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Abstract 

Vegetation clearing results in the loss of species from landscapes. Indeed, the area of 

remaining native vegetation is an important determinant of species richness in human-

modified mosaics. Of interest to ecologists and landscape managers is the effect of area—

that is, how the number of species a landscape supports changes with the amount of 

native vegetation, as revealed by the shape and functional form of the species-area 

relationship. Understanding this is vital for guiding conservation interventions such as 

setting limits to vegetation clearing or establishing revegetation targets. 

 

Crucially though, it is not only vegetation area that affects patterns of species richness at 

the landscape level—so do environmental attributes such as soil properties and 

topography. Complicating the matter is the fact that these attributes tend to be correlated 

with landscape-level vegetation area, because humans preferentially remove vegetation 

from landscapes suited to land uses such as agriculture. However, this interplay between 

vegetation area, other landscape attributes, and biased patterns of vegetation 

loss/retention is infrequently considered in landscape-level species-area analyses. If 

unaccounted for, these confounding factors may result in erroneous interpretations of the 

effect of area, leading to suboptimal management actions. 

 

The aim of this thesis was to examine how attributes of landscapes affect the relationship 

between species richness and vegetation area. Through four specific research questions, I 

explored in detail the hypothesis that attributes of human-modified landscapes that bias 

vegetation clearing also interact with vegetation area to produce landscape-specific area 

effects on species richness.  

 

First, I quantified correlates of vegetation clearing/retention in two regions of the southern 

hemisphere, and reviewed the literature to determine how often, and in what ways, biased 

clearing patterns are accounted for in studies relating vegetation area to an ecological 

response. I demonstrated that soil properties and range in elevation are reliably associated 

with the amount of remaining native vegetation across ~18,000 100 km2 landscapes in 

Australia and South Africa. Importantly though, I found that clearing biases were explicitly 

acknowledged in only 15 of the 118 reviewed studies. If the area of native vegetation in 

landscapes is a legacy of biased clearing, confounding factors like soil properties should 

be accounted for in analyses of area effects.  
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Second, I explored the extent to which the effect of native vegetation area on species 

richness differed in 100 km2 landscapes categorised by attributes such as soil fertility, 

range in elevation or matrix land use. Using a case study of south-east Australian birds, I 

found that the shape of the species-area relationship varied substantially depending on 

whether landscapes were, for example, more- or less-topographically variable, or had 

higher or lower soil fertility. While threshold models depicting a point of sudden change in 

the effect of area emerged consistently, the amount of vegetation corresponding with 

observed thresholds differed considerably among landscape types. Therefore, aggregating 

and analysing species-area data from different landscape types is likely to misrepresent 

how species richness is affected by vegetation area. This will be exacerbated by clearing 

biases, because heavily cleared landscapes tend to be characterised by very different 

attributes to high cover landscapes. 

 

Third, I compared the effect of vegetation area on bird species richness at three scales of 

analysis (landscapes of 25 km2, 100 km2, 400 km2) for two regions of south-east Australia. 

When data for the entire study extent were analysed, a remarkable degree of scale-

invariance was observed—namely, a threshold relationship with a change-point at 

approximately 30% vegetation cover. However, when data were analysed for two regional 

subsets of the overall dataset, the effect of vegetation area, and the factors moderating 

this relationship, were scale-dependent. Given this finding, observed thresholds can only 

reliably be used to guide landscape management at the scale and in the region where the 

relationship was observed. 

 

Finally, I evaluated the implications of accounting for clearing biases when using species-

area relationships to guide conservation, focussing on a region of Australia undergoing 

rapid landscape transformation. I found that using observed thresholds from species-area 

models that do and do not account for landscape attributes yielded different outcomes for 

landscape-scale species richness conservation, given a scenario of future vegetation loss. 

Specifically, the number and location of landscapes that could be prioritised for 

conservation actions varied considerably depending on the species-area model used.  

 

This research demonstrates that the effect of area on species richness differs substantially 

as a function of the attributes of landscapes. Crucially, clearing biases underpinned by 

these same attributes can confound analyses of the species-area relationship. Accounting 
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for landscape attributes will allow for a more rigorous understanding of how species 

richness varies among landscapes with different amounts of native vegetation. A robust 

appreciation of the effect of area will provide more certainty around how much vegetation 

needs to be managed (i.e. protected, revegetated), and where this should occur among 

multiple landscapes, to avert the loss of, or enhance, landscape-scale species richness. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Background to the problem 

The near-ubiquitous positive relationship between the number of species and area is well 

established in biogeography and ecology (MacArthur & Wilson, 1967; Rosenzweig, 1995; 

Lomolino, 2000; Lazarina et al., 2014), and has been cited as one of ecology’s few laws 

(Whittaker & Triantis, 2012). The species-area relationship has attracted significant 

research interest over many decades, not least because of its utility for describing patterns 

of species occurrence in a world that is undergoing rapid transformation. Analysis of the 

species-area relationship can inform predictions about how changes in habitat area will 

influence species richness (Drakare et al., 2006; Scheiner et al., 2011; Proenca & Pereira, 

2013), and can guide management interventions that seek to arrest the decline of 

biodiversity in modified environments (Desmet & Cowling, 2004; Huth & Possingham, 

2011; Possingham et al., 2015). 

 

In the case of landscapes—mosaics of natural vegetation cover and human land use 

covering hundreds to thousands of hectares—species richness is expected to be higher in 

landscapes that have a greater area of habitat (Fahrig, 2013). Of significant interest is the 

shape of the curve that describes the landscape-level species-area relationship, as this 

illustrates how richness varies along a gradient of habitat cover among multiple 

landscapes. Indeed, studies at the landscape level have variously revealed that richness 

increases as a monotonic function of habitat area (De Camargo & Currie, 2015), that the 

relationship exhibits a ‘peak’ whereby richness is maximised at intermediate levels of 

habitat cover (Desrochers et al., 2011), or that there is a threshold in the relationship, 

about which the effect of area on richness suddenly changes (Radford et al., 2005; Ochoa-

Quintero et al., 2015). Consensus on how habitat area affects species richness at the 

landscape level is lacking. 

 

Given that the implications of future habitat loss can be revealed by the shape of the 

relationship (Tjørve, 2003; Whittaker & Triantis, 2012), resolving uncertainty about the 

effect of habitat area on species richness is of pressing importance. A key approach to 

addressing this uncertainty is identifying and accounting for attributes of landscapes that 

potentially act on the shape of observed species-area relationships. For example, abiotic 
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attributes of landscapes such as soil fertility and topography are often correlated with 

habitat area because of biases in where humans clear and retain native vegetation 

(Seabloom et al., 2002; Rouget et al., 2003). Moreover, these same attributes may interact 

with habitat area to affect patterns of species occurrence (Lindenmayer & Luck, 2005; 

Maron et al., 2012). If unaccounted for, these confounding factors may distort the shape of 

the landscape-level species-area relationship.  

 

A species-area relationship that is distorted by the confounding influence of 

landscape attributes diminishes our understanding of the response of biodiversity 

to landscape modification. It could lead to inaccurate predictions and ineffective 

conservation interventions that are focussed on habitat area. 

 

1.2 Species richness and area 

Larger areas tend to have more species. This is one of the most widely recognised 

patterns in ecology and biogeography, and is encapsulated by the species-area 

relationship (Rosenzweig, 1995; Triantis et al., 2008). The most straightforward 

mechanism explaining the species-area relationship is that larger areas contain more 

individuals, and, assuming individuals are distributed randomly, a greater likelihood of 

more species—a concept that has been captured by an array of terms, including ‘passive 

sampling’ (Connor & McCoy, 1979), ‘random placement’ (Turner & Tjørve, 2005) and 

‘more individuals’ (Scheiner et al., 2011). A second mechanism is that species richness is 

positively correlated with area because larger areas contain a greater diversity of habitats, 

which facilitates the co-occurrence of more species (Turner & Tjørve, 2005; Drakare et al., 

2006; Báldi, 2008; Scheiner et al., 2011; Giladi et al., 2014). The interplay between area, 

population sizes and likelihood of extinction further underpins the relationship between 

species richness and area (MacArthur & Wilson, 1967; Gaston, 2000; Scheiner et al., 

2011). Notably, Triantis et al. (2008) highlighted that the species-area relationship 

represents a generalisation of the substantial complexity that drives ecological systems. 

Thus, while various mutually-exclusive mechanisms have been proposed to explain the 

relationship, deriving a more nuanced appreciation of the effect of area requires 

examination of factors that interact to influence the occurrence, persistence and 

distribution of species (Turner & Tjørve, 2005; Tjørve & Turner, 2009; Scheiner et al., 

2011).  
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The approach to modelling species-area relationships has received considerable attention, 

both from a theoretical perspective, and with regards to what this relationship reveals 

about ecological and biogeographical patterns (Dengler, 2009). While the power and 

logarithmic (or exponential) models—represented by convex, upward shaped curves—

have been widely used to examine the relationship between species richness and area 

(Dengler, 2009; Scheiner et al., 2011), a number of authors have highlighted the pitfalls of 

not critically analysing model choice, given that the relationship may be better explained by 

other functions (Lomolino, 2000; Turner & Tjørve, 2005; Smith, 2010; Scheiner et al., 

2011; Proenca & Pereira, 2013). For example, species-area relationships for islands or 

other isolates, where some but not all species potentially exhibit minimum area 

requirements, may be better represented by sigmoid models (Tjørve & Turner, 2009). 

Quadratic models may be appropriate where richness is a peaked function of area 

(Desrochers et al., 2011; De Camargo & Currie, 2015). Where the relationship is 

characterised by a sudden change point, threshold models may best represent the shape 

of the relationship between species richness and area (Ficetola & Denoël, 2009; Matthews 

et al., 2014a). 

 

The substantial emphasis that has been placed on understanding the factors that underpin 

the species-area relationship, and what mathematical function best represents it, is due to 

the tremendous utility of the relationship for revealing how species richness may be 

affected by changes to area. In particular, MacArthur and Wilson’s (1967) theory of island 

biogeography spawned significant interest in how an understanding of the species-area 

relationship can translate to predictions about the implications of habitat loss in mainland 

environments (Giladi et al., 2014). Indeed, the species-area relationship is one of the 

cornerstones of conservation biogeography (Matthews et al., 2016). It has been employed 

to predict species extinctions resulting from habitat loss (Pereira & Daily, 2006; Pimm et 

al., 2006; Hubbell et al., 2008; Koh et al., 2010; He & Hubbell, 2011; Bogich et al., 2012; 

Kitzes & Harte, 2014), and guide conservation actions that seek to maintain or enhance 

species richness (Desmet & Cowling, 2004; Wilson et al., 2006; Wilson et al., 2007; Evans 

et al., 2011; Possingham et al., 2015). 

 

In mainland applications of the species-area relationship, there has been a particular focus 

on the effect of patch area on species richness. Patches, or ‘habitat islands’ (sensu 

Matthews et al., 2016) occurring within a matrix of human land use, have frequently been 

considered as analogues to ‘true’ (oceanic) islands (Fahrig, 2013). However, there is 
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considerable conjecture about the appropriateness of applying the island paradigm to 

fragmented mainland systems (Laurance, 2008; Mendenhall et al., 2012; Fahrig, 2013). Of 

note is the recognition that the effects of habitat loss on patterns of species richness 

manifest at a scale beyond that of individual patches (Fahrig, 2013). This has generated 

an increased focus on exploring the effects of habitat loss at the scale at which local 

assemblages are likely to respond to the transformation—that is in ‘whole landscapes’ 

(Radford & Bennett, 2007). As such, understanding how species are affected by the 

amount of habitat at the landscape level has been advocated (Radford et al., 2005; 

Thornton et al., 2011), and has resulted in a substantial recent body of literature on 

landscape-scale species-area relationships. 

 

 The relationship between species richness and habitat area in modified landscapes 1.2.1

 

Habitat amount and configuration 

 

Unlike islands or habitat patches, modified landscape mosaics contain both habitat and 

non-habitat (in accordance with the widely used patch-corridor-matrix conceptualisation of 

landscapes (Forman, 1995; Fahrig, 2013)—although see Bennett et al. (2006); 

Lindenmayer and Fischer (2007); Laurance (2008) for critique of this approach). Using this 

conceptualisation of modified landscapes, there has been extensive exploration of how 

species richness is affected by both the amount of habitat in a landscape, and how this 

habitat is configured (Parker & Mac Nally, 2002; Radford et al., 2005; Pardini et al., 2010; 

Smith et al., 2011; Hanski et al., 2013; Rybicki & Hanski, 2013). Much of the interest in 

configuration effects in human-modified landscapes was spawned by the ‘fragmentation 

threshold’ hypothesis (Andrén, 1994), which proposed that the (negative) influence of 

habitat configuration on populations in a given landscape becomes stronger as habitat 

amount decreases. Specifically, Andrén (1994) suggested that habitat loss is the primary 

cause of species richness declines where habitat extent for a given landscape is above 

30%, but that below this level, fragmentation effects exacerbate the adverse impact of 

habitat loss.  

 

While some landscape-scale studies have detected an influence of habitat configuration 

on species occurrence patterns (Trzcinski et al., 1999; Villard et al., 1999; Pardini et al., 

2010; Smith et al., 2011; Haddad et al., 2016), analyses at the landscape level have 

consistently revealed that habitat amount is a fundamental driver of species richness in 
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human-modified mosaics (Radford et al., 2005; Martensen et al., 2012; Cunningham et al., 

2014a; Ochoa-Quintero et al., 2015). These conclusions are supported by Fahrig, whose 

review of empirical studies (Fahrig, 2003) and comparative analysis of modelling and 

empirical data (Fahrig, 2002) provided strong support to the notion that habitat amount is a 

far more important driver of species occurrence, than habitat configuration. Fahrig (2013) 

formalised this view with the ‘habitat amount hypothesis’, which suggests that species 

richness in patches of habitat in a modified matrix is neither a function of patch size nor 

isolation, but rather, the total amount of habitat in the local landscape. This hypothesis is 

underpinned by the sample area effect, whereby larger sample areas contain more 

individuals, and generally as a result, more species (Fahrig, 2013). 

 

Abiotic landscape attributes and non-random clearing 

 

In addition to the oft-analysed influence of habitat configuration, various abiotic attributes 

have also been incorporated into landscape-level species-area studies. This is because 

elements of environmental heterogeneity—topographic variation, soil properties and 

climatic factors—are important determinants of spatial patterns of species occurrence (van 

Rensburg et al., 2002; Davies et al., 2007; Allouche et al., 2012; Fitterer et al., 2013; Stein 

et al., 2014; Chocron et al., 2015), and have the potential to interact with habitat area to 

affect species richness (Lindenmayer & Luck, 2005). Although focussing on islands, 

Triantis et al. (2008) noted that the consideration of other variables which contribute to the 

occurrence of species in space and time, such as productivity and environmental 

heterogeneity, can allow for an improved understanding of the effect of area on 

biodiversity as revealed by the species-area relationship.  

 

Indeed, the influence of abiotic attributes has been considered in a range of examinations 

of the effect of area on biodiversity. Storch et al. (2005) highlighted that energy 

availability—associated with abiotic factors such as rainfall—moderates the slope of 

broadscale species-area relationships. While focused on the cumulative area of sample 

grid cells rather than habitat area within landscapes, Storch et al. (2005) noted that the 

effect of area on bird species richness in South Africa and Great Britain was significantly 

reduced where energy availability was higher (i.e. a negative interaction). Kisel et al. 

(2011) documented that area was a key driver of regional-scale species-area 

relationships, although interactions between area and abiotic variables including range in 

elevation and energy availability were found to be significant. Radford et al. (2005) found 
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that within-landscape altitudinal variation contributed additional explanatory power (to that 

provided by habitat area) of observed patterns of woodland bird species richness in south-

east Australia. This result was attributed to the positive correlation between topographic 

variation and heterogeneity in vegetation (habitat) types (Radford et al., 2005). Yamaura et 

al. (2011) explored how rainfall, topography and productivity interacted with human land 

use (and associated habitat loss) to explain patterns of Japanese forest bird species 

richness at various scales. The existence of a correlation between abiotic attributes and 

habitat loss, whereby productive lowlands have been more heavily cleared, was 

highlighted by Yamaura et al. (2011) to explain variation in the relationship between 

species richness and habitat area. 

 

As touched on by Yamaura et al. (2011), abiotic factors can affect both patterns of species 

occurrence in interaction or association with area, and the amount of habitat in landscapes 

by biasing where native vegetation is cleared and retained. Such non-random patterns of 

vegetation clearing, driven by abiotic landscape attributes, are ubiquitous in many parts of 

the world (Lindenmayer & Fischer, 2006). However, these biases in patterns of vegetation 

clearing (habitat loss) are rarely explicitly accounted for in studies of the effect of habitat 

area on species richness (but see Seabloom et al. (2002); Rompré et al. (2009)). 

  

The significance of non-random clearing for studies of biodiversity in human-modified 

landscapes is captured by Watson’s (2011, p. 16) simple, yet highly pertinent observation 

of Australian woodland systems: 

 

“…not all woodlands are the same. Woodland on a stony ridge and woodland on a 

floodplain provide very different resources for plants and animals, and exhibit very different 

fluctuations in resource availability through time – soils that grow more wheat and wool 

originally grew more robins and babblers.” 

 

The flat, fertile landscapes such as floodplains, evoked by Watson (2011) as the best-

quality woodland bird habitat, are also the most attractive areas for agriculture. Because 

these landscapes are preferentially cleared of native vegetation, while vegetation is 

retained in landscapes that are less suitable for human land use, the amount of habitat (as 

represented by native vegetation cover) among multiple landscape mosaics is potentially 

confounded by abiotic factors which also affect the occurrence of species (Lindenmayer & 

Luck, 2005; Lindenmayer & Fischer, 2006). For example, more heavily cleared landscapes 
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are frequently more productive, which means that the number of individuals (and species) 

that can be supported per unit area of habitat is potentially higher than habitat occurring in 

a less-productive landscape (Lindenmayer & Fischer, 2006; Maron, 2008). The 

confounding effect of non-random clearing entails substantial ramifications for analyses of 

the effect of area on species richness in human-modified landscapes. 

 

The spurious thresholds hypothesis 

 

Maron et al. (2012) explored how accounting for non-random vegetation clearing affected 

the shape of landscape-scale species-area relationships. Using woodland birds of eastern 

Australia as a case study assemblage, species-area relationships were constructed for all 

landscapes in the study extent, and for subsets of landscapes categorised by soil 

productivity (higher and lower productivity landscapes) (Maron et al., 2012). This 

landscape-specific subsetting was conducted to examine the confounding effect of soil 

productivity on the amount of native vegetation in landscapes.  

