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Despite its success in the weak gravity regime, general relativity (GR) has yet to be verified in the regime
of strong gravity. In this paper, we present the results of detailed ray-tracing simulations aiming at
clarifying if the combined information from x-ray spectroscopy, timing, and polarization observations of
stellar mass and supermassive black holes can be used to test GR’s no-hair theorem. The latter states that
stationary astrophysical black holes are described by the Kerr family of metrics, with the black hole mass
and spin being the only free parameters. We use four “non-Kerr metrics,” some phenomenological in nature
and others motivated by alternative theories of gravity, and study the observational signatures of deviations
from the Kerr metric. Particular attention is given to the case when all the metrics are set to give the same
innermost stable circular orbit in quasi–Boyer-Lindquist coordinates. We give a detailed discussion of
similarities and differences of the observational signatures predicted for black holes in the Kerr metric and
the non-Kerr metrics. We emphasize that even though some regions of the parameter space are nearly
degenerate even when combining the information from all observational channels, x-ray observations of
very rapidly spinning black holes can be used to exclude large regions of the parameter space of the
alternative metrics. Although it proves difficult to distinguish between the Kerr and non-Kerr metrics for
some portions of the parameter space, the observations of very rapidly spinning black holes like Cyg X-1
can be used to rule out large regions for several black hole metrics.
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I. INTRODUCTION

In the early 1900s, Albert Einstein proposed his now
famous theory of general relativity. Since its introduction,
general relativity (GR) has been tested extensively in our
Solar System. GR has passed all tests with remarkable
accuracy, including but not limited to the perihelion shift of
Mercury, the deflection of light passing near the Sun, and
the Shapiro time delay. These tests were extended beyond
the Solar System with the discovery of the Hulse-Taylor
binary pulsar where the decay rate of the orbital period was
found to be consistent with the expected decay due to the
loss of energy via gravitational waves (see [1] for a review
of the subject). However, despite all of these successes, GR
has yet to be verified in the strong gravity regime. The most
extreme gravitational fields are found near black holes
(BHs), and tests of GR near BHs have received consid-
erable attention (see [2] and references therein). Much of
this work makes use of the no-hair theorem of GR, which
states that the only stationary axially symmetric solutions
of the Einstein equations are given by the Kerr-Newman
family of metrics. In the case of astrophysical BHs with
negligible electrical charge, the Kerr solutions are para-
metrized by the BH’s geometric mass, M, and spin, a. The
tests of this theorem include using stars orbiting Sagittarius
A�, the supermassive BH in the center of the Milky Way

galaxy, to measure its angular momentum and quadrupole
moment [3]. Gravitational wave observations of merging
black holes have the potential to test strong-field GR not
only in the stationary but also in the dynamic regime [4].
The work presented in this paper makes use of several
recently proposed metrics that contain additional terms
which violate the no-hair theorem, including those of [5–8].
These metrics are used to quantify the degree to which
spectroscopic, polarimetric, and timing x-ray observations
can constrain deviations from the Kerr metric.
The spectral x-ray emission from stellar mass BHs can

be characterized by a thermal continuum emitted from the
accretion disk along with a power-law component origi-
nating from hotter—yet mostly thermal—plasma, com-
monly referred to as the corona (e.g., [9]). The power-law
emission is modeled using the equation NðEÞ ∝ E−Γ where
Γ is the photon index [10]. This emission can either travel
directly to the observer or return to the accretion disk and
lead to scattered and/or reprocessed emission. The reflec-
tion component contains the Fe-Kα line at 6.4 keV and
the Compton hump at energies greater than 20 keV. The
prominent Fe-Kα line comes from the reprocessing of
photons in the inner accretion disk and receives its
characteristic broadened profile due to gravitational red-
shift, Doppler effects, and relativistic beaming. This profile
can then be fit to determine the BH’s spin [11–13]. The
thermal emission, modeled using the prescription devel-
oped by [14] for a geometrically thin, optically thick disk,*jhoormann@wustl.edu
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can also be used to deduce the spin of stellar mass black
holes because it allows one to determine the radius of the
innermost stable circular orbit (ISCO) which is a mono-
tonic function of its spin [15,16]. In the case of super-
massive black holes, the thermal disk emission falls into the
optical/UV bands. As many different emission components
contribute to the observed emission in these bands, fitting
the Fe-Kα line is the only way to determine the spin of
these systems.
Polarimetric observations with photoelectric effect polar-

