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ABSTRACT 

Systemic sclerosis (SSc) is a chronic autoimmune disease of the connective tissue. The variety and 

clinical relevance of autoantibodies in SSc patients have been extensively studied, eventually 

identifying agonistic autoantibodies targeting the platelet-derived growth factor receptor alpha 

(PDGFRα), and representing potential biomarkers for SSc.  

We used a resonant mirror biosensor to characterize the binding between surface-blocked PDGFRα 

and PDGFRα-specific recombinant human monoclonal autoantibodies (mAbs) produced by SSc B 

cells, and detect/quantify serum autoimmune IgG with binding characteristics similar to the mAbs. 

Kinetic data showed a conformation-specific, high-affinity interaction between PDGFRα and 

mAbs, with equilibrium dissociation constants in the low-to-high nanomolar range. When applied 

to total serum IgG, the assay discriminated between SSc patients and healthy controls, and allowed 

the rapid quantification of autoimmune IgG in the sera of SSc patients, with anti-PDGFRα IgG 

falling in the range 3.20-4.67 neq/L of SSc autoantibodies. The test was validated by comparison to 

direct and competitive anti-PDGFRα antibody ELISA. This biosensor assay showed higher 

sensibility with respect to ELISA, and other major advantages such as the specificity, rapidity, and 

reusability of the capturing surface, thus representing a feasible approach for the detection and 

quantification of high affinity, likely agonistic, SSc-specific anti-PDGFRα autoantibodies. 
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1. INTRODUCTION 

The term Systemic sclerosis, or scleroderma, designates a heterogeneous autoimmune connective 

tissue disease characterized by distinct clinical patterns, which often display dramatically different 

clinical outcomes as different as a long survival time with limited morbidity and a decreased 

lifespan with huge disability [1]. One of the main limitations in the clinical management of SSc 

patients, once diagnosis has been formulated, is the lack of biomarkers predicting disease evolution 

and correlating with disease activity and severity. In fact, currently available biomarkers are 

certainly useful for SSc diagnosis, sub-classification and association with organ involvement [2], 

but none of them is sensitive to disease changes. To fill this gap, our group has focused the attention 

on serum anti-PDGFRα autoantibodies characterized by possessing stimulatory activity, both in 

vitro on human cells involved in SSc pathogenesis [3, 4] and in vivo on regenerated human skin 

engrafted onto mice [5], under the hypothesis that biologically active autoantibodies may correlate 

better with disease activity. One major problem with the validation of this hypothesis was the 

inability of detecting serum anti-PDGFRα antibodies with standard methods [6-8]. Recently, this 

problem has been partly solved by identifying the PDGFRα epitopes bound by these autoantibodies. 

We discovered that distinct PDGFRα epitopes are recognized by agonistic and non-agonistic 

autoantibodies, and used the peptides corresponding to these epitopes to detect the presence of 

agonistic autoantibodies in the serum of SSc patients but not in healthy controls [9]. However, this 

method, a competitive ELISA based on molar excess of soluble peptides added to serum samples 

before PDGFRα binding detection, does not permit quantification of SSc antibodies, limiting their 

potential as biomarkers usable to dissect the different clinical phases of this chronic disease. To 

address this issue, we adapted our previously described PDGFRα biosensor [10] to measure and 

compare the reactivity of agonistic and non-agonistic human anti-PDGFRα autoantibodies cloned 

from SSc B cells, and applied the binding kinetics of the monoclonal antibody possessing higher 
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agonistic activity towards the PDGFRα to calibrate the biosensor, eventually developing a 

quantitative biosensor-based assay. We describe herein this analytical method able to rapidly and 

reliably detect and quantify anti-PDGFRα serum IgG autoantibodies with nanomolar sensitivity.  

 

2. MATERIALS AND METHODS 

2.1. Materials and devices 

CuSO4, HCl, NaOH, NaCl, KCl, NaH2PO4 were obtained from Mallinckrodt Baker (Milan, Italy). 