 

The hypothesis under examination was that relating species richness to area where data 

were combined from the two broadly different landscape types would misrepresent the 

species-area relationship, due to the inherent bias associated with non-random clearing 

patterns (Maron et al., 2012). Specifically, Maron et al. (2012) hypothesised that this bias 

may manifest in a threshold relationship, where two separate species-area relationships 

representing the different landscape types intersect, erroneously indicating that the effect 

of area on species richness exhibits a sharp change. Indeed, Maron et al. (2012) 

demonstrated that segregation of the data by landscape type yielded a very different 

representation of how species richness varied with habitat area in contrast to the shape of 

the relationship for the aggregated dataset, implying that landscape-specific species-area 

relationships (for higher- and lower-productivity landscapes) were evident. 

 

The potential for misleading patterns to be described from landscapes that vary 

fundamentally in their underlying abiotic characteristics was captured in the ‘spurious 

thresholds hypothesis’ (Maron et al., 2012). A graphical depiction of how combining data 

from different landscape types subject to vegetation clearing bias can affect the shape of 

observed species-area relationships is presented in Figure 1.1 (reproduced from Maron et 

al. (2012)). Thresholds, which were a key focus of the analysis, represent a highly 

attractive management tool, especially for establishing conservation targets (Swift & 
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Hannon, 2010), and have been identified from a number of landscape-scale studies of the 

relationship between species richness and habitat area (Radford et al., 2005; Banks-Leite 

et al., 2014; Ochoa-Quintero et al., 2015; Richmond et al., 2015). Spurious thresholds, 

which arise as a function of the confounding effect of vegetation clearing bias, undermine 

the applied value of the concept for guiding conservation actions such as vegetation 

protection or restoration targets. The spurious thresholds hypothesis, with its basis in the 

non-random nature of vegetation clearing and retention in human-modified landscapes, 

has significant implications for interpreting and managing patterns of species richness, 

thus warranting more detailed and widespread investigation (Maron et al., 2012). 

 

 

Figure 1.1 Graphical depiction of the spurious thresholds hypothesis (figure reproduced 

and modified from Maron et al. (2012, p. 684)) 
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 Ecological thresholds 1.2.2

 

Overview 

 

In reviewing the applicability of the threshold concept for landscape planning, Kato and 

Ahern (2011) (p. 276) defined a threshold (in the natural sciences) “as a point or zone of 

the value of an independent parameter where a small, additional change in the 

independent parameter causes sudden, large changes in the state of the dependent 

parameter”. The manifestation of the relationship between the two variables as a 

discontinuity or nonlinearity is characteristic of a threshold (Muradian, 2001). It is because 

of the rapidity of the change in the way that one variable relates to another that the 

threshold concept is important and attractive from an applied conservation perspective: 

important because it allows for the identification of critical changes that can potentially 

disrupt system dynamics, and attractive, because it can provide tangible targets for 

protecting and enhancing biodiversity. 

  

Causes of thresholds 

 

Habitat configuration is the most commonly proposed driver of landscape-scale ecological 

thresholds (Swift & Hannon, 2010). At low levels of habitat cover, the negative effects of 

reduced habitat availability are potentially compounded by the spatial distribution of this 

habitat (Andrén, 1994; Hanski, 2015). In particular, at low levels of habitat cover, the ability 

of organisms to disperse between habitats, and habitat quality within remnant fragments, 

are potentially compromised (Swift & Hannon, 2010). The composition of the matrix, that is 

‘non-preferred’ habitat type(s) that dominate the mosaic, potentially influences these 

fragmentation effects (Watson et al., 2005; Swift & Hannon, 2010; Villard & Metzger, 

2014). For example, in assessing how forest bird species richness varied with habitat 

amount and configuration in Brazilian Atlantic Forest mosaics, Martensen et al. (2012) 

attributed an observed threshold level of forest cover to the dominance of specialist 

species in the community, which in combination with their sensitivity to habitat loss, were 

less able to disperse through the matrix than generalist species.  

 

Other factors that may promote thresholds in species-habitat (i.e. species-specific 

response to habitat) and species-area (i.e. species assemblage response to habitat) 

relationships include Allee effects and time-lags (Swift & Hannon, 2010). Allee effects refer 
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to a reduction in the viability of a population at low numbers, given the positive relationship 

between density and population growth rate (Courchamp et al., 1999; Berec et al., 2007). 

Factors that combine to reduce individual fitness, and thus population viability at low 

densities include inbreeding depression and loss of heterozygosity, demographic 

stochasticity (sex ratio fluctuations) and social-system dysfunction (reduced mutually-

beneficial interactions) (Courchamp et al., 1999). These factors, individually or in concert, 

may promote non-linear changes in occurrence (i.e. of a population of an individual 

species, or of constituent species in an assemblage), where factors such as habitat loss 

and/or fragmentation (independent of habitat loss) drive populations to low enough levels 

(Swift & Hannon, 2010).  

 

Time lags, relating to the rate and timing of habitat loss, may contribute to nonlinear 

species responses to habitat area in modified landscapes. Where clearing is rapid initially, 

species may crowd into remnants in the landscape (Swift & Hannon, 2010), with the effect 

of temporarily dampening the impact of habitat loss. However, with time, and the ongoing 

loss of habitat, the ability of species to persist is compromised, including potentially by 

other factors such as fragmentation and Allee effects, thereby incurring ‘payment’ of the 

so-called ‘extinction debt’ (Tilman et al., 1994; Swift & Hannon, 2010). A threshold in the 

relationship between species richness and area may result from the ‘payment’ of the 

extinction debt, whereby the negative effects of habitat loss are realised and species are 

rapidly lost (‘relaxation’) below a certain amount of habitat (Swift & Hannon, 2010; Halley 

et al., 2014).   

 

Importantly, interpretation of how habitat loss influences biodiversity in human-modified 

landscapes must be cognisant of the potential occurrence of extinction debts, as the time 

since clearing has the potential to distort patterns. Namely, recent, rapid habitat loss may 

mean that the remaining habitat is carrying an extinction debt, and thus, the true 

relationship between species occurrence and habitat amount is obscured by the time lag in 

loss of species (Halley et al., 2014). For example, Radford et al. (2005) explored how time 

since clearing may have influenced their interpretation of an observed threshold in the 

species-area relationship of woodland birds from agricultural landscapes in south-east 

Australia. Finding that many species had smaller populations in low-cover landscapes, the 

authors suggested that an extinction debt may be evident in these landscapes (Radford et 

al., 2005). With respect to the threshold value they identified, Radford et al. (2005) 

hypothesised that ‘repayment’ of the extinction debt via the loss of those low-population 
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species would, with time, shift the species-area threshold towards higher levels of habitat 

cover. 

 

Thresholds in landscape-scale species-area studies 

 

A number of studies that have examined how landscape-scale habitat area affects species 

richness have noted the occurrence of a threshold in the relationship. In the 

aforementioned study conducted by Radford et al. (2005), a rapid loss of species was 

observed in landscapes with less than 10% native vegetation cover. Above this value, the 

amount of vegetation in the landscape had little effect on species richness (Radford et al., 

2005). Ochoa-Quintero et al. (2015) noted a much higher threshold value—approximately 

43% forest cover—when relating the richness of birds and mammals to forest cover in 

landscapes in the Amazon region of Brazil. In a study on the response of forest-specialist 

mammals to habitat loss in the Atlantic Forest of Brazil, Estavillo et al. (2013) reported that 

a rapid decline in species richness was observed in landscapes with less than 30% forest 

cover. In other studies from the Atlantic Forest, thresholds of landscape-scale forest cover 

below which species richness exhibited a sharp decline were observed at approximately 

30-50% for birds (Martensen et al., 2012), 50% for forest-specialist birds (Morante-Filho et 

al., 2015), 47% for bats (Muylaert et al., 2016), 30% for forest trees of the family 

Sapotaceae (Lima & Mariano-Neto, 2014) and 10-30% for small mammals (Pardini et al., 

2010). Richmond et al. (2015) noted a broad range in observed thresholds in the 

relationship between forest bird richness and different types of landscape-scale forest 

cover in two regions of Canada. These values ranged from approximately 4-28% cover 

(Richmond et al., 2015). 

 

Utility and limitations of thresholds for informing conservation 

 

Ecological thresholds—including those in the relationship between species richness and 

habitat area—can act as explicit targets upon which conservation measures such as 

habitat protection or restoration can be based (Huggett, 2005; Luck, 2005; Ficetola & 

Denoël, 2009; Kato & Ahern, 2011; Kelly et al., 2014). For example, Ochoa-Quintero et al. 

(2015) identified landscapes in the Amazon region of Brazil that should be prioritised for 

conservation interventions under a scenario of future habitat loss. The prioritisation was 

guided by an observed threshold in the species-area relationship of 43% forest cover, 

below which species richness rapidly declined (Ochoa-Quintero et al., 2015). Banks-Leite 
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et al. (2014) explored how enhancing landscape-scale forest cover above a threshold of 

30%—a value derived from several aggregated datasets on the response of forest-

specialist and disturbance-adapted species to forest loss—could guide the management of 

143 million hectares of land in the Atlantic Forest region of Brazil. In particular, a focus on 

restoring forest in landscapes close to, but below, the threshold value of cover was 

advocated as a means by which to prioritise management actions to achieve a maximum 

biodiversity benefit (Banks-Leite et al., 2014). In observing a sharp decline of woodland 

bird species richness below 10% vegetation cover, Radford et al. (2005) advocated that 

landscape-scale native vegetation extent be maintained at well above 10% to avoid the 

rapid species loss associated with this threshold being breached. 

 

Nonetheless, a number of flaws have been highlighted regarding the uncritical application 

of thresholds for guiding management. As exemplified by various studies of landscape-

scale relationships between species richness and area, there is considerable variation in 

observed threshold values. Notwithstanding the fact that these thresholds have been 

observed for different taxa in landscapes of varying sizes across an array of regions, the 

lack of consistency in the point at which species richness suddenly declines has been 

highlighted as a potential limitation of the threshold concept for informing applied 

conservation (Huggett, 2005; Johnson, 2013; van der Hoek et al., 2015).  

 

In particular, the application of an observed threshold from one system to guide the 

management of a different assemblage/system/region has been strongly discouraged 

(Huggett, 2005; Johnson, 2013; van der Hoek et al., 2015). This is because the factors 

underpinning a threshold response are likely to be highly species-, system-, and scale-

specific (Huggett, 2005; Lindenmayer & Luck, 2005; van der Hoek et al., 2015). The 

application of thresholds may also mean that units of analysis (i.e. landscapes) that fall 

well below an observed threshold value will be neglected or under-valued in terms of 

management intervention, even though such actions would entail a biodiversity benefit 

(Huggett, 2005; Bestelmeyer, 2006). Finally, managing habitat area such that it remains 

above an observed threshold does not necessarily correspond with the ongoing 

persistence of all species in the assemblage. This is because some species may be on a 

trajectory towards local extinction, even where habitat cover is above an observed 

threshold (Radford et al., 2005; van der Hoek et al., 2015). 
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These limitations underscore the importance of deriving a more nuanced understanding of 

the effect of area on species richness. Without a more detailed appreciation of why, and 

how consistently, thresholds occur, they will remain merely descriptive with limited applied 

utility. The exploration of factors that potentially interact to effect patterns of species 

richness represents an avenue by which to resolve some of the uncertainty about 

thresholds in landscape-level species-area relationships. Huggett (2005), Lindenmayer 

and Luck (2005), and Ewers and Didham (2006) highlighted that thresholds may manifest 

as a result of landscape attributes interacting with habitat area to affect the occurrence of 

species. Swift and Hannon (2010) noted that thresholds are likely to vary in different types 

of landscape—implying that landscape-specific species-area relationships occur. Indeed, 

Maron et al. (2012) demonstrated that the effect of area on species richness differs in 

different landscape types, and linked this to the interaction between landscape attributes 

(such as soil productivity) and habitat amount. Crucially, in recognising that these same 

landscape attributes are frequently correlated with habitat area due to non-random 

patterns of vegetation clearing, Maron et al. (2012) presented a foundation upon which a 

more thorough interrogation of thresholds in landscape-scale species-area relationships 

could be based. Further exploration of the spurious thresholds hypothesis will address 

some of the recognised limitations of the applied utility of ecological thresholds for guiding 

landscape management. 

 

1.3 Summary of problem 

Attributes of human-modified landscapes have the potential to confound analyses of the 

species-area relationship. Abiotic attributes like soil properties and topography may affect 

patterns of species occurrence independently of, or in interaction with habitat area. For 

example, flat and fertile landscapes may be able to support more species for a given area 

of habitat than hilly, infertile landscapes with the same amount of habitat, because the flat, 

fertile habitat potentially provides more resources and can support larger populations of 

multiple species. Furthermore, landscape attributes like soil properties and topography 

frequently underpin non-random patterns of habitat clearing and retention, and thus may 

exhibit a strong correlation with the amount of habitat in a landscape.  

 

Failure to account for these interacting and confounding factors has the potential to distort 

observed species-area relationships, and may explain why substantial variation in the 

shape of this relationship has been recorded among various landscape-level studies. In 

particular, the enigmatic occurrence and nature of thresholds—a potentially valuable tool 
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for landscape managers and policy makers—may reflect this. In order to improve our 

understanding of how species richness varies with habitat area at the landscape level, it is 

crucial that factors that interact with and/or are correlated with area are accounted for. 

Only then will a more accurate representation of the way in which richness changes with 

area—the shape of the relationship—be gained, with significant implications for the 

predictive and conservation utility of the species-area relationship in modified landscapes. 

 

1.4 Thesis aims and objectives 

The overall aim of this thesis is to examine how accounting for landscape attributes that 

potentially bias patterns of clearing, and interact with area to drive the occurrence of 

species, affects interpretation of the species-area relationship in human-modified 

landscapes. To achieve this, I explore the ubiquity of non-random vegetation clearing in 

two parts of the world (Australia and South Africa), and review how the confounding effect 

of biased clearing patterns has been addressed in the landscape ecology literature. I then 

focus on how the shape and functional form of the species-area relationship, and 

particularly the occurrence and value of thresholds, varies in landscapes characterised by 

specific attributes, and in landscapes of different sizes. The focus of these analyses is on 

the avifauna of heavily modified woodlands and forests of south-east Australia. To explore 

the applied utility of the species-area relationship, I incorporate the findings of these 

analyses in a case study of the potential impacts of future vegetation loss in a region of 

eastern Australia that is subject to ongoing, rapid transformation in a dynamic policy 

environment. 

 

The four key questions that I examine in this thesis are: 

 

1. Are patterns of remnant native vegetation extent consistently non-random with 

respect to abiotic attributes such as soil properties in human-modified landscapes, 

and what are the implications of this for studies that use native vegetation extent to 

explore ecological patterns? 

 

2. How does the shape of the relationship between species richness and native 

vegetation extent vary when landscapes are categorised by specific abiotic and 

anthropogenic attributes? 
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3. Does the shape of the relationship between species richness and native vegetation 

extent vary in landscape units of different sizes? 

 

4. What can landscape-specific species-area relationships reveal about how future 

changes in native vegetation extent may affect bird species richness, and how can 

these relationships guide conservation interventions? 

 

1.5 Thesis approach 

In this thesis, I have considered the key components of landscape ecology—pattern, 

process, scale and heterogeneity (Wu, 2013)—to explore how species richness is affected 

by anthropogenic transformation of landscapes. In short, I have expanded upon the 

examination of simple patterns—relating species richness to native vegetation area, as per 

an island biogeography approach—by delving into the processes that potentially affect this 

relationship. By focussing on the complexity subsumed within the metric ‘area’, and 

particularly, how its effect may be moderated by other attributes of landscapes in a non-

random clearing context, I have sought to derive a more comprehensive understanding of 

variation in species richness in human-modified landscapes. Specifically, the recognition 

that the effect of area is likely to differ among heterogeneous landscapes because of the 

interactive effect of abiotic attributes which act on the occurrence of individuals and 

species, underpins this more detailed exploration of the response of species richness to 

landscape transformation. Because the case study assemblage in this thesis is the 

avifauna of heavily modified woodlands and forests of south-east Australia, any reference 

to ‘landscape’ for these analyses is at a scale relevant to this bird community – namely 

thousands to tens of thousands of hectares. 

 

1.6 Thesis outline 

This thesis comprises six chapters: this introductory chapter outlining the background to 

the problem and objectives of the research; four core chapters addressing each of the 

specific research questions posed in section 1.4; and a conclusion chapter where the main 

findings, conservation implications, limitations and future research directions arising from 

this research are synthesised. The core analysis chapters (2 to 5) have been accepted for 

publication in or prepared for submission to peer-reviewed journals. As such, these 

chapters have been compiled as stand-alone manuscripts, entailing some repetition of key 

themes and methods among these four chapters.  
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A brief overview of the six chapters is presented below, and depicted visually in Figure 1.2. 

 

Chapter 1 Introduction. This chapter provides an overview of the key topics being 

explored in this thesis—biased patterns of vegetation clearing, landscape-scale species-

area relationships,  and ecological thresholds—and outlines the overarching objective and 

specific questions being addressed by this research. 

 

Chapter 2 Non-random patterns of vegetation clearing and potential biases in studies of 

habitat area effects. In this chapter, I provide an in-depth exploration of non-random 

patterns of vegetation clearing, and what these may mean for the study of ecological 

phenomena in human-modified landscapes. First, I present the results of a review of the 

literature, where the objective was to determine how the issue of non-random clearing has 

been addressed in studies of human-modified environments. Second, I examine 

correlations between remnant (uncleared) native vegetation extent and a range of abiotic 

attributes in 100 km2 landscapes, and compare the findings for different regions of 

Australia and South Africa. This chapter establishes the foundation for the ensuing 

analyses that focus on the relationship between species richness and vegetation extent at 

the landscape level. 

 

This chapter has been accepted for publication in Landscape Ecology. 

 

Chapter 3 Landscape-specific effects and the relationship between species richness and 

native vegetation extent. Chapter 2 established the prevalence of non-random vegetation 

clearing, and the pitfalls of not considering these biases when relating an ecological 

response to area. In this chapter, I examine the relationship between the species richness 

of woodland and forest birds and remnant native vegetation extent in 100 km2 landscapes 

of south-east Australia, while accounting for potential biases associated with non-random 

clearing. By exploring landscape-specific species-area relationships, whereby attributes of 

landscapes like soil fertility and topography are controlled for, I demonstrate that the shape 

of the species-area relationship, and particularly the occurrence and value of thresholds, 

varies for different landscape types. This analysis represents an exploration of the key 

themes of the spurious threshold hypothesis (Maron et al., 2012), and highlights the 

importance of considering interactions between habitat area and other attributes of 

landscapes. 
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This chapter has been prepared for submission to Ecography. 