imeters like the ones used on the IXPE, PRAXyS, and
XIPE missions currently studied by NASA (IXPE [17] and
PRAXyS [18]) and ESA (XIPE [19]) or with scattering
polarimeters such as PolSTAR [20–22] provide a new way
to study the inner structure of accretion flows. Polarimeters
can provide geometrical information even though the inner
accretion flow of most black holes is too small to be imaged
with the current or even next-generation telescopes (the
only exception being the supermassive black holes Sgr A�
and M 87 which might be imaged with the Event Horizon
Telescope [23]). In the case of stellar mass black holes, the
thermal x-ray emission is expected to exhibit linear
polarization with the polarization fraction being a function
of the inclination of the inner accretion disk [24,25]. The
polarization of the Comptonized emission from the corona
depends on the scattering processes in the corona itself and
off the accretion disk. Several corona geometries have been
studied, including the lamp-post model where photons are
emitted from a point source directly above the black hole
itself [26]. Other corona models assume a wedge or
spherical corona geometry surrounding the accretion disk
(e.g., [27] and references therein).
In the past several years x-ray reverberation has come

into its own as a powerful tool to study accreting black
holes. Corona emission scattering off the accretion disk
reaches the observer with a time delay relative to the direct
corona emission. The energy dependence of the time delays
can be used to infer details about the structure of the inner
accretion flow. For a sample of active galactic nuclei
(AGN), Fe-Kα vs continuum lags have been established
along with Compton hump vs continuum lags (see [28,29]
for a review of the subject). These lags can be fit with
numerical models to deduce system parameters such as the
inclination and lamp-post height in NGC 4151 [30] and an
extended corona geometry in 1H0707-495 [31].
Several authors have used the alternative BH metrics to

find observational signatures of non-GR effects. The
following types of observations have been studied: (i) fitting
of the thermal x-ray emission from stellar mass black holes
[32–34]; (ii) fitting of the Fe-Kα line emission from stellar
mass and supermassive black holes [35–38]; (iii) spectro-
polarimetric observations of stellar mass black holes
[39,40]; (iv) observations of quasiperiodic oscillations
(QPOs) [41–43]; (v) x-ray reverberation observations
[44]; and (vi) observations of the radiatively inefficient

accretion flow around Sgr A� [45]. The studies showed that
it is very difficult to observationally distinguish between
the Kerr spacetime and the non-Kerr BH spacetimes as long
as the BH spin and the parameter describing the deviation
from the Kerr spacetime are free parameters that both need
to be derived from the observations.
Several approaches have been discussed to break the

degeneracy between the BH spin and deviation parameter
(s). In [33,46], for example, it is proposed that the BH spin
can be measured independently from the accretion disk
properties based on measuring the jet power, although this
method faces several difficulties in practice [47].
Furthermore, the observed results depend on the physics
of the accretion disk, the radiation transport around the
black hole, the physics of launching and accelerating the
jet, and the physics of converting the mechanical and
electromagnetic jet energy into observable electromagnetic
jet emission.
This paper follows up on the work of [39]. The thermal

emission from a geometrically thin, optically thick accre-
tion disk is modeled self-consistently for the Kerr metric
and the alternative metrics, and observational signatures are
derived with the help of a ray-tracing code that tracks
photons from their origin to the observer, enabling the
modeling of repeated scatterings of the photons off the
accretion disk. This paper adds to the previous work by
(i) covering the Kerr metric, the metric of Johannsen and
Psaltis [5] and three additional metrics, (ii) by modeling not
only the thermal disk emission but also the emission from a
lamp-post corona and the reprocessing of the coronal
emission by the accretion disk, and (iii) by considering
many observational channels. We analyze the multitemper-
ature continuum emission from the accretion disk, the
energy spectra of the reflected emission (including the
Fe-Kα line and the Compton hump), the orbital periods of
matter orbiting the black hole close to the ISCO, the time
lags between the Fe-Kα emission and the direct corona
emission, and the size and shape of the black hole shadows.
The rest of the paper is organized as follows. Section II

