).

Journal of Cell Science 125 (21)5098
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All subsequent findings utilized WDR62 depletion by WDR62

target 1 siRNA but were re-confirmed with at least two other

independent siRNAs (typically WDR62 target 2 and target 3

siRNA) to ensure specificity of the knockdown phenotype.

Interestingly, proliferation and cell viability were not

markedly altered despite substantially reduced WDR62 levels

(supplementary material Fig. S2B,C). Thus, WDR62 loss did not

induce cell cycle arrest or prevent division in HeLa cells. In

contrast, we found that WDR62 depletion altered the duration of

mitosis.

When the effect of WDR62 loss was evaluated in synchronized

HeLa cells, we observed delayed mitotic progression following

double thymidine block (DTB) release. Levels of cyclin B1 and

phosphorylated cdc25C are typically elevated during mitotic

entry and persist until the metaphase–anaphase transition

(Hutchins and Clarke, 2004; Takizawa and Morgan, 2000), and

so we used these as indicators of cell cycle progression. In

WDR62-siRNA-treated cells cyclin B1 degradation and

dephosphorylation of cdc25C were delayed, extending to

11–12 h post-release compared to the return of these mitotic

markers to interphase levels by 10 h post-release in Con-siRNA-

treated cells (Fig. 3B). Similarly, in cells synchronized by

nocodazole treatment, elevated cyclinB1 and phospho-cdc25C

levels were extended to 6 h post-release from nocodazole

compared to the loss of these mitotic markers by 4 h post-

nocodazole release in Con-siRNA-treated cells (Fig. 3C). Time-

lapse imaging of WDR62-siRNA-treated cells further showed

that the duration of mitosis was prolonged (Fig. 3D,E) with

WDR62-siRNA-treated HeLa cells taking on average nearly

twice as long (96 min) to complete mitosis when compared with

Con-siRNA-treated cells (54 min; Fig. 3E). Some WDR62-

depleted cells took .200 min (approximately four times

average duration of control cells) to complete mitosis (Fig. 3E)

without cell cycle arrest. Furthermore, substantial movement and

rotation of the metaphase plate was observed suggestive of

spindle orientation defects during periods of prolonged mitosis

(Fig. 3D, broken white lines). Reflecting this mitotic delay, a

modest increase in mitotic index in WDR62-siRNA-treated cells

Fig. 2. Accumulation of WDR62 at

spindle poles during mitosis. (A) WDR62

subcellular localization in HeLa cells at

different mitotic stages. DAPI-stained

condensed chromatin and c-tubulin

immunostaining revealed centrosomes and

spindle poles. Scale bar: 20 mm. (B) WDR62

association with centrosomes occurred prior

to nuclear envelope breakdown as

demonstrated by co-staining with nuclear

pore complex proteins (Mab414 NPC). Scale

bar: 20 mm. (C) Higher magnification

images of WDR62 localization around c-

tubulin-stained centrosomes from prophase

to metaphase. Scale bar: 2 mm. Insets are

lower magnification images showing entire

cell and mitotic stage. (D) Co-staining of

WDR62 with PCM markers (NEDD1,

pericentrin, CG-NAP and Cdk5rap2).

(E) WDR62 co-localization with spindle

pole markers (NUMA and p150Glued). Insets

in D and E are high magnification images of

centrosomes. Scale bars: 20 mm.

WDR62 function in mitosis 5099
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compared to controls was observed (Fig. 3F). Thus, knockdown
of WDR62 delays the completion of mitosis indicating a

requirement for WDR62 in regulating timely mitotic progression.

Metaphase spindle defects with WDR62 knockdown
To interrogate the features underlying delayed mitotic
progression and spindle orientation defects, we examined the

changes in mitotic spindle organization as a result of WDR62
loss. On closer examination of spindle assembly in prophase and
prometaphase, intact centrosomes anchoring astral microtubules

(as noted by a- and c-tubulin localizations) were observed for
both control and WDR62-depleted cells (Fig. 4A). Strikingly,
WDR62 depletion resulted in abnormal metaphase spindles

characterized by a displacement of centrosomes from the spindle
(Fig. 4A). Quantitation of the metaphase cell population
indicated that approximately half of WDR62-depleted cells

exhibited an abnormal bipolar spindle (Fig. 4B). In addition,

while metaphase spindles in cultured cells commonly attain a
planar orientation, with the division plane parallel to surface of

the culture dish, the metaphase spindle polarity axis in WDR62-
depleted cells exhibited substantial rotation in the z-axis

(Fig. 4C). The rotation of the spindle in the z-axis was more
clearly seen through orthogonal sectioning through the z-stacks

(Fig. 4D) and our measurements of the angle of rotation from
planar orientation showed a greater degree of spindle rotation in
the z-axis in WDR62-depleted cells compared to controls

(Fig. 4E). The localization of NUMA and dynein/dynactin
motors at spindle poles and the cell cortex are critical for pole

focusing activities and the cortical capture of astral microtubules
for spindle positioning, respectively (Radulescu and Cleveland,

2010). However, the cortical and spindle pole localization of
NUMA and p150Glued was unaltered by WDR62 loss

Fig. 3. WDR62 depletion perturbs mitotic

progression. (A) HeLa cells were transiently

transfected with individual human WDR62-

targeting siRNA (t1, t2, t3 and t4), a WDR62

siRNA pool, non-targeting siRNA (Con siRNA) or

not treated with siRNA (no siRNA) and

immunoblotted for WDR62. a- and c-tubulin were

blotted as controls. (B) HeLa cells transfected with

WDR62 or Con siRNA were synchronized at G1/S

(DTB). Cell cycle progression following thymidine

release (2–14 h as indicated) was determined by

immunoblotting for cyclin B1 and cdc25C

phosphorylation. (C) HeLa cells transfected with

WDR62 or Con siRNA were synchronized at M-

phase [nocodazole (NZ) treated; 350 nM, 16 h].

