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ABSTRACT
Several papers have recently highlighted the possibility of measuring redshift-space distortions
from angular auto-correlations of galaxies in photometric redshift bins. In this work, we extend
this idea to include as observables the cross-correlations between redshift bins, as an additional
way of measuring radial information. We show that this extra information allows us to reduce
the recovered error in the growth rate index γ by a factor of ∼2. Although the final error
in γ depends on the bias and the mean photometric accuracy of the galaxy sample, the
improvement from adding cross-correlations is robust in different settings. Another factor
of 2–3 improvement in the determination of γ can be achieved by considering two galaxy
populations over the same photometric sky area but with different biases. This additional
gain is shown to be much larger than the one from the same populations when observed
over different areas of the sky (with twice the combined area). The total improvement of ∼5
implies that a photometric survey such as Dark Energy Survey should be able to recover γ at
the 5–10 per cent from the angular clustering in linear scales of two different tracers. It can also
constrain the evolution of f(z) × σ 8(z) in few bins beyond z ∼ 0.8–0.9 at the 10–15 per cent
level per bin, compatible with recent constrains from lower z spectroscopic surveys. We also
show how further improvement can be achieved by reducing the photometric redshift error.
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1 IN T RO D U C T I O N

Our understanding of the local Universe and the way it evolved from
small perturbations has been reshaped over the past decades with the
successful completion of vast observational campaigns for cosmic
microwave background fluctuations, large-scale structure and SNIa
distances. Yet several still open issues arose from these studies,
the most important of which is probably the late-time-accelerated
expansion of the Universe.

Hence, many other cosmic surveys are ongoing or planned for
the near future to address these questions with a set of preci-
sion measurements never achieved before. Several photometric
surveys stand out among these, such as the Dark Energy Survey
(DES),1 the Panoramic Survey Telescope and Rapid Response Sys-
tem (PanStarrs),2 the Physics of the Accelerating Universe survey
(PAU)3 and the future Large Synoptic Survey Telescope4 or the
imaging component of the ESA/Euclid5 satellite.

Redshift-space distortions (RSD; Kaiser 1987; Hamilton 1998)
can be used to understand the (linear) growth of structures, which

�
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1 www.darkenergysurvey.org
2 pan-starrs.ifa.hawaii.edu
3 www.pausurvey.org
4 www.lsst.org
5 www.euclid-imaging.net

provides a direct path to study the origin of cosmic acceleration.
On large scales, RSD arises from the coherent velocities of galaxies
and reveals how perturbations grow in time. Typically, this method
requires measuring of galaxy clustering in three dimensions (3D) in
order to sample directions parallel and transverse to the line of sight
where the effect is maximized or cancels out completely (see e.g.
Okumura et al. 2008; Cabré & Gaztañaga 2009; Guzzo et al. 2009;
Blake et al. 2011; Reid et al. 2012; Kazin et al. 2013 and references
therein).

Over the past few years, it has been however shown that the
effect of RSD is also present, albeit with a smaller contribution, in
the angular (2D) clustering of photometric galaxy samples if they
are selected in photometric redshift bins, see for instance (Nock,
Percival & Ross 2010; Crocce, Cabré, & Gaztañaga 2011a; Ross
et al. 2011). This concrete idea has been already applied to data
using a sample of photometric Luminous Red Galaxy (LRG; see
Blake et al. 2007; Padmanabhan et al. 2007; Crocce et al. 2011b;
Thomas, Abdalla & Lahav 2011).

Yet all the previous studies focused on the angular clustering
from a set of measurements of auto-correlation in one or more
redshift bins. In turn, cross-correlations have been proposed and
mostly used to test for different systematics and to calibrate redshift
distributions (see for instance Newman 2008; Thomas et al. 2011;
Benjamin et al. 2013).

Hence, the goal of this paper is, on the one hand, to extend these
analysis to include also the cross-correlations between redshift bins
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in order to account for some radial information. This is motivated by
the recent findings of Bonvin & Durrer (2011), Montanari & Durrer
(2012), Asorey et al. (2012) who show how a tomographic (2D)
study involving auto- and cross-correlations can yield similar con-
strains on cosmological parameters as a full spatial (3D) study. It is
also important because a 2D formalism can naturally combine RSD
with weak lensing (Cai & Bernstein 2012; Gaztañaga et al. 2012; de
Putter, Doré & Takada 2013; Kirk et al. 2013). This is particularly
relevant to discriminate between different models of modify gravity
and general relativity (GR) by breaking the degeneracies between
expansion history and growth of structure.

On the other hand, we will also investigate the improvements
brought by considering two different populations (and their cross-
correlations) in the likelihood analysis for the growth rate. This
is motivated by the fact that for the spectroscopic analysis, the
combination of different samples tracing the same underlying matter
fluctuations can be used to decrease sampling variance and improve
considerably the constrains in growth of structure (McDonald &
Seljak 2009; White, Song & Percival 2009; Gil-Marı́n et al. 2010).

This paper is organized as follows. In Section 2, we lay out
the methodology, including the analytical tools, the definition of
the different samples and surveys and the likelihood analysis. In
Section 3, we present our result, and in Section 4 our conclusions.

2 M E T H O D O L O G Y

Our goal is to study the effect of RSD in angular clustering, espe-
cially its usefulness to derive constrains on the growth of structure at
large scales. We study angular clustering using auto- and cross- cor-
relations between redshift bins. The inclusion of cross-correlations
between different radial shells allow us to include the radial modes
that account for scales comparable to the bin separation. On the
other hand, the angular spectra of each redshift shell includes infor-
mation mainly from transverse modes.

With the idea of a potential sample variance mitigation in the anal-
ysis, we also consider the correlation between the angular clustering
of different tracers of matter, considering them either independent
(i.e. each tracer in a different patch of the sky) or correlated (same
sky).