begins with a summary of the alternative spacetimes used in
this paper and goes on to discuss the model for both the
thermal and coronal emission. In Sec. III we compare the
observational signatures of the Kerr and non-Kerr metrics
finding that the observational differences are rather small
given the uncertainties about the properties of astrophysical
accretion disks. We summarize the results in Sec. IV and
emphasize that even though the Kerr and non-Kerr metrics
can produce similar observational signatures for some
regions of the respective parameter spaces, we can use
x-ray observations of black holes from the literature to rule
out large regions of the parameter space of the non-Kerr
metrics.
Throughout this paper we assume c ¼ ℏ ¼ G ¼ 1; all

distances are given in units of the gravitational radius,
rg ¼ GM=c2.
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II. METHODOLOGY

A. Alternative metrics

As a way to test the no-hair theorem of general relativity,
several non-Kerr metrics have been introduced which
contain additional parameters apart from the BH’s mass
and spin. In this paper we employ the use of four non-GR
metrics including two phenomenological metrics [5,6] and
two which are solutions to alternative theories of gravity
[7,8]. All metrics are variations of the Kerr metric in
(quasi-)Boyer-Lindquist coordinates xμ ¼ ðct; r; θ;ϕÞ.
The phenomenological metric of Johannsen and Psaltis

[5] (JP) reads

ds2 ¼ −½1þ hðr; θÞ�
�
1 −

2Mr
Σ

�
dt2 −

4aMrsin2θ
Σ

× ½1þ hðr; θÞ�dtdϕþ Σ½1þ hðr; θÞ�
Δþ a2sin2θhðr; θÞ dr

2

þ Σdθ2 þ
�
sin2θ

�
r2 þ a2 þ 2a2Mrsin2θ

Σ

�

þ hðr; θÞ a
2ðΣþ 2MrÞsin4θ

Σ

�
dϕ2 ð1Þ

with

Σ≡ r2 þ a2cos2θ ð2Þ

Δ≡ r2 − 2Mrþ a2: ð3Þ

The metric was derived by modifying the temporal and
radial components of the Schwarzschild line element by a
term hðr; θÞ. The metric does not exhibit any pathologies
outside the event horizon and can be used for slowly and
rapidly spinning black holes. Asymptotic flatness con-
strains the leading terms of the expansion of h in powers of
r and the lowest order correction reads

hðr; θÞ ¼ ϵ3
M3r
Σ2

: ð4Þ

In the limit as ϵ3 → 0 this metric reduces to the Kerr
solution in Boyer-Lindquist coordinates.
Glampedakis and Babak [6] (GB) introduced a metric for

slowly spinning black holes (a≲ 0.4). This quasi-Kerr
metric in Boyer-Lindquist coordinates is

gab ¼ gKab þ ϵhab ð5Þ

where gKab is the Kerr metric and hab is given by

htt ¼
�
1 −

2M
r

�
−1
½ð1 − 3cos2θÞF 1ðrÞ�

hrr ¼
�
1 −

2M
r

�
½ð1 − 3cos2θÞF 1ðrÞ�

hθθ ¼ −
1

r2
½ð1 − 3cos2θÞF 2ðrÞ�

hϕϕ ¼ −
1

r2sin2θ
½ð1 − 3cos2θÞF 2ðrÞ�

htϕ ¼ 0 ð6Þ

whereF 1ðrÞ andF 2ðrÞ are defined in Appendix A in [6]. It
is clear to see that Eq. (5) reduces to the Kerr metric when
ϵ → 0. The details of the JP and GB spacetimes are
described in [48].
Another solution is presented by Aliev and