 

Chapter 4 The effect of scale on how habitat area influences landscape-level species 

richness. Building upon the findings presented in Chapter 3, I explore how the shape of the 

landscape-scale species-area relationship, including the occurrence and value of 

thresholds, varies at different scales—that is, in landscapes of different sizes. While 

numerous studies have explored the scale of effect by varying the scale at which predictor 

variables are measured and related to a response, I take a ‘whole landscapes’ approach 

(Radford & Bennett, 2007) of measuring both the predictor variables (vegetation extent, as 

well as other potentially influential landscape attributes) and the response (estimates of 

species richness) at different scales—landscapes of 25 km2, 100 km2, and 400 km2. I 

show that there is scale invariance in the relationship across a broad geographical extent, 

although this breaks down when the data are subset regionally. I infer processes 

underpinning the potential scale-dependence of species-area relationships in two regions 

of south-east Australia. 

 

This chapter has been prepared for submission to Landscape Ecology. 

 

Chapter 5 The implications of using thresholds from landscape-specific species-area 

relationships to guide conservation actions. In this chapter I use observed landscape-

specific species-area relationships to explore the potential ramifications of future remnant 

vegetation loss in a region experiencing rapid change. In particular, I examine how 

accounting for landscape attributes (soil fertility and topography) in species-area 

relationships (as performed in Chapter 3) affects both predictions of changes to species 

richness, and potential conservation interventions based on observed thresholds. This 

case study is focussed on southern Queensland, Australia—a region that has undergone 

rapid and extensive landscape transformation, and for which future clearing trends are 

uncertain due to a dynamic and changing policy environment. 

 

This chapter will be prepared for submission to Biological Conservation. 

 

Chapter 6 Thesis synthesis and conclusion. In this final chapter, I summarise the key 

findings of my research, with a major focus on how interpretation of the effect of habitat 

area on patterns of species richness is affected by landscape attributes. I outline the 

contribution that this research makes to the fields of landscape ecology and conservation 
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biogeography. I address key limitations, both in the research approach, and in the 

interpretation and application of the findings presented. Additionally, I detail a suite of 

recommendations relating to future research directions that can build upon the foundation 

presented in this thesis. 

 

 

 

Figure 1.2 Thesis outline with key research themes highlighted 
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CHAPTER 2  

 

NON-RANDOM PATTERNS OF VEGETATION CLEARING AND POTENTIAL BIASES 

IN STUDIES OF HABITAT AREA EFFECTS 

 

 

Accepted for publication in Landscape Ecology 

 

 

 

 

 

Plate 1 Native vegetation cleared on a fertile plain and retained in surrounding hills—

Darling Downs, southern Queensland  
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2.1 Abstract 

Native vegetation extent is often a proxy for habitat area in studies of human-modified 

landscapes. However, the loss and retention of native vegetation is rarely random among 

landscapes. Instead, the extent of native vegetation in landscapes may be correlated with 

abiotic factors, thereby obscuring or distorting relationships between ecological 

phenomena and area. We asked: (1) How has the potential for non-random vegetation 

loss to confound area effects been addressed in the landscape ecology literature? (2) Are 

consistent patterns of non-random vegetation loss and retention evident from modified 

regions of two countries? We reviewed 118 papers that related area to an ecological 

response, to determine whether potential biases associated with non-random vegetation 

loss and retention were considered. We then analysed ~18,000 100 km2 landscape units 

in Australia and South Africa to identify how different abiotic factors correlate with the 

extent of native vegetation retained in those landscapes. Only 21% of the studies we 

reviewed explicitly or implicitly considered spatial biases in vegetation clearing. Yet, across 

modified regions of Australia and South Africa, landscape-scale native vegetation extent 

was consistently and often strongly related to abiotic factors, particularly soil properties 

and topographic variability. Patterns of vegetation clearing and retention commonly reflect 

underlying abiotic heterogeneity. These biases, which are infrequently highlighted in 

studies focussing on area effects, have implications for how we assess the importance of 

vegetation extent for species and assemblages. Failure to account for correlates of 

vegetation extent risks erroneous area-based conservation prescriptions in human-

modified environments. 

 

2.2 Introduction 

The role of habitat area is central to ecology’s most fundamental and enduring concepts, 

including the species-area relationship (Rosenzweig, 1995; Whittaker & Triantis, 2012) 

and metapopulation theory (Hanski, 1998). Habitat area affects patterns of species 

distribution through its effects on colonisation, persistence and local extinction (Kisel et al., 

2011) via its correlation with habitat diversity (Turner & Tjørve, 2005), its association with 

fragmentation (Andrén, 1994; Crouzeilles et al., 2014; Hanski, 2015), and its influence on 

the abundance of individuals (Connor & McCoy, 1979). For example, more colonists 

arriving at, or individuals persisting within, larger areas of habitat imply greater species 

richness, as more individuals will generally include more species (Connor & McCoy, 1979). 
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Habitat area effects have been explored at various spatial scales in human-modified 

systems. Approaches include assessing how organisms respond to habitat area within a 

set radius of sampling sites (Polyakov et al., 2013; Carrara et al., 2015), comparing the 

effect of patch size (Nufio et al., 2011; Hadley et al., 2014), and analysing the influence of 

habitat amount in pre-defined landscape-units (Harrisson et al., 2012; Lima & Mariano-

Neto, 2014). In such studies, area of habitat is often defined as the total extent of native 

vegetation cover, or cover of a particular vegetation type, within or relating to the sampling 

units. 

 

The contemporary spatial extent and distribution of native vegetation in human-modified 

systems is generally a legacy of historical decisions about which land should be cleared 

(Lindenmayer et al., 2010). Frequently, land is cleared of its native vegetation based on its 

potential to support land uses such as agriculture (Lunt & Spooner, 2005; Laurance, 2008; 

Watson, 2011), so the spatial pattern of vegetation clearing reflects heterogeneity in the 

biophysical and socioeconomic factors that promote such land use (Rompré et al., 2009). 

It follows that the amount of native vegetation retained in a particular place will exhibit 

correlations with those same biophysical factors, such as soil properties and topography, 

which create suitable conditions for human-dominated land uses (Seabloom et al., 2002).  

 

Spatial biases in the location of terrestrial protected areas—often in unproductive, steep, 

and/or remote places that are unsuitable for human developmental needs such as 

agriculture or urban development—have been repeatedly identified in the literature 

(Margules & Pressey, 2000; Cowling & Pressey, 2003; Watson et al., 2014). The 

ramifications of such biases are clear—a lack of representation of habitats and species in 

reserve systems (Watson et al., 2014). A related, yet less-well studied issue is that of 

biases in patterns of vegetation clearing and retention, and the ramifications of these 

biases—especially where vegetation area is used to explain how species and 

assemblages respond to landscape modification. If vegetation area is consistently 

correlated with particular abiotic factors, what does this mean for conclusions drawn about 

the effect of area?  

 

Recognising that abiotic properties potentially interact with area to affect ecological 

processes that underpin the spatial occurrence of species and assemblages (Hawkins et 

al., 2003; Lindenmayer & Luck, 2005) underscores the need to consider biases in clearing 

patterns when exploring the effect of area. Indeed, accounting for factors that both interact 
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with area to affect the response, and are correlated with area because of non-random 

clearing, will allow for a more nuanced understanding of area effects. Conversely, failure to 

account for a confounding abiotic variable may result in erroneous conclusions about the 

influence of area (Lindenmayer & Fischer, 2006).  

 

The confounding effect of non-random vegetation clearing has important implications for 

key ecological patterns and principles that are underpinned by area effects. For example, 

clearing biases may affect the shape of an observed species-area relationship. This is 

because the area of patches, or of native vegetation in landscapes, will be correlated with 

factors like soil fertility and/or topographic variability, which may also act on patterns of 

species richness via mechanisms like resource availability (Maron et al., 2012). If the bias 

is not accounted for, the shape of the species-area relationship will not be an accurate 

representation of the effect of area per se on species richness.  

 

Clearing biases may also obscure a real effect of area per se on an ecological response 

like species occurrence or abundance. In such an instance, an (expected) positive effect of 

habitat area on the response variable may be dampened by the confounding effect of an 

abiotic property like soil fertility. For example, large patches of habitat may be less 

productive, given their association with poorer quality soils that are unsuited to agriculture, 

while small patches may be more fertile. The confounding effect of productivity, and its 

association with resource availability (Watson, 2011), may mean that species occurrence 

or abundance is similar in small and large patches, thereby masking a real area effect that 

may exist where the confounding effect of productivity is controlled for. In an applied 

conservation context, such a finding may devalue larger areas, given a lack of observed 

area effect. However, accounting for the confounding effect of the abiotic attribute may 

reveal that area is indeed important, with its effect dependent on the abiotic attribute (i.e. 

an interaction).  

 

Resolving uncertainty around how species and assemblages respond to native vegetation 

area is particularly important when conservation decisions, such as the setting of targets 

for vegetation retention and restoration, are based upon observed area effects such as the 

species-area relationship (Maron et al., 2012). In light of this, to our knowledge, no 

comprehensive multi-regional examination of the types and importance of factors 

confounding remnant vegetation area in modified environments has yet been done. In this 

study we examine how the phenomenon of non-random vegetation clearing may confound 
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the effect of area on ecological responses, through both a review of the global landscape 

ecology literature and an empirical case study of data from almost 18,000 100 km2 

landscape units from two continents. We ask: (1) how do studies that use area to explore 

an ecological response account for potential non-randomness in patterns of vegetation 

extent? And (2) how is the extent of native vegetation at the landscape scale correlated 

with abiotic factors across human-modified regions in Australia and South Africa? In 

undertaking these analyses, we seek to provide a more detailed understanding of how 

non-random patterns of vegetation clearing affect our interpretation of area effects, and 

how these biases may impact conservation actions that rely on the effect of area to 

conserve biodiversity. 

 

2.3 Methods 

 Literature review 2.3.1

We used a systematic literature review to examine how non-random vegetation clearing 

patterns have been addressed in studies that explored the relationship between vegetation 

area and an ecological response in human-modified environments (i.e. those that have 

been altered by the clearing and, often, the fragmentation of native vegetation). The review 

incorporated studies where the replicate sampling units were sites (with buffers), patches 

or landscapes. It was global in its coverage, and included papers published 2005-2014 

inclusive. The following three exact key word combinations were searched separately in 

two online databases (Scopus and Web of Science): (1) “independent variable” or 

predictor and habitat and fragment*; (2) “habitat area” and “area of habitat” and fragment*; 

(3) “habitat cover” or “vegetation cover” and fragment*. Titles and abstracts of studies from 

these database searches were screened to identify potentially relevant papers, returning a 

total of 172 and 180 potential candidate papers for the two databases, respectively 

(including 113 duplicates). From this subset of 239 unique papers, we retained those 

which: (1) focussed on an empirical analysis of human-modified terrestrial systems; and 

(2) incorporated a measure of terrestrial habitat (vegetation) area as a predictor of a 

species- or assemblage-level response. The entire text of articles that satisfied these 

selection criteria (n=118) was examined to determine whether spatial heterogeneity in 

abiotic factors was considered, and particularly, whether the potential for abiotic factors to 

confound habitat area due to non-random vegetation clearing was: (a) explicitly controlled 

for in study design; (b) accounted or controlled for as part of data analysis; (c) considered 

in the interpretation and discussion of results; (d) not explicitly acknowledged, although 
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spatial homogeneity in abiotic factors was identified as a feature of the study extent; or (e) 

not acknowledged. 

 

 Empirical case study 2.3.2

 

Study extent 

 

We quantified relationships between the extent of native vegetation and various abiotic 

factors from modified landscapes across different regions of Australia and South Africa. A 

landscape-level approach was taken as vegetation extent in a landscape has been 

advocated as a key determinant of species richness (Fahrig, 2013), and this scale—

several to several hundred square kilometres (Fischer & Lindenmayer, 2007)—has been 

widely used to explore biodiversity patterns in modified environments (Radford et al., 2005; 

Maron et al., 2012). Australia and South Africa were selected for this analysis because 

they are both large, span several climatic zones and numerous landforms, and parts of 

each have been heavily modified. However, their contrasting landscape transformation 

histories allowed some exploration of the generality of any patterns detected.  

 

Because abiotic factors that may introduce spatial bias to patterns of anthropogenic 

vegetation clearing were our focus, we considered only regions that have experienced 

substantial landscape alteration. In each country, bioregions (or subregions) in which at 

least 25% of the land cover was non-native vegetation (i.e. cleared, built-up, forestry 

plantations) formed the study extent. Bioregions were based on the Interim Biogeographic 

Regionalisation for Australia (Department of the Environment, 2012a) and the Bioregions 

of South Africa, Lesotho and Swaziland (Mucina & Rutherford, 2006). Within each study 

extent, a 10 km x 10 km grid was overlaid, and any incomplete (i.e. <100 km2) grid cells 

(such as those overlapping the study extent’s boundaries or the coast) were removed. 

Each grid cell represented a ‘landscape unit’. The Australian study extent included 13,230 

landscape units and the South African study extent had 4564 landscape units. 

 

Landscape units within the Australian and South African study extents were subset into 

broad geographic categories (Australia: south west, south east, central east, north east; 

South Africa: south west, central east, north east). Each category comprised 3-9 whole 

bioregions (see Appendix A: Table A1) for identity of bioregions corresponding with each 

broad geographic category). These geographic categories were further subdivided based 
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on climate zone (temperate or arid), using a global Koppen-Geiger climate classification 

(Peel et al., 2007) (Figure 2.1). 

 

       

 

Figure 2.1 Australia (left) and South Africa (right) study extents with regional and climate 

zone categories displayed. Australian regions: north east (n = 2434 landscape units, n = 

1551 landscape units—temperate and arid, respectively); central east (n = 1956, n = 566); 

south east (n = 2595, n = 1723); south west (n = 1219, n = 1186). South African regions: 

north east (n = 1161 landscape units, n = 799 landscape units); central east (n = 1582, n = 

931); south west (n = 141, n = 40) 

 

Response and predictor variables 

 

National vegetation datasets were used to quantify the extent of native vegetation in each 

landscape. For Australia, we used the Commonwealth Government’s National Vegetation 

Information System major vegetation groups map version 4.1(Department of the 

Environment, 2012b). This product identifies the contemporary distribution of major native 

vegetation groups at a 100 m raster pixel resolution, and is a summary of mapping 

produced by various State and Territory agencies, as at 2012. The input datasets that 

were incorporated into the mapping were updated during the period 2009-2011. For South 

Africa, the Vegetation Map of South Africa, Lesotho and Swaziland (Mucina & Rutherford, 

2006) was used. This vector map, produced at a resolution of 1:250,000, represents the 

pre-clearing extent of vegetation types. It was converted to a 30 m raster and intersected 

with the 30 m pixel resolution 2009 National Land Cover map (South African National 
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Biodiversity Institute, 2009) to identify natural vegetation compared with areas of 

transformed land cover (cultivation, degraded, urban built-up, mines, plantations). In this 

analysis, we considered all native vegetation types (i.e. forest, woodland, shrubland, 

grassland), such that our measures of landscape-scale native vegetation—the amount of 

native vegetation retained in a landscape as a proportion of the total area of the landscape 

(100 km2)—represented the (aggregated) extent of all native vegetation types (not just 

forest). 

 

To explore patterns in native vegetation extent among landscapes, we collated data on 

abiotic factors relating to three key elements of landscape heterogeneity: soil, climate and 

topography (Stein et al., 2014). Average landscape values were obtained for three soil 

attributes that contribute to soil fertility via nutrient storage/availability and mediation of 

chemical processes (Hazelton & Murphy, 2007): pH, cation exchange capacity (cmol/kg) 

(CEC) and clay content mass fraction (%) (clay content). Climate data included annual 

mean temperature and annual rainfall, with landscape-scale average values derived for 

both variables. The difference between the highest and lowest points in a landscape unit 

was used to determine range in elevation values. Details about the datasets used for this 

analysis are summarised in Table 2.1. Geospatial data processing and extraction was 

done using ArcMap10.1 (ESRI, 2012) and Geospatial Modelling Environment (Beyer, 

2012). Spatial datasets were reprojected using an Albers equal-area projection. 
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Table 2.1 Summary of variables and associated datasets used to explore patterns of 

landscape-scale vegetation extent in Australia and South Africa 

Variable Dataset (source) Scale 

Soil 

Cation exchange 

capacity (cmol/kg) 

International Soil Reference and Information Centre 

(ISRIC) Soil Grids 1 km dataset (ISRIC - World Soil 

Information, 2013; Hengl et al., 2014) – mean estimates 

for the 0-5 cm soil depth range were extracted 

1 km  

pH  

Clay content mass 

fraction (%)  

Climate 

Annual mean 

temperature (°C) 

WorldClim database (Hijmans et al., 2005) 1 km  

Annual rainfall 

(mm) 

Topography 

Range in elevation 

(m) 

Consultative Group on International Agricultural 

Research’s version of NASA’s Shuttle Radar 

Topography Mission 90 m resolution v.4 digital elevation 

model (Jarvis et al., 2008) 

90 m  

Productivity 

Enhanced 

Vegetation Index 

(EVI) 

Australian and South African continental mosaic 

datasets (Paget & King, 2008; TERN/AusCover, 2013) 

of the Moderate Resolution Imaging Spectroradiometer 

(MODIS) 16-day L3 Global 250 m EVI dataset 

(MOD13Q1:https://lpdaac.usgs.gov/dataset_discovery/m

odis/modis_products_table/mod13q1) 

250 m   

 

In addition, we hypothesised that if clearing patterns are biased by abiotic factors linked to 

agricultural potential, then landscapes that retain more native vegetation might be 

expected to be characterised by lower-productivity native vegetation. The Enhanced 

Vegetation Index (EVI) was used to provide a proxy for the productivity of remaining native 

vegetation in a landscape. Average EVI values were derived for the remaining native 

vegetation in a landscape unit, rather than for the entire landscape unit, because in 

modified environments, landscape-level EVI measures are likely to be strongly affected by 

land use and may not reflect intrinsic landscape conditions that preceded vegetation 
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clearing. Further information about how the EVI data were processed is provided in 

Appendix A1. 

 

Data analysis 

 

Univariate ordinary least squares (OLS) linear regressions were examined to explore the 

direction, shape and strength of relationships between landscape-scale native vegetation 

area and abiotic factors in different geographic and climate zone regions of the Australian 

and South African study extents. Where an inspection of scatter plots indicated 

nonlinearity in the relationship, a quadratic term was included in models. The response 

variable—proportion of native vegetation retained in a landscape—was logit transformed 

(Equation 1) prior to these regression analyses using the approach presented by Warton 

and Hui (2011), to allow for the approximate fulfilment of linear modelling assumptions.   

 

Equation1: log(y+e /1-y+e) 

 

An added constant (e) was incorporated into the logit transformation (Equation 1). This 

value allowed for sample proportions equal to 0 and 1 to be transformed, without 

introducing substantial bias (Warton & Hui, 2011). The smallest non-zero proportion values 

(to three decimal places) were identified for each of the Australian and South African 

datasets, and this value (0.001 and 0.002, respectively) was used to represent the 

constant e in logit transformations for data from each country. All analyses were done in R 

(R Core Team, 2013). 