Throughout this paper, we use CAMB_SOURCES6 (Lewis, Challi-
nor & Lasenby 2000; Lewis & Challinor. 2007; Challinor & Lewis
2011), including cross-correlations between radial bins and the cor-
relations between different populations. Let us note that we use the
exact C� computation in CAMB_SOURCES, because in angular clus-
tering the imprint of redshift distortions affect mainly the largest
scales, which are not included when using the Limber approxima-
tion (Limber 1954; LoVerde & Afshordi 2008; Crocce et al. 2011a).
Moreover, the Limber approximations does not account for cluster-
ing in adjacent redshift bins.

2.1 Fiducial survey and galaxy samples

We start by describing the fiducial photometric survey that we as-
sume in our analysis (characterized by a redshift range and a sur-
vey area) and the different galaxy samples considered within that
volume (characterized by the bias b, the accuracy of photometric
redshift estimates σ z and their redshift distribution).

Our fiducial survey is similar to the full DES, with an area cov-
erage of one octant of the sky (i.e. fsky = 1/8) and a redshift range

6 camb.info/sources

Table 1. The different redshift bin
configurations considered in our
paper, within a photometric red-
shift range of 0.4 < z < 1.4.
We show the total number of bins
and their redshift width �z (which
evolves with redshift in the same
manner as the photo-z).

Number of bins Nz �z/(1 + z)

4 0.15
6 0.1
8 0.08
12 0.05
19 0.03

0.4 < z < 1.4. We characterize the redshift distribution of galaxies
within this survey by

dNα

dzd�
= Nα

gal

( z

0.5

)2
e−( z

0.5 )1.5

, (1)

where Nα
gal is a normalization related to the total number of galax-

ies of each population sample, denoted by α. We typically con-
sider two types of sample populations, one with bias b = 1 and
σ z = 0.05(1 + z) (Pop1) and another with b = 2 and σ z = 0.03(1 + z)
(Pop2) Banerji et al. (2008), Ross et al. (2011). For simplicity, we
consider the same redshift distribution for all samples with a fiducial
comoving number density of n(z = 0.9) = 0.023 h3 Mpc−3, unless
otherwise stated. This value corresponds to a total of ∼3 × 108

galaxies within the survey redshift range and matches the nominal
number galaxies expected to be targeted above the magnitude limit
of DES (i < 24). For more details about DES specifications, we
refer the reader to The Dark Energy Survey Collaboration (2005).

In Table 1, we show the different redshift binning schemes in
which we divide our survey prior to study the clustering either with
the auto-correlations or with the 2D tomography that also includes
the cross-correlations between bins. Note that we consider consecu-
tive bins with an evolving bin width with redshift, i.e. �z ∝ (1 + z),
to match the photometric uncertainty which also assumes a linear
evolution with redshift.

2.2 Angular power spectrum

In our analysis, we study angular clustering using the angular power
spectrum of the projected overdensities in the space of spherical
harmonics. The auto-correlation power spectrum at redshift bin i,
for a single population, is given by

Cii
� = 2

π

∫
dk k2P0(k)

(

i

l (k) + 
i,r
l (k)

)2
, (2)

where


i
�(k) =

∫
dz φi(z)b(z)D(z)j�(kr(z)) (3)

is the kernel function in real space and


i,r
� (k) =

∫
dz φi(z)f (z)D(z)

[
2l2 + 2l − 1

(2� + 3)(2� − 1)
j�(kr)

− �(� − 1)

(2� − 1)(2� + 1)
j�−2(kr)

− (� + 1)(� + 2)

(2� + 1)(2� + 3)
j�+2(kr)

]
(4)
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should be added to 
i
� if we also include the linear Kaiser ef-

fect (Fisher, Scharf & Lahav 1994; Padmanabhan et al. 2007). In
equations (3) and (4), b(z) is the bias (assumed linear and deter-
ministic), D(z) is the linear growth factor and f (z) ≡ ∂ ln D/∂ ln a

is the growth rate. Photo-z effects are included through the radial
selection function φ(z), see below.

For the case of 1 population, there are Nz auto-correlation spectra,
one per radial bin. Then, we add to our observables the Nz(Nz −
1)/2 cross-correlations between different redshift bins. These are
given by

C
ij
� = 2

π

∫
dk k2P (k)

(

i

�(k) + 
i,r
� (k)

) (



j
� (k) + 


j,r
� (k)

)
.

(5)

Therefore, we are considering Nz(Nz + 1)/2 observable angular
power spectra when reconstructing clustering information from to-
mography using Nz bins, for a single tracer.

If we combine the analysis of two tracers, α and β, the angular
power spectrum is given by

C
iαjβ

� = 2

π

∫
dk k2P (k)

(



iα
� (k)

+ 

iα,r
� (k)

) (



jβ

� (k) + 

jβ,r

� (k)
)

, (6)

where 
i
� and 
i,r

� characterize each galaxy sample through the ra-
dial selection function φi(z) and the bias b(z) in expressions (3) and
(4). We use the general notation where C

iαjβ

� is the correlation be-
tween redshift bin i of population α with redshift bin j of population
β. By definition,

C
iαjβ

� = C
jβ iα
� (7)

C
iαjβ

� �= C
jαiβ
� for α �= β; i �= j . (8)

Then, the total number of observables is 2Nz(2Nz + 1)/2 if we
consider the same redshift bins configuration for both populations,
in the case in which both are correlated.

2.2.1 Radial selection functions

The radial selection functions φi in equations (2), (5) and (6) en-
code the probability to include a galaxy in the given redshift bin.
Therefore, they are the product of the corresponding galaxy red-
shift distribution and a window function that depends on selection
characteristics (e.g. binning strategy),

φα
i (z) = dNα

dz
Wi(z), (9)

where dNα/dz is given by equation (1). We include the fact that we
are working with photo-z by using the following window function:

Wi(z) =
∫

dzpP (z|zp)Wph
i (zp), (10)

where zp is the photometric redshift and P(z|zp) is the probability
of the true redshift to be z if the photometric estimate is zp. For
our work, we assume a top-hat selection W

ph
i (zp) in photometric

redshift and that P(z|zp) is Gaussian with standard deviation σ z.
This leads to

φα
i (z) ∝ dNα

dz

(
erf

[
zp,max − z√

2σα
z

]
− erf

[
zp,min − z√

2σα
z

])
, (11)

where zp, min and zp, max are the (photometric) limits of each redshift
bin considered and σα

z is the photometric redshift error of the given
population α at the corresponding redshift.