Gümrükçüoǧlu [7] describing an axisymmetric, stationary
metric for a rapidly rotating black hole which is on a 3-brane
in the Randall-Sundrum braneworld. The metric turns out to
be identical to GR’s Kerr-Newman metric of an electrically
charged spinning black hole, the only difference that β is not
the electrical charge but a “tidal charge.” The metric (referred
to as the KN metric in the following) is given by

ds2 ¼ −
�
1 −

2Mr − β

Σ

�
dt2 −

2að2Mr − βÞ
Σ

× sin2θdtdϕþ Σ
Δ
dr2 þ Σdθ2

þ
�
r2 þ a2 þ 2Mr − β

Σ
a2sin2θ

�
sin2θdϕ2 ð7Þ

with Σ being the same as Eq. (2) and with
Δ ¼ r2 þ a2 − 2Mrþ β.
Pani et al. [8] (PMCC) give a family of solutions for

slowly rotating BHs derived augmenting the Einstein-
Hilbert action by quadratic and algebraic curvature invar-
iants coupling to a single scalar field. The action is given by
the expression

S ¼ 1

16π

Z ffiffiffiffiffiffi
−g

p
d4x½R − 2∇aϕ∇aϕ − VðϕÞ þ f1ðϕÞR2

þ f2ðϕÞRabRab þ f3ðϕÞRabcdRabcd

þ f4ðϕÞRabcd
�Rabcd� þ Smat½γðϕÞgνμ;Ψmat� ð8Þ

where

fiðϕÞ ¼ ηi þ αiϕþOðϕ2Þ ð9Þ

for i ¼ 1 − 4, where Smat is the matter action containing a
generic nonminimal coupling, and VðϕÞ is the scalar self-
potential. When α3 ¼ 0 the metric reduces to the one for
Chern-Simons gravity and when α4 ¼ 0 it becomes the
Gauss-Bonnet solution.
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B. Thermal accretion disk emission
and photon propagation

The code models the emission of photons and their
propagation self-consistently for the Kerr and non-Kerr
metrics [39]. The radial emission profile of the geometrically
thin, optically thick accretion disk is calculated based on the
general solution of Novikov and Thorne [14], the relativistic
extension of the Shakura-Sunyaev equations [49]. Writing
the considered Kerr or non-Kerr metric in the form

ds2 ¼ −e2νdt2 þ e2ψ ðdϕ − ωdtÞ2 þ e2μdr2 þ dz2; ð10Þ

the conservation of rest mass, angular momentum, and
energy give the following disk brightness FðrÞ in the rest
frame of the emitting plasma [50]:

FðrÞ ¼
_M0

4π
e−ðνþψþμÞfðrÞ ð11Þ

with

fðrÞ≡ −pt
;r

pϕ

Z
r

rISCO

pϕ;r

pt dr: ð12Þ

Here, _M0 is the time averaged rate of accretion. The solution
assumes a vanishing torque at the ISCO. We calculate the
rISCO by finding the location where the energy is a minimum
by solving the equation dE

dr ¼ 0 for planar, circular orbits.
We model photons emitted between rISCO and 100rg that

are tracked until they either fall into a black hole or reach a
coordinate stationary observer at r ¼ 10; 000rg. The pho-
ton trajectories are calculated by integrating the geodesic
equations:

d2xμ

dλ02
¼ −Γμ

σν
dxσ

dλ0
dxν

dλ0
ð13Þ

with a fourth order Runge-Kutta method. The Γμ
σν’s are the

Christoffel symbols and λ0 is the affine parameter. Tracking
photons forward in time makes it possible to model
trajectories with multiple scattering events and/or with
the absorption and reemission of photons in the accretion
disk and/or in the corona. The initial polarization and the
change in polarization upon scattering are calculated with
the help of Chandrasekhar’s results for optically thick
atmospheres [51]. The polarization vector, f, is parallel
transported according to the following equation:

dfμ

dλ0
¼ −Γμ

σνfσ
dxν

dλ0
: ð14Þ

Amore detailed description of the code can be found in [39].