Tween-20, G 418 disulphate salt and SDS were from Sigma-Aldrich (Milan, Italy). Carboxylate-

functionalized cuvettes and the immobilization chemicals (N-hydroxysuccinimide (NHS), 1-ethyl-

3-(3-dimethylaminopropyl)-carbodiimide (EDC), and ethanolamine) were obtained from 

Neosensors (Crewe, UK). All chemicals were of highest purity available. 

Human PDGF-BB and mouse anti-human PDGFRα monoclonal antibody mab322 were obtained 

from R&D Systems (Milan, Italy). Fluorescein isothiocyanate labelled secondary antibody was 

obtained from Jackson Immunoresearch (PA, USA). Rabbit anti-human PDGFRα antibody D01P 

was obtained from Abnova (Taipei, Taiwan). HRP-conjugated goat anti-rabbit IgG was obtained 

from Santa Cruz (Heidelber, Germany). 

pcDNA V5 HIS A vector and Lipofectamine 2000 were obtained from Invitrogen (Milan, Italy) 

HeLa cells were obtained from ATCC (Rockville, TX, USA). 

Human PDGFRα and recombinant human monoclonal autoantibodies (mAb), namely VHPAM-

Vκ13B8, VHPAM-Vκ16F4, VHPAM-Vλ16F4, and VHPAM-Vλ13B8) were produced and purified as 

previously reported [9, 11]. 

Binding analyses were carried out on an evanescent wave/resonant mirror [12] optical biosensor 

(IAsys plus - Affinity Sensors Ltd, Cambridge, UK). The resonant mirror apparatus (consisting of a 

high-refractive-index dielectric coupling layer deposited on a silica glass prism waveguide [13], 

with a low-refractive-index hafnium oxide layer interposed) is integrated in an open two-wells 

cuvette structure, with the sensing surface being exposed to the solution contained within the 
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cuvette lumen. Soluble ligands, reagents and buffers can be added by manual pipetting, and 

removed using an integrated vacuum aspiration system. A micro-stirrer is included to ensure rapid 

sample mixing and to prevent limits due to diffusion. 

Chromatographic analyses were performed on an AKTA Basic System (GE Healthcare, Milan, 

Italy), using HiTrap metal-chelating columns obtained from GE Healthcare (Milan, Italy), and a 

Tosoh ProgelTM-TSK G2000 SWXL column, 30 cm × 7.8 mm (Sigma Aldrich, Milan, Italy).  

  

 

2.2. Immobilization of rhPDGFRα-His 

rhPDGFRα-functionalized surfaces were obtained as previously reported [10]. Briefly, carboxylate 

cuvettes were rinsed with PBS pH 7.4, and activated with an equimolar solution of EDC and NHS 

[14]. rhPDGFRα-His was solubilized in 10 mM CH3COONa buffer pH 4.5, then anchored to the 

carboxylic surface via the N-terminus of histidine tail. To achieve optimal surface density, we 

tested different rhPDGFRα concentrations in the range 100-800 µg/mL: the concentration 300 

µg/mL was finally selected as it provided an adequate number of binding sites, and at the same time 

prevented the dimerization between blocked rhPDGFRα macromolecules that could reduce the 

number of available binding sites on the sensing surface [9]. In detail, 100, 200 and 800 µg/mL 

rhPDGFRα solutions yielded to surfaces with lower sensibility (rhPDGFRα surface resulting from 

100 and 200 µg/mL solutions was characterized by lower surface density/number of binding sites 

for SSc autoantibodies; rhPDGFRα surface resulting from 800 µg/mL solution, irrespective of 

higher surface density, was characterized by a lower number of effectively available binding for 