2.2.2 Covariance matrix of angular power spectra

We assume that the overdensity field is given by a Gaussian distri-
bution and therefore, the covariance between correlation C

iαjβ

� and
correlation C

pαqβ

� is given by

Cov�,(iαjβ )(pμqν ) = C
obs,iαpμ

� C
obs,jβ qν

� + C
obs,iαqν

� C
obs,jβpμ

�

N (l)
, (12)

where N(�) = (2� + 1)��fsky is the number of transverse modes at
a given � provided with a bin width ��. We set �� = 2/fsky, the
typically chosen value to make Cov block-diagonal (Cabré et al.
2007; Crocce et al. 2011a). In this case, bins in � are not correlated
between them.

Therefore, for each � bin, we define a matrix with 2Nz(2Nz + 1)/2
rows, where Nz is the number of redshift bins, taking into account the
covariances and cross-covariances of auto- and cross-correlations
between each population and among them. In order to include ob-
servational noise, we add to the auto-correlations of each population
in equation (12) a shot noise term

C
obs,iαjβ

� = C
iαjβ

� + δiαjβ

1
Ngal(jβ )

��

(13)

that depends on the number of galaxies per unit solid angle included
in each radial bin. We define the χ assuming the observed power
spectrum Cobs

� corresponds to our fiducial cosmological model dis-
cussed in Section 2.3, while we call Cmod

� the one corresponding to
the cosmology being tested

χ2 =
∑

�

(
Cobs

� − Cmod
�

)†
Cov−1

�

(
Cobs

� − Cmod
�

)
. (14)

2.3 Cosmological model and growth history

Throughout the analyses, we assume the underlying cosmological
model to be a flat � cold dark matter (�CDM) with cosmological
parameters w = −1, h = 0.7, ns = 0.95, �m = 0.25, �b = 0.045
and σ 8 = 0.8. These parameters specify the cosmic history as well
as the linear spectrum of fluctuations P0. In turn, the growth rate
can be well approximated by

f (z) ≡ �m(z)γ (15)

and γ = 0.545 for �CDM. Consistently with this, we obtain the
growth history as

D(z) ≡ exp

[
−

∫ z

0

f (z)

1 + z
dz

]
(16)

(where D is normalized to unity today). The parameter γ is usually
employed as an effective way of characterizing modified gravity
models that share the same cosmic history as GR but different
growth history (Linder 2005). Our fiducial model assumes the GR
value γ = 0.545. In order to forecast the constrains on γ , we
consider it as a free parameter independent of redshift.

With these ingredients, we do a mock likelihood sampling in
which we assume that the theoretical values for the correlations at
the fiducial value of the parameters corresponds to the best-fitting
position. The likelihood is based on the χ2 given in equation (14).
In our case, we keep fixed all the parameters and only allow γ to
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Figure 1. The gain from adding redshift-bins cross-correlations. Dashed
lines show the expected 1σ constrains in γ from the combined analysis
of angular auto-correlation in photo-z bins spanning 0.4 < z < 1.4, as a
function of the bin width �z/(1 + z) (see Table 1 for the corresponding
total number of bins). Different colours correspond to different populations
with bias and σz as labelled. Solid lines show, for each population, the
same study but also including all the cross-correlations between bins (and
their complete covariance). For optimal bin widths �z � σz, the gain from
including cross-correlations is ∼2 or better.

vary, and then we estimate 68 per cent confidence limits of it. In the
case in which we show constrains on fσ 8, we vary this quantity (that
now depends on redshift, thus the number of fitting parameters is a
function of the bin configuration), fixing the rest of parameters. The
maximum � considered in the analysis is �max = r(z̄Survey)kmax ∼
220 for kmax = 0.1 h Mpc−1, while for the largest scales, we set
lmin = 2. We had to adapt CAMB_SOURCES in order to constrain γ or
fσ 8 using the same technique described in the appendix A of Asorey
et al. (2012).

3 R ESULTS

In this section, we discuss the constrains on the growth index, γ

defined in equation (15) as obtained for the different redshift bin
configurations of Table 1. First of all, we study how well we can
determine γ using different single galaxy populations but including
as observables also the cross-correlation between bins (for a given
single population). We also study how the constrains depend on
the bias and in the photometric redshift accuracy of the different
galaxy samples. Then, we study the precision achievable when one
combines different tracers in the analysis and how this depends on
bias, photo-z and in particular, the shot-noise level of the sample.

Lastly, we discuss the constrains that we obtain when looking into
the more standard f(z)σ 8(z) as a function of redshift, and consider
auto- and cross-correlations of one or two galaxy samples.

3.1 RSD with a single photometric population

Let us first consider the constrains on the growth index using single
photometric populations. Fig. 1 shows the 1σ errors expected on γ

from a combined analysis of all the consecutive photometric redshift

bins in the redshift range 0.4 < z < 1.4 as a function of the bin width
(i.e. each of the configurations detailed in Table 1).7

In red we show the constrains on γ corresponding to an LRG-type
sample, with bias b = 2 and a photometric redshift σ z/(1 + z) = 0.03
(Pop2). Blue lines correspond to an unbiased population with
σ z/(1 + z) = 0.05 (Pop1).

Dashed lines correspond to the case in which we only use the auto-
correlations in each redshift bin while solid lines corresponds to the
full 2D analysis that includes all the cross-correlations in our vector
of observables. Recall that in the first case the cross-correlations
are included in the covariance matrix of the auto-correlations (but
not as observables). We see that constrains from a full 2D analysis,
including auto- and cross-correlations are a factor ∼2 or more better
than those from using only auto-correlations.

