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Graphical abstract 

 

 

 

Highlights 

 The nonflammable Mg85Al10Ca5 alloy exhibits a high ignition temperature of 1436 K.  

 The oxide film formed on the molten alloy was found to be a three-layered structure.  

 The outer layer of the three-layered structure consists of fine CaO grains.  

 The incombustibility may be due to the formation of the fine CaO outer layer.  

 

 

Abstract 

  A nonflammable Mg-10Al-5Ca (at.%) alloy that can be melted in air without a cover gas or 

flux is developed. The alloy immediately forms a protective oxide film consisting of three 

layers, a fine CaO outer layer, a fine MgO intermediate layer, and a coarse MgO innermost 

layer. The anionic volume ratio of the CaO/MgO interface is 1.48. This interface ratio is 

sufficiently large to suggest the generation of a strong compressive force in the CaO layer. 

The dense, uniform fine CaO layer may act as a protective layer preventing the diffusion of 

oxygen. 
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1. Introduction 

  Among the lightweight structural metallic materials, Mg alloys have been attracting keen 

attention as key engineering materials for automobile, railway, and aerospace applications, 

where weight reduction is of particular concern [1]. On the other hand, however, it is widely 

perceived that, having low oxidation resistance, Mg alloys are liable to burn easily. In fact, 

easy ignition may be a critical problem in all conceivable Mg alloy applications. Nevertheless, 

the Federal Aviation Administration (FAA) in the USA, aerospace specification committees, 

and national institutes are conducting a review of the existing ban on the use of Mg alloys in 

aircraft cabins in recognition of the light weight of Mg alloys [2-4]. In addition, several 

studies have been undertaken by an aircraft company, along with its collaborators, to define 

an appropriate methodology for the development of nonflammable Mg alloys [5, 6]. 

  Meanwhile, we have witnessed the development of several nonflammable Mg alloys 

through the addition of reactive metal elements [7]. It has long been known that Be imparts 

appreciably greater oxidation resistance to Mg alloys when added in minute amounts [8-13]. 

Ca or CaO similarly inhibits the ignition and burning of molten Mg alloys [13-21]. Rare earth 

(RE)-containing Mg alloys have also been attracting wide attention [5-7, 20-24]. Zeng et al. 

reported that Be promotes the formation of an inner layer comprising a mixture of MgO and 

BeO in the surface oxide film, thereby enabling the alloys to exhibit excellent ignition-proof 

performance [11]. You and coworkers reported that adding Ca to Mg alloys resulted in the 

formation of a two-layered oxide film with the outer layer mainly consisting of CaO and the 

inner layer comprising a mixture of CaO and MgO during high-temperature oxidation [13, 16, 

17]. RE elements form an RE oxide film on alloys with moderate anti-combustibility [5-7, 

20-24]. Among these alloys, Ca-containing Mg alloys are the most promising for use as 

nonflammable lightweight Mg alloys in aerospace applications [1]. Unfortunately, however, 

Mg alloys with a Ca content of more than 1 at.% Ca are embrittled by intermetallic 

compounds formed during alloying, preventing their use [25]. Therefore, the development of 

the Ca-containing Mg alloy system has been constrained within a narrow range of Ca 

concentrations [25-30]. To overcome this problem, researchers have drawn on rapidly 

solidified powder metallurgy (RS P/M) processing, succeeding in the fabrication of 

Mg-20Al-10Ca (at.%) RS P/M alloy with high mechanical performance in 2000 [31]. The 

new alloy was found to have several desirable qualities, including a tensile strength of 600 

MPa with reasonable elongation. Recently, a high-strength, nonflammable Mg-10Al-5Ca 

(at.%) alloy has been developed using conventional casting and extrusion techniques [32]. 

This alloy is composed of fine grains with -Mg, C36, and C14 phases, and has high strength 

and ductility. In addition, it had a high ignition temperature of more than 1360 K [32]. 
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Fortunately, as mentioned above, there have been several excellent studies concerning the 

controlling of the ignition temperature of Ca-containing Mg alloys [13-21]. Choi et al. 

reported that the ignition temperatures of AZ91 alloys containing 0.3-5.0 wt.% Ca increase 

with increasing Ca content [13]. However, the ignition temperatures of Mg alloys that 

containing more than 5 wt.% Ca have not yet been determined. Therefore, it is important to 

measure the ignition temperature of the high-Ca-concentration Mg-10Al-5Ca 

(Mg-10.64Al-7.9Ca (wt.%)) alloy and to clarify the mechanism of its incombustibility. With 

this background, this study was carried out to elucidate the role of Ca in modifying the 

structure and composition of the oxide film formed on molten Mg-10Al-5Ca alloy. A focused 

ion beam (FIB)-prepared cross section of a specimen obtained from the film formed on the 

alloy was observed by transmission electron spectroscopy (TEM) after the solidification of 

molten Mg-10Al-5Ca alloy.  