Mitotic progression following NZ release (0.5–10 h

as indicated) was determined by immunoblotting

for cyclin B1 and phospho-cdc25C. a-tubulin was

blotted for protein loading and WDR62 levels

determined to confirm knockdown. (D) HeLa cells,

treated with Con siRNA or WDR62 siRNA, were

synchronized (DTB) and imaged under phase-

contrast optics at 6-min intervals from 7 h post

thymidine release. Representative images of mitotic

progression are shown. White dotted lines indicate

the position of the metaphase plate. (E) Duration of

mitotis in WDR62-depleted and control HeLa cells,

measured from nuclear envelope breakdown until

two daughter cells were observed, are shown on a

vertical scatter plot. Horizontal lines indicate mean

values and n values are the total cells counted from

three independent experiments (*P,0.01).

(F) WDR62 was depleted in HeLa cells for 48 h

and the proportion of cells in M phase identified by

DAPI staining. Values are means 6 s.e.m. from

three independent experiments.

Journal of Cell Science 125 (21)5100
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(supplementary material Fig. S3). Thus, mechanisms involved in

spindle pole focusing and the cortical capture of astral

microtubules for spindle positioning appeared largely intact.

Rather, our results highlight a metaphase specific role for spindle

localized WDR62 in stabilizing or maintaining spindle pole

integrity to establish a polarity axis for cell division.

Centrosome integrity and coupling to spindle poles are

compromised with WDR62 loss

Our closer interrogation of abnormal metaphase spindles in

WDR62-depleted cells revealed that apolar centrosomes

remained juxtaposed to the spindle pole and retained microtubule

attachment to a spindle pole (Fig. 5A). Strikingly, we observed

multiple c-tubulin puncta in WDR62-depleted cells (Fig. 5A,B,

arrows). When we investigated centriole pairs, visualized by GFP-

tagged centrin1 expression, we found these to be intact in displaced

centrosomes (Fig. 5C). Thus, there did not appear to be a loss of

centriole cohesion with WDR62 loss. Staining for pericentrin in

WDR62-depleted cells revealed loose and disrupted PCM of

displaced centrosomes that co-localized with c-tubulin puncta and

which was suggestive of reduced centrosome integrity (Fig. 5D,E).

Furthermore, the extent of PCM fragmentation was reduced in the

presence of low-dose nocodazole or Taxol (Fig. 5F,G) indicating

microtubule dynamics as a contributing factor to the reduced

centrosome integrity in WDR62-depleted cells. Furthermore, with

DAPI staining we noted the presence of unaligned chromosomal

DNA in WDR62-siRNA-treated cells during metaphase (Fig. 5A–

E). Our quantitative analysis, demonstrating a substantial increase

in the proportion of cells with chromosomes not aligned at the

metaphase plate following WDR62 knockdown (supplementary

material Fig. S4A), was consistent with delayed mitotic progression

and disrupted centrosome/bipolar spindle organization.

With our observations of defects in centrosome–spindle-pole

coupling, we also measured spindle length in WDR62-depleted

cells and found this to be significantly increased relative to control

cells (supplementary material Fig. S4B). This reinforces the recent

appreciation of the relationship between proper centrosome

attachment to the spindle pole and spindle length determination

(Dumont and Mitchison, 2009; Silk et al., 2009). WDR62

depletion also increased the frequency of multipolar spindles

(15% versus 3%, supplementary material Fig. S4C). However, we

did not observe differences in interphase centrosome numbers in

WDR62-depleted cells synchronized at late G2 when compared to

controls (supplementary material Fig. S4D). Thus, centrosome

duplication and cohesion appeared to not be overtly perturbed. Our

studies show spindle defects following WDR62 loss were typified

during metaphase by displaced centrosomes with reduced

integrity. This was also associated with inefficient chromosome

congression and elongated spindle length. Thus, WDR62 is

required to maintain metaphase spindle architecture.

Fig. 4. WDR62 is required for

metaphase spindle maintenance and

positioning. (A) HeLa cells were

transfected with WDR62 or Con siRNA

and synchronized (DTB). Following

thymidine release (8–10 h), cells were

fixed and stained for a-tubulin/c-tubulin.

Representative cells at different mitotic

stages are shown. (B) The proportion of

metaphase cells with abnormal spindles

characterized by displaced centrosomes

was quantified. (C) Individual z-stacks of

c-tubulin staining in WDR62-depleted or

control HeLa cells. Overlay images show

maximum intensity projections of z-stacks.

All scale bars: 20 mm. (D) Orthogonal

slice along spindle polarity axis viewed

from a side-on perspective of c-tubulin

immunostained z-sections reveals spindle

rotation in z-axis. ‘h’ is the angle of

rotation from planar orientation. (E) The

angle of spindle rotation was measured in

WDR62- or Con-siRNA-treated HeLa cells

and plotted on a vertical scatter plot.

Horizontal lines depict means 6 s.e.m. and

n values are total number of cells counted

from two independent experiments

(*P,0.05).

WDR62 function in mitosis 5101
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WDR62 is required for metaphase spindle maintenance but

not bipolar spindle formation

WDR62 spindle pole localization during early mitotic stages

parallels centrosome maturation and the enhanced nucleation of

astral microtubules that facilitate formation of a bipolar spindle.

To identify WDR62 functions in microtubule nucleation and

bipolar spindle formation, we employed microtubule regrowth

assays. WDR62 centrosomal localization was lost following

microtubule depolymerization by cold treatment and was rapidly

returned (,2 min) during astral microtubule regrowth (Fig. 6A).