From Fig. 1, it is clear that in all cases the bin configuration
can be optimized, with the best results obtained when �z ∼ σ z.
In addition, there is a competing effect between σ z and bias. For
broad bins (�z � σ z), the photo-z of the populations is masked in
the projection and the bias dominates the γ constrains. Smaller bias
gives more relevance to RSD and better γ constrains. As one de-
creases the bin width, the population with better photo-z (typically
the brighter, with higher bias), denoted Pop2, allows a more detailed
account of radial modes improving the derived errors on γ more
rapidly than Pop1 until they become slightly better. This optimiza-
tion is possible until one eventually reaches bin sizes comparable to
the corresponding photo-z (what sets an ‘effective’ width) and the
constrains flatten out.

In Fig. 2, we study in more detail the dependence of constrains
with respect to galaxy bias b and photo-z accuracy. In the top panel
of Fig. 2, we show standard deviation of the growth index, �γ ,
fixing the sample bias to b = 1 and allowing two values for photo-z
accuracy. Red line represents a sample in which σ z/(1 + z) = 0.05
while blue line has an error of σ z/(1 + z) = 0.03. In both cases,
the constrain flattens once �z ∼ σ z and the optimal error improves
roughly linearly with σ z. The dependence on the linear galaxy bias,
b, is shown in the bottom panel of Fig. 2 (for fixed σ z). We see that
the constrains degrade almost linearly with increasing bias (see also
Ross et al. 2011). As discussed before, this is because the lower the
bias the larger the relative impact of RSD, which results in better
constraints on γ .

In summary, we have shown that using the whole 2D tomog-
raphy (auto+cross-correlations) allows considerable more precise
measurements of γ , a factor of 2 or better once the bin width is op-
timal for the given sample. Hence in what follows, we concentrate
in full tomographic analysis.

3.2 RSD with two photometric populations

We now turn to an analysis combining two galaxy populations as
two different tracers of matter. In Fig. 3, we compare the constrains
from single tracers with respect to the combination of both. As
before, the populations used in the comparison correspond to b = 1
and σ z/(1 + z) = 0.05 (Pop 1) and a population with b = 2 and
σ z/(1 + z) = 0.03 (Pop 2). Their respective constrains in γ are the
dashed red and blue lines (same as solid lines in Fig. 1).

If we combine both tracers and their cross-correlation in the same
analysis, we obtain the constrains given by black solid line, notably

7 Note that different redshift bins can be strongly correlated depending on
bin width and photo-z. We do include this covariance.
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Figure 2. Dependence on photo-z (top panel) and bias (bottom panel) for a
one-population constrains in γ , as a function of bin width (same as in Fig. 1).
The panels show that lower b and/or lower σz yields better constrains in γ .
This is hence a competing interplay because lower b would correspond to a
fainter sample with typically worse photometric errors. The dependence on
bias seems however slightly stronger.

a factor of 2–3 better compared to the optimal single population
configuration.

In order to understand how much of this gain is due to ‘sample
variance cancellation’, in analogy to the idea put forward in Mc-
Donald & Seljak (2009), we also considered combining the two
samples assuming that they are located in different parts of the sky
(and hence un-correlated). We call this case Pop1+Pop2 in Fig. 3
(solid green line). In such scenario, the total volume sampled is the
sum of the volumes sampled by each population (in our case, two
times the full volume of DES). This explains the gain with respect
to the single population analysis. None the less, the ‘same sky’ case
Pop1 × Pop2 (where cosmic variance is sampled twice) still yields
better constrains, a factor of ∼1.5–2, even though the area has not
increased w.r.t. Pop1 or Pop2 alone.

In all, the total gain of a full 2D study with two populations
(including all auto- and cross-correlations in the range 0.4 <z< 1.4)
w.r.t. the more standard analysis with a single population and only
the auto-correlations in redshift bins (dashed lines of Fig. 1) can
reach a factor of ∼5.

As a next step, we show how the combined analysis of two
tracers depends on the relative difference on the bias and photo-
z errors of the populations. In Fig. 4, we keep Pop1 fix (with
b = 1 and σ z/(1 + z) = 0.05) and we vary the bias of Pop2
from b = 2 (LRG-type bias) to b = 3 (galaxy clustering like). We

Figure 3. The gain from combining galaxy populations: comparison of the
68 per cent standard deviations in the growth index from single population
analysis (dashed lines) with respect to the combined analysis of these two
populations over the same field (black solid), using all the angular auto- and
cross-correlations. Remarkably, the combination yields errors at least two
times better than any of the single population cases. The solid green line
corresponds to the combination of the two samples assuming that they are
independent (i.e. from different parts of the sky). As shown, the combination
of correlated populations (same sky) yield stronger constrains than any other
case.

Figure 4. Dependence on bias. Increasing the bias difference between the
samples improves the constrains on γ . The solid black line corresponds to
the combination Pop1 × Pop2 of a highly biased sample such as LRGs
(Pop2) with an unbiased one (Pop1), while the blue dashed to cluster-like
bias tracer as Population 2.

keep σ z/(1 + z) = 0.03 fixed for Pop2. As expected, increasing the
bias difference between the samples improves the constrains on γ

in a roughly linear way.
If we now have an unbiased tracer and a highly biased one with

b = 3, while both tracers have the same σ z/(1 + z) = 0.03, we
obtain constrains given by the black line in Fig. 5. Those constrains
are better than the case in which the unbiased galaxies photo-z is

MNRAS 445, 2825–2835 (2014)
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Figure 5. Dependence on photometric redshift error. Similar to Fig. 4 but
now changing the photo-z of the unbiased sample (Pop1) for a fixed second
population. The error on γ depend roughly linear with σz/(1 + z) for optimal
bin widths.

worse, σ z/(1 + z) = 0.05 (given by the dashed blue line). Therefore,
if we determine photometric redshifts of the unbiased galaxies with
higher accuracy, we will be able to measure the growth rate with
higher precision.