SSc autoantibodies, both because of steric hindrance and rhPDGFRα dimerization). Next, free 

carboxylic sites on the sensor surface were blocked by injection of 1 M ethanolamine, pH 8.5. The 

surface was finally re-equilibrated with PBS (pH=7.4). Following immobilization, negative baseline 

drift signals were not observed with time or multiple PBS (pH=7.4) washes, confirming that the 
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receptor molecules were irreversibly linked to the sensor surface. The resulting shift in sensor 

response indicated the coupling of a partial ‘Langmuir’ layer (70% surface occupancy) 

corresponding to a final surface density of 1.7 ng/mm2, approximately equivalent to 7 mg/mL (see 

Supplementary Material for details). The use of CH3COONa 10 mM, pH 4.5 as immobilization 

buffer (chosen upon the PDGFRα isoelectric point=5.5) allowed an efficient immobilization, while 

preserving the native-like conformation of the receptor, as assessed by PDGF-BB and anti-

PDGFRα mab322, which can recognize only conformational binding sites of the extracellular 

PDGFRα domain. Specifically, prior to each experimental session, association kinetics were 

monitored upon independent additions of PDGF-BB and mab322 (2.50 nM each) to surface-

blocked rhPDGFRα for about 1 min (the time interval required to reach the equilibrium between 

association and dissociation events). Dissociation steps were performed with a single PBS buffer 

wash (pH=7.4), whereas the baseline corresponding to non-complexed rhPDGFRα was recovered 

by serial PBS (pH 5.5) washes (approximately 10 min). Conformational controls were randomly 

repeated during analyses of IgG samples. Local and global fit analysis of the interaction data 

generally revealed monophasic kinetics. Specifically, mono-exponential analysis of association 

curves residuals was not affected by measurable systematic errors (a bi-exponential model did not 

significantly improve the quality of the fit as judged by an F-test, 95% confidence). The biosensor 

chamber was thermostatted at 25°C throughout. 

 

2.3. Derivation of binding kinetics of PDGF-BB to rhPDGFRα-functionalized surface 

Kinetic parameters of the interaction between PDGF-BB and rhPDGFRα were determined by 

individual additions of 0.13, 0.26, 1.33 and 2.66 nM PDGF-BB (three replicates each). Association 

kinetics were followed for about 1 min (the time interval requested to reach the maximal response 

at equilibrium for the highest concentration of PDGF-BB tested). The dissociation of each complex 

was achieved with a single PBS (pH=7.4) wash (dissociation phases were followed for 1 min), 
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whereas baseline recovery (regeneration of non-complexed rhPDGFRα surface) was obtained with 

multiple PBS (pH 5.5). Regeneration procedure times ranged between 5 and 15 min, depending 

upon PDGF-BB concentration. 

 

2.4. Binding of recombinant human mAbs to rhPDGFRα-functionalized surface 

Recombinant human mAbs were independently added at different concentrations in the range 0.58-

16 nM onto the rhPDGFRα-coated surface, and association kinetics were routinely followed up to 

equilibrium. Dissociation steps and surface regeneration were performed by addition of fresh buffer 

(PBS pH=7.4 and pH=5.5, respectively), each time assessing the baseline recovery prior to any 

further addition of soluble recombinant human mAbs. Raw data were globally fitted to a classic 

monophasic model: 

 

  (Eq.1) 

 

where Rt is the response at time t,  

 

   (Eq.2) 

 

Rmax is the maximal response at asymptotically high concentrations of [recombinant human mAb], 

and kass and kdiss are the kinetic association and dissociation constants, respectively. Data analysis 

and fitting was performed with FAST Fit software. 

 

2.5. Serum samples 

Serum samples obtained from 8 patients with a definite diagnosis of SSc [15] and 8 healthy controls 

(HC) were selected upon previous results obtained by anti-PDGFRα antibody competitive ELISA 
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[9], choosing as many positive samples as possible, and with the most homogeneous frequency 

distributions of OD values. The clinical features of SSc patients included in this study are 

summarized in Table 1. All participants gave informed consent for use of blood samples in this 

study. Ethics committee approval document is provided as Supplemental Material. 

 

 

 

Table 1. Clinical characteristics of SSc patients. 