This further reinforced WDR62 as a microtubule-associated

spindle pole protein. Surprisingly, at 10 min regrowth, WDR62

was also localized to regions of acentrosomal microtubule

formation originating from mitotic chromatin. We confirmed

WDR62 localization to calcium-resistant kinetochore

microtubules (supplementary material Fig. S5A). WDR62

localization then coalesced at the poles as spindle bipolarity

was re-established at 30 min (Fig. 6A). WDR62 was therefore

associated with sites of microtubule nucleation at both the

centrosomes and chromosomes.

We next established WDR62 requirements for microtubule

regrowth. In interphase cells, no overt defects in centrosome-

nucleated microtubule formation in WDR62-siRNA-treated cells

were observed (supplementary material Fig. S5B). This was not

surprising as WDR62 was not principally located at the MTOC

during this cell cycle stage. Intriguingly, in mitotic cells, the

extent of microtubule nucleation and regrowth at both

centrosomal and non-centrosomal sites did not differ when

WDR62-depleted and control HeLa cells were compared

(Fig. 6B). However, as the bipolar spindle was re-established

(45 min), defects in centrosome integrity and positioning were

observed in WDR62-siRNA-treated cells (Fig. 6B). The

proportion of WDR62-depleted cells with spindle abnormalities

observed in our microtubule regrowth assays were consistent

with our measurements during metaphase (Fig. 6C compared to

Fig. 4B).

To determine whether spindle defects arose due to microtubule

forces associated with bipolar spindle formation, we examined

centrosome integrity in DTB-synchronized HeLa cells

subsequently released in the presence of monastrol, an inhibitor

Fig. 5. Centrosome integrity is reduced

with WDR62 depletion. WDR62-depleted

or control HeLa cells in metaphase were

stained with (A) a- and c-tubulin or

(B) WDR62 and c-tubulin. Arrows

indicate c-tubulin puncta. DAPI staining of

DNA is shown in overlay images. (C)

HeLa cells were transfected with WDR62

or Con siRNA together with Centrin1–GFP

to label centrioles in addition to staining

for c-tubulin. (D,E) WDR62-depleted or

control HeLa cells in metaphase were

stained with pericentrin and (D) c-tubulin

or (E) a-tubulin. Insets in D,E are higher

magnification images of the centrosomal

region. All scale bars: 20 mm. (F) WDR62-

depleted cells were synchronized (DTB)

and treated with nocodazole (NZ, 5 nM) or

Taxol (TX, 5 nM) at 7 h post-thymidine

release. The number of cells in metaphase

with loose/fragmented PCM, as revealed

by pericentrin staining, was quantified and

expressed as a proportion of total

metaphase cells. Con siRNA treatment was

included for comparison. n values are the

total number of cells counted from three

independent experiments.

(G) Representative images of pericentrin

staining in WDR62-depleted cells treated

with nocodazole or Taxol.

Journal of Cell Science 125 (21)5102
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of kinesin-5 motor proteins required for establishing spindle

tension and bipolarity (Mayer et al., 1999). Monastrol treatment

arrested both control and WDR62-siRNA-treated cells in mitosis

with monopolar spindles (Fig. 6D). Detection of c-tubulin

showed that centrosome integrity was unperturbed in WDR62-

depleted cells arrested in monastrol (Fig. 6D). Taken together,

our study indicates that microtubule nucleation and spindle

assembly does not require WDR62. In contrast, reduced

centrosome integrity and spindle attachment defects occur

subsequent to bipolar spindle formation and this is consistent

with the previously defined requirement for microtubule

dynamics (Fig. 5F).

WDR62 is phosphorylated in mitosis

In considering regulatory mechanisms that control WDR62

function or localization, the phosphorylation of centrosomal

and spindle proteins is critical for mitotic regulation (Lüders et al.,

2006; Oshimori et al., 2006). WDR62 is likely targeted for

phosphorylation as previous studies have identified WDR62 as a

substrate of JNK and polo-like kinase 1 (Plk1) in the context of

cell stress and mitosis, respectively (Santamaria et al., 2011;

Wasserman et al., 2010). Indeed, M-phase arrest with nocodazole

decreased the mobility of WDR62 in SDS-PAGE (Fig. 7A).

Furthermore, WDR62 band detection in nocodazole-arrested

cells was weaker but l-phosphatase treatment rendered the

migration and detection of the WDR62 band in lysates from the

M-phase-arrested cells indistinguishable from asynchronous (AS)

or S-phase-arrested (using hydroxyurea; HU) cells consistent

with a phosphorylation modification (Fig. 7A). We obtained

similar results regardless of the specific WDR62 antibody used

(data not shown). As identical cell lysates were used for the l-

phosphatase or mock treatments, the reduced detection of

Fig. 6. WDR62 is required for spindle/

centrosome maintenance after spindle bipolarity

is established. (A) G1/S synchronized HeLa cells

(DTB) were released into nocodazole (350 nM)

before microtubules were depolymerized at 4 C̊

(30 min). Following nocodazole washout, cells were

incubated at 37 C̊ for various time intervals before

staining for WDR62 and microtubule regrowth with

a-tubulin. Scale bar: 2 mm. (B) Microtubule

regrowth in WDR62-depleted HeLa cells was

analyzed as in A and compared to control (Con

siRNA) cells. In addition, centrosomes were

revealed by c-tubulin co-staining. Scale bar: 20 mm.

(C) Following MT regrowth (45 mins, 37 C̊) the

proportion of cells with normal, abnormal or multi-

polar spindles was determined. n values are total

number of cells counted from three independent

experiments. (D) HeLa cells synchronized to G1/S

(DTB) were released into monastrol (100 mM)

before fixing and immunostaining for WDR62 and

a- or c-tubulin. Scale bars: 20 mm.
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WDR62 during nocodazole arrest indicated reduced antibody

affinity for phosphorylated WDR62 on SDS-PAGE, rather than

changes in WDR62 protein levels. However, l-phosphatase

treatment did not alter our detection of WDR62 subcellular

localization indicating that phosphorylation did not impact on our

immunofluorescence analyses in fixed cells (data not shown).