C. Lamp-post corona model

We utilize the commonly used lamp-post model (e.g.,
[52,53]) to simulate the coronal power-law emission.
Unpolarized 1–100 keV photons are emitted from a point

FIG. 1. Diagram showing the thermal and coronal lamp-post
emission surrounding a black hole.
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FIG. 2. rISCO as a function of deviation parameter for the JP
metric (a) and the KN metric (b) with different spins illustrating
the degeneracies within the metrics. The regions shaded grey
indicate the portion of the parameter space excluded by obser-
vations of Cyg X-1 where the observed rISCO [56] is represented
by the horizontal dashed black line.
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source above the black hole. The height of the point source
can be constrained based on fitting the Fe-Kα vs continuum
emission lag (e.g., [30]). Alternatively, the corona may be
associated with a region of energy dissipation close to the
base of a jet. The trajectory of the photons and their change
in polarization upon scattering off the accretion disk are
calculated as described above. Photons impinging on the
accretion disk can either be absorbed, prompt the emission
of a Fe-Kα fluorescence photon, or Compton scatter.
A diagram of the various types of emission modeled can
be seen in Fig. 1. The results of [54] were used to determine
the probability of the creation of the Fe-Kα photons and
Compton reflections. The results can then be analyzed to
examine the time lag between the direct power-law emis-
sion and the Fe-Kα emission from 2–10 keV following the
methodology described in [30]. We analyze the Fourier

transform of the transfer function to infer the time lag as a
function of Fourier frequency.

III. RESULTS

Previous analyses have shown that the Kerr and non-Kerr
metrics give similar spectral and spectropolarimetric sig-
natures if the parameters are chosen to give the same rISCO
(e.g., [35,37,39,43,44,55]). Figure 2 shows rISCO as a
function of the BH spin a and the parameter characterizing
the deviation from the Kerr metric for the JP and KN
metrics. We see that for all JP and KN metrics, we can
always find one and only one Kerr metric with the same
rISCO. The mapping is not unambiguous the other way
around: the JP and KN metrics can give one rISCO for
several different combinations of the BH spin a and the
deviation parameter.
In the following we focus on comparing “degenerate”

models which give the same rISCO. We consider a slowly
spinning Kerr black hole (a ¼ 0.2, rISCO ¼ 5.33rg) and a
rapidly spinning Kerr black hole (a ¼ 0.9, rISCO ¼ 2.32rg)
and JP and KN models giving the same rISCO (see Table I).
In the following we show the Kerr, GB, and PMCC results
for the low-spin case, and the Kerr, KN, and JP results for
the high-spin case. We adjusted the accretion rates to give
the same accretion luminosity (extracted gravitational
energy per unit observer time) for all considered metrics.

TABLE I. List of metric parameters used in the simulations.

Metric Spin Deviation rISCO _M (g=s)

Kerr 0.9 none 2.32 8.98 × 1017

JP 0.5 ϵ3 ¼ 6.33 2.32 7.51 × 1017

KN 0.5 β ¼ 0.69 2.32 9.86 × 1017

Kerr 0.2 none 5.33 2.16 × 1018

GB 0.25 ϵ ¼ 0.12 5.33 2.15 × 1018

PMCC 0.29 α3 ¼ 0, α4 ¼ 2.07 5.33 2.11 × 1018
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FIG. 3. Radial flux [Eq. (11)] (a) and power (b) for the JP, KN, and Kerr metrics, which all give rISCO ¼ 2.32rg. The bottom panels
show the comparison of the alternative metrics to the Kerr metric.
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This is done by normalizing the accretion rate by the
efficiency, which is not corrected for the fraction of photons
escaping to infinity.
The left panels of Figs. 3 and 4 compare the fluxes FðrÞ

emitted in the plasma frame for the different metrics. For
the rapidly spinning black holes [Fig. 3(a)], the fractional
differences in FðrÞ are typically a few percent. The
difference is larger for the innermost part of the accretion
flow with the Kerr FðrÞ exceeding the values of the non-
Kerr metrics by up to 30%.
The right panels of the figures show the power P emitted

per unit Boyer-Lindquist time and per Boyer-Lindquist
radial interval dr:

dP
dr

ðrÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi−gtrϕ
p

FðrÞgobsem ð15Þ

The factor ffiffiffiffiffiffiffiffiffiffiffi−gtrϕ
p is the t − r − ϕ dependent part of the

metric and is used to transform the number of emitted
photons per plasma frame dt̂ and dr̂ into that emitted per
Boyer-Lindquist dt and dr [57]. The last factor corrects for
the frequency change of the photons between their emis-
sion in the plasma rest frame and their detection by an
observer at infinity. We estimate the effective redshift
between emission and observation by assuming photons
are emitted in the upper hemisphere with the dimensionless
wave vector k̂μ ¼ ð1; 0;−1; 0Þ in the plasma frame. After
transforming k̂ into the wave vector k in the Boyer-
Lindquist frame we calculate the photon energy at infinity
Eγ from the constant of motion associated with the time
translation Killing vector (1,0,0,0):