 

 

2.6. Purification of IgG from serum 

IgG were purified from the SSc and HC sera, selected as indicated above, using individual A/G 

resin columns (Pierce) as previously described [10]. After elution with glycine at pH 2.2 and 

neutralization with Tris buffer, the fractions containing IgG were subjected to size exclusion 

chromatography (5000 MWCO, Thermo Scientific) to remove trace amounts of contaminating 

cytokines. The absence of PDGF in IgG preparations was checked by immunoblotting with a 
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primary polyclonal rabbit anti-human PDGF-BB antibody (Abcam) with detection limit of 0.1 ng 

cytokine/200 µg IgG. IgG samples were identified with a numerical code.  

2.7. Binding of serum IgG to rhPDGFRα-functionalized biosensor 

IgG samples were individually added to the PDGFRα-functionalized surface, and each response 

kinetic was monitored up to equilibrium. The dissociation of the complexes and the regeneration of 

the PDGFRα monolayer were carried out by serial PBS washes. Each IgG sample was analysed in 

triplicate. Values falling outside the 95% confidence interval were considered significantly different 

from controls. Detection procedures were replicated on different days (n=3) both on the same and 

on different rhPDGFRα-functionalized surfaces (n=3) to assess the inter-day and the “surface-to-

surface” variability. Analyses of SSc IgG samples were always performed in triplicate. 

Additionally, the number of regeneration cycles that the sensor surface could withstand without 

significant loss of assay sensitivity and accuracy, and the stability of the sensing surface throughout 

multiple measurements were evaluated and assessed. 

 

2.8. Immunoenzymatic assays (ELISAs) 

All  IgG samples were tested by direct and competitive anti-PDGFRα antibody ELISA as previously 

described [9]. A standard hyperbolic calibration curve was used to estimate the concentration of 

anti-PDGFRα antibody from absorbance units. 

 

 

2.9. Limits of Detection and Quantitation 

In compliance with the IUPAC rules [16], the limits of detection (LOD) and quantification (LOQ) 

of both ELISA and biosensor assays were calculated as three and ten times the standard deviation of 

the blank measurements, respectively. IgG purified from HC sera were used as a blank reference. 
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2.10. Statistical Analysis 

Results were expressed as mean values ± standard deviation of results obtained from at least three 

separate experiments. Statistical analysis was performed with one-way ANOVA, followed by the 

Bonferroni test using Sigma-stat 3.1 software (SPSS, Chicago, IL, USA). p values <0.05 and <0.01 

were considered statistically significant. 
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3. RESULTS 

3.1. Binding kinetics and binding specificity of recombinant human mAbs 

First, we characterized the binding of recombinant human mAbs [9] to surface-blocked rhPDGFRα, 

whose native-like folding was assessed by conformational ligands, as described in the Material and 

Methods section (Fig.1, Panel A).  

 

 

Fig.1. Conformational control check (Panel A). Overlay of association and dissociation kinetics 

of mab322 and PDGF-BB (solid lines) to a surface-blocked native-like rhPDGFRα and to a 

partially denatured counterpart (emphasized by asterisks). The fit to a standard mono-exponential 

model is plotted as dotted lines. Binding of soluble PDGF-BB to immobilized rhPDGFRα (Panel 

B). Overlay of association and dissociation kinetics measured at increasing concentrations of 

PDGF-BB (solid lines), and the fit thereof to a standard mono-exponential model (dotted lines). 

 

 

PDGF-BB bound PDGFRα with the highest affinity (KD = 0.23 ± 0.02 nM) (Fig.1, Panel B) 

compared to VHPAM-Vκ13B8, VHPAM-Vκ16F4 and VHPAM-Vλ16F4 recombinant human mAbs 

(KD = 184 ± 19 nM, 71 ± 13 nM and 17 ± 5 nM, respectively), whereas VHPAM-Vλ13B8 

recombinant human mAb did not bind to PDGFRα (Fig.2).  
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Fig.2. Binding of soluble rHumaab to immobilized rhPDGFRα. Overlay of association and 

dissociation kinetics measured at increasing concentrations of VHPAM-Vκ13B8, VHPAM-Vκ16F4, 

VHPAM-Vλ16F4 (solid lines), and the fit thereof to a standard mono-exponential model (dotted 

lines). Response upon addition of non-binding VHPAM-Vλ13B8 is reported as a control of 

specificity. 