The mobility shift of WDR62 in response to nocodazole-induced

mitotic arrest or hyperosmolarity was more easily visualized in

SDS-PAGE resolved with polyacrylamide-bound Mn2+-Phos-tag

(Fig. 7B) (Kinoshita et al., 2006). In addition, while not evident

on standard SDS-PAGE, the phosphorylation of WDR62 in

untreated AS cells was revealed by l-phosphatase treatment and

electrophoresis on a Phos-tag gel (Fig. 7B). These results confirm

WDR62 phosphorylation under basal conditions which was

further increased with cell stress or M phase synchronization.

The M-phase arrest of cells treated with nocodazole was

verified by increased cyclin B1 and phospho-cdc25C levels

(Fig. 7A). Further, nocodazole washout increased WDR62 band

mobility and detection in parallel with reduced cyclinB1 and
phospho-cdc25C (Fig. 7C). Finally, as G1/S synchronized cells

by DTB were tracked following thymidine block release, the

WDR62 band shift closely correlated with mitotic progression as
determined by biochemical markers (cyclin B1 and phospho-

cdc25C) and FACS analysis of the cell cycle (Fig. 7D,E). These

results revealed phosphorylation of WDR62 during mitotic

progression that coincided with spindle pole localization.

JNK mediated WDR62 phosphorylation is required for
spindle regulation

As WDR62 was previously shown to be a JNK-interacting

protein (Wasserman et al., 2010), we investigated JNK regulation

of WDR62 and its contributions to mitosis. WDR62
phosphorylation in M-phase-arrested cells was partially

reversed by JNK inhibition whereas cdc25C phosphorylation

Fig. 7. WDR62 is phosphorylated during mitosis.

(A) Protein lysates from asynchronous (AS), S-phase-

arrested (HU, 2 mM, 16 h) or mitotically arrested (NZ,

350 nM, 16 h) HeLa cells were treated with l-

phosphatase, mock treated without enzyme or left

untreated (TCL) before blotting with the indicated

antibodies. Arrows indicate decreased WDR62 band

migration on SDS-PAGE. (B) Protein lysates from AS-,

NZ- (350 nM, 16 h) or sorbitol-treated (Sorb, 0.5 M,

60 min) HeLa cells were treated with l-phosphatase or

left untreated (TCL) before resolving on Phos-tag gels

or standard SDS-PAGE followed by immunoblotting.

Arrows indicated reduced mobility of phosphorylated

WDR62. (C) HeLa cells were arrested at M phase (NZ,

350 nM, 16 h) before release into normal serum

medium for the indicated times. WDR62 band mobility,

cyclin B1, a-tubulin and phospho-cdc25C were

determined by immunoblot analysis. Arrows indicate

increased WDR62 gel migration and carets (,) antibody

detection with time following NZ release. (D) HeLa

cells were synchronized at G1/S (DTB). WDR62, cyclin

B1 and cdc25C levels were then analyzed by

immunoblotting. (E) Cell cycle distribution was

determined by FACS at time 0 min before release and at

regular time intervals following thymidine release.

Representative histograms are shown.
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status was not altered indicating that cells remained arrested in

M-phase following JNK inhibitor treatment (Fig. 8A). Thus, our

results show that JNK activity is directly involved in mitotic

WDR62 phosphorylation. In contrast, Aurora A inhibition or

Plk1 knockdown did not prevent mitotic WDR62

phosphorylation as observed by reduced SDS-PAGE mobility

and decreased detection of WDR62 in synchronized cells that

was reversed by phosphatase treatment (supplementary material

Fig. S6A,C). As Aurora A and Plk1 have well defined functions

in bipolar spindle formation (Barr and Gergely, 2007; Barr

et al., 2004), their inhibition resulted in a prometaphase arrest

with spindle morphologies consistent with previous reports

(supplementary material Fig. S6B,D) (Sumara et al., 2004). In

this situation, we observed WDR62 phosphorylation without

additional chemical synchronization (supplementary material

Fig. S6A,C). In contrast, treatment of M-phase-arrested cells

with a Cdk1 inhibitor reversed WDR62 phosphorylation that

coincided with mitotic exit (supplementary material Fig. S6E).

We also observed that WDR62 movement to centrosomes was

not perturbed in cells arrested in prophase with the Cdk1 inhibitor

(supplementary material Fig. S6F). These results indicate that

mitotic WDR62 phosphorylation occurred subsequent to mitotic

entry during prometaphase and that this phosphorylation was not

required for WDR62 movement to spindle poles.

The C-terminal region of WDR62 was phosphorylated by JNK

and the JNK-binding domain (JBD) of WDR62 required for

kinase docking interactions have been identified (Cohen-

Katsenelson et al., 2011; Wasserman et al., 2010). Despite

Fig. 8. JNK-mediated WDR62 phosphorylation is

involved in spindle regulation. (A) M-phase-arrested

HeLa cells (NZ, 350 nM, 16 h) were treated with JNK

inhibitor VIII (20 mM) and samples immunoblotted

for WDR62 and a-tubulin. (B) Schematic

representation of WDR62 truncation and JNK-binding

(JBD) mutants. Asterisks indicate replacement of

leucines with alanines in the JBD motif. (C) JNK1-

mediated phosphorylation of full-length WDR62

(WDR62-FL) and truncation mutants containing

WDR62 N- (WDR62-N) or C-terminal (WDR62-C)

regions as measured by in vitro kinase activity assays.