 

Spatial autocorrelation may arise in models where spatial patterning in the response 

variable is not wholly accounted for by the spatial structuring of the model’s predictor 

variables (Beale et al., 2010). This lack of independence between data points may inflate 

Type I errors (Diniz-Filho et al., 2003). A multivariate analysis using generalised least 

squares (GLS) regression to account for spatial autocorrelation was used to explore how 

three abiotic factors representing soil fertility (CEC), climate variability (annual rainfall) and 

topographic heterogeneity (range in elevation), and each two way interaction, related to 

(logit) native vegetation proportion. GLS regression, undertaken using the nlme package in 

R (Pinheiro et al., 2013), allows for the incorporation of a residual spatial correlation 

structure into the model (Dormann et al., 2007). Collinearity in input variables was checked 

prior to the multivariate modelling using variance inflation factors (Zuur et al., 2010). Using 
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the approach of Rhodes et al. (2009), we found that variance inflation factors were well 

below 10, indicating collinearity was not likely to affect the multivariate analyses. All 

predictor variables were standardized to z-scores to allow for comparison of coefficients 

among regions. For each region, six alternative GLS regression models were evaluated. 

Each was a global model, but five incorporated a different spatial correlation structure 

(exponential, Gaussian, linear, rational quadratic, spherical (Zuur et al., 2009)), and the 

sixth incorporated no spatial correlation structure (i.e. a non-spatial model). The model 

with the lowest Akaike information criterion (AIC) value was retained for further 

examination. Inspection of bubble plots, and variograms of normalised residuals, was 

performed to determine whether residual spatial autocorrelation was still present after the 

inclusion of the spatial correlation structure. 

 

2.4 Results 

 Literature review 2.4.1

Of the 118 studies reviewed in detail, only 15 considered how non-random vegetation 

clearing influenced the effect that area had on the response variable in question. One of 

these 15 studies was designed to control (in part) for spatial biases in vegetation extent 

with respect to abiotic factors, five sought to account for confounding factors in the 

analysis of data, and nine acknowledged the influence of non-random clearing in the 

interpretation of study results.  

 

A number of key conclusions about the implications of non-random clearing were 

highlighted by these studies. For example, Polyakov et al. (2013) noted that the predictive 

capacity of models of woodland bird occurrence focussing on vegetation extent may be 

affected by clearing biases, because landscapes with high vegetation cover differ in soil 

properties and vegetation type compared to low cover landscapes. They found that 

including vegetation composition, as well as extent, resulted in an improvement in the 

explanatory power of models of species occurrence, and highlighted the need to focus 

restoration efforts at sites with fertile soils (Polyakov et al., 2013). Maron et al. (2012) 

demonstrated that clearing biases distort the shape of the relationship between woodland 

bird species richness and native vegetation extent at the landscape scale. Drinnan (2005) 

found that the positive effect of vegetation connectivity on several taxa was difficult to 

distinguish from the effect of remnant area, and acknowledged that biases in clearing, 

whereby larger and more connected remnants occurred in hilly parts of an urban matrix, 

underpinned this correlation.   
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Furthermore, several studies highlighted that an expected positive effect of area was not 

realised, and associated this lack of effect with non-random patterns of clearing. Basham 

et al. (2011) reported lower bat activity in well-vegetated protected areas compared with 

less-vegetated urban areas in the Sydney region of eastern Australia, and suggested that 

the confounding effects of soil fertility on vegetation extent—a legacy of non-random 

clearing—may be responsible for this result. Looney et al. (2009) proposed that biases in 

clearing leading to a negative association between remnant area and soil fertility 

underpinned the lack of relationship between grassland beetle community structure and 

patch size in prairie remnants in a heavily modified agricultural matrix in the north-west 

United States. The lack of an effect of forest area on koalas (Phascolarctos cinereus) in 

southern Australia was associated with biased clearing patterns by Januchowski et al. 

(2008), who suggested that the higher soil fertility associated with smaller habitat 

fragments in a heavily cleared agricultural and urban matrix was a more influential driver of 

koala occurrence than forest area. 

 

While not explicitly outlining efforts to account for non-random vegetation clearing, ten 

studies noted that the focal study system was spatially homogeneous with respect to 

abiotic factors, implying that the effect of non-random vegetation clearing was unlikely to 

be an issue in these studies. A further nine studies were designed such that one or more 

elements of spatial abiotic heterogeneity were controlled for, although this was not 

explicitly associated with controlling for the confounding effect of non-random vegetation 

clearing. While 28 studies used predictor variables capturing spatial variation in abiotic 

factors, the potential for correlations between these variables and vegetation extent to 

modify the apparent effects of area was not explored. The full list of papers reviewed, and 

the category to which they were assigned as part of the review process, is provided in 

Appendix A: Table A2. 

 

 Empirical analysis 2.4.2

Relationships between the proportion of native vegetation retained in a landscape and 

several abiotic factors emerged repeatedly across regions in both Australia and South 

Africa (Table 2.2; for all univariate graphs see Appendix A: Figure A1). In temperate 

landscapes of Australia, the proportion of native vegetation retained in a landscape 

(hereafter, ‘native vegetation extent’) was inversely related to average CEC. Landscapes 

with a greater range in elevation and higher average annual rainfall tended to have more 
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native vegetation. These patterns held for each of the four Australian regions analysed, 

and were evident when data from all temperate landscapes across these four regions were 

combined (Figure 2.2). Native vegetation extent was also generally higher in temperate 

landscapes characterised by soils with lower average clay content and pH values, which, 

like CEC, are factors associated with soil fertility. This result likely reflects the strong 

correlations among the various soil properties. In arid Australian regions, landscapes with 

more native vegetation were typified by lower values of average CEC, average clay 

content and average pH, although the shape and goodness-of-fit of these relationships 

varied among regions. Average annual temperature was generally negatively related to 

native vegetation extent, although these relationships were typically weak (R2 <0.10). The 

strength and direction of the relationship between native vegetation extent and mean EVI 

of remaining native vegetation varied among geographic regions and climate zones. 

 

The range in elevation was related positively to native vegetation extent in temperate and 

arid landscapes of all three South African regions, although this relationship was weak in 

the central east and north east (R2 <0.15). In contrast to the results for Australia, soil 

properties were not consistently negatively related to native vegetation extent. Model fit 

was low when data for all South African temperate landscapes were combined (Figure 

2.2). EVI was generally lower in landscapes where more native vegetation was retained, 

as predicted. 
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Table 2.2 Direction and significance of univariate ordinary least squares (OLS) regression 

coefficients for the relationship between the proportion of native vegetation in a landscape 

(logit transformed) and abiotic factors. CEC = average cation exchange capacity (cmol/kg); 

Clay = average clay content mass fraction (%); pH = average pH; Elevation = range in 

elevation (m); Rainfall = average annual rainfall (mm); Temperature = average annual 

temperature (°C); EVI = average enhanced vegetation index of native vegetation 

 

Temperate landscapes Arid landscapes 

North 

east 

Central 

east 

South 

east 

South 

west 

North 

east 

Central 

east 

South 

east 

South 

west 

A
u

s
tr

a
li

a
 

CEC – – – – – – – – – – – – – – – – – – – – – – – – 

Clay – – – – – – – – – – – – – – – n.s – – – – – – 

pH – – – – – – – – – – – – – – – – – – – – – – 

Elevation + + + + + + + + + + + + + + + n.s – – n.s 

Rainfall + + + + + + + + + + + + + + + – – – – – – + + + 

Temperature n.s – – – – – – – – – – – – + n.s – – – 

EVI + + + + + + – – – + + + + + + – – – – – – n.s 

S
o

u
th

 A
fr

ic
a

 

CEC n.s + + + 

 

n.s – – – + + + 

 

n.s 

Clay + n.s n.s – – – + + + n.s 

pH + + + – – – – – – + + + – – – 

Elevation + + + + + + + + + + + + + + + + 

Rainfall – – – + + + + + + n.s – – – n.s 

Temperature n.s – – – – – – + + + – – – – 

EVI – – – n.s – – – n.s – – – – – 

+ <0.05; ++ <0.01; +++ <0.001; n.s not significant 

Grey shading: a quadratic term in the model due to evidence of nonlinearity in the 

relationship – see Appendix A: Figure A1 for all univariate graphs 
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Figure 2.2 Ordinary least squares relationship between the proportion of native vegetation 

retained in a landscape (logit transformed) and three abiotic factors—average cation 

exchange capacity (a, b), range in elevation (c, d) and average annual rainfall (e, f)—for all 

temperate landscapes across the four Australian regions (left column, n=8204 landscape 

units) and the three South African regions (right column, n=2884 landscape units) 

examined 

 

The relationships identified from the univariate analysis also emerged in multivariate GLS 

regression models which accounted for spatial autocorrelation (Table 2.3). In temperate 

and arid landscapes of all four Australian regions, higher native vegetation extent was 

associated with lower average CEC values (p<0.05). Furthermore, higher range in 

elevation and average annual rainfall values were always significant predictors (p<0.05) of 



34 
 

greater vegetation extent across temperate Australian regions. The relative strength of 

these effects varied within and among regions. In South Africa, range in elevation had a 

significant (p<0.05) positive influence on vegetation extent across all regions and climate 

zones. However, unlike Australia, higher native vegetation extent was associated with 

higher values of average CEC in some regions of South Africa. Inspection of bubble plots 

and variograms of normalised residuals revealed that spatial autocorrelation was reduced 

substantially, but was still present in spatial models for some regions. This may have been 

a function of autocorrelation occurring at different scales among the predictors (i.e. range 

in elevation = small-scale correlation vs annual rainfall = large-scale correlation) (Dormann 

et al., 2007). 



35 
 

Table 2.3 Standardised generalised least squares (GLS) multiple regression coefficients, significance at p <0.05 and standard errors in 

parentheses, for the relationship between the proportion of native vegetation in a landscape (logit transformed) and abiotic factors. CEC 

= average cation exchange capacity (cmol/kg); Elev. = range in elevation (m); Rain = average annual rainfall (mm). The spatial 

correlation structure (Corr) of the model for which results are reported (model with lowest AIC for each region) is presented 

 

 Temperate landscapes Arid landscapes 

 North east Central east South east South west North east Central east South east South west 

A
u

s
tr

a
li

a
 

Corr# RQ SPH EXP EXP EXP. RQ EXP EXP 

CEC -0.63 *** 

(±0.06)  

-0.48 *** 

(±0.07)  

-0.69 *** 

(±0.05)  

-1.14 *** 

(±0.07)   

-0.75 ***  

(±0.06)   

-0.49 *** 

(±0.10)   

-0.98 *** 

(±0.08)   

-0.72 ***  

(±0.06)  

Elev. 0.67 *** 

(±0.06) 

0.71*** 

(±0.07)  

0.63 *** 

(±0.06)  

0.30 *** 

(±0.05)  

0.45 ***  

(±0.06)  

-0.04  

(±0.06) 

0.03  

(±0.06) 

0.01  

(±0.06) 

Rain 0.28 *  

(±0.12) 

2.18 *** 

(±0.20)  

1.11 *** 

(±0.12)  

0.78 *  

(±0.31)  

0.89 ***  

(±0.18)  

-1.13 *** 

(±0.20)  

-0.70 ** 

(±0.21)  

0.61  

(±0.37) 

CEC x 

Elev. 

0.14 ** 

(±0.05)  

0.22 *** 

(±0.06) 

-0.08 

 (±0.06) 

0.16 ** 

(±0.06)  

-0.14 **  

(±0.05)   

0.01  

(±0.05) 

-0.12 * 

(±0.05)      

0.09 *  

(±0.04)       

CEC x 

Rain 

0.34 ***  

(±0.07)  

-0.15  

(±0.09) 

0.26 *** 

(±0.06)  

-0.47 *** 

(±0.08)  

0.01  

(±0.06) 

-0.01 

(±0.10) 

0.12  

(±0.07) 

-0.38 ***  

(±0.06)  

Elev. x 

Rain 

0.02 

(0.04) 

0.03  

(±0.05) 

-0.02   

(±0.05) 

-0.20 *** 

(±0.05)  

0.02  

(±0.06)  

0.06  

(±0.06) 

0.15 ** 

(±0.05)     

0.02  

(±0.04) 
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 Temperate landscapes Arid landscapes 

 North east Central east South east South west North east Central east South east South west 

S
o

u
th

 A
fr

ic
a

 

Corr# EXP RQ  SPH EXP EXP  RQ 

CEC 0.32***  

(±0.07)  

0.33 *** 

(±0.03)  

 0.06  

(±0.14)  

-0.23**  

(±0.08)  

0.44 ***  

(±0.05)  

 -0.45  

(±0.26)  

Elev. 0.50 ***  

(±0.07)  

0.46 *** 

(±0.04)  

0.65 **  

(±0.21)  

0.28 ***  

(±0.08)  

0.38 *** 

(±0.07)  

1.76 ***   

(±0.42)  

Rain -0.07  

(±0.14) 

0.09  

(±0.07)  

0.19  

(±0.34)  

0.99 ***  

(±0.20)  

0.65 ***  

(±0.18)  

-0.20  

(±0.52) 

CEC x 

Elev. 

0.27 *** 

(±0.06)  

-0.002  

(±0.04) 

0.40 *  

(±0.19)  

0.11 

(±0.07)  

-0.08  

(±0.06)  

-0.30 

(±0.38) 

CEC x 

Rain 

0.11  

(±0.07) 

0.03  

(±0.05) 

0.53 ** 

(±0.20)  

-0.11  

(±0.11)   

0.10  

(±0.06)  

0.32  

(±0.34) 

Elev. x 

Rain 

0.06  

(±0.06) 

-0.04  

(±0.03) 

0.56 **  

(±0.19)  

-0.06  

(±0.07)   

-0.03  

(±0.05)  

-0.15  

(±0.37) 

Significance levels * <0.05; ** <0.01; *** <0.001 

# Spatial correlation structure in generalised least squares regression model with lowest AIC value. Note RQ = rational quadratic 

correlation structure; SPH = spherical correlation structure; EXP = exponential spatial correlation structure 
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2.5 Discussion 

We conducted the first cross-continental evaluation of factors confounding vegetation 

extent in regions highly modified by anthropogenic activities. The extent of native 

vegetation retained in human-modified landscapes was consistently, and often strongly, 

related to particular abiotic factors of the landscapes examined. This evidence of non-

random vegetation clearing across broad spatial extents has important implications for 

studies in modified environments, as these patterns may confound the observed effect of 

habitat area on ecological responses such as the persistence or richness of species. Yet, 

our literature review highlighted that such non-random vegetation clearing patterns and 

their ecological ramifications are infrequently considered in landscape ecological studies. 

 

 Native vegetation extent is often correlated with abiotic factors 2.5.1

In our Australian study extent, landscapes characterised by soils with relatively lower CEC, 

pH and clay values (i.e. less fertile soils) generally had more native vegetation. Agriculture 

has been the major driver of vegetation clearing in the Australian regions examined 

(Bennett & Watson, 2011), so soils suited to agricultural production are expected to retain 

less native vegetation. Similarly, hilly landscapes in temperate Australia are less conducive 

to agricultural and other anthropogenic land uses, and so retain more native vegetation. A 

bias towards vegetation clearing in flatter terrain was also shown by Seabloom et al. 

(2002) across broad regions of California. The topographic homogeneity of three of the 

four the arid Australian regions analysed in this study may explain why no consistent 

pattern in the relationship between vegetation extent and range in elevation was noted 

among arid Australian regions. 

 

While abiotic factors were consistently associated with patterns of native vegetation 

retention in Australian landscapes, in some regions of South Africa this signal was less 

clear. Differing agricultural land use practices in the two countries—particularly the 

occurrence of an agricultural sector that comprises commercial and subsistence 

components in South Africa (Kirsten & Moldenhauer, 2006)—potentially underpins this 

cross-continental inconsistency. Subsistence/smallholder cultivation occurs in many parts 

of South Africa, including in eastern and northern regions of the country (Baiphethi & 

Jacobs, 2009). Compared to areas dominated by commercial agriculture, subsistence 

agriculture often occurs in marginal environments (Morton, 2007), which may be 

characterised by abiotic attributes like shallow soils and steep slopes (Lal, 2000). This may 

partly explain why the observed relationships between native vegetation extent and soil 
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and topography variables in the north east and central east regions of South Africa were 

inconsistent with patterns observed in the Australian study extent, and indeed, in south 

west South Africa. In south west South Africa, patterns of vegetation extent with respect to 

soil properties—particularly pH—and range in elevation, resembled those seen in 

Australia. In this part of South Africa, cultivation for commercial agriculture and forestry are 

the dominant agents of land transformation, which has resulted in substantial alteration to 

flat and fertile areas (Rouget et al., 2003). 

 

Interestingly, across Australia and South Africa, the relationship between native vegetation 

productivity (EVI) and the extent of native vegetation at the landscape scale was weak. In 

some heavily cleared heterogeneous landscapes, it is possible that less-productive native 

vegetation may have been preferentially retained while more-productive vegetation was 

removed. Such retention of less-productive vegetation in low cover landscapes resulting 

from finer-scale (i.e. within-landscape) clearing biases may dampen any relationship 

between vegetation productivity and vegetation extent at the landscape scale. Within-

landscape biases in clearing patterns have ramifications for studies conducted at finer 

scales, including patch- and site-level studies. 

 

 When do biases in vegetation retention matter? 2.5.2

Environmental heterogeneity, including spatial variability in abiotic factors such as soil, 

topography and climate, is a key driver of biodiversity patterns (Seabloom et al., 2002; 

Stein et al., 2014). While abiotic heterogeneity was considered in more than half of the 

studies assessed as part of our literature review, few linked this heterogeneity with 

patterns of vegetation clearing, or considered the implications for the area effects being 

examined. There are several possible reasons why this link was not made, including (i) 

non-random vegetation clearing associated with spatial abiotic heterogeneity was not a 

characteristic of the study extent, (ii) the scale of the analysis was not congruent with the 

scale of (non-random) vegetation clearing patterns in the study extent, (iii) variability in the 

ecological response was not influenced by spatial abiotic heterogeneity, or (iv) sample 

units for which area was examined were spatially homogenous. 

 

Furthermore, in many instances, abiotic heterogeneity (and its correlation with patterns of 

clearing) may be incidentally or indirectly controlled for in studies, without this explicitly 

being stated. For example, analytical techniques employed to control for spatial 

autocorrelation, or the use of measures of area which are correlated with, or proxies, for 
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abiotic heterogeneity (i.e. specific vegetation types that are associated with particular 

abiotic conditions, rather than a broader conceptualisation like native vegetation extent), 

may account for spatial abiotic heterogeneity. Such approaches would reduce the 

confounding effect of biased clearing patterns in studies examining the effect of area. 