 

 

The analysis of the association/dissociation rate constants further dissected the binding properties of 

the different ligands to PDGFRα. Specifically, the different affinities to rhPDGFRα of PDGF-BB 

and recombinant human mAbs were dependent on the 10-fold faster recognition process (kass= (3 ± 
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0.2)×107 M-1s-1) of PDGF-PDGFRα complexes compared to recombinant human mAb-PDGFRα 

complexes (all characterized by kass values ranging between (1.8 ± 0.6)×106 and (2.8 ± 0.4)×106 M-

1s-1). Conversely, differences in equilibrium constants among recombinant human mAbs were 

dependent on dissociation rate constants (kdiss = 0.035 ± 0.002 s-1, 0.02 ± 0.003 s-1, and 0.003 ± 

0.001 s-1, for VHPAM-Vκ13B8, VHPAM-Vκ16F4 and VHPAM-Vλ16F4, respectively). To further 

assess the binding specificity of the recombinant human mAbs, the assay was repeated with 

immobilized human PDGFRβ-His. The recombinant human mAbs, either used at the same 

concentration or six-fold higher, did not bind to natively folded PDGFRβ (data not shown).  

 

3.3. Calibration Curve 

Based on the high affinity for rhPDGFRα and the better confidence limits for dose-response curve 

compared with the other anti-PDGFRα recombinant human mAbs (as assessed by Student’s t-test 

applied at 95% confidence level), VHPAM-Vκ16F4 was chosen to generate a calibration curve. 

Thus, VHPAM-Vκ16F4 was added to the surface-immobilized PDGFRα-His at different 

concentrations in the range 1-10 nM (Fig.3), and association kinetics were monitored up to 

equilibrium (Req). The plot of Req versus VHPAM-Vκ16F4 concentration showed the hyperbolic 

correlation: 

 

  (Eq.3) 

 

where Rmax is the response at asymptotically high concentrations of the autoantibody. This 

calibration procedure was replicated on three different days. Under the experimental conditions 

described above, the determination of IgG at sub-saturating concentrations ([IgG] < KD) assured a 

good reproducibility of the assay on different rhPDGFRα-functionalized surfaces. Moreover, the 

reversibility of the interaction enabled the achievement of an unambiguous response upon IgG 
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binding within 2 minutes. Fit (solid line) and 95% confidence bound (dashed lines) are reported in 

Fig.3, R2 being equal to 0.9989. Best fitted values for Rmax and KD,ext were 153±20 arcsec and 35±16 

nM (the value of the KD,ext being in strong agreement with the value calculated from kinetic data). 

Calibration data were expressed throughout as equivalents of VHPAM-Vκ16F4 per litre. 

 

 

Fig.3. SSc autoantibodies calibration curve. Fit to equation 3 (solid line) and 95% confidence 

bound (dashed lines) are reported. Each experimental point was the average of three replicates 

(standard errors of the mean are shown). VHPAM-Vκ16F4 was used as external calibrator. 

 

 

To calculate SSc IgG concentrations from ELISA assay and properly compare the results with 

biosensor data, VHPAM-Vκ16F4 was used also to generate an analogous hyperbolic calibration 

curve for ELISA raw data,  

 

  (Eq.4) 
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best fitted values for Absmax,E and KD,ELISA being 5.26±1.31 absorbance units and 10.6±3.4 nM. 