 

2. Material and methods 

  Mg-10Al-5Ca alloy specimens were prepared by the high-frequency induction melting of 

pure Mg (99.99 wt.%), Al (99.99 wt.%), and Ca (99.9 wt.%) in a carbon crucible. The molten 

alloys were maintained at 1023 K and cast in an argon atmosphere.  

  The ignition temperature measurements were performed using 

thermogravimetry/differential thermal analysis apparatus (TG-DTA, SII TG/DTA-6300).  

The cast ingot was cut into disc-shaped specimens of 3.8 mm diameter and 0.4 mm thickness.  

The surface of the specimens was mechanically ground with #4000 SiC paper. A disc-shaped 

specimen was placed in an alumina pan, and then heated with a heating rate of 50 K/min in air 

with 20% humidity at atmospheric pressure. The specimen temperature was measured by a 

thermocouple installed underneath the alumina pan. 

  The microstructure of the cast Mg-10Al-5Ca alloy was observed using a scanning electron 

microscope (SEM, JEOL JIB-4601F). The SEM specimens were polished by paper lapping 

and ion milling (JEOL SM-09010). The microstructures were characterized by electron 

backscatter diffraction (EBSD) using orientation imaging microscopy software (TSL 

Solutions K.K., OIM ver. 6). Chemical compositions were analyzed using an 

energy-dispersive X-ray spectroscopy (EDS) system installed in the SEM. 

  The structure of the oxide film was investigated by grazing incidence X-ray diffractometry 

(GI-XRD, Bruker D8 Discover) and transmission electron microscopy (TEM, JEOL 

JEM-2100F). Prior to the GI-XRD measurement and TEM observations, the plate-shaped 

Mg-10Al-5Ca alloy specimens (7 x 5 x 1 mm) were remelted at 973 K for 10 min in a muffle 

furnace and then solidified in air. GI-XRD data were collected in the 2 diffraction angle 
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range of 20-90o using CuK radiation at an incident angle of 0.2o. The step width and 

counting time in each step were 0.02o and 10 s, respectively. TEM and scanning TEM 

(STEM) observations were conducted on a cross section of the oxide film formed on the 

molten Mg-10Al-5Ca alloy. An FIB system (FEI, Versa 3D) was used to section the specimen 

for TEM observation. The site of interest for TEM observation was first coated with a 

protective carbon film (C-depo) and then milled to produce a thin foil (approximately 70 nm 

thick) with a depth of nearly 10 m from the C-depo surface. The thin foil used for TEM 

observation was secured on a copper grid and then transferred to the chamber of the TEM 

system equipped with an EDS detector and a high-angle annular dark-field (HAADF) 

detector.  

 

3. Results 

  Figs. 1(a-d) show an SEM image and EDS element maps for the Mg-10Al-5Ca alloy. The 

lamellar structure is a eutectic structure consisting of -Mg and intermetallic phases with 

bright contrast. It has been reported that Mg-Al-Ca ternary alloys with similar compositions 

to the Mg-10Al-5Ca alloy undergo the eutectic transformation L ®  + C14 + C36 [33]. In 

this study, we attempted to identify the intermetallic compounds using Kikuchi patterns 

obtained by EBSD. Figs. 1(e-h) show an image quality (IQ) map and inverse pole figure 

(IPF) maps for the , C36, and C14 phases, respectively. In addition to the  phase, the C36 

and C14 phases were detected, and the predominant intermetallic compound is the C36 phase.  

  Fig. 2 shows the time evolution of the specimen temperatures of AZ31 (Mg-2.7Al-0.4Zn 

(at.%)), AZX912 (Mg-8.3Al-0.4Zn-1.2Ca (at.%)), and Mg-10Al-5Ca alloys during ignition 

temperature measurements with a heating rate of 50 K/min in air. The temperature of each 

specimen increases approximately linearly with increasing TG-DTA heater temperature until 

there is a sharp rise, indicating the ignition of the specimen. Mg-10Al-5Ca alloy exhibited the 

highest ignition temperature of 1436 K, in comparison with 998 K for AZX912 and 882 K for 

AZ31. 

 Fig. 3 shows the GI-XRD pattern for the surface of the Mg-10Al-5Ca alloy that was 

remelted at 973 K for 10 min and then solidified in air. Peaks originating from the -Mg 

matrix, C14, C36, CaO, and MgO were clearly detected [34]. On the basis of thermodynamics, 

the formation of several complex oxides such as MgAl2O4 and Ca3MgAl4O10 during the 

oxidation of Al- and Ca-containing Mg alloys has been predicted [35]. In fact, Czerwinski 

reported that MgAl2O4 was formed in an oxide film of AZ91D oxidized at 820 K [36]. Cheng 

et al. also reported that MgAl2O4 was formed in an oxide film of Ca-containing AZ91D 

oxidized at 973 K, although the addition of Y to the Ca-contaning AZ91D suppressed the 
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formation of MgAl2O4 [37]. However, in this study, no complex oxides were detected in the 

GI-XRD measurement. This result suggests that the addition of a large amount of Ca may 

suppress the formation of MgAl2O4. 