 

Of the 15 studies that did consider the potential influence of non-random vegetation 

clearing (Appendix A: Table A2), 11 focussed on the effect of soil properties. Several of 

these studies (Januchowski et al., 2008; Looney et al., 2009; Basham et al., 2011) 

highlighted that a lack of an area effect was due to biased vegetation clearing patterns, 

whereby soil fertility/productivity was negatively correlated with habitat area. Because 

bigger remnants were associated with poorer quality soils, a positive effect of area on the 

response variable was not realised in these studies. Enhanced habitat quality, associated 

with access to foraging resources, was invoked to explain these findings (Januchowski et 

al., 2008; Looney et al., 2009; Basham et al., 2011). Indeed, Lindenmayer and Luck (2005) 

proposed that in a scenario where patterns of vegetation clearing are non-random, the 

response of species and assemblages to landscape modification may in fact be an 

interaction between habitat quantity and quality. Storch et al. (2005) documented that the 

effect of area exhibits an interaction with one such measure of habitat quality—

environmental energy availability—such that the positive effect of area is depressed 

because increased energy availability promotes greater species occupancy per unit area. 

 

Expanding upon the concept that the effect of area is dependent on abiotic properties, 

Maron et al. (2012) demonstrated that biased clearing patterns can affect interpretation of 

the species-area relationship. In their study of the effect of native vegetation extent on bird 

species richness, Maron et al. (2012) highlighted that (1) high cover landscapes and low 

cover landscapes tend to be characterised by different attributes (i.e. lower and higher 

productivity soils, respectively), and (2) the effect of area on species richness differs as a 

function of landscape productivity. The authors concluded that the shape of the observed 

species-area relationship was not a valid representation of the effect of area, because of 

the confounding effect of soil productivity on vegetation extent (Maron et al., 2012). This 

conclusion was based upon the finding that landscapes which have been extensively 

cleared tended to be more fertile, which may imply that retained vegetation in these low 

cover landscapes is relatively more productive, and thus able to support a higher density 

of individuals and more species per unit area (Maron et al., 2012). 
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As revealed by our literature review, non-random clearing associated with abiotic factors 

may manifest in the lack of an observed area effect, or a distorted species-area 

relationship. Although not noted in the studies we reviewed, an apparent area effect may 

also reflect a positive correlation between area and another factor that positively affects 

species occurrence—for example, habitat heterogeneity that is associated with increased 

topographic variability. A study extent—regardless of the scale (sites with buffer, patches, 

landscapes) of the study units for which vegetation extent is being analysed—that 

encompasses heterogeneity in abiotic factors and biased patterns of vegetation removal 

clearly warrants special consideration, as there is potential for inaccurate conclusions to 

be drawn about the effects of area per se. 

 

 Conservation implications 2.5.3

Erroneous interpretations about the effect of area on species and assemblages can 

adversely affect conservation prescriptions that seek to achieve a biodiversity outcome by 

protecting or restoring native vegetation. For example, observed area effects in which 

biases associated with non-random clearing are unaccounted for may result in (1) actions 

that protect or restore too little habitat to achieve a specific goal, (2) actions that protect 

more habitat than is necessary to achieve a specific goal, and/or (3) activities in which 

efforts are concentrated in the wrong locations (with respect to abiotic properties).  

 

Specifically, the value of large areas may be undervalued, where an uncontrolled bias 

obscures the effect of area. Conversely, a confounding factor like topographic variation 

and associated habitat heterogeneity may indicate (erroneously) that area is influential, 

thereby overstating the importance of large areas. An assumption that larger areas are 

more valuable than smaller areas, may overlook the fact that smaller areas are often of 

higher quality, because of their association with abiotic factors like enhanced soil fertility. 

Interpretations of the species-area relationship, such as the occurrence and position of a 

threshold (Swift & Hannon, 2010), will be constrained by the confounding effect of abiotic 

factors that potentially interact with area to affect species richness. This limits the utility of 

this relationship for informing conservation actions.  

 

The potential existence of system-specific area effects—whereby the effect of area is 

different depending on whether the habitat is associated with a particular abiotic attribute 

like higher or lower soil fertility—should be considered in conservation actions that focus 

on area. Such system-specific relationships imply that the amount of habitat that needs to 
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be protected or restored to achieve a particular biodiversity outcome will differ depending 

on the underlying abiotic attribute(s) of the area that is the focus of the conservation action 

(Maron et al., 2012). For example, a target to maintain the amount of habitat above a 

minimum threshold, based on an observed area effect derived from one system (i.e. fertile, 

productive habitat), may not achieve the desired outcome if it were translated to infertile 

habitat, because a greater area of this relatively less-productive habitat type may be 

needed to achieve a comparable biodiversity outcome. Conversely, applying a habitat 

protection (or restoration) target to a fertile system, based on an observed area effect from 

an infertile system, may overestimate the area required to achieve the desired biodiversity 

outcome, representing a potentially inefficient use of limited conservation resources. 

 

 Conclusion 2.5.4

Notwithstanding some notable exceptions such as the Biological Dynamics of Forest 

Fragments project (Laurance et al., 2011), analyses of human-modified landscapes 

generally involve ‘natural experiments’—relating observed, as opposed to experimentally-

created, patterns to ecological phenomena. The difficulty in controlling confounding factors 

experimentally is a fundamental limitation of such studies, underscoring the need for 

careful consideration where predictor variables may be correlated (McGarigal & Cushman, 

2002). Here, we have highlighted that native vegetation extent is frequently correlated with 

a range of abiotic factors linked to non-random vegetation clearing, and that the 

occurrence of such correlations may lead to erroneous conclusions about the effect of 

area on an ecological response. In exploring ecological patterns in modified environments, 

such as the response of species and assemblages to area, it is crucial that the 

mechanisms acting on the response, including those associated with area by virtue of non-

random vegetation clearing, are taken into account.  
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CHAPTER 3  

 

LANDSCAPE-SPECIFIC EFFECTS AND THE RELATIONSHIP BETWEEN SPECIES 

RICHNESS AND NATIVE VEGETATION EXTENT 

 

 

To be submitted to Ecography 

 

 

 

      

 

Plate 2 Woodland birds that occur in south-east Australia—scarlet robin (Petroica 

boodang) (left); and noisy miner (Manorina melanocephala) (right) 
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3.1 Abstract 

The shape of the landscape-scale species-area relationship can inform habitat protection 

and restoration targets. However, differences in abiotic and anthropogenic attributes 

among landscapes could lead to erroneous conclusions about the shape of this 

relationship, if these attributes interact with habitat area to affect the occurrence of species 

at the landscape level. We examined the extent to which species-area relationships differ 

in shape where landscapes were categorised by particular abiotic and anthropogenic 

attributes. Species richness estimates of birds associated with woodland and forest were 

derived for 251 100 km2 landscapes in south-east Australia. We compared the fit of 

alternative models, including traditional exponential, linear, quadratic and piecewise 

(threshold) models, to the relationship between estimated species richness and the area of 

woody native vegetation among different landscape types. Landscapes were categorised 

by abiotic properties, the occurrence of hyperaggressive native bird species, vegetation 

configuration and matrix land use. Employing generalised linear mixed modelling and 

model averaging, we ascertained how vegetation area interacted with different landscape 

attributes to explain estimated species richness. Thresholds were consistently observed in 

species-area relationships among different landscape types; however the position of 

thresholds varied markedly from 21-51% native vegetation cover. Vegetation area was the 

most important predictor of species richness, but interacted strongly with other landscape 

attributes, including range in elevation and the occurrence of highly competitive native 

birds of the genus Manorina. We demonstrate that the effect of vegetation area on 

Australian woodland bird species richness varies markedly with landscape type. 

Accounting for differences in landscape type has important implications for accurately 

informing both conservation decisions based on the shape of this relationship, and 

ecological theory around the form of landscape-scale species-area relationships. 

 

3.2 Introduction 

The removal of native vegetation, and the habitat that it provides, affects patterns of 

species richness at the landscape level (Fahrig, 2013; Cunningham et al., 2014a; Hanski, 

2015; Morante-Filho et al., 2015). Substantial attention has been focussed on the 

relationship between species richness and the amount of vegetation in ‘landscapes’—that 

is, mosaics of thousands to tens of thousands of hectares (McAlpine et al., 2016), 

featuring a mix of elements including habitat (i.e. native vegetation) and non-habitat (i.e. 

human land uses) (Tscharntke et al., 2012). In particular, the shape and functional form of 

the curve fitted to this relationship has received considerable attention, as this can guide 
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predictions about how species richness will vary in response to changes in vegetation area 

(Whittaker & Triantis, 2012; De Camargo & Currie, 2015).   

 

It is increasingly evident from landscape-scale species-area studies that the shape of this 

relationship exhibits substantial variation (Radford et al., 2005; Desrochers et al., 2011; De 

Camargo & Currie, 2015). Of note has been the observation of a threshold in this 

relationship from a number of studies conducted at the landscape level, where the effect of 

habitat area on species richness exhibits a sudden change (Radford et al., 2005; Maron et 

al., 2012; Lima & Mariano-Neto, 2014; Morante-Filho et al., 2015; Ochoa-Quintero et al., 

2015; Richmond et al., 2015). This contrasts with an expected monotonic increase in 

richness, as revealed by traditional species-area models such as the exponential (or 

logarithmic) function (Gleason, 1922), or the power function (Arrhenius, 1921). Because 

the species-area relationship reveals how assemblages respond to changes in vegetation 

extent, and can inform decision-making about where to protect or manage biodiversity 

(Desmet & Cowling, 2004; Possingham et al., 2015), it is important to understand the 

factors that potentially underpin such variation in the effect of area on species richness, 

including the occurrence of sudden thresholds of change. In this study we ask: how do 

different attributes of landscapes, including abiotic properties and factors associated with 

anthropogenic land use, interact with vegetation extent to affect the shape of the 

landscape-scale species-area relationship? 

 

If landscape attributes such as abiotic properties or factors associated with human land 

use interact with vegetation area to affect how many species a landscape can support, 

then the shape of the relationship between species richness and vegetation area will 

potentially vary among different landscape types (Lindenmayer & Luck, 2005). For 

example, species richness may vary in response to both vegetation area and other 

landscape attributes, such as soil fertility which affects resource availability (Watson, 

2011), or topographic variation which is often correlated with habitat heterogeneity and 

niche availability (Stein et al., 2014). These same landscape attributes may also underpin 

differences in patterns of vegetation clearing and anthropogenic land use (Seabrook et al., 

2006; Cattarino et al., 2014), and in consequence, may act indirectly on species via their 

association with the configuration and condition of remnant vegetation (and the matrix) 

(Figure 3.1). 
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Maron et al. (2012) demonstrated that the effect of native vegetation area on Australian 

woodland bird species richness in 100 km2 mosaics differed where landscapes were 

categorised by soil fertility. They hypothesised that this difference arose because 

landscapes with fertile soils may be able to support more species per unit area of native 

vegetation than less fertile landscapes, due to an interaction between vegetation area and 

resource availability (Maron et al., 2012). The identification of landscape-specific area 

effects led Maron et al. (2012) to warn that aggregating species-area data from 

landscapes with different attributes may provide a misleading representation of how 

species richness relates to vegetation extent, as revealed by the shape of the species-

area relationship.  

 

Aggregating data from landscape types in which the effect of area differs is particularly 

problematic where the amount of vegetation in landscapes is correlated with abiotic 

attributes like soil fertility and/or topography because of non-random patterns of vegetation 

clearing (Lindenmayer & Luck, 2005; Rompré et al., 2009; Maron et al., 2012). The real 

effect of area will be obscured in such instances, because landscapes with less remnant 

native vegetation will predominantly be characterised by one suite of attributes (e.g. fertile 

soils; flat topography), while landscapes that retain more native vegetation will have 

different attributes (e.g. infertile soils; hilly topography) (Lindenmayer & Fischer, 2006).  

 

A failure to account for these interactions and associations between vegetation area and 

landscape attributes has the potential to distort our understanding of patterns of species 

richness at the landscape level. This could compromise the effectiveness of area-based 

management actions that are informed by the shape of landscape-scale species-area 

relationships (Maron et al., 2012). In this study, we examine the extent to which the effect 

of vegetation area on Australian bird species richness differs in 100 km2 landscapes 

broadly characterised by particular abiotic and anthropogenic attributes. We address two 

key questions: (1) is the effect of vegetation area landscape-specific, whereby factors such 

as abiotic attributes, human land use and interspecific competition moderate the effect of 

vegetation area on species richness?; and (2) what ecological mechanisms potentially 

underpin landscape-specific area effects? Expanding upon the results presented by Maron 

et al. (2012), we consider the implications of landscape-specific area effects for analyses 

of patterns of species richness, and management actions that are informed by such 

analyses. In particular, we explore how landscape-specific area effects may distort 
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species-area analyses, particularly where the amount of vegetation in landscapes is 

biased by attributes such as soil fertility or topography. 

 

 

Figure 3.1 A conceptual framework of this study. The number of species in a landscape is 

frequently modelled as a function of native vegetation area. Vegetation area per se does 

not influence the occurrence of species, but rather, it is those variables that are (typically 

positively) associated with area (grey box) that underpin variation in species richness 

(solid arrow). Importantly, both area of vegetation, and other landscape attributes, can 

affect these variables (dashed lines with arrows). Therefore, the effect of area will depend 

on other attributes of landscapes, which also influence the occurrence of species. 

Controlling for variation in landscape attributes will provide a more accurate representation 

of the effect of area on species richness, as revealed by the shape of the species-area 

relationship. This will also remove the confounding effect of non-random patterns of 

vegetation clearing, whereby the amount of vegetation in a landscape is correlated with 

abiotic attributes like soil fertility and topography, and anthropogenic landscape attributes 

such as land use intensity (dotted lines) 
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3.3 Methods 

 Study region 3.3.1

Extensive areas of south-east Australia have been substantially modified, mainly to 

facilitate agricultural production (Lunt & Spooner, 2005). These high rates of clearing and 

landscape transformation have had profound adverse impacts on the biodiversity of the 

region (Lindenmayer et al., 2010). To explore the implications of landscape modification on 

bird species richness in this highly transformed region of Australia, we restricted our 

analysis to those parts of south-east Australia that (1) are broadly characterised by native 

vegetation that is woody (i.e. various forms of shrubland, woodland and forest, but 

dominated by vegetation communities characterised by Eucalyptus spp. and other 

associated genera), and (2) have been subject to substantial anthropogenic modification 

(bioregions (or subregions) based on the Interim Biogeographic Regionalisation of 

Australia (IBRA) (Department of the Environment, 2012a) where at least 25% of the area 

has been transformed). A 10 x 10 km grid was overlaid on those parts of south-east 

Australia that satisfied the above criteria, with each complete grid cell (i.e. not overlapping 

the coastline) representing a landscape unit. We used a grain size of 100 km2 to represent 

landscape-scale patterns in bird species richness, as this scale has been widely 

investigated in previous studies (Radford et al., 2005; Maron et al., 2012; De Camargo & 

Currie, 2015). Radford et al. (2005) employed this scale to represent replicate landscape 

units in their study of the response of Australian woodland bird species richness to the 

amount of native vegetation in agricultural mosaics, because this size captured the daily 

dispersal movements (home ranges) of the focal assemblage, and encompassed various 

attributes of landscape heterogeneity. 

 

 Bird data 3.3.2

As we were interested in the effect of landscape-scale woody vegetation area on species 

richness, we focussed on native birds for which broad vegetation types including 

shrubland, woodland and/or forest represent a key habitat component. We refer to these 

species as ‘woodland birds’, noting though that members of this broad assemblage utilise 

a range of structurally-varied woody vegetation types, albeit typified by Eucalyptus spp. 

and other associated genera. We included species that can also utilise 

cleared/transformed areas in addition to woody habitats (i.e. for foraging), but for which the 

presence of woody vegetation is critical for their occurrence and persistence. Species 

characteristic of open environments, and waterbirds, were excluded. Species habitat 

requirements—namely, an association with habitats characterised by woody vegetation—
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were confirmed using the Handbook of Australian, New Zealand and Antarctic Birds (as 

summarised by Garnett et al. (2015)).  

 

Occurrence data for the focal suite of species for the period 1998 to 2014 were extracted 

from BirdLife Australia’s New Atlas of Australian Birds (Barrett et al., 2003) database. To 

allow for estimates of species richness to be obtained from the Atlas dataset, we identified 

100 km2 landscape units from our grid in which at least 20 bird surveys (of the 

standardised 20 minute/2ha protocol (Loyn, 1986)) had been conducted (n=746). Because 

there was substantial variation in the number of surveys conducted in landscape units 

(ranging from 20 to 2057), we derived estimates of asymptotic species richness using the 

program EstimateS Version 9 (Colwell, 2013). Estimates were considered to be robust 

where the asymptotic estimator (Chao2 bias-corrected, or when indicated by the software, 

Chao2 classic or ICE classic) varied by fewer than 2 species in the last five surveys of the 

total set of samples (as per Maron et al. (2012)). This exercise yielded a list of 440 

landscape units with robust asymptotic estimates based on a minimum of 20 surveys.  

 

Despite this procedure to help minimise the effect of sampling bias, we found a positive 

correlation between the number of surveys in a landscape unit and the asymptotic 

estimates of richness (Spearman’s rank correlation = 0.55, p-value <0.01). The effect of 

sampling effort on estimates of species richness has been cited as a potential issue, even 

where asymptotic estimators are used to derive richness estimates (Reese et al., 2014; 

Engemann et al., 2015). If a correlation exists, it becomes difficult to ascertain whether 

differences in estimated richness are real, or are an artefact of the confounding influence 

of sampling effort. Therefore, we used the unified rarefaction/extrapolation approach 

(Colwell et al., 2012) to obtain comparable values of expected species richness at a 

standardised level of survey effort (Colwell & Elsensohn, 2014). This approach uses an 

analytical formula to either rarefy the species accumulation curve to a level of effort that is 

less than the total number of samples (i.e. for a particular landscape unit), or extrapolate 

the species accumulation curve beyond the total number of samples, where an asymptotic 

estimate of species richness is used as the ‘target’ for the extrapolation (Colwell et al., 

2012). Given the recommendation of 20 samples as a minimum number for rarefaction 

(Gotelli & Colwell, 2011), and the conservative suggestion to extrapolate only to twice the 

number of samples (Colwell et al., 2012), we standardised sampling effort at 40 surveys, 

and obtained expected measures of species richness for landscape units at this level of 

sampling. These estimates were weakly correlated with the total number of surveys in a 
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landscape unit (Spearman’s rank correlation = 0.09, p-value = 0.05), and provided us with 

a species richness estimate for each landscape unit that was not confounded by variable 

sampling effort. 

 

Because larger or more species-rich areas could require greater sampling effort compared 

with smaller or species-poor areas (Watson, 2003), it is possible that standardised 

estimates of species richness for more diverse landscapes could underestimate true 

species richness, while less-rich landscapes would boast more complete inventories. We 

therefore tested whether setting a standardised level of sampling (40 surveys) was 

sufficient to characterise the richness of both species-rich and species-poor landscapes 

and led to estimates that were equivalently complete. To do this, we derived estimates of 

richness at 60 surveys (using the unified rarefaction/extrapolation approach (Colwell et al. 