 

3.4. Quantification of anti-PDGFRα antibodies in IgG purified from serum 

Different dilutions of IgG samples were evaluated to minimize background signal due to cross-

reactivity with non-SSc IgGs and decrease the biosensor response within the calibration range. 1:8 

dilution of IgG samples in PBS buffer was adopted throughout. Additionally, lower dilution factors 

were excluded as they were associated to lower discriminating ability among different SSc samples: 

in fact, the levels of anti-PDGFRα IgG in non-diluted, 1:2 and 1:4 diluted samples were closer to 

saturating values for rhPDGFRα surface (corresponding to regions of the calibration curve with 

lower slope). Moreover, the 1:8 dilution was critical in reducing the time requested for surface 

regeneration (under the adopted dilution, regeneration procedures required less than 15 min). 

Limits of detection (LOD) and quantification (LOQ) of the proposed biosensor for anti-PDGFRα 

IgG (calculated as described in the Materials and Methods Section) were 2.18 and 3.08 

nanoequivalents/litre (neq/L) of VHPAM-Vκ16F4, respectively.  

For each IgG sample, three replicates were independently tested, and each sample was analysed in 

triplicate. Using the VHPAM-Vκ16F4 calibration curve, it was possible to detect and quantify anti-

PDGFRα IgG in all the 8 SSc IgG samples (3.24-4.72 neq/L range) (Table 2A).  
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Table 2. Comparison of results obtained with direct and competitive ELISA tests on both serum and 

IgG extracts, and with the rhPDGFRα-functionalized biosensor on IgG extracts. Raw as well as 

corresponding qualitative/quantitative data for SSc (A) and HC samples (B) are provided. Data are 

presented as mean value of three measurements and standard error of the mean. *LOD and LOQ 

calculated for direct ELISA assay; **LOD and LOQ calculated for biosensor method.  

  

 

SSc7 was the only sample being on the edge of significant difference from LOQ, whereas all IgG 

samples from other patients were significantly higher than LOQ. 

Conversely, only 1 out of 8 HC IgG was positive for anti-PDGFRα IgG, but under the 

quantification threshold of the biosensor (Table 2B).  

Due to the small number of samples, all intentionally selected among patients with a more severe 

disease phenotype, any statistical comparison was of limited utility. Nevertheless, two major sub-

groups with statistically different SSc IgG content were identified (Group 1: SSc2, SSc4, SSc5 and 

SSc7; Group 2: SSc1, SSc3, SSc6 and SSc8). Concerning intra-group comparison, non-significant 

differences were observed in SSc IgG content among patients SSc1, SSc3, and SSc8. Additionally, 

SSc8 was not statistically different from SSc6. No significant difference was observed among SSc2, 

SSc4, SSc5 and SSc7.  

 

3.5. Correlation between biosensor and ELISA data 

The same IgG preparations were also tested by ELISA, both in the direct and in the competitive 

formats previously reported [9].  

Comparative analysis revealed the lower sensibility of the direct ELISA: in fact, using the VHPAM-

Vκ16F4 calibration curve, anti-PDGFRα IgG were quantified by the biosensor assay in all SSc 

samples, whereas only 5 out of 8 SSc serum samples, and 3 out of 8 SSc IgG samples were 

quantified by direct ELISA (LOD and LOQ of the direct ELISA assay values were 0.21 and 0.50 

nEq/L) (Table 2A). The competitive ELISA, potentially representing the most specific method to 
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detect agonistic anti-PDGFRα IgG in both serum and purified IgG samples, was shown to be a 

merely qualitative method, because the threshold inhibition values for the presence/absence and for 

the quantification of agonistic anti-PDGFRα IgG were 29.7% and 79.0%, respectively, indicating 

that only for absorbance reductions higher than 79% it would be possible to correctly determine 

anti-PDGFRα IgG concentration, Unfortunately, such inhibition percentage is way higher than 

what we observed in all analyzed samples.      

On the other hand, all the 8 HC IgG samples were double negative, except for HC 3 and 8 that 

tested positive by direct but not by competitive ELISA (Table 2B); interestingly, HC3 tested 

positive also by biosensor assay. 