One caveat so far is that we have always assumed that biases are
perfectly known (bias fixed). Hence, in the top panel of Fig. 6 we
show how the constrains on γ change if we instead consider them
as free parameters and marginalize over. We see that the difference
is very small, in particular once the bin configuration is optimal.
The reason for this is clear from the bottom panel that shows the
relative error obtained for the bias of each sample in the bias free
case. Because the bias is so well determined (sub-percent), the
marginalization over them does not impact the error on γ .

3.2.1 The impact of photo-z uncertainties

The constrains on growth of structure presented in this paper rely
to a good extent on cross-correlations between redshift bins, in
turn largely determined by the overlap of the corresponding red-
shift distributions. So far, we have assumed a perfect knowledge
of these distributions, given by equation (11). However, in a more
realistic scenario, the distribution of photometric errors, and hence
redshift distributions, will be known only up to some uncertainty. In
this section, we investigate the impact of such uncertainties in the
constraining power on growth rate by marginalizing over redshift
distributions.

For concreteness, we focus in a case with only two redshift bins
with zmean = {0.78, 0.96} and width �z/(1 + z) = 0.1). In our
framework, redshift distributions are characterized by a width, given
by σ z in equation (11), and set of minimum and maximum values
for the photometric top-hat selection that determine the mean red-
shift zmean = (zp, min + zp, max)/2. Thus, to marginalize over miss-
estimations of photometric errors, the ‘width’ of n(z), we vary σ z. To
marginalize over the ‘mean redshift’ of n(z), we shift both zp, min and
zp, max by the same amount. This procedure automatically changes
either the width or the location of the underlying redshift distribu-
tion. Effectively, it also marginalizes over the amount of bin-overlap.
In what follows, we do not put priors on any parameter.

Fig. 7 shows the 1σ contours of the growth rate index γ ,
the mean redshift of the second bin and the width of the

Figure 6. Bias free case: if the biases of the samples are free parameters
to marginalize over, we find that constrains on γ degrade only slightly
compared with the bias fixed case. In particular for the thinner redshift bins
configurations. This is because biases are determined with relative errors
smaller than 1 per cent (bottom panel).

photometric error at this bin for the bright population with b = 2 and
σ z/(1 + zmean) = 0.03 (Pop 2). For this first case, we have chosen to
set zbin1

p,max = zbin2
p,min as we marginalized over mean redshift of bin 2.

This means that we are also changing the width and location of the
redshift distribution of bin 1 (while the amount of bin-overlap is set
by the nuisance variable σ bin2

z ). From Fig. 7, we find that marginal-
izing over zmean and σ z increases the best-fitting bin width above the
fiducial value by 10 per cent but it does not bias the recovered growth
rate index (neither the mean redshift). The error on γ increases by
about 10 per cent when marginalizing over the zmean and σ z of bin
2, compared with the case with fixed zmean and σ z (represented by
dashed lines in Fig. 7). In turn, the marginalization shows that σ z

and zmean are slightly correlated (bottom-right panel of Fig. 7). We
performed the same marginalization for the population with b = 1
and σ z/(1 + z) = 0.05 (Pop 1), finding similar conclusions (γ is
recovered unbiased, with an error 14 per cent worse).

We also considered what happens if we do not keep both bins
sharing the same boundary in photo-z space. In this case, the redshift
distribution of bin 1 is kept totally fixed through marginalization of
nbin2(z) and the bin-overlap is changed by both zmean and σ z of bin
2. In this case, we find a smaller correlation between zmean and σ z
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Figure 7. The impact of photo-z uncertainties on growth rate measure-
ments. We considered a case with only two redshift bins, with fiducial
zmean = {0.78, 0.96} for a population with b = 2 and σz/(1 + z) = 0.03
where the location (zmean) and width (σz) of the redshift distribution of
the second bin are free parameters (in addition to γ ). The figure shows
the 68 per cent confidence regions for γ , zmean and σz. Black dashed lines
enclose the 1σ region when γ is the only free parameter. Blue ‘+’ mark-
ers correspond to fiducial values while green ‘x markers correspond to the
best-fitting value after marginalizing over the remaining parameter. The
marginalized error in γ increases by 10 per cent with respect to perfectly
known redshift distributions (dashed lines). In turn, the best-fitting γ is
unbiased (see text for further cases).

and also a smaller marginalized error on zmean. The marginalized
error on γ increases by 9 per cent when considering Pop1 and only
6 per cent for Pop2, while the best-fitting value is always recovered
un-biased.

A full analysis on how to optimize and marginalize the photo-
z uncertainties using more realistic photometric errors is beyond
the scope of this paper. But the results presented in this section,
and Fig. 7, indicate that it is possible to account for such uncer-
tainties without a major loss in constraining power on growth rate
measurements.

3.2.2 The impact of shot-noise

One strong limitation when it comes to implementing the ‘multiple
tracers’ technique in real spectroscopic data is the need to have all
the galaxy samples well above the shot-noise limit (at the same time
as having the largest possible bias difference), see for instance Gil-
Marı́n et al. (2010). This is cumbersome because spectroscopic data
are typically sampled at a rate only slightly above the shot-noise
(to maximize the area) and for pre-determined galaxy samples (e.g
LRGs, CMASS). In a photometric survey, these aspects change rad-
ically because there is no pre-selection (beyond some flux limits)
and the number of sampled galaxies is typically very large (at the
expense of course of poor redshift resolution). Therefore, it is inter-
esting to investigate if the overall density of the samples have any
impact in our results.