(2012)), and examined whether the proportional increase in richness at 60 surveys was 

greater in landscapes that had higher estimated richness at 40 surveys. Landscapes with 

higher estimated richness at 40 surveys did not show a proportionally greater increase in 

estimated richness than lower richness landscapes at 60 surveys, indicating that 

standardisation to 40 samples was not suppressing approximations of richness in these 

landscapes. 

 

In selecting a final set of landscape units for the analysis, we applied a number of criteria 

to account for within-landscape spatial and temporal variability in sampling, and temporal 

changes in land cover over the period for which bird data were collected. The criteria we 

selected sought to strike a balance between satisfactorily controlling for spatial and 

temporal variation, while still allowing for a sufficient number of landscape units to test our 

hypothesis and explore our study questions. Thus, to be included in this analysis, 

landscape units needed to satisfy the following criteria: (1) surveys from at least five 

unique locations in at least two different quadrants of a landscape; (2) at least five surveys 

from each half of the Atlas data collection period (1998-2014); (3) at least five surveys in 

each half of the year (April-September, October-March); (4) less than a 5% change in total 

‘forest’ cover for the period 2000-2012 (Hansen et al. (2013) forest cover change 

dataset—an indication of landscape-level change in woody vegetation cover that 

approximately coincides with the bird data collection period). A total of 251 landscape units 

met the criteria and were used for the analysis (Figure 3.2). This final set of landscape 

units comprised estimates of species richness derived from a total of 32,160 individual bird 
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surveys, and incorporated records of 232 unique species (see Appendix B: Table B1 for 

list of species). 

 

 

Figure 3.2 South-east Australian landscapes units (n=251) with native remnant woody 

vegetation layer (based on NVIS v 4.1) shown as dark grey layer 

 

 Landscape data 3.3.3

We used the Australian Government’s National Vegetation Information System (NVIS) 

version 4.1 (Department of the Environment, 2012b) to map the contemporary distribution 

of remnant native vegetation and determine the area of native woody vegetation in our 

landscape units. From this 100 m pixel resolution dataset of 33 major vegetation groups 

(MVGs), we identified MVGs that were characterised by remnant woody vegetation (i.e. 

woodland and forest), and aggregated these to calculate the percentage cover of woody 

vegetation area for each landscape unit. These values were related to estimates of 

species richness for each landscape unit, to explore the shape of landscape-scale 
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species-area relationships. As such, the species-area relationships examined focus on the 

effect of percentage woody vegetation cover (representing ‘area’) on species richness in 

100 km2 landscapes. 

 

Additionally, we derived information on six abiotic and anthropogenic attributes for each 

landscape unit, by which to categorise landscapes (Table 3.1). These attributes were 

selected based on their potential to affect patterns of species occurrence at the landscape 

scale. The soil attribute we selected was cation exchange capacity (CEC), which 

contributes to fertility via nutrient storage and availability (Hazelton & Murphy, 2007). Mean 

annual rainfall and range in elevation were used to explore the effect of climate and 

topographic heterogeneity, respectively. Two native Australian bird species in the genus 

Manorina—the noisy miner (M. melanocephala), and the yellow-throated miner (M. 

flavigula)—can have substantial impacts on the richness of smaller-bodied native birds 

through competitive exclusion in modified environments, leading to shifts in assemblages 

(Maron et al., 2013; Mac Nally et al., 2014a). We determined the proportion of surveys in 

which one or both of these species was recorded in a landscape unit (i.e. a reporting rate 

(Watson, 2003)), to explore how the occurrence of these species affected the response of 

species richness to vegetation area. We calculated two measures of anthropogenic 

landscape modification—mean patch size and matrix land use intensity. Geospatial data 

processing and extraction was done using ArcMap10.1 (ESRI, 2012), and Geospatial 

Modelling Environment (Beyer, 2012).
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Table 3.1 Landscape attribute data used to categorise landscapes 

Attribute Description  Source Range 

(median) 

Cation exchange 

capacity  

(cmol/kg) 

Mean value derived for each landscape 

unit from 0-5 cm soil depth range data 

layer 

International Soil Reference and Information 

Centre (ISRIC) Soil Grids 1 km dataset (ISRIC - 

World Soil Information, 2013; Hengl et al., 2014) 

10.91-50.03 

cmol/kg  

(20.6 cmol/kg) 

Annual rainfall 

(mm) 

Mean value derived for each landscape 

unit 

WorldClim database (Hijmans et al., 2005) 268-1800 mm  

(682 mm) 

Range in elevation 

(m) 

Range in elevation calculated as difference 

between highest and lowest point in 

landscape unit 

Consultative Group on International Agricultural 

Research’s version of NASA’s Shuttle Radar 

Topography Mission 90 m resolution v.4 digital 

elevation model (Jarvis et al., 2008) 

18-1000 m  

(213 m) 

Manorina 

honeyeaters 

(reporting rate %) 

Reporting rate of noisy and yellow-throated 

miners – number of surveys in which one 

or both species recorded, as proportion of 

total number of surveys in landscape unit 

Based on 20 minute/2 ha bird surveys for 

landscape units 

 

0-100%  

(18%) 

Mean patch size 

(ha) 

Area of mapped woody vegetation divided 

by number of patches (equal to or greater 

than 1 ha) in a landscape unit 

Based on NVIS v 4.1 mapping of MVGs (woody 

native vegetation) 

0-9915 ha  

(62 ha) 

Matrix land use 

intensity  

(ha) 

Area of the matrix that is characterised by 

intensive land use (i.e. irrigated production 

agriculture, irrigated plantations, urban, 

industrial, extraction) 

Australian land use dataset: Catchment Scale 

Land Use of Australia – Updated March 2015 

(Australian Bureau of Agricultural and Resource 

Economics and Sciences (ABARES), 2015) 

0-9867 ha  

(1011 ha) 
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 Data analysis 3.3.4

While numerous approaches have been advocated to model the species-area relationship 

(Tjørve, 2003; Turner & Tjørve, 2005; Scheiner et al., 2011), it has typically been 

examined using convex increasing curves such as the exponential (or logarithmic) function 

(Gleason, 1922) or the power function (Arrhenius, 1921). In landscape-scale studies, 

polynomial (Desrochers et al., 2011; De Camargo & Currie, 2015) and piecewise (Lima & 

Mariano-Neto, 2014; Richmond et al., 2015) regressions have also been used to describe 

the relationship. Piecewise regressions identify a threshold, or ‘point of abrupt change’ 

(Ficetola & Denoël, 2009), below which the rate of decline in species richness with decline 

in vegetation area changes. Such thresholds have the potential to act as explicit reference 

points upon which vegetation clearing or revegetation targets can be based (Huggett, 

2005; Swift & Hannon, 2010), and have been identified from several studies examining 

species-area relationships at the landscape level (Radford et al., 2005; Banks-Leite et al., 

2014; Ochoa-Quintero et al., 2015; Richmond et al., 2015). However, a lack of consistency 

in threshold values across different studies has been cited as a limitation of the generality 

of thresholds for informing applied conservation (Johnson, 2013; Matthews et al., 2014a). 

 

We built univariate generalised linear models (GLMs) with a Poisson error distribution in R 

(R Core Team, 2013) to explore the shape of the relationship between estimates of 

species richness and woody vegetation area. We compared the fit of four different 

models—exponential (to approximate a ‘traditional’ convex upward curve), linear, 

polynomial (quadratic) and threshold—using Akaike’s Information Criterion (AIC). The 

threshold model was constructed using the R package ‘segmented’ (Muggeo, 2008). For 

this modelling, we used the percentage of woody vegetation cover as the predictor 

variable, and our estimates of species richness as the response variable. To examine 

whether aggregating data from multiple landscapes that exhibit heterogeneity in abiotic 

and anthropogenic attributes is likely to result in a distortion of the true effect of vegetation 

area, we first built the four different models for the entire aggregated dataset using all 251 

landscapes. This preliminary step allowed us to compare the shape of a relationship 

summarising all 251 landscapes with subsets of the data representing specific landscape 

types. 

 

To address our first question of determining if the shape of the relationship varies among 

different landscape types, we subset the 251 landscape units according to our six abiotic 

and anthropogenic attributes. Landscape units were categorised based on the median 
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value of each landscape attribute (either below or above median (Table 3.1)) resulting in 

12 landscape types, and separate GLMs for the four species-area curves were built for 

each landscape type (48 models in total). We identified which of the four models had the 

lowest AIC value for each landscape type, and calculated the Nagelkerke R2 (pseudo-R2) 

(Nagelkerke, 1991) to determine the deviance explained by each GLM.  

 

Our second question was to explore the ecological mechanisms associated with particular 

landscape attributes that potentially underpin variation in the relationship between 

estimated species richness and woody vegetation area. To achieve this, we sought to 

determine the relative influence of native vegetation area and other landscape attributes 

on estimated species richness. We first modelled variability in estimated species richness 

for the aggregated dataset of all 251 landscape units, using generalised linear mixed 

models (GLMM) constructed in the R package ‘lme4’ (Bates et al., 2014). The predictor 

variables were vegetation area, mean CEC, mean annual rainfall, range in elevation, 

Manorina reporting rate, mean patch size and matrix land use intensity, as well as two-way 

interactions among vegetation area and the other attributes. To account for potential 

differences in the level of species richness across our study extent (i.e. due to bioregional 

differences, and differences in clearance histories), the IBRA bioregion in which each 

landscape unit occurs was included as a random intercept. While some predictors 

exhibited moderate (>0.5) two-way Spearman’s rank correlations (i.e. the three abiotic 

attributes; vegetation area and mean patch size), a check of variance inflation factors (<2 

for all predictors) indicated that collinearity was not likely to be an issue in this analysis 

(Zuur et al., 2010). All predictor variables were standardised (mean = 0, standard deviation 

= 1) prior to this analysis to allow for comparison of parameter coefficients. 

 

We then conducted model averaging and multimodel inference, using the R package 

‘MuMIn’ (Barton, 2015), to determine the relative importance of vegetation area versus the 

various landscape attributes in explaining variation in estimated species richness. From a 

global model that contained all seven predictor variables (as well as all two-way 

interactions between vegetation area and the other six landscape attributes (six interaction 

terms)), a set of top models—those within 2AICc values of the best model in the set—was 

identified (Grueber et al., 2011). From this set, model-averaged parameter estimates, 

unconditional standard errors and 95% confidence intervals were derived, as was the 

relative importance of each predictor based on the sum of the Akaike weights for all 

models in the top set in which the predictor occurred (Grueber et al., 2011). We checked 
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for spatial autocorrelation in the residuals of the global model, using a spline correlogram 

produced via the R package ‘ncf’ (Bjornstad, 2013). 

 

3.4 Results 

A comparison of models fitted to the relationship between estimated species richness and 

native woody vegetation area for all 251 landscape units revealed that the threshold model 

was more parsimonious than the exponential, linear and quadratic models (Table 3.2). 

Estimated richness increased with woody vegetation area to a threshold value of 

approximately 28% cover, beyond which vegetation area had little effect (Figure 3.3a).  

 

When we classified the landscapes into subsets according to particular abiotic and 

anthropogenic attributes (Table 3.1) to address our first research question, threshold 

models were the best supported for 7 out of 12 landscape categories (ΔAIC >2) (Table 

3.2; Figure 3.3). The area of remnant woody vegetation leading to a threshold response in 

species richness varied considerably among different landscape types, from 21% of woody 

vegetation cover in lower rainfall landscapes (Figure 3.3d) to 51% in less fragmented 

landscapes (Figure 3.3f). In most cases, the effect of area was strongest below the 

threshold value, with a reduced effect, and in some instances, a plateau, above the 

threshold. The value of the threshold with respect to estimated species richness (i.e. the 

‘maxima’ where the change point or plateau corresponded with the y-axis) also differed 

between landscapes classified by different attributes. For example, the threshold point for 

lower fertility landscapes occurred at a higher level of estimated richness than for higher 

fertility landscapes (approximately 65 species compared with approximately 55 species, 

respectively (Figure 3.3c)). 

 

In three landscape types—those characterised by a higher reporting rate of Manorina 

honeyeaters (Figure 3.3e), lower mean patch size (Figure 3.3f), and by lower matrix land 

use intensity (Figure 3.3g)—quadratic models indicated that estimated richness was 

highest at intermediate levels of woody vegetation area. However, support for quadratic 

models in these three landscape types was only marginally better (ΔAIC <2) than that for a 

threshold relationship (Table 3.2).  
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Table 3.2 Summary of univariate generalised linear models with the lowest AIC value for 

each category of landscape 

Landscape category Best supported 

functional form* 

ΔAIC top 

two models  

Estimated 

threshold# 

Nagelkerke 

pseudo-R2 

All landscapes Threshold 11.29 27.6 (±2.2) 0.59 

Range in elevation 

More hilly Exponential 8.45 NA 0.46 

Less hilly Threshold 8.12 27.6 (±3.5) 0.59 

Soil 

Higher soil fertility Threshold 15.60 22.1 (±2.6) 0.56 

Lower soil fertility Threshold 5.74 41.8 (±4.2) 0.47 

Rainfall 

Higher rainfall Threshold 

(Quadratic) 

0.32  36.0 (±4.1) 0.51 

Lower rainfall Threshold 21.54 21.0 (±2.5) 0.63 

Manorina honeyeaters 

Higher Manorina 

reporting rate 

Quadratic 

(Threshold) 

0.65 NA 0.75 

Lower Manorina 

reporting rate 

Threshold 9.82 22.0 (±3.4) 0.45 

Vegetation configuration 

Higher mean patch size Threshold 3.39 50.7 (±5.6) 0.19 

Lower mean patch size  Quadratic 

(Threshold) 

0.11 NA 0.66 

Matrix land use 

Higher matrix land use 

intensity 

Threshold 5.43 27.8 (±2.7) 0.63 

Lower matrix land use 

intensity 

Quadratic 

(Threshold) 

0.65 NA 0.53 

* Where ΔAIC top two models <2, next best model type presented in parentheses 

# Percentage landscape woody vegetation area at which threshold occurs (± error around 

threshold estimate) 
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 (a) 

 (b)  (c) 

 (d)  (e) 

 (f)  (g) 
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Figure 3.3 Landscape-specific models for the relationship between estimated species 

richness and the area of mapped remnant woody vegetation (percentage vegetation 

cover). The top plot (3.3a) shows the most parsimonious model fitted to all 251 landscape 

units. Each of the remaining six plots (3.3b-3.3g) exhibits three separate species-area 

models: the dashed line represents the most parsimonious model fitted to all 251 

landscape units; while the grey and black curves (associated with the grey and black data 

points) represent the model of best fit (based on lowest AIC value for four different fitted 

models) for each specific landscape type. The landscape types presented in each plot are: 

more hilly and less hilly landscapes (3.3b); higher fertility and lower fertility landscapes 

(3.3c); higher rainfall and lower rainfall landscapes (3.3d); higher Manorina reporting rate 

and lower Manorina reporting rate landscapes (3.3e); lower mean patch size and higher 

mean patch size landscape (3.3f); and higher matrix land use intensity and lower matrix 

land use intensity landscapes (3.3g). These landscape categories were derived by 

subsetting the overall dataset (251 landscapes) based on median values (i.e. above or 

below median) for each of the six landscape attributes under examination 

 

Model averaging revealed that the positive effect of woody vegetation area was of greatest 

importance in explaining estimated species richness (Figure 3.4). Range in elevation also 

had a positive effect on species richness, while negative independent effects were 

detected for soil fertility (CEC), mean patch size, and matrix land use intensity. These 

variables all had summed Akaike weights of 1 (Figure 3.5). Significant interactions 

between woody vegetation area and range in elevation, and woody vegetation area and 

Manorina reporting rate were detected (Figure 3.4; Figure 3.5), indicating that the effect of 

area on species richness was moderated by landscape attributes. Vegetation area had a 

weaker effect on species richness in landscapes with greater range in elevation (i.e. more 

hilly landscapes). The effect of area on species richness was stronger, and the positive 

effect was evident up to a higher value of vegetation cover, in landscapes with high 

Manorina reporting rates. 
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Figure 3.4 Model averaged coefficients (error bars = 95% confidence intervals) across the 

top set of models (Δ2AICc values) for all predictor variables, where estimated species 

richness was the response variable. The predictor Area x Mean patch size was not 

included in any of the models in the top model set 

 

 

 

Figure 3.5 Ranked importance of predictor variables in the top set of models (Δ2AICc 

values) – filled bars denote variables for which model-averaged parameter estimate 

coefficient confidence intervals do not overlap zero 
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3.5 Discussion 

Native vegetation area is a key determinant of patterns of landscape-scale bird species 

richness (Radford et al., 2005; Desrochers et al., 2011). However, our analysis revealed 

that the effect of woody vegetation area on Australian woodland bird species richness 

differs in landscapes characterised by certain abiotic and anthropogenic attributes. For 

example, while we found evidence for the occurrence of thresholds of abrupt change in the 

relationship between species richness and native vegetation area, the amount of 

vegetation corresponding with these thresholds varied considerably among landscapes 

characterised by different attributes. This identification of landscape-specific area effects 

has important implications for the exploration of species-area relationships. Most notably, 

deriving an accurate representation of the effect of area necessitates that factors that 

confound species-area analyses, such as landscape attributes, and the associated 

ecological mechanisms which moderate the effect of area, be accounted for. This is 

particularly important where vegetation area is also cofounded with landscape attributes 

due to biased patterns of anthropogenic vegetation clearing. A more nuanced 

understanding of the effect of vegetation area, as revealed by the species-area 

relationship, is integral to informing conservation management and policy, where area-

based vegetation protection or restoration targets are set based on the expectation that 

their achievement will maintain or enhance landscape-scale species richness. 

 

 Thresholds vary for different landscape types 3.5.1

We recorded a threshold in the species-area relationship at approximately 28% woody 

vegetation cover when data from all landscapes were aggregated. This is remarkably 

consistent with the predictions of Andrén (1994), who postulated that the configuration of 

habitat in a landscape is particularly influential below 30% cover, thereby explaining the 

non-linear response of species richness to habitat extent at low levels of cover. This non-

linear response may also reflect a point below which individual fitness and population 

processes are impaired (Swift & Hannon, 2010), resulting in more rapid loss of species. 