Values are means 6 s.d. 32P (pmol) incorporated into

substrates from three independent experiments. A

representative autoradiograph and Coomassie stain for

protein loading are shown. (D) JNK1-mediated

phosphorylation of WDR62-C-AXA was determined

by in vitro kinase activity assays and compared to the

WDR62-C truncation mutant. (E) Myc-tagged

WDR62-C and WDR62-C-AXA were transiently

expressed with HA–JNK1 in HeLa cells. HA–JNK1

was immunoprecipitated and WDR62 co-

immunoprecipitation determined by immunoblotting

for the myc tag. Protein expression (input) in total cell

lysates was also determined. (F) GFP-labeled

WDR62-FL and truncation mutants were expressed in

Ad293 cells. Their subcellular localization were

determined during metaphase and colocalization with

a- or c-tubulin and DAPI was examined. (G) Ad293

cells were co-transfected with WDR62 siRNA and

either GFP–WDR62-FL, GFP–WDR62-FL-AXA or

GFP alone. The proportion of GFP-positive cells with

normal bipolar, abnormal bipolar or multipolar

spindles in metaphase was determined. n values are

the total number of cells counted from three

independent experiments. Representative images of

multipolar, abnormal or normal bipolar spindles in

Ad293 cells stained for c-tubulin and DAPI are shown.

(H) Representative images of GFP–WDR62-FL-AXA

spindle localization in Ad293 cells treated with

WDR62 or Con siRNA and stained for c-tubulin and

DAPI. Images in F and H are single z-sections.
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these advances, the biological function of WDR62
phosphorylation is undetermined. We generated truncation and

JBD mutants of WDR62 (Fig. 8B) and confirmed that JNK
phosphorylated the C-terminal half (WDR62-C, amino acids
842–1523) of WDR62 but not the N-terminal region containing
the WD40 domains (WDR62-N, amino acids 1–841; Fig. 8C).

Furthermore, replacement of critical leucines with alanine in
the WDR62 JBD (AXA, L1299A/L1301A) inhibited JNK
phosphorylation of WDR62-C in vitro and completely

abrogated interaction with JNK when ectopically expressed in
HeLa cells (Fig. 8D,E). We then compared the spindle
localization properties of WDR62 mutants expressed as GFP

fusion proteins. However, due to difficulties with aggregation of
GFP-labeled full-length WDR62 expressed in HeLa cells, we
analyzed Ad293 cells which displayed a greater proportion
of cells that retained diffuse cytoplasmic distribution

(supplementary material Fig. S7A). Interestingly, expression of
the GFP-labeled WDR62-N truncation mutant led to a greatly
enhanced proportion of cells with aggregates while GFP–

WDR62-C expression was predominantly cytoplasmic despite
higher expression levels (supplementary material Fig. S7A,B).
Thus, the WDR62 N-terminal region containing WD40 repeats

was responsible for the propensity of the ectopically expressed
protein to aggregate. However, in cells with non-aggregate GFP–
WDR62-N, we observed GFP–WDR62-N localization to the

mitotic spindle albeit with reduced efficiency compared to full-
length GFP–WDR62 (GFP–WDR62-FL; Fig. 8F). In contrast,
GFP–WDR62-C failed to localize to the mitotic spindle
(Fig. 8F). These observations indicate a requirement for the N-

terminal domains of WDR62 in its mitotic localization.

We lastly sought to identify the contribution of JNK-mediated
WDR62 phosphorylation to spindle regulation. Chemical

inhibition of JNK during mitosis caused spindle abnormalities
and centrosome attachment defects reminiscent of WDR62
depletion (supplementary material Fig. S7C). To determine the

contribution of JNK signaling to WDR62 specifically, we
performed rescue experiments. WDR62 depletion in Ad293
cells resulted in abnormal metaphase spindles as similarly
observed in HeLa cells (Fig. 8G). Importantly, the concomitant

expression of siRNA-resistant GFP–WDR62-FL reversed the
frequency of the spindle defects in WDR62-depleted cells
confirming siRNA effects were specific to WDR62 depletion. In

contrast, expression of the JBD mutant (WDR62-FL-AXA) in
WDR62-depleted cells was without effect (Fig. 8G) despite
localization to the mitotic spindle (Fig. 8H) and comparable

expression levels (supplementary material Fig. S7B). Thus, our
studies show JNK-mediated phosphorylation of the WDR62 C-
terminus is dispensable for its spindle localization but required for

WDR62 functions in maintaining metaphase spindle architecture.

Discussion
Our combined in vitro and in vivo studies are consistent in

identifying a mitotic role for WDR62 that is critical for
neurogenesis. Specifically, we have provided the first
functional characterization of WDR62 in mitosis and revealed a

key role in metaphase spindle organization required for normal
mitotic progression. WDR62 has a role in stabilizing the
metaphase spindle for timely transition to anaphase but is not

required for proliferation per se in cultured cells. In contrast, we
demonstrate that WDR62 depletion impacts on the pools of self-
renewing neural progenitors leading to their reduced proliferation

in embryonic brains consistent with previously reported

expression of WDR62 in mitotic neuronal precursor cells

(Nicholas et al., 2010). One possibility is that defects in the

timing of mitosis and/or spindle orientation following WDR62-

depeletion impacts specifically on cortical neurogenesis. Indeed,

centrosome-directed spindle orientation has been suggested as a

critical determinant for asymmetric division of neuroprogenitors,

a necessary property for their self-renewal within the germinal

compartment of the embryonic nervous system (Lesage et al.,

2010). This is compatible with the notion that centrosome-

associated mitotic defects during neurogenesis may underlie the

clinical manifestation of WDR62 mutations in MCPH (Nicholas

et al., 2010; Yu et al., 2010).