Fig. 8 shows the constrain in γ for the combination of two sam-
ples, one unbiased population with σ z/(1 + z) = 0.05 and a popula-
tion with b = 2 and σ z/(1 + z) = 0.03. We keep the number density
for the unbiased population as n(z = 0.9) = 1.8 × 10−2 h3Mpc3

while we vary the number density of the second (typically brighter)

Figure 8. The impact of shot noise: we consider the combined analysis of
two populations in a redshift bin configuration of �z/(1 + z) = 0.05 and
show how constrains on γ depend on the (shot) noise level of the more
biased population (typically the brighter, less abundant sample). Constrains
are almost un-affected unless the density drops by an order of magnitude or
more compared to the one of Pop1 (n2 = 0.023 h3 Mpc−3).

sample.8 The solid black line corresponds to the case in which both
populations are correlated (same sky) and the dashed blue line to
different areas. In both scenarios, we see that decreasing the num-
ber density of the second population does not impact the error on
γ unless one degrades it by an order of magnitude or more (below
n(z = 0.9) ∼ 3.0 · 10−3). Above this value, the error is mostly
controlled by the tracer with lower bias.

3.2.3 Marginalizing over power spectrum shape

In the analysis presented so far, we have assumed a perfect knowl-
edge on the shape of the matter power spectrum and hence of the
underlying cosmological parameters. However, it is important to
explore possible degeneracies between the parameter we base on
for RSD, namely γ , and other cosmological ones. While we leave a
full exploration of degeneracies for a follow-up paper, we now study
the impact of varying the shape of the power spectrum in addition
to γ . We do this by considering the matter density �m as a nuisance
parameter to marginalize over. By doing so, we are mostly studying
the effect of the matter power spectrum shape in the analysis.

For concreteness, we focused on the binning configuration with
�z/(1 + z) = 0.1 (6 bins). Fig. 9 shows the contour plots of the
posterior distribution in the �m − γ for Pop1 (unbiased with bad
photo-z), Pop2 (biased with good photo-z) and Pop1× Pop2. We
find that there are no significant degeneracies and �m is determined
with quite good precision.

Then, if we marginalize over �m, we see that the errors on γ de-
grade a 16 per cent for an unbiased population, a 35 per cent for the
biased one while the effect when we cross-correlate both popula-
tions is only a 6 per cent worse error on γ . Therefore, the conclusions
obtained in previous sections are still valid, even if we allow the
shape of the matter power spectrum to change.

8 Note that we assume the same shape for N(z) as given in equation (1) but
we vary the overall normalization, which we characterize by the comoving
number density at z = 0.9.
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Figure 9. Marginalizing over the shape of P(k) : Contour plot of the poste-
rior joint distribution when we consider both γ and �m as nuisance parame-
ters. We find no significant degeneracies. The error on γ degrade 35 per cent
for Pop1, 16 per cent for Pop2 and only 6 per cent for Pop1×Pop2. These
results corresponds to a combined analysis of 6 bins with �z/(1 + z) = 0.1.

3.3 Constraining the redshift evolution of the growth rate
of structure

So far, we have used the combined analysis of all the redshift bins
to constrain one global parameter, namely the growth rate index γ

in equation (15). We now turn into constraining f(z)σ 8(z) itself, as

a function of redshift. We use a redshift bin configuration given by
�z/(1 + z) = 0.1, in the photometric range 0.4 < z < 1.4. This con-
figuration consist of six bins, and hence we fit f(z)σ 8(z) evaluated
at the mean of these bins. These fσ 8 values are of course correlated,
and we include the proper covariance among the measurements (i.e.
we do a global fit to the six values simultaneously).

In the left-hand panel of Fig. 10, we focus on the gain from
adding cross-correlations among the bins, and show the constrain
on fσ 8 for a single unbiased population with photometric redshift
of σ z = 0.05 (Pop 1, in blue) and also for a single tracer with bias
b = 2 and σ z = 0.03 (Pop 2, in red). Dashed lines corresponds
to using only auto-correlations and solid to including also all the
redshift bins cross-correlations to the observables. The trend for the
errors when we only use auto-correlations are similar to the ones
observed in fig. 8 of Ross et al. (2011). Although in detail we are
using different widths for our redshift bins, and we use C� while
they used angular correlation functions, w(θ ).

As in Section 3.1, there is a gain from the addition of cross-
correlations, which is now split across the bins (i.e. 20–30 per cent
for Pop1 in each of the six bins, and a bit less for Pop2).

In turn, the right-hand panel of Fig. 10 focuses in the gain
from combining the two tracers (and using both auto- and cross-
correlations among redshift bins, as in Section 3.2). Here, the solid
lines correspond to the single population cases discussed above,
while the black short-dashed line to the combined analysis assuming
that these populations are correlated (same sky). For completeness,
the dashed green line is the result when these two samples are as-
sumed independent. Again, there is a factor of ∼2.5 to be gained by
combining galaxy samples as opposed to only the unbiased sample.

If we compare our predictions to measurements from spectro-
scopic surveys like VIPERS (de la Torre et al. 2013) with constrains
fσ 8(z = 0.8) = 0.47 ± 0.08 or WiggleZ (Blake et al. 2011) where
fσ 8(z = 0.76) = 0.38 ± 0.04, we find that DES can achieve the
same level of errors (∼15 per cent) in determining the growth of

Figure 10. Constrains on fσ 8: derived at different redshift bins, for a bin configuration of �z/(1 + z) = 0.1. The left-hand panel focuses on one population
only fits, and the gain from using auto+cross-correlations among all redshift bins as observables instead of just the auto-correlations. The right-hand panel
stresses instead the gain from combining two populations (through their auto- and cross-correlations) either in different patches of the sky (Pop1+Pop2) or the
same (Pop1×Pop2). In all cases, Pop1 refers to a galaxy population with b = 1 and σz/(1 + z) = 0.05 and Pop2 to b = 2 and σz/(1 + z) = 0.03. The covariance
among the derived errors on f(z) × σ 8(z) is taken into account in the fit. Our results show that by using RSD with two tracers a DES-like photometric survey
can place ∼15 per cent constrains in the evolution of fσ 8 for several bins in z � 0.8 (with errors almost uncorrelated between bins, see text for details).
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structure but extending the constrains beyond redshift of unity. This
is quite unique and interesting as there is, to our knowledge, no
other spectroscopic survey expected to provide such measurements
in the medium term future (before ESA/Euclid or DESI).