 

3.6. Reusability and efficiency of the biosensor 

Different regeneration conditions were tested. The complete dissociation of the recombinant human 

mAb/rhPDGFRα complexes was performed by washes with both mild acidic (HCl 10 mM) and 

with buffer solutions (the PBS binding buffer, with pH set to 5.5). Using 10 mM HCl, the biosensor 

surface could be used without any loss of activity for at least 10 measurement cycles before 

significant loss of binding capacity was reported. Conversely, the sensing surface resisted to a 

higher number of experimental cycles (biosensor response did not change by more than 5% after 50 

regeneration cycles) when PBS pH=5.5 was used (KD for the antigen-antibody complex was 

approximately 50-fold higher at pH 5.5). Subsequently, the use of this buffer solution provided an 

efficient (even if slower) desorption of the ligand without degrading the immobilized receptor: in 

fact, although less aggressive than complex dissociation under acidic conditions or using chaotropic 

agents (both procedures being harmful to the preservation of binding ability, and likely to diminish 

lifetime of the immobilized molecules), this procedure required longer regeneration times. The 

reproducibility of the binding assay was dissected by comparison of the intra- and inter-day 

variability. In line with the results of surface stability evaluation, a single surface (re-used on 
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different days) could withstand a total number of approximately 50 binding events before 

experiencing a significant loss of signal (> 5%).  

Concerning the inter-day variation of the same surface, the maximal coefficients of variation (5.1% 

at 10 nM VHPAM-Vκ16F4, and 4.1% at 1 nM VHPAM-Vκ16F4, respectively) were within the 

confidence limits of the calibration curve.  

Additionally, the “surface-to-surface” variation of assay sensitivity was assessed by comparing the 

measured binding affinity of different PDGFRα surface for VHPAM-Vκ16F4. This variation was 

negligible, with KD values ranging within the experimental error, independently of the batches of 

VHPAM-Vκ16F4 (the calibrator) and of rhPDGFRα used. 

 

4. Discussion 

One of the major advantages of biosensors lies in their versatility, as they can be customized and 

efficiently used in a wide range of applications [17-20]. Specifically, biosensors (both re-usable and 

single-use) are gaining an increasing impact on clinical chemistry and diagnosis [21-26]. 

Under optimized experimental conditions [10], here we characterized the binding kinetics of a 

unique panel of recombinant human monoclonal autoantibodies with different PDGFRα epitope 

specificity and biological activity [9, 11]. Tested autoantibodies showed strong specificity 

(PDGFRβ was not recognized) as well as moderate-to-high affinity for PDGFRα. Interestingly, we 

observed an affinity range progressively increasing from the non-agonistic antibody VHPAM-

Vκ13B8 to the native ligand PDGF-BB, and we found that VHPAM-Vκ16F4 agonistic antibody, 

binding specifically to a conformational motif of the human PDGFRα largely overlapping with the 

PDGF-BB binding site [9], possessed the binding profile most similar to PDGF-BB. Based on these 

results, VHPAM-Vκ16F4 mAb was used to calibrate the biosensor for the selective detection and 

quantification of human PDGFRα-specific, high affinity, bona fide agonistic, serum IgG 

autoantibodies, like those expected to be enriched in patients affected by SSc [3]. For biosensor 

analysis, we employed IgG purified from serum, since whole serum generated an extremely high, 
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and non-interpretable response upon addition onto rhPDGFRα surface due to multiple non-specific 

protein-protein interactions, which eclipsed the signal produced by specific rhPDGFRα-SSc IgG 

recognition. The data obtained herein by applying our novel biosensor assay to 8 SSc and 8 HC IgG 

samples confirmed the presence of IgG with the aforementioned characteristics in all the SSc 

samples. This finding was corroborated by comparing the biosensor results with the data obtained 

by two ELISA methods [9]. In fact, the competitive ELISA, which detects only anti-PDGFRα 

antibodies sharing the same epitope of the calibrator antibody, confirmed in 6 out of 8 SSc IgG 

samples the positivity obtained by biosensor. Only in two SSc IgG samples (SSc 4 and 7), both 