Our analysis of WDR62 intracellular distribution and cellular

functions reinforces the association of MCPH with centrosome-

associated proteins and highlights the role of spindle pole

integrity in neurogenesis (Thornton and Woods, 2009). The

prominent spindle pole localization of WDR62 is shared by

another MCPH protein, abnormal spindle microcephaly related

gene (ASPM) (Higgins et al., 2010; Pulvers et al., 2010). In

contrast, other MCPH proteins, microcephalin, cdk5rap2,

CENPJ, CEP152, and STIL are principally centrosomal in their

localization (Delattre et al., 2004; Fong et al., 2008; Varmark

et al., 2007; Zhong et al., 2006). Interestingly, ASPM and

WDR62 are most frequently mutated in MCPH accounting for

50% and 10% of cases, respectively (Thornton and Woods,

2009). We have demonstrated spindle orientation defects as a

consequence of WDR62 depletion in cultured human cells. The

depletion of ASPM in cultured cells has revealed similar

requirements for spindle organization and spindle positioning

(Higgins et al., 2010). Moreover, the loss of ASPM in embryonic

mice resulted in premature cell cycle exit due to altered cleavage

plane orientation in dividing neuroprogenitors (Fish et al., 2006).

The shared depletion phenotypes of WDR62 and ASPM suggest

that mitotic spindle and cleavage plane positioning may represent

a mechanism that links these proteins that are most commonly

mutated in MCPH.

The molecular basis that underlies the development of MCPH

may also involve the disruption and/or dysfunction of

centrosomes (Thornton and Woods, 2009). The depletion of

PCM proteins cdk5rap2 or pericentrin, with the latter also

genetically linked to primordial dwarfism with associated

microcephaly, similarly altered neuroprogenitor division in

embryonic mouse brains with reduced cell proliferation and

enhanced cell cycle exit (Buchman et al., 2010; Lizarraga et al.

2010). However, unlike MCPH proteins (cdk5rap2, CENPJ,

STIL, Cep152, Cep135 and Cep63) with well characterized

functions in centriole duplication (Barrera et al. 2010; Delattre

et al., 2004; Hatch et al., 2010; Hussain et al., 2012; Sir et al.,

2011; Vulprecht et al., 2012), we have demonstrated that WDR62

is not principally a centrosome protein and its depletion did not

obviously impact on centrosome number or structure during

interphase. We cannot completely exclude WDR62 functions as

an integral centrosomal protein. However, the WDR62 depletion

phenotype was observed specifically during metaphase and

coincided with its most prominent spindle localization. Thus,

centrosome/spindle defects in WDR62 knockdown cells were

likely the result of the loss of spindle localized WDR62 during

mitosis. Specifically, we revealed defects with centrosome–

spindle-pole coupling in cells lacking WDR62.
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Centrosome–spindle-pole attachment defects were previously
observed with the disruption of centrosomal cdk5rap2, NUMA or

dynein/dynactin subunits (Barr et al., 2010; Morales-Mulia and
Scholey, 2005; Silk et al., 2009). Interestingly, we noted that
centrosome displacement occurred subsequent to bipolar spindle
formation suggesting that microtubule forces may underlie

centrosome uncoupling. However, WDR62 depletion did not
result in unfocused spindle poles. In addition, the spindle pole
and cortical localization of NUMA and dynein were unaltered by

WDR62 loss. Our study therefore suggests that the disruption of
centrosome–spindle coupling is linked to microtubule forces
associated with establishing spindle bipolarity and spindle

orientation but not readily explained by the mislocalization of
previously identified factors critical for spindle–centrosome
attachment.

We have additionally revealed that the PCM of uncoupled

centrosomes appeared diffuse with multiple puncta positively
stained for pericentrin. It is possible that PCM recruitment to MT
minus ends on the uncoupled spindle pole may also lead to such a

phenotype. However, disrupted centrosomes were smaller in size
and as we did not find defects in centrosome maturation or astral
microtubule formation, our findings suggest reduced centrosome

integrity in response to WDR62 knockdown. As with
centrosome/spindle pole uncoupling, defects in centrosome
integrity were observed subsequent to bipolar spindle formation

and required microtubule dynamics, which suggests that
centrosome uncoupling and fragmentation events may be
related. However, previous studies that have inactivated
cdk5rap2, NUMA or dynein have shown that loss of spindle

pole attachment does not necessarily lead to reduced centrosome
integrity (Barr et al., 2010; Morales-Mulia and Scholey, 2005;
Silk et al., 2009). Notably, NUMA and dynein/dynactin motors

perform multiple functions at several mitotic locations
(Radulescu and Cleveland, 2010). Thus, the differences in
spindle/centrosome defects may reflect different mechanisms

underlying WDR62 function in metaphase spindle maintenance
compared to previously characterized spindle pole proteins. We
propose that the spindle localization of WDR62 is required to
maintain tight centrosome–spindle-pole coupling, centrosome

integrity and the maintenance of spindle orientation that is
involved in determining cleavage plane position and division
symmetry. Disruption of these processes with WDR62 loss or

mutation may impact on self-renewing divisions in the
embryonic brain that ultimately manifests as microcephaly.

As WDR62 is a multi-functional protein with dynamic

intracellular distribution dependent on cellular context, this
raises the significant question of the range of regulatory
mechanisms for its actions. Our study has now provided first

insights into the mechanisms that regulate mitotic WDR62
activity. WDR62 is mitotically phosphorylated. However,
WDR62 movement to centrosomes, prior to mitotic entry,
preceded its phosphorylation. This indicates that mitotic

phosphorylation is not likely involved in regulating WDR62
movement. In support of this, the N-terminal region of WDR62,
lacking C-terminal phosphorylation sites, is sufficient for spindle

localization. Rather, WDR62 phosphorylation appears more
likely to be involved in functional regulation.