Eγ ¼ −kt ð16Þ

and set gobsem ¼ Eγ. The different metrics exhibit very similar
dP=dr distributions with typical fractional differences of
< 10%. Again, the largest deviations are found near the
ISCO. Overall, the different metrics lead to very similar
FðrÞ and dP=dr distributions because (i) we compare
models with identical rISCO values (leading radial profiles
with a similar r dependence), and (ii) we use fine-tuned
accretion rates _M to compensate for the different accretion
efficiencies where η ¼ 1 − EISCO (i.e., the different frac-
tions of the rest mass energy that can be extracted when
matter moves from infinity to rISCO). In the following we
focus on the rapidly spinning BH simulations, as the
observables depend more strongly on the assumed back-
ground spacetime than for slowly spinning BHs.
The analysis presented here focuses on specific choices

for matching the Kerr metric with non-Kerr counterparts.
This matching is not unique as the non-Kerr metrics give
the same rISCO for a continuous family of different metrics.
We simulated a few non-Kerr metrics giving the same
rISCO, and found that the differences between these metrics
and the Kerr metric are all comparable to the differences
shown above.

Figure 5 shows the flux, polarization degree, and
polarization direction of the thermal disk emission of a
mass accreting stellar mass BH as shown for an observer at
an inclination of 75°. We only show the results for the
rapidly spinning Kerr, JP, and KN BHs. While there are
some differences in these spectra the overall shapes are
similar. At the highest energies, deep in the Wien tail of the
multitemperature energy spectrum, the fluxes show more
differences owing to the different orbital velocities and thus
Doppler boost of the emission and different fractions of
photons reaching the observer versus photons falling into
the BHs. The different metrics also lead to very similar
polarization fractions and polarization angles. However, in
terms of the polarization properties the Kerr and KN
metrics show almost identical results and the JP metric
shows slightly different results. Overall, the main conclu-
sion is that once we choose models with identical rISCO and
correct for the different accretion efficiencies, the obser-
vational signatures depend only very weakly on the
considered metric. Assuming that the background space-
time is described by the Kerr metric, the thermal energy
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spectrum and the polarization properties can be used to fit
rISCO and the BH inclination i [24,25]. The results
presented so far indicate that the fitted rISCO and i values
will not depend strongly on the assumed background
spacetime.
We now turn to the properties of the reflected corona

emission from an AGN, assuming that the lamp-post
corona emits unpolarized emission with a photon power-
law index of Γ ¼ 1.7 from a height h ¼ 3rg above the black
hole (Fig. 6). Again, the flux and polarization energy
spectra are almost the same for all considered metrics. The
KN metric shows slightly larger deviations from the Kerr
metric than the JP metric.
Some accreting black holes exhibit QPOs, i.e., peaks in

the Fourier transformed power spectra. The orbiting hot
spot model [58–63] explains the high-frequency QPOs
(HFQPOs) of accreting stellar mass black holes with a hot
spot orbiting the black hole close to the ISCO. If we
succeeded in confirming the model (e.g., through the
observations of the phase resolved energy spectra and/or
polarization properties [64]), one could use HFQPO obser-
vations to measure the orbital periods close to the ISCO. In
the case of AGNs, tentative evidence for periodicity
associated with the ISCO has been found for several
objects. Examples include orbital periodicity on the time
scale of a few days as seen in the blazar OJ 287 [65] and
QPOs at frequencies of O(100 Hz) such as that seen for the

microquasar GRO J1655-40 [66]. Figure 7 shows that
different metrics do predict different orbital periods which
vary by up to ∼10%.
We investigated if other timing properties can be used to

observationally distinguish between the different metrics
by analyzing the observable time lags between the direct
corona emission and the reflected emission assuming the
lamp-post geometry. We use the standard x-ray reverber-
ation analysis methods described by [29]. As expected, the
2–10 keV flux variations lag the 1 to 2 keV flux variations
(Fig. 8). The JP metric leads to time lags up to 24% shorter
than the Kerr and KN metrics at low frequencies. At
frequencies between 0.01c=rg and 0.1c=rg phase wrapping
begins to occur (when the lag changes sign and begins to
oscillate around 0) leading to the larger differences seen in
this range.
Although the considered metrics give the same rISCO in