3.3.1 Impact of unknown redshift distributions

In this section, we investigate the consequences of not having a
perfect knowledge of the redshift distributions used to project the
3D clustering into tomographic bins. For concreteness, we do this
by investigating how the error on fσ 8 resulting from a single bin at
z = 1.15 change when we also vary the assumed underlying redshift
distribution (within the binning configuration of �z/(1 + z) = 0.1).
We note that in doing this we consider the full covariance with
adjacent bins while the explored parameter space consist of three
values of f(z)σ 8(z) (at z = 1.05, 1.15, 1.36) and either the mean or
the width of N(z) for the central bin at z = 1.15.

We first concentrated in marginalized over the mean redshift
of the assumed N(z) for the central bin assuming a flat prior of
3 per cent around zmean = 1.15. We have repeated this for all the
cases explored in Fig. 10, namely we consider populations 1 and 2
individually and then the same sky and different sky combinations
of both populations. We have not found significant changes with
respect to the results in previous sections finding differences smaller
than 1 per cent for the cases with individual populations and less than
5 per cent for the case in which we combine the two populations.

Then, we marginalize over photometric errors and we find differ-
ences smaller than 1 per cent in the recovered constrains in f(z)σ 8(z)
with respect to the case in which we assume perfect knowledge of
the redshift distributions. For concreteness, we did this cross-check
for the case Pop1×Pop2 in last two redshift bins shown in Fig. 10.

3.4 The case of high-photometric accuracy

In the previous sections, we have focused in galaxy surveys with
broad-band (BB) photometry for which the typical photometric er-
ror achieved is of the order of 0.1 depending on galaxy sample and
redshift.9 We now turn to narrow-band (NB) photometric surveys
such as the ongoing PAU or J-PAS Surveys (Benitez et al. 2009; Cas-
tander et al. 2012; Gaztañaga et al. 2012; Taylor et al. 2014). These
surveys are characterized by a combination of tens of NB filters
(∼100Å) and few standard BB in the optical range. In the concrete
case of PAU, the NB filters are 40 in total ranging from ∼4400 to
∼8600Å that will perform as a low-resolution spectrograph. With
the current survey strategy, it will obtain accurate photometric red-
shifts for galaxies down to iAB ∼ 22.5 for which the typical redshift
accuracy will be 	 0.003(1 + z) (or 10h−1 Mpc). This scenario then
resembles quite closely a purely spectroscopic survey (Asorey et al.
2012). However, the expected density of this sample is ∼10 000
galaxies per deg2, much denser than any spectroscopic surveys to
the same depth.

We do not aim here at giving a forecast for PAU but rather at in-
vestigating the issue of combining samples with high-photometric
accuracy. Hence, we will assume the same overall redshift distribu-
tion as in Section 2.1 but consider only a total 50 × 106 galaxies
within 5000 deg2. This is in broad agreement with PAU specifica-
tions (see Castander et al. 2012; Gaztañaga et al. 2012 for further
details).

9 We assumed 0.03 − 0.05 (1+z).

Table 2. Error in the growth rate γ from a combination of 21
narrow bins in the range 0.94 < z < 1.06. The four top entries
correspond to a Survey with BB filters: Pop1-BB assumes b = 1
and σz/(1 + z) = 0.05 (‘main sample’) while Pop2-BB has b = 2
and σz/(1 + z) = 0.03 (‘LRG sample’). The four bottom entries
correspond to a Survey with NB filters. Here, Pop1 and Pop2 have
the same bias as the BB case but much precise photo-z, both with
σz/(1 + z) = 0.003.

Population b σz/(1 + z) Auto Auto + Cross
Broad Band (BB)

Pop1 1 0.05 0.809 0.564
Pop2 2 0.03 0.826 0.447

Pop1 × Pop2 – – – 0.35
Pop1 + Pop2 – – – 0.36

Narrow Band (NB)

Pop1 1 0.003 0.047 0.027
Pop2 2 0.003 0.088 0.040

Pop1 × Pop2 – – – 0.016
Pop1 + Pop2 – – – 0.023

We again study two populations, one corresponding to the
main sample with bias b = 1 and another to the LRG sam-
ple with b = 2, both with a very good photometric accuracy of
σ z/(1 + z) = 0.003. We consider a set of 21 narrow redshift bins of
width �z = 0.003(1 + z) concentrated in 0.94 < z < 1.06 (hence
we are only looking at a portion of the survey redshift range).

The error on γ are given in Table 2, for both the new NB and the
BB samples discussed previously. For a single population, this table
shows that a factor of ∼10 better σ z yields a factor of ∼10 gain in
constraining power. The improvement in γ seems to increase linear
with the improvement in σ z.

After combining the two populations, we see that the errors in γ

for the BB case is similar if samples cover the same region of sky
(Pop1 × Pop2) or different regions (Pop1 + Pop2). This is because
the redshift range considered (0.94 < z < 1.06) is too narrow com-
pared to σ z and the cosmic variance cancellation cannot take place.
Instead, for the NB surveys, we find a 43 per cent improvement for
the case Pop1 × Pop2 with respect to Pop1 + Pop2. For the same
sky case, the final error is �γ 	 0.0163 × (5000 deg2/Area)1/2, in
such a way that even a moderate survey of 250 deg2 could achieve
�γ ∼ 0.07. In that same narrow redshift range, DES yields an error
five times worse with 20 times better area (but note that in the case
of small areas, we could be limited by the �min, the largest scales
available).

4 C O N C L U S I O N S

We have studied how measurement of RSD in wide field photomet-
ric surveys produce constrains on the growth of structure, in the
linear regime. We focused in survey specifications similar to those
of the ongoing DES or PanSTARRS, that is, covering about 1/8 of
sky up to z ∼ 1.4, and targeting galaxy samples with photometric
redshift accuracies of 0.03 − 0.05(1 + z) (and hundreds of million
galaxies prior to sample selection). We also show results for ongo-
ing photometric surveys, such as PAU and J-PAS, that have a much
better photometric accuracy.