We revealed JNK contribution to mitotic WDR62

phosphorylation. WDR62 was initially characterized as a
component of the JNK signaling pathway (Wasserman et al.,
2010) and our findings demonstrate that this is maintained during

mitosis. JNK expression and activity regulates various cell cycle

stages (Kennedy and Davis, 2003; MacCorkle and Tan, 2005).

Specifically, JNK is activated during early mitotic stages and

targets substrates such as cdc25C, histone H3 and Cdh1 to

facilitate mitotic progression (Gutierrez et al., 2010a; Gutierrez

et al., 2010b; Lee and Song, 2008). JNK has also previously been

reported to be centrosome/spindle pole associated during cell

division (Huang et al., 2011; MacCorkle-Chosnek et al., 2001).

Importantly, we have now shown that JNK phosphorylation of

WDR62 is involved in spindle regulation.

There are multiple serine/threonine residues at the C-terminal

region of WDR62 that are likely JNK target sites (Wasserman

et al., 2010). Future detailed analyses should reveal those sites

critical for the mitotic activity of WDR62. However, we have

taken advantage of the previously characterized WDR62 JBD

(Cohen-Katsenelson et al., 2011) and utilized mutations to this

motif (AXA) as a strategy to abrogate JNK signaling to WDR62.

This leaves unchanged the proline-directed serine/threonine

residues that may be additionally targeted by other mitotically

regulated kinases (e.g. cdks). WDR62-FL-AXA mutants failed to

rescue spindle abnormalities caused by endogenous WDR62

depletion highlighting JNK contribution to spindle regulation

through the targeting of WDR62. It is likely that WDR62 is

targeted by multiple kinases, particularly as JNK inhibition only

partially reverses WDR62 phosphorylation in response to M-

phase arrest. Although Plk1 and Aurora A inhibition did not

attenuate mitotic WDR62 phosphorylation, at least on residues

responsible for gel shift, this does not exclude roles for these

mitotic kinases in WDR62 regulation. However, investigations

into the precise contributions of Plk1, Aurora A and Cdk1 are

complicated by their critical requirements for bipolar spindle

formation and mitotic entry.

In targeting mitotically regulated WDR62, we have now

defined functions in centrosome/spindle organization, mitotic

regulation and neurogenesis. Our study has provided the first in

vitro and in vivo functional analysis of WDR62 and revealed

novel contributions of a JNK/WDR62 signaling mechanism

towards mitotic spindle and cell cycle regulation. Moreover,

studies in transgenic mice have demonstrated that JNK was

required for early brain development (Kuan et al., 1999). Thus,

we have revealed a novel signaling mechanism linking JNK

activity and neurogenesis that warrants further investigation.

Materials and Methods
Antibodies and reagents

Polyclonal WDR62 antibodies were from Bethyl Laboratories (A301-560A) or
Novus Biologicals (NB100-77302). CG-NAP and p150Glued antibodies were from
BD Biosciences. NUMA, dynein intermediate chain (DIC), and mouse monoclonal
(Mab414) antibodies to Nuclear Pore Complex proteins were from Abcam. a-
Tubulin antibody was obtained from Santa Cruz Biotechnology. Plk1, phospho-
TCTP (Ser46), cyclin B1 and cdc25C antibodies were from Cell Signaling
Technology. Antibodies to Ki67 and phosphorylated histone H3 were from Leica
and Merck-Millipore, respectively. Cdk1 inhibitor I and Aurora kinase inhibitor III
were from Calbiochem. Phos-tag reagent was from Wako Chemicals. Cell culture
and transfection reagents including DMEM and fetal bovine serum were from
Invitrogen-GibcoBRL. All other reagents, including thymidine, nocodazole,
hydroxyurea, monoclonal and polyclonal c-tubulin and monoclonal WDR62
(W3269) antibodies were obtained from Sigma-Aldrich. Unless specified
otherwise, immunoblot and immunofluorescence analysis were performed with
anti-WDR62 from Bethyl Laboratories.

In utero electroporation and brain slice analysis

Mice were maintained within the animal facilities at Monash University, with all
animal procedures approved by the relevant Animal Ethics Committee. In utero

electroporation was performed on pregnant, time-mated female C57/B6 mice as
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previously described (Heng et al., 2008). Mouse embryos (E14) were
electroporated with WDR62 siRNA or a non-targeting control siRNA (10 mM of
siRNA in solution) together with a GFP expression plasmid (1 mg/ml). BrdU pulse
labeling (100 mg/kg) was performed by injecting pregnant dams 24 h post-
electroporation. Following an additional 24 h, the embryonic brains were dissected
and fixed in 4% paraformaldehyde/PBS solution overnight, before washing with
PBS followed by incubation in 20% sucrose/PBS solution. Finally, the brains were
embedded in OCT and sectioned at 16 mm thickness using a cryostat (Leica) and
immunostained using previously defined protocols (Heng et al., 2008). The
ventricular zone/subventricular zone and intermediate zones were identified by
nuclei density and images were acquired on a confocal microscope. Cell counts
were performed on representative fields followed by statistical analysis
(GraphPad). Data presented for the in utero electroporation experiments is
plotted from three or four brains per condition.

Immunofluorescence and live-cell microscopy

Cell culture and treatments were performed on uncoated glass coverslips. Cells
were washed in PBS before fixation either with 4% (w/v) paraformaldehyde
(20 min, room temperature) or cold methanol (5 min, 220 C̊). Sample preparation
was as previously described (Ng et al., 2011). Images were acquired on a Leica
TCS SP2 or SP5 confocal microscope using 10061.35 NA objectives. Unless
specified otherwise, images are maximum intensity projections of z-stacks of 8–14
sections of 0.4 mm thickness that encompasses the entire spindle. Z-stack spindle
rotation analysis was performed with ImageJ using the Z-function plug-in. Spindle
length measurements were performed on single stack images using Metamorph
software by measuring the linear distance between the apexes of bipolar spindles
poles.