  To clarify the morphology of the surface oxide film formed on molten Mg-10Al-5Ca alloy, 

an FIB-prepared cross-section specimen of the surface oxide film/underlying alloy interface 

was observed by TEM as shown in Fig. 4. The TEM image, EDS element maps, and selected 

area electron diffraction (SAED) patterns revealed that the film is composed of two layers: a 

thin outer layer composed of CaO fine grains with an fcc structure having lattice constant a0 = 

0.482 nm (Fig. 4(c)) and a thick inner layer composed of MgO with an fcc structure having 

lattice constant a0 = 0.421 nm. The thick inner layer was found to have a fine grain region 

(intermediate layer, Fig. 4(d)) and a coarse grain region (innermost layer, Fig. 4(e)).  

  The oxide film layers were also investigated using STEM/EDS. An HAADF image and 

EDS element maps for Mg, Al, Ca, and O are shown in Figs. 4(h-l), respectively. Ca element 

was detected in the outer and intermediate layers. A significant amount of Ca is concentrated 

in the outer layer. Mg element was detected in the intermediate and innermost layers. A very 

small amount of Al was detected in the intermediate layer, which appeared to exist adjacent to 

the Ca. However, no complex oxides were detected at this location by SAED measurement. 

The cationic fractions of the outer, intermediate, and innermost layers are summarized in 

Table 1. The MgO and CaO appeared to be immiscible with each other. This result agrees 

with the MgO-CaO binary phase diagram reported previously [38].  

 

4. Discussion 

  From the results of the GI-XRD measurement, TEM observation, and an Ellingham 

diagram [39], the possible chemical reactions that occurred on the surface of the molten 

Mg-10Al-5Ca alloy are as follows. 

 2Mg(l) + O2(g) = 2MgO(s) (1) 

 2Ca(l) + O2(g) = 2CaO(s) (2) 

 MgO(s) + Ca(l) = Mg(l) + CaO(s) (3) 

The standard Gibbs free energies of reactions (1) and (2) are given as follows [40].  

 DG(1)

0 = -1217280+230.08T  [J/mol of O2] (4) 

 DG(2)

0 = -1285360+222.20T  [J/mol of O2] (5) 

From equations (4) and (5), the standard Gibbs free energy of reaction (3), G0
(3), can be 

derived as 

 DG(3)

0 =
1

2
DG(2)

0 -
1

2
DG(1)

0 = -34040 -3.94T  [J/mol]. (6) 
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Under practical conditions, the change in the Gibbs free energy of reaction (3) should be 

calculated by the following equation: 

 DG(3) = DG(3)

0 +RT ln
aMgaCaO

aMgOaCa
.

 (7) 

For simplification, the mole atomic concentrations of Mg and Ca in the molten alloy were 

substituted for their elemental activities, and the activities of both MgO and CaO were 

expressed as unity. The preceding calculations reveal the relationship between changes in the 

Gibbs free energy of reaction (3), G(3), and the Ca content of the Mg-10Al-Ca alloy as 

shown in Fig. 5(a). Changes in DG(3)
 and equilibrium concentration of Ca as functions of 

temperature are shown in Fig. 5(b). G(3) (973 K) has a negative value of -14.95 kJ/mol, 

which indicates that CaO predominates over MgO on the surface of the molten Mg-10Al-5Ca 

alloy at 973 K. The equilibrium concentration of Ca in the Mg-Al-Ca melt at 973 K was 

estimated to be approximately 0.83 at.%. The existence of more than 0.83 at.% Ca in the 

molten Mg alloy appears to prevent the formation of MgO. However, when the Ca 

concentration decreases to less than the equilibrium level owing to the consumption of Ca by 

the formation of a CaO layer, the formation of MgO will occur. After covering the surface 

with an initial oxide film of CaO, the inner oxide film grows through the diffusion of ions. It 

has been reported that the outward diffusion rate of Mg2+ ions is much higher than the inward 

diffusion rate of O2- ions [41, 42]. The growth of the inner layer beneath the fine CaO outer 

layer may be controlled by the outward diffusion of Mg2+ ions through the oxide film. We 

have been investigating the phenomenon of oxide film growth on the surface of Mg alloys 

from a kinetic viewpoint and plan to publish part of the results shortly.