positive by biosensor assay, the competitive ELISA was negative but the direct ELISA, which 

detects all anti-PDGFRα antibodies regardless of their agonistic activity and affinity towards the 

receptor, was positive, indicating the presence of anti-PDGFRα antibodies directed to an epitope 

different from that recognized by the calibrator antibody. This suggests that the biosensor is not 

completely specific for anti-PDGFRα antibodies sharing the same epitope of the calibrator 

antibody, still it is specific for high affinity anti-PDGFRα antibodies. On the other hand, we 

intentionally selected for this study 8 HC IgG samples with previous ambiguous serological results 

(Table 2B), in order to test the ability of our new method to identify such samples as negative, 

which was indeed the case in 7 out of 8 samples. Of these negative HC IgG samples, 6 were 

confirmed by direct ELISA. The only HC IgG testing positive by biosensor (HC3), was however 

under the biosensor quantification threshold. It was positive also by direct ELISA, but negative by 

competitive ELISA. This signal may be due to traces of high-affinity, non-agonistic anti-PDGFRα 

antibodies like VHPAM-Vκ13B8. Taken altogether, the comparison between the new biosensor 

assay and the previously described ELISAs indicates a remarkable concordance, although in a small 

sample number. Thus, this must be replicated in a larger cohort in future studies. Despite this 

limitation, the inter-assay comparison indicates that the most relevant features of the biosensor 

assay are the selective detection and the quantification of high affinity anti-PDGFRα antibodies. 

These characteristics make this assay a valuable complementary tool to the direct ELISA, or even 
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an alternative tool when screening samples for agonistic anti-PDGFRα autoantibodies only. For the 

latter aim, the biosensor seems to be better suited than the competitive ELISA previously described, 

not only for the higher sensitivity but also for the shorter assay time, the lower consumption of 

reagents, and the lower cost per single analysis (Table 3). In fact, the competitive ELISA is 

characterized by an additional step consisting in the sample pre-incubation with a soluble peptide, 

with subsequent problems in terms of assay standardization and rapidity. Nonetheless, the real-time 

monitoring of biosensor response allows to check proper folding/orientation of rhPDGFRα upon 

immobilization. 

 

 

Table 3. Comparison of costs and time associated with (direct and competitive) ELISA and the 

proposed biosensor assay (*overnight incubation required; ** two-overnight incubation required). 

 

 

Moreover, the interpretation of the ELISA data requires a not trivial analytical step consisting in the 

determination of the optimal cut-off value by ROC curve. Conversely, the biosensor provides 

unambiguous responses upon the binding of high affinity anti-PDGFRα antibodies within one 

minute. Thus, it is possible to perform a quick screening of multiple samples (collectively requiring 

about one hour for the purification of IgG from serum).  

Besides these aspects, the biosensor assay holds another major advantage towards the ELISA, that 

is the quantification ability. This feature is relevant for an assay designed to measure the levels of 
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autoantibodies in human samples as biomarkers of SSc disease. In point of fact, we intentionally 

selected for this study 8 serum/IgG samples taken from patients with a more severe disease 

phenotype, in order to test the ability of our method to detect and measure anti-PDGFRα antibody 

levels in those patients who in real life would benefit from a quantifiable biomarker, e.g. during 

therapy. Of course, it will be mandatory applying this novel biosensor assay to samples taken from 

patients at different stages of disease to assess if high affinity anti-PDGFRα antibodies are sensitive 

to disease change and are, therefore, suitable as SSc biomarkers. This would fill an important gap in 

the current management of different SSc patients’ subsets [27].  
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HIGHLIGHTS 
 
 
A platelet-derived growth factor receptor α-based biosensor is presented.  

 

High-affinity specific interactions are observed between surface-blocked receptor and 

autoantibodies. 

 

The biosensor can detect and quantify high-affinity anti-PDGFRα autoantibodies in total serum 

IgG, thus discriminating SSc patients from healthy controls.  