 

When landscapes were classified by particular abiotic and anthropogenic attributes, a 

threshold relationship was found more often than other curve types, but the position of the 

threshold varied depending on the landscape attributes considered (21-51% native 

vegetation cover). Furthermore, the estimated number of species at which a change in the 

relationship between species richness and area was observed also exhibited variation 

among the different landscape types examined, indicating that landscape attributes act on 
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both how richness changes with area, as well as how many species a particular landscape 

type can support. Taken together, these results highlight that the effect of woody 

vegetation area on woodland bird species richness in south-east Australia varies as a 

function of landscape attributes. As proposed by Maron et al. (2012), and emphasised by 

our results, aggregating data from multiple landscapes that exhibit heterogeneity in abiotic 

and anthropogenic attributes is likely to result in a distortion of the true effect of habitat 

area. Furthermore, these findings reinforce a key criticism of the use of thresholds for 

establishing targets such as landscape-level vegetation clearing limits—that is, the 

existence of landscape-specific threshold values, reflecting landscape-specific area 

effects, hampers our ability to generalise about the ubiquity and causes of thresholds, 

therefore precluding their broad application for conservation target setting. 

 

Richmond et al. (2015) found that thresholds in the relationship between landscape-scale 

forest cover and forest bird species richness varied from approximately 4 to 28% cover 

among different forest types, ecozones and spatial scales. In a review of studies that 

examined landscape-scale species richness and the occurrence of specific species, Swift 

and Hannon (2010) noted substantial variation in threshold values, and emphasised that 

thresholds are likely to vary in different landscape types. In studies of woodland birds in 

south-east Australia, thresholds in the relationship between vegetation area and species 

richness were identified at approximately 10% cover (Radford et al., 2005) and 35% cover 

(Maron et al., 2012). While such variation in threshold values across studies is a potential 

impediment to their utility for informing landscape management (Lindenmayer & Luck, 

2005; van der Hoek et al., 2015), these threshold analyses, and indeed the results we 

present, highlight that the rate at which species are lost (or gained) with reduced (or 

enhanced) vegetation extent is often greatest at lower levels of landscape vegetation 

cover (Fischer & Lindenmayer, 2007). Understanding what factors interact with vegetation 

area to drive threshold responses in different types of landscapes is important (Swift & 

Hannon, 2010) and warrants further exploration, as this knowledge may help maximise the 

impact of conservation interventions such as restoration in low cover landscapes. 

 

 Ecological mechanisms moderate the effect of vegetation area on species richness 3.5.2

We recorded a significant negative interaction between vegetation area and range in 

elevation. More topographically diverse landscapes are likely to capture a wider array of 

habitats and associated niches (Bennett et al., 2006; Stein et al., 2014) per unit area of 

native vegetation, which may moderate the effect of area per se (Kallimanis et al., 2008). 
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The effect of vegetation area may also be moderated by topography because of an 

association between slope/terrain ruggedness and land use intensity. For example, if hilly 

landscapes that are characterised by steeper slopes are less conducive to intensive 

agricultural production, this may mean that the matrix permeability is enhanced in such 

landscapes. In turn, this may allow for enhanced opportunities for dispersal across the 

matrix (Prevedello & Vieira, 2010), even where landscape-level native vegetation cover is 

low. In less hilly landscapes, species richness may respond more strongly to area as 

increases in vegetation extent potentially buffer species from the adverse impacts of 

habitat degradation (i.e. edge effects) that are associated with intensive land use (Watson 

et al., 2005; Lindenmayer & Fischer, 2006), as well as provide for enhanced connectivity 

(Hanski, 2015). 

 

The disruptive effect that hyperaggressive native competitors (either noisy or yellow-

throated miners) have on Australian native bird assemblages is typically greatest in 

modified and fragmented woodlands and forests (Maron et al., 2013; Kutt et al., 2015). In 

particular, these two species of Manorina honeyeater favour edge habitats (Maron et al., 

2013; Thomson et al., 2015), where they cooperate to exclude other species—especially 

smaller birds—to the extent that large shifts in community composition occur (Mac Nally et 

al., 2014b). We found that vegetation area had a stronger effect on species richness in 

landscapes where Manorina honeyeaters were more prevalent (i.e. a positive interaction 

between vegetation area and Manorina reporting rate). In landscapes with many Manorina 

honeyeaters, the role of increasing vegetation cover is likely to be particularly important as 

it correlates with larger remnants, more core habitat and proportionally less edge habitat 

(Fahrig, 2003; Ewers & Didham, 2006), the latter of which these aggressive competitors 

preferentially occupy (Maron et al., 2013; Thomson et al., 2015). 

 

The quadratic fit for higher Manorina reporting rate landscapes (Figure 3.3e) had only 

marginally better support than the threshold model (Table 3.2), which revealed a plateau in 

the relationship between species richness and area above approximately 21% native 

vegetation cover. In low cover landscapes (less than 20% cover), the effect of vegetation 

area on species richness was similar for lower and higher Manorina reporting rate 

landscapes. Surprisingly, richness tended to be higher in higher Manorina reporting rate 

landscapes beyond low levels of cover (Figure 3.3e). This may reflect the fact that 

Manorina honeyeaters often favour more productive areas (Maron et al., 2013), which may 

support more individuals and therefore more species through greater energy and resource 
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availability (Storch et al., 2005; Watson, 2011). Furthermore, noisy and yellow-throated 

miners tend to have their strongest adverse effects on smaller birds, although they are 

also associated with increases in larger birds (Howes et al., 2014; Kutt et al., 2015). Thus, 

it may be that undesirable compositional differences such as site-scale homogenisation of 

bird communities arise as a result of Manorina occurrence (Howes et al., 2014; Kutt et al., 

2015), but that landscape-level species richness may not necessarily be reduced in 

landscapes with many Manorina honeyeaters.  

 

Factors such as habitat heterogeneity or land use intensity associated with topographic 

variation, or the disruptive influence of highly competitive Manorina honeyeaters, should 

be considered in studies of the response of Australian woodland birds to landscape-scale 

vegetation area. Failure to consider these factors may entail erroneous interpretations of 

the effect of area. For example, vegetation area is frequently correlated with range in 

elevation at the landscape level, whereby flat landscapes are typically more heavily 

cleared than hilly landscapes (Seabloom et al., 2002). If this confounding factor is not 

accounted for, an analysis of the effect of area that is based upon an aggregation of lower 

cover landscapes that are flat, and higher cover landscapes that are hilly, where each of 

the two landscape types has its own landscape-specific area effect as demonstrated here, 

will manifest in a species-area relationship that is not representative of either landscape 

type. Similarly, and uniquely applicable to Australian woodland birds, Manorina honeyeater 

occurrence should be acknowledged and accounted for, because the number of species 

occurring per unit area of vegetation in landscapes potentially differs depending on the 

occurrence of these hyperaggressive native competitors. 

 

 Additional considerations for landscape-level analyses of species richness 3.5.3

Here, we have considered landscape-specific effects in the relationship between the 

species richness of a broad assemblage of birds and landscape-scale native vegetation 

cover. We note that within this broad assemblage, individual species will exhibit varying 

degrees of tolerance to landscape modification and habitat loss. Given that various studies 

have revealed differential responses of assemblages to landscape-scale vegetation cover 

where ‘forest’ species have been subset by disturbance tolerance (i.e. ‘forest specialist’ vs 

‘disturbance tolerant’) (Pardini et al., 2010; Banks-Leite et al., 2012; De Camargo & Currie, 

2015), it would be a useful next step to examine the landscape-specific relationships we 

present here for subsets of our broad bird community. In particular, observations that 

sensitive species decline and are lost from landscapes at higher levels of vegetation cover 



64 
 

than observed thresholds reflecting the response of the broader assemblage (Banks-Leite 

et al., 2014), underscores the importance of considering groups of species with different 

levels of sensitivity/tolerance to disturbance. 

 

Our analysis focussed on relating the richness of a broad assemblage of species that are 

dependent on woody vegetation, to the amount of native vegetation (woodland) in 

landscapes. This followed the widely used habit/non-habitat approach (Radford et al., 

2005; Haslem & Bennett, 2008; Desrochers et al., 2011; Smith et al., 2011; Maron et al., 

2012; Cunningham et al., 2014a) to exploring landscape-level responses of biodiversity to 

anthropogenic modification, whereby mapped native vegetation is used to represent 

habitat for the assemblage being examined. We acknowledge that a potential flaw in this 

approach is that individual species within an assemblage may respond differently to 

specific vegetation types that are captured within a broad characterisation of habitat such 

as ‘woodland’ (Fischer & Lindenmayer, 2007; Fahrig et al., 2011; Betts et al., 2014; 

Matthews et al., 2014b; Almeida-Gomes et al., 2015). However, in light of the findings we 

present here, we advocate that studies exploring area effects using a habitat/non-habitat 

conceptualisation may be enhanced by considering other attributes of landscapes that 

potentially reflect and/or act on the quality of native vegetation for various species in an 

assemblage. For example, our results indicate that species in the assemblage we 

considered respond to fertile, productive woodlands differently to infertile woodlands, or 

that the effect of woodland area in flat, homogenous landscapes may be different to 

woodland occurring in a hilly, heterogeneous landscape. Incorporating attributes of 

vegetation quality into analyses of the effect of vegetation quantity can allow for a more 

nuanced appreciation of how biodiversity responds to landscape change when using a 

habitat/non-habitat approach. 

 

The dichotomous approach that we used to classify landscapes by particular attributes 

allowed us to confirm two key aspects of the spurious thresholds hypothesis (Maron et al. 

2012)—(1) that the effect of vegetation area depends on broad attributes of landscapes, 

and (2) this may result in a distorted representation of the species-area relationship if data 

are aggregated from broadly different landscape types in a non-random clearing context. 

We recognise that the attributes we used to classify landscapes do not necessarily act in 

isolation from one another on species-area relationships; rather these broad attributes, 

and the ecological mechanisms associated with them, exhibit interactions and correlations 

among landscapes. To test this, we explored how various attributes (and the mechanisms 
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they subsume) interact to affect patterns of species richness using multivariate mixed 

modelling. This revealed, for example, that the effect of vegetation area differs as function 

of landscape topography, and we infer that this may be due to differences in land use 

intensity, habitat configuration and habitat heterogeneity among landscape that broadly 

differ in topography (i.e. flat and hilly). While we note that other approaches, such as using 

an ordination procedure, could be used to group landscapes for the purposes of exploring 

variation in the shape of the species-area relationship, our dichotomous classification is 

advantageous in that it allows for clear links between (non-random) patterns of 

anthropogenic clearing and the response of biodiversity to be made, and provides simple, 

intuitive guidance for both assessing patterns of species richness in modified landscapes 

and informing landscape management using broad and easily translatable landscape 

classifications. 

 

 Conclusion 3.5.4

We highlight that the effect of woody vegetation area on woodland birds of south-east 

Australia varies as a function of the attributes of landscapes, and that these differences 

likely reflect ecological mechanisms which interact with area to affect the occurrence of 

species. Recognising that the effect of area is not the same among different landscape 

types is important for analyses of species-area relationships in modified landscape 

mosaics. In particular, we advocate the importance of identifying which attributes of 

landscapes may interact with area to affect species richness, and accounting/controlling 

for these in species-area analyses. In short, it is important to compare ‘like with like’, so as 

to remove the confounding effect of landscape attributes that may distort observed area 

effects. This is particularly crucial where non-random clearing introduces substantial bias 

into analyses of area effects in modified environments. Given that habitat loss is a 

landscape-level process (Radford & Bennett, 2007) with landscape-scale effects (Fahrig, 

2013), it is vital that management actions focussing on species richness are undertaken at 

this scale. Deriving an accurate representation of the relationship between species 

richness and vegetation area is therefore fundamental for planning conservation or 

restoration interventions that seek to maximise the number of species a landscape can 

support. 
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CHAPTER 4  

 

THE EFFECT OF SCALE ON HOW HABITAT AREA INFLUENCES LANDSCAPE-

LEVEL SPECIES RICHNESS 

 

 

To be submitted to Landscape Ecology 

 

 

 

 

 

Plate 3 Example of landscape units at scales of analysis considered in this chapter 
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4.1 Abstract 

We examined whether the shape of the species-area relationship differed in landscapes at 

three scales of analysis. Given scale-dependence in factors that moderate the species-

area relationship, we predicted that the shape of the relationship would vary in landscapes 

of different sizes. We compared the effect of native vegetation area on estimates of 

Australian woodland bird species richness, among landscapes of three sizes—25 km2, 100 

km2 and 400 km2. The fit of four different univariate models describing the species-area 

relationship at each scale was compared, both for our overall dataset and for two regional 

subsets of our data. We examined generalized linear mixed models to determine whether 

two attributes of landscapes—range in elevation and the occurrence of highly competitive 

native birds of the genus Manorina—interacted with vegetation area to explain variation in 

species richness, and whether these interactions were scale-dependent. At all three 

scales, the best-supported model describing the landscape-level species-area relationship 

was a threshold. Furthermore, the location of the threshold value—at approximately 30% 

vegetation cover—was remarkably similar among the three scales. However, when the 

relationship was examined separately for northern and southern regions of our study 

extent, this scale-invariance in the shape of the species-area relationship broke down. 

Range in elevation and Manorina occurrence interacted with vegetation area to explain 

variation in patterns of species richness, although the effects of these interactions varied 

among scales. Our results highlight the importance of accounting for scale in studies of 

landscape-level species richness, particularly where an understanding of the effect of area 

underpins conservation actions that seek to enhance richness. 

 

4.2 Introduction 

Habitat area is a key determinant of the number of species that occur in a landscape 

(Fahrig, 2013). The effect of area on species richness—the species-area relationship—has 

frequently been examined by relating measures of both habitat amount and species 

richness derived at the landscape level. This approach has allowed for exploration of the 

effect of habitat area in ‘whole landscapes’ (sensu Radford and Bennett (2007)), thus 

providing insights about broad patterns of species richness among human-modified 

mosaics (Haslem & Bennett, 2008; Desrochers et al., 2011; De Camargo & Currie, 2015; 

Ochoa-Quintero et al., 2015). For example, studies by Radford et al. (2005) and Maron et 

al. (2012) from different parts of south-east Australia explored how the amount of native 

vegetation in 100 km2 landscape units affected the richness of woodland bird species 

measured at this scale. Both studies found that a threshold model—with a rapid change-
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point beyond which the effect of vegetation extent was minimal—had the most 

parsimonious fit. 

 

Jackson and Fahrig (2015) highlighted that the inferred effects of landscape properties (i.e. 

habitat area) on an ecological response may be affected by the scale(s) at which they are 

measured. Indeed, several authors have proposed that the shape of the species-area 

relationship may vary depending on the scale of analysis (Whittaker et al., 2001; Turner & 

Tjørve, 2005; Triantis et al., 2012). Turner and Tjørve (2005) noted that the relative effects 

of factors that influence the relationship between species richness and area vary among 

scales ranging from metres to biogeographical provinces. Within the range of scales 

encompassed by ‘landscapes’—mosaics of thousands to tens of thousands of hectares 

(McAlpine et al., 2016), featuring a mix of elements including habitat (i.e. native 

vegetation) and non-habitat (i.e. human land uses) (Tscharntke et al., 2012)—a number of 

factors influence how species richness responds to habitat area, and that influence may be 

expected to be scale-dependent.  

 

First, landscape heterogeneity, such as topographic variation, tends to be greater in larger 

extents (van Rensburg et al., 2002; Báldi, 2008). This correlation may drive scale-

dependence in the species-area relationship, as heterogeneity increases species richness 

(Turner & Tjørve, 2005). Second, biotic interactions, such as competitive exclusion and 

predation, can exhibit scale-dependent effects on the spatial distribution of species (Araújo 

& Rozenfeld, 2014; Belmaker et al., 2015). Such scale-dependent biotic interactions may 

underpin differences in how species richness is affected by area (Scheiner et al., 2011). 

Third, habitat fragmentation—a process that potentially underpins non-linear species-area 

relationships (Andrén, 1994; Hanski, 2015)—also exhibits scale-dependent effects on 

species (Lindenmayer & Fischer, 2007; Jarzyna et al., 2015; Miguet et al., 2015). In 

recognition of these potentially scale-dependent mechanisms, Turner and Tjørve (2005) 

emphasised the importance of exploring how the shape of the species-area relationship 

varies at different spatial scales.  

 

Studies that have related species richness measured at two or more scales (i.e. site and 

landscape) to habitat area have provided important insights into the effect of area on 

richness at different scales of analysis (Cunningham et al., 2014a; Burgess & Maron, 

2015; Richmond et al., 2015; With, 2016). While some studies have considered how the 

size of landscapes affects species-specific factors such as population density (Pulliam et 
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al., 1995), we know of no studies focussing specifically on how patterns of landscape-level 

richness vary among landscapes of different sizes. If the relationship between landscape-

level species richness and habitat area varies depending on the size of the landscape 

under consideration, predictions about patterns of richness, and resultant conservation 

prescriptions such as habitat protection targets, will only be applicable to the scale at 

which the relationship was explored. As such, it is imperative to resolve whether 

landscape-level species-area relationships exhibit scale-dependence. 

 

Using woodland birds of south-east Australia as a focal taxon, we explore how the shape 

of the relationship between species richness and native vegetation area compares among 

landscapes that vary in size. Radford et al. (2005) examined the effect of vegetation extent 

on woodland bird species richness in southern Australian landscape units of 100 km2, 

because this size was large enough to encompass the daily movements (home ranges) of 

the focal assemblage, captured heterogeneity in landscape elements, was of a scale 

applicable to land managers, and allowed for sufficient replication. Here, we assess 

landscapes of three sizes – 25 km2, 100 km2 and 400 km2—to (a) determine whether the 

shape of landscape-scale species-area relationships vary with landscape size; and (b) 

draw inferences about how factors such as landscape heterogeneity, the incidence of 

highly competitive species, and time since clearing, underpin observed scale-dependent 

area effects. Furthermore, we consider how the shape of species-area relationships for 

landscapes of different sizes vary regionally, given that differences in the response of 

woodland birds to native vegetation area have been observed from previous studies that 

correspond with the southern (Radford et al., 2005) and northern (Maron et al., 2012) parts 

of our broad study area.  

 

We hypothesise that a threshold will emerge in the species-area relationship, as this has 

been documented in other landscape-scale studies of bird species richness (Radford et 

al., 2005; Ochoa-Quintero et al., 2015; Richmond et al., 2015). However, we expect to see 

differences in the threshold position, or at least in the shape of the relationship among the 

three landscape sizes, because of geographic and scale-dependent differences in the 

factors that moderate the effect of area on species richness. In particular, we predict that 

there will be an interaction between native vegetation area and the occurrence of 

hyperaggressive native birds of the genus Manorina in small landscapes (25 km2), as 

these aggressive competitors have been shown to substantially affect the composition of 

woodland bird communities at localised (site, patch, small landscape) scales. As 
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landscape size increases (100 km2; 400 km2), we expect that the interaction between 

vegetation area and range in elevation (a proxy for landscape heterogeneity) will become 

increasingly important, as more habitat types associated with topographic variation are 

likely to be captured in these larger landscapes. 