Plasmids and protein purification

SiRNA-resistant full-length WDR62 (WDR62-FL) was codon optimized and
synthesized by GeneArt (Invitrogen). WDR62 truncation mutants (WDR62-N,
WDR62-C) were generated by PCR and, along with full-length WDR62,
labeled with GFP or Myc tag by cloning into pEGFP-N3 or pXJ40-Myc
vectors, respectively. WDR62-FL-AXA and WDR62-C-AXA (L1299A/L1301A)
mutations were generated by site-directed mutagenesis. For recombinant protein
expression, WDR62 cDNAs were cloned into pGEX-6P-1 to generate GST
fusions. Where specified, the GST tag was removed with Precision Protease
cleavage. HA–JNK1 was made by subcloning PCR amplified Jnk1a1 into pXJ41-
HA. Active JNK1 was generated using baculoviral expression in insect cells as
described previously (Ngoei et al., 2011). All constructs were subjected to
restriction digestion and full sequencing analysis prior to use. GFP–centrin1
encoded in pCMV6 vector was obtained from Origene.

RNAi

ON-TARGETPlus human WDR62 siRNA, mouse WDR62 siRNA pool, human
Plk1 siRNA pool, non-targeting control siRNA (D-001810-01-20) and non-
targeting siRNA pool (D-001810-10-20) were obtained from Dharmacon and
resuspended in RNAase free water at 100 mM. siRNA were transiently transfected
using LipofectamineTM 2000 according to the manufacturer’s protocol.

Cell culture and transient transfection

HeLa and Ad293 were maintained in DMEM and genetically modified U2OS-
GFP–TUB1A (Sigma-Aldrich) was grown in McCoy’s 5A medium. All growth
media were supplemented with 10% fetal calf serum and 100 U/ml penicillin/
streptomycin and cells cultured in a humidified 5% CO2 environment. Liposomal-
mediated transfection was performed with LipofectamineTM 2000 and antibiotic-
free Opti-MEM medium according to manufacturer’s instructions.

Cell synchronization and cell cycle arrest

HeLa cells were synchronized by DTB or nocodazole arrest. Briefly, sub-confluent
HeLa cells were cultured in the presence of thymidine (2 mM) for 20 h before
washing with PBS (three washes) and release into normal growth medium for 6 h.
Cells were then cultured in the presence of thymidine (2 mM) for a further 20 h
before final release from late G1 arrest into normal growth medium. Cells were
then collected at specified times regular post-release for subsequent analysis. M-
phase or S-phase arrests were with nocodazole (350 nM) or hydroxyurea (2 mM)
treatment respectively for 16 h. Kinase inhibitors were applied at the time or
subsequent to cell cycle arrest as specified.

Cell lysates and immunoblots

Total cell lysates were prepared in RIPA buffer [50 mM Tris-HCl, pH 7.3,
150 mM NaCl, 0.1 mM EDTA, 1% (w/v) sodium deoxycholate, 1% (v/v) Triton
X-100, 0.2% (w/v) NaF and 100 mM Na3VO4] supplemented with protease
inhibitors and immunoblotted as previously described (Ng et al., 2010) with the
exception that protein lysates were resolved on SDS-PAGE without sample boiling
due to the heat sensitivity of WDR62 (Wasserman et al. 2010). For phosphatase
treatment, lysates were prepared in RIPA buffer lacking EDTA, NaF and Na3VO4.

Lysates (100 mg) were treated with l-phosphatase (400 U, New England Biolabs)
for 20 min at 30 C̊. For Phos-tag SDS-PAGE, gels were supplemented with a
dinuclear manganese complex of acrylamide-pendant Phos-tag ligand (Mn2+-Phos-
tag; 50 mM).

In vitro kinase assay

Purified recombinant protein substrate (10 mg) was incubated with active kinase
(10 ng), and 32P-radiolabeled ATP ([c32-P]ATP, 1 mCi/reaction) in a kinase
reaction buffer (20 mM HEPES pH 7.6, 20 mM MgCl2.6H2O, 75 mM ATP,
20 mM b-glycerophosphate and supplemented with 25 mM Na3VO4 and 100 mM
DTT) over a 120 min time course at 30 C̊. Reactions were stopped with the
addition of Laemmli sample buffer. Samples were then resolved by SDS-PAGE,
stained with Gelcode Blue Stain reagent and analyzed by autoradiography and
Cerenkov counting.

Microtubule regrowth assays, Eg5 inhibition and CaCl2 extraction

HeLa cells were synchronized (DTB) and released into nocodazole (350 nM, 8–
10 h). Nocodazole was removed by washing (36) with cold PBS then cold growth
medium added. Mitotic microtubules were completely depolymerized by cold
treatment (4 C̊, 30 min). Microtubule regrowth was initiated by incubating cells at
37 C̊ for between 2 and 60 min before fixation. For kinesin Eg5 inhibition, HeLa
cells were synchronized (DTB) and released into monastrol (100 mM, 8 h). To
reveal kinetochore microtubules, synchronized cells were extracted with Calcium
Extraction Buffer (1 mM CaCl2, 100 mM PIPES pH 6.8, 0.1 mM MgCl2 and 0.1%
v/v Triton X-100) for 3 min before fixing and immunofluorescence analysis.

Cell viability and cell proliferation

Cell viability was determined by labeling metabolically active cells with the
yellow tetrazolium salt, XTT {sodium 39-[1-(phenylaminocarbonyl)-3,4-
tetrazolium]-bis (4-methoxy-6-nitro) benzene sulfonic acid hydrate}, using the
XTT Kit (Roche) according to manufacturer specifications. WDR62 protein levels
were blotted in parallel to confirm WDR62 depletion. Cell numbers were counted
using a hemocytometer and Trypan Blue exclusion.
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