Boyer-Lindquist coordinates, the black hole shadow may
have a different shape and/or size when viewed by an
observer at infinity (see [67,68] for a related study). The
results for the Kerr, JP, and KN metrics are shown in Fig. 9
for an inclination of i ¼ 75°. The shadow of the KN and JP
metrics is ∼15% smaller than that of the Kerr metric.
Furthermore, the shapes differ slightly. Similarly, the
shapes of the photon rings are shown in Fig. 10, which
are calculated by following the procedures outlined in
Sec. III of [69].
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IV. SUMMARY AND DISCUSSION

In this paper we studied the observational differences
between accreting black holes in five different background
spacetimes, including GR’s Kerr spacetime, and four
alternative spacetimes. We chose the parameters of the
considered metrics so as to give identical innermost stable
orbits in Boyer-Lindquist coordinates. The predicted obser-
vational differences are larger for rapidly spinning black
holes. Overall the observational differences are very small
if we adjust the accretion rate to correct for the metric-
dependent accretion efficiency. The measurement of the
predicted differences are very small—especially if one
accounts for the astrophysical uncertainties, i.e., observa-
tional and theoretical uncertainties of the accretion disk
properties. From an academic standpoint, it is interesting to
compare the small differences of the predicted properties,
e.g., the differences of the thermal energy spectra and the

BH shadow images. The thermal spectrum of the Kerr BH
is slightly harder than that of the JP and KN black holes (for
the same rISCO), and the Kerr BH shadow is slightly larger
than that of the JP and KN BH shadows. Reducing the spin
of the Kerr BH would make the spectral difference smaller,
but would increase the mismatch between the apparent BH
shadow diameters. Thus, in the absence of astrophysical
uncertainties, the combined information from various
observational channels could be used to distinguish
between different metrics.
Although the analysis shows that the differences

between the Kerr and non-Kerr metrics are rather subtle
(especially in the presence of uncertainties of the structure
of astrophysical accretion disks), we can use existing
observations to constrain large parts of the parameter
space of the non-Kerr metrics (see also [70]). As an
example we use the recent observations of the accreting
stellar mass black hole Cyg X-1 [56]. The observations
give a 3σ upper limit of rISCO < 1.94. Inspecting Fig. 2 we
see that the constraints on the ISCO can only be fulfilled
for JP deviation parameters ϵ3 ∈ ½−0.15; 3.72� and KN
deviation parameters β ∈ ½−0.01; 0.73�, excluding all
parameter values outside of these intervals. Our limits
rest on the matching of Kerr to non-Kerr metrics via using
identical rISCO values. Maximally rotating black holes,
when a ¼ 0.998 [71], provide the best opportunity to test
GR because observations of these systems can, in prin-
ciple, be used to exclude all deviations from GR down to a
small interval around 0, limited only by the actual spin
value, the statistics of the observations, and the astro-
physical uncertainties. A follow-up analysis could use
state-of-the-art modeling of the actual x-ray data with
accretion disk and emission models in the Kerr and non-
Kerr background spacetimes.
Further progress will be achieved by continuing to refine

our understanding of BH accretion disks based on general
relativistic magnetohydrodynamic and general relativistic
radiation magnetohydrodynamic simulations (e.g., [72–74])
and matching simulated observations to x-ray spectroscopic,
x-ray polarization, and x-ray reverberation observations.
The images of the BH shadow of Sgr A� with the Event

Horizon Telescope can give additional constraints.
Whereas the images of the BH shadow still depend on
the astrophysics of the accretion disk, imaging of the
photon ring would be free of such uncertainties. Of course,
much better imaging would be required to do so.
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