First, we have found that for a single population we can reduce
the errors in half by including all the cross-correlations between
radial shells in the analysis. This is because one includes large
scale radial information that was missed when only considering the
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auto-correlations of each bin. The final constraining power depends
on the details of the population under consideration, in particular
the bias and the photometric accuracy. Less bias gives more relative
importance to RSD in the clustering amplitudes. In turn, better
photo-z allows for narrower binning in the analysis and more radial
information. We find that the γ constrains depend roughly linearly
in both bias or σ z. This means that for 10 times better photo-z errors,
such as in PAU, we can improve by 10 the cosmological constrains.

Typically less bias implies a fainter sample, with worse photo-z,
therefore these quantities compete in determining the optimal sam-
ple. Furthermore, we find that optimal constrains are achieved for
bin configurations such that �z ∼ σ z. Although the optimal errors
depend on the details of the galaxy sample and binning strategy,
the gains from adding cross-correlations are very robust in front of
these variations.

In order to avoid sample variance, we have also considered what
happens if we combine the measurement of RSD using two different
tracers. This is motivated by the idea put forward in McDonald &
Seljak (2009) for the case of spectroscopic (hence 3D) redshift
surveys, where the over-sampling of (radial + transverse) modes
allows a much better precision in growth rate constrains, as long
as samples are in the low shot-noise limit. Combining auto and
cross angular correlations in redshift bins, we find that if we assume
that both tracers are independent, which corresponds to samples
from different regions on the sky, the constrains on the growth
of structure parameters improve a 30–50 per cent (due to the fact
that one has doubled the area). Remarkably, if we consider that
the populations are not independent, i.e. they trace the same field
region, we find an overall improvement of ∼2–3 with respect to
single populations when constraining γ . This means that there is
a large potential gain when sampling the same modes more than
once.

Translating into actual constrains, this implies that a DES-like
photometric survey should be able to measure the growth rate of
structure γ to an accuracy of 5–10 per cent from the combination
of two populations and all the auto+cross-correlations in the range
0.4 < z < 1.4 (see Fig. 1). Even though these values correspond
to a survey of 5000 deg2 (fsky = 0.125) they should scale as f

−1/2
sky

for a different area, given our assumptions for the covariance in
equation (12).

In Fig. 8, we have shown that constrains weaken once one of the
populations enter a shot-noise-dominated regime, as is typical of
spectroscopic samples. However, one needs to dilute over 10 times
the number densities for a photometric survey, such as DES, for this
to happen. Thus, as shown in Section 3.4, by improving on photo-z
accuracy without much loss of completeness, a photometric sample
can in fact outperform a diluted spectroscopic version with similar
depth and area (see also Gaztañaga et al. 2012). In this paper,
we focused on large angular scales where the approximation of
linear and deterministic bias and linear RSD should hold (see for
instance Crocce et al. 2011a). Although we set �max ∼ 200, much
of the constraining power in our results, given the typical size of
our redshift bins, comes from larger scales, � � 40. Yet, a more
realistic assessment of these aspects will need to resort to numerical
simulations. We leave this for future work.

Lastly, we also investigated what constrains can be placed with
this method in the evolution of the growth rate of structure,
f(z) × σ 8(z). We found that binning two DES populations into
six bins in the range 0.4 < z < 1.4 yields constrains on f(z) × σ 8(z)
of ∼15 per cent for each bin above z ∼ 0.6. This is shown in Fig. 11.
That case corresponded to bin widths larger than the photometric
errors of the samples, which may not be optimal but yield con-

Figure 11. Combined constrains in the evolution of the growth rate of struc-
ture from spectroscopic data, 2dFGRS, SDSS-LRGs, Wiggle-Z, VIPERS
and BOSS (see text for details), and forecasted for DES using two photo-
metric populations (same as in Fig. 8). The addition of DES (shaded area)
allows us to trace the growth rate of structure all the way to z ∼ 1.4.

strains almost uncorrelated between bins (ρ ij ∼ −0.05).10 A nar-
rower binning, �z/(1 + z) = 0.05 leads to better constrains per bin,
�(fσ 8) ∼ 10 per cent, at the expense of more correlation between
bins, 0.2 < ρ ij < 0.65.

In addition to the DES forecast (shadowed region), we overplot
in Fig. 11 current constrain from spectroscopic surveys, 2dFGRS
(Percival et al. 2004), LRG’s from SDSS (Tegmark et al. 2006;
Cabré & Gaztañaga 2009), WiggleZ either from power spectrum
(Blake et al. 2011) or correlation function (Contreras et al. 2013),
and the recent VIPERS, (de la Torre et al. 2013) and BOSS results
(Samushia et al. 2014). Note that these values are not expected to
improve radically in the near future. This implies that DES will be
able to add quite competitive constrains in a redshift regime unex-
plored otherwise with spectroscopic surveys (i.e. z � 1), yielding
a valuable redshift leverage for understanding the nature of dark
energy and cosmic acceleration through the growth of structure.
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for f × σ 8.
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Asorey J., Crocce M., Gaztañaga E., Lewis A., 2012, MNRAS, 427, 1891
Banerji M., Abdalla F. B., Lahav O., Lin H., 2008, MNRAS, 386, 1219
Benitez N. et al., 2009, ApJ, 691, 241
Benitez N. et al., 2013, MNRAS, 431, 1547
Blake C., Collister A., Bridle S., Lahav O., 2007, MNRAS, 374, 1527
Blake C. et al., 2011, MNRAS, 415, 2876
Bonvin C., Durrer R., 2011, Phys. Rev. D, 84, 063505
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Crocce M., Cabré A., Gaztañaga E., 2011a, MNRAS, 414, 329
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