 

 

 The outstanding incombustibility of the Mg-10Al-5Ca alloy may be due to the formation of 

the fine CaO outer layer. The volume ratio of metal oxide to metal, the Pilling-Bedworth (PB) 

ratio, RPB, has often been used to discuss the formability and effectiveness of a protective 

corrosion layer [43]. The PB ratio is defined as 

 RPB =
Vox

Vm

=
Mox rox( )
n Mm rm( )

 , (8) 

where M is the molar mass [g/mol],  is the density [g/cm3], n is the number of metal atoms 

per molecule of the oxide, and V is the molar volume [cm3/mol]. The PB ratio is the ratio of 

the volume occupied by a metal atom in the oxide to the volume occupied by the same metal 

atom in the substrate. The PB ratios of MgO/Mg and CaO/Ca are known to be 0.80 and 0.64, 

respectively [44]. However, in this study, the oxide/alloy interface should also be considered. 

The PB ratios for MgO/Mg-10Al-5Ca and CaO/Mg-10Al-5Ca were estimated to be 0.77 and 

1.17, respectively. Furthermore, this study deals with not only an oxide/alloy interface but 
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also the oxide/oxide interface of CaO/MgO. Since the type of cation is different in the two 

oxides, the anionic volume (AV) ratio, RAV [45], is adopted to compare the volume occupied 

by an oxygen atom in CaO with the volume occupied by an oxygen atom in MgO, 

 RAV =
Vox1

Vox2

=
nox2 Mox1 rox1( )
nox1 Mox2 rox2( )

 , (9) 

where nox is the number of oxygen atoms per molecule of the oxide. The AV ratio for 

CaO/MgO was estimated to be 1.48. The estimated ratios for CaO/Mg-10Al-5Ca and 

CaO/MgO of more than 1 indicate the generation of a strong compressive force in the CaO 

layer, inhibiting the inward diffusion of oxygen in the layer.

 

 

 

5. Conclusions 

  The incombustibility of cast Mg-10Al-5Ca alloy was evaluated and the structure of the 

oxide film formed on the molten alloy was observed by TEM. The obtained results are as 

follows: 

(1) The Mg-10Al-5Ca alloy exhibits a high ignition temperature of 1436 K, in comparison 

with 998 K for AZX912 and 882 K for AZ31. 

(2) The oxide film formed on molten Mg-10Al-5Ca alloy was found to have a three-layered 

structure consisting of a fine CaO outer layer, a fine MgO intermediate layer, and a coarse 

MgO innermost layer. 

(3) The anionic volume ratio of the CaO/MgO interface was estimated to be 1.48. This large 

value indicates the generation of a strong compressive force in the CaO layer. The dense and 

uniform fine CaO layer plays an important role in preventing the diffusion of oxygen. 
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Figure Captions 

 

Fig. 1 (a) SEM image of a cast Mg-10Al-5Ca alloy and its EDS element maps for (b) Mg, 

(c) Al, and (d) Ca. (e) EBSD IQ map and IPF maps for (f) , (g) C36, and (h) C14 

phases.  
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Fig. 2 Time evolution of specimen temperatures of AZ31, AZX912, and Mg-10Al-5Ca 

(at.%) during ignition temperature measurements with a heating rate of 50 K/min 

in air. 
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Fig. 3 Grazing incidence XRD pattern for the surface of Mg-10Al-5Ca alloy remelted at 

973 K for 10 min and then solidified in air. The incident angle was 0.2o. 
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Fig. 4 (a) TEM image of an FIB-prepared cross section of the film formed on the alloy 

after solidification of the molten Mg-10Al-5Ca alloy. (b) Schematic diagram of 

layered structure of the oxide film. SAED patterns obtained from each region; (c) 

outer layer, (d) intermediate layer, (e) innermost layer, (f) underlying alloy, and (g) 

intermetallic compound. (h) HAADF image and EDS element maps for (i) Mg, (j) 

Al, (k) Ca, and (l) O elements. 
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Fig. 5 (a) Relationship between DG  of the reaction MgO(s) + Ca(l) = Mg(l) + CaO(s) at 

973 K and Ca content of Mg-10Al-Ca and Mg-Ca alloys. (b) Changes in DG  and 

equilibrium concentration of Ca as functions of temperature. 
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Table 1 Cationic fractions of outer, intermediate, and innermost layers in the oxide film 

formed on molten Mg-10Al-5Ca alloy. 

Table 1 Cationic fractions of outer, intermediate, and innermost layers in the oxide film formed on a 

molten Mg-10Al-5Ca alloy. 

 

layer 
Cationic fraction 

Mg Al Ca 

Outer 0.083±0.048 0.012±0.002 0.905±0.049 

Intermediate 0.926±0.009 0.02±0.006 0.053±0.007 

Innermost 0.995±0.001 <0.003 <0.002 

 

 