 

4.3 Methods 

 Study area and landscape units 4.3.1

Our study focussed on how bird species richness is affected by the amount of native 

woody vegetation—a proxy for habitat extent (Radford et al., 2005; Smith et al., 2011; 

Maron et al., 2012; Cunningham et al., 2014b)—in landscapes of different sizes across a 

broad region of south-east Australia. The study area comprised those mapped bioregions 

(or subregions) (based on the Interim Bioregionalisation of Australia (Department of the 

Environment, 2012a), that have been subject to extensive anthropogenic modification (i.e. 

at least 25% of the area has been transformed). Clearing of native woodland and forest to 

facilitate agricultural and urban development has had a profound impact on the avifauna of 

this part of Australia (Ford, 2011).  

 

For each landscape size (25 km2, 100 km2 and 400 km2), a corresponding grid (5 x 5 km, 

10 x 10 km, 20 x 20 km) spanning our entire study area was overlaid in a geospatial 

information system (GIS – ArcMap 10.1(ESRI, 2012)). Any incomplete grid cells (those 

overlapping the coastline) were removed, such that each complete grid cell at each 

resolution represented a landscape unit. 

 

Radford et al. (2005) and Maron et al. (2012) detected a threshold in the species-area 

relationship for woodland birds in 100 km2 landscapes in different parts of south-east 

Australia. However, the percentage cover of native woodland in a landscape 

corresponding with the observed thresholds differed markedly between the two studies 

(Radford et al., 2005; Maron et al., 2012). In light of the different results of these studies, 

we also consider subsets of landscapes from our overall dataset corresponding with 

bioregions that centre on the location of these two studies. These subsets, which we 

identify as ‘southern’ and ‘northern’ landscapes (Figure 4.1), encompass the extents of the 

Radford et al. (2005) and Maron et al. (2012) studies, respectively. We note however that 

the extents considered here are considerably broader than those explored in the two 

previous studies. 
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Figure 4.1 Northern (light grey) and southern (dark grey) subset of our overall study area. 

Bioregion boundaries (as per the Interim Bioregionalisation of Australia) were used to 

distinguish the two regional subsets, with bioregions (and the landscape units that they 

contained) occurring in the northern part of the study area being allocated to the northern 

subset, and bioregions (and associated landscape units) in the southern part of the study 

area being allocated to the southern subset. The approximate locations of the Maron et al. 

(2012) and Radford et al. (2005) study extents (corresponding with the northern and 

southern subsets, respectively) are highlighted by black rectangles 

 

 Bird data 4.3.2

Our focal assemblage was native woodland and forest birds: species that are dependent 

on woody vegetation (hereafter, ‘woodland birds’), but not waterbirds, or birds that can 

persist entirely in open environments where trees are very widely scattered or absent. 

Using data from BirdLife Australia’s New Atlas of Australian Birds database 20 minute/2ha 

(Loyn, 1986) standardised surveys, we overlaid survey location points on each of our three 

landscape grids in ArcMap 10.1 (ESRI, 2012). Landscape units at each scale in which at 

least 20 bird surveys had been conducted were identified (n=720, 746, 565, for 25 km2, 

100 km2, 400 km2 landscapes, respectively). This process allowed us to determine the 

observed species richness of woodland birds for landscape units at each landscape size in 

which at least 20 standardised surveys had been performed. 

 

Because there was substantial variation in the number of surveys conducted in landscape 

units, we used a three-step approach for deriving comparable estimates of species 
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richness that were not biased by variable survey effort. First, we used non-parametric 

asymptotic estimators in the program EstimateS Version 9 (Colwell, 2013) to derive 

estimates of species richness for landscape units at each of the three scales being 

investigated. We retained landscape units at each scale where estimated richness varied 

by less than two species in the last five surveys of the total set of samples (i.e. the 

estimator had stabilised (as per Maron et al. (2012)).  

 

Second, for landscapes with stable estimates of richness (n=480, 450, 400, for the 25 km2, 

100 km2, 400 km2 landscape sizes, respectively), we then checked whether the asymptotic 

estimation process had removed the positive correlation between number of surveys and 

(estimated) species richness. Upon finding a moderate positive correlation at each 

landscape size, we used the unified rarefaction/extrapolation approach (Colwell et al., 

2012) to obtain comparable values of expected species richness at a standardised level of 

survey effort (Colwell & Elsensohn, 2014). Given the recommendation of 20 samples as a 

minimum number for rarefaction (Gotelli & Colwell, 2011), and the conservative suggestion 

to extrapolate only to twice the number of samples (Colwell et al., 2012), we standardised 

sampling effort at 40 surveys, and obtained expected measures of species richness for 

landscape units at each landscape size at this level of sampling. These estimates were 

weakly correlated with the total number of surveys in a landscape unit, and provided us 

with species richness estimates for landscape units that were not confounded by variable 

sampling effort.  

 

Third, we checked whether estimates of richness at 40 surveys at each landscape size 

were equivalently complete (Watson, 2003) for more-species rich landscapes as 

compared with species-poor landscapes. To do this, we examined estimates of richness at 

60 surveys, derived using the unified rarefaction/extrapolation approach (Colwell et al., 

2012). Landscapes with higher estimated richness at 40 surveys did not show a 

proportionally greater increase in estimated richness than lower richness landscapes at 60 

surveys, indicating that standardisation to 40 samples was not systematically reducing 

estimates of richness in more-diverse landscapes. 

 

In selecting a final set of landscape units at each landscape size, we applied a number of 

criteria to account for within-landscape spatial and temporal variability in sampling effort, 

and temporal changes in the amount of woody vegetation cover over the period for which 

bird data were collected. The criteria we selected sought to strike a balance between 
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satisfactorily controlling for spatial and temporal variation, while still allowing for a sufficient 

number of landscape units at each landscape size to explore our study questions. Thus, 

for a landscape unit to be included in this analysis, units at each landscape size needed to 

satisfy the following criteria: (1) surveys from at least five unique locations in at least two 

different quadrants of a landscape; (2) at least five surveys from each half of the Atlas data 

collection period (1998-2014); (3) at least five surveys in each half of the year (April-

September, October-March); and (4) less than a 5% change in total ‘forest’ cover for the 

period 2000-2012 based on the Hansen et al. (2013) forest cover change dataset (an 

indication of landscape-level change in woody vegetation cover that approximately 

coincides with the bird data collection period). A total of 176, 238 and 250 landscape units 

for the 25 km2, 100 km2, 400 km2 landscape sizes, respectively, met the criteria and were 

used for the analysis (Figure 4.2) (See Appendix C: Table C1 for an overview of the bird 

data used in analysis). 
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Figure 4.2 Location of landscape units in south-east Australian study area – 25 km2 (top 

left), 100 km2 (top right), and 400 km2 (bottom). Remnant native woody vegetation is 

depicted by the grey shading 

 

 Landscape data 4.3.3

We used the Australian Government’s National Vegetation Information System (NVIS) 

version 4.1 (Department of the Environment, 2012b), which maps the contemporary 

distribution of remnant native vegetation in Australia, to determine the area of native 

woody vegetation in landscape units. From this 100 m pixel resolution dataset of 33 major 

vegetation groups, we identified vegetation types that were characterised by remnant 

woody vegetation, and determined the percentage cover of woody vegetation area for 

landscape units at each of the three landscape sizes. Eucalyptus woodlands and forests 

are the dominant vegetation types in our south-east Australian study area. The percentage 

cover of woody vegetation was related to the estimate of bird species richness for each 
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landscape unit, to explore the shape of landscape-level species-area relationships at the 

three different scales. 

 

We extracted data on two attributes of landscapes that act on the occurrence of birds, and 

have the potential to interact with area to affect landscape-scale species richness. This 

was undertaken to explore whether the interactive effect with area differed in landscapes 

of different sizes. First, we calculated the range in elevation in landscape units at each 

landscape size, using a 90 m resolution digital elevation model (Jarvis et al., 2008). Range 

in elevation is an oft-used proxy for topographic variability in a landscape (Belmaker & 

Jetz, 2011), and is known to positively correlate with both species richness (Jetz et al., 

2004; van Rensburg et al., 2009; Stein et al., 2014; Burgess & Maron, 2015) and non-

random patterns of vegetation clearing (Seabloom et al., 2002; Maron et al., 2015a). Here, 

we use range in elevation to represent landscape heterogeneity. Second, we extracted 

data on the relative occurrence of two native bird species that are known to affect the 

composition of bird assemblages within our study area. These colony-forming birds of the 

genus Manorina—the noisy miner (M. melanocephala), and the yellow-throated miner (M. 

flavigula)—can have dramatic impacts on the occurrence of smaller-bodied native birds 

through aggressive competitive exclusion, leading to shifts in assemblages within their 

colonies (Maron et al., 2013; Mac Nally et al., 2014a). For landscape units at each scale, 

we determined the proportion of surveys in which one or both of these species was 

recorded (i.e. a reporting rate (Watson, 2003)). Geospatial data processing and extraction 

was done using ArcMap10.1 (ESRI, 2012) and Geospatial Modelling Environment (Beyer, 

2012).  

 

This exploration of interactions also allowed us to (in part) account for how the effect of 

native vegetation area—a broad proxy for habitat extent for the assemblage of birds under 

examination—differed as a function of attributes of landscapes that act on the quality of 

native vegetation for woodland and forest birds. While the species we examined may 

respond differently to specific vegetation types that are captured within the broad 

characterisation of habitat (woody vegetation cover) that we used, consideration of the 

interactive effects of attributes of landscape quality that may be associated with 

topographic heterogeneity and/or the occurrence of hypercompetitive species, allowed us 

to draw inferences about how habitat quality may underpin differential responses to habitat 

quantity. 

 



76 
 

 Data analysis 4.3.4

We built univariate generalised linear models (GLMs) with a Poisson error distribution in R 

(R Core Team, 2013) to explore the shape of the relationship between estimates of 

species richness and woody vegetation area for all landscape units from our study area, at 

each of the three landscape sizes. The fit of four different models—exponential (to 

approximate a traditional convex upward species-area curve), linear, polynomial 

(quadratic) and threshold—was compared using Akaike’s Information Criterion (AIC). We 

included a threshold model, as previous landscape-scale studies have recorded a sudden 

change in the relationship between species richness and vegetation extent (Banks-Leite et 

al., 2014; Ochoa-Quintero et al., 2015; Richmond et al., 2015), including two from within 

our study area (Radford et al., 2005; Maron et al., 2012). Threshold models were 

constructed using the R package ‘segmented’ (Muggeo, 2008). For this modelling, we 

used the percentage of woody vegetation area as the predictor variable, and our estimates 

of species richness as the response variable. To explore the generality of the shape of the 

species-area relationship at each landscape size, we repeated the model-fitting exercise 

on southern and northern subsets of the data (Figure 4.1). This allowed us to explore 

whether the relationship between species richness and area at each landscape size 

differed between the two regions, as well as how these ‘region-specific’ relationships 

compared to that of the aggregated dataset for the entire study area.  

 

We then explored how landscape heterogeneity and Manorina reporting rate interacted 

with vegetation area to affect species richness in landscapes of different sizes. To do this, 

we used generalised linear mixed models (GLMM) constructed in the R package ‘lme4’ 

(Bates et al., 2014). For northern and southern landscapes at each landscape size, we 

considered how species richness varied as a function of vegetation area, range in 

elevation, and Manorina reporting rate, as well as interaction terms between vegetation 

area and the other two landscape attributes. The inclusion of the range in elevation 

parameter in our models not only allowed us to explore how the effect of area is 

moderated by landscape heterogeneity, but also allowed us to derive inferences about 

how non-random patterns of vegetation clearing may confound species-area analyses in 

landscapes of different sizes. All predictor variables were standardised (mean = 0, 

standard deviation = 1) prior to this analysis. The bioregion in which each landscape unit 

occurred was included as a random intercept to account for potential spatial 

autocorrelation. This modelling exercise allowed us to examine how landscape 
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heterogeneity and biotic moderators of localised bird assemblages interact with area to 

affect species richness in landscapes of different sizes. 

 

4.4 Results 

We found that the shape of the species-area relationship for landscapes across our study 

extent was remarkably similar irrespective of the size of the landscape under analysis 

(Figure 4.3a-c). First, for 25 km2, 100 km2 and 400 km2 landscape units, a threshold model 

was found to be the most parsimonious fit (Table 4.1). Second, at all three landscape 

sizes, the value of percent native woody vegetation area that corresponded with a change 

in the rate at which species richness varied with area was approximately 30% (Table 4.1). 

Above this value, estimated species richness changed little with increasing vegetation area 

in 25 km2 and 100 km2 landscapes, although continued to increase slightly in 400 km2 

landscapes.  

 

When landscapes were subset into northern and southern regions, different patterns 

emerged in the species-area relationship (Figure 4.3d-f, Table 4.1). Threshold models 

were best supported for northern and southern landscapes at the 25 km2 and 100 km2 

landscape size. However, the percent cover of woody native vegetation at which these 

thresholds emerged differed between regions at each landscape size, and between 

landscape sizes within regions. We recorded a threshold at approximately 17% and 36% 

cover, for southern and northern landscapes respectively, at the 100 km2 landscape size. 

However, at the 25 km2 landscape size, the observed threshold value was higher in 

southern landscapes (approximately 37%, compared with 15% for northern landscapes). 

At the largest landscape size, threshold models were no longer best-supported; species 

richness tended to increase with vegetation area up to at least 50% in northern and 

southern landscapes, with richness tending to plateau or decline above this value. 

However, the support for the quadratic models in northern and southern landscapes at 400 

km2 was only marginally stronger than that for other models (Table 4.1). 

 

The mixed modelling revealed that in both northern and southern landscapes, native 

vegetation area was generally a significant positive predictor of estimated species 

richness, irrespective of the scale of analysis (Table 4.2). The one exception was southern 

landscapes at the 25 km2 landscape size, where vegetation area was not significant. 

Range in elevation typically had a significant positive independent effect on species 

richness, while Manorina reporting rate was rarely influential (Table 4.2). The effect of 
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vegetation area was moderated by range in elevation, as revealed by the significant 

negative interaction term between the two variables, at all three landscape sizes in 

southern landscapes (Table 4.2). In northern landscapes, a positive interaction between 

vegetation area and Manorina reporting rate was recorded at all three landscape sizes 

(Table 4.2). 
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Table 4.1 Summary of univariate generalised linear models for the relationship between 

estimated species richness and vegetation area at each landscape size for the entire study 

area, and for regional subsets (northern and southern). Italicised rows indicates the model 

of best fit (lowest AIC value) for each landscape size 

 % Deviance 

explained 

Nagelkerke 

R2 

ΔAIC Threshold 

value* 

25 km2     

All landscapes (n= 176)     

Exponential 12.8 0.40 41.2  

Linear 10.7 0.35 55.8  

Quadratic 17.7 0.51 10.2  

Segmented 19.5 0.54 0 31% (±3.7) 

Northern landscapes (n= 52)     

Exponential 33.9 0.71 6.5  

Linear 17.4 0.47 36.2  

Quadratic 34.9 0.72 6.7  

Segmented 39.8 0.77 0 15% (±2.5) 

Southern landscapes (n= 124)     

Exponential 7.6 0.25 19.2  

Linear 8.2 0.26 16.7  

Quadratic 11.1 0.34 5.7  

Segmented 12.8 0.38 0 37% (±7.0) 

100 km2     

All landscapes (n= 238)     

Exponential 17.6 0.47 56.3  

Linear 13.8 0.39 87.4  

Quadratic 22.9 0.56 14.7  

Segmented 25.0 0.60 0 27% (±2.4) 

Northern landscapes (n= 80)     

Exponential 15.4 0.31 17.7  

Linear 7.0 0.15 31.3  

Quadratic 22.7 0.42 8.1  

Segmented 29.1 0.51 0 36% (±3.7) 

     



80 
 

 % Deviance 

explained 

Nagelkerke 

R2 

ΔAIC Threshold 

value* 

Southern landscapes (n= 158) 

Exponential 13.6 0.38 29.5  

Linear 12.6 0.35 34.7  

Quadratic 17.6 0.46 10.5  

Segmented 20.0 0.50 0 17% (±2.7) 

400 km2     

All landscapes (n= 250)     

Exponential 16.7 0.48 81.1  

Linear 22.6 0.59 24.5  

Quadratic 25.1 0.63 2.7  

Segmented 25.6 0.64 0 31% (±4.0) 

Northern landscapes (n= 94)     

Exponential 30.7 0.60 2.9  

Linear 20.4 0.45 28.6  

Quadratic 32.7 0.62 0  

Segmented 31.9 0.61 4.0 32% (±3.6) 

Southern landscapes (n= 156)     

Exponential 7.5 0.22 36.1  

Linear 14.1 0.38 2.4  

Quadratic 15.0 0.40 0  

Segmented 15.4 0.41 0.1 41% (±8.6) 

* % landscape woody vegetation area (rounded to nearest 1%) at which change in rate of 

species loss/gain as a function of woody vegetation area occurs (± error around threshold 

estimate) 
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(a) (d) 

 (b) (e) 

 (c) (f) 

 

Figure 4.3 Relationship of best fit for all landscape units in south-east Australia study area 

(left column) at 25 km2 (n=176; top (4.3a)), 100 km2 (n=238; middle (4.3b)) and 400 km2 

(n=250; bottom(4.3c)); Relationship of best fit for landscape units categorised by region 

(right column) at 25 km2 (n=52, n=124 (northern and southern, respectively); top (4.3d)), 

100 km2 (n=80 n=158; middle (4.3e)) and 400 km2 (n=94, n=156; bottom (4.3f)) 
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Table 4.2 Standardised parameter estimates (and standard errors in parentheses) for 

generalised linear mixed models for northern and southern landscapes. Estimated species 

richness is the response variable, and landscape attributes including vegetation area, 

range in elevation and Manorina reporting rate, as well as two way interactions between 

vegetation area and the other two landscape attributes, are the predictor variables. Bold 

parameter estimates significant at p <0.05 

 Vegetation 

area 

Range in 

elevation 

Manorina 

occurrence 

Area x 

Elevation 

Area x 

Manorina 

25 km2       

Northern 

0.085 

(0.025) 

0.120 

(0.025) 

-0.035 

(0.023) 

-0.109 

(0.023) 

0.062 

(0.023) 

Southern  

0.023 

(0.021) 

0.067 

(0.019) 

-0.057 

(0.019) 

-0.042 

(0.015) 

0.001 

(0.019) 

100 km2       

Northern 

0.062 

(0.018) 

0.024 

(0.018) 

0.023 

(0.019) 

-0.030 

(0.016) 

0.090 

(0.017) 

Southern  

0.110 

(0.016) 

0.085 

(0.016) 

-0.024 

(0.015) 

-0.038 

(0.013) 

0.064 

(0.014) 

400 km2       

Northern 

0.087 

(0.019) 

0.077 

(0.020) 

0.034 

(0.017) 

-0.028 

(0.016) 

0.070 

(0.017) 

Southern 

0.090 

(0.015) 

0.078 

(0.016) 

-0.020 

(0.014) 

-0.025 

(0.012) 

0.025 

(0.014) 

 

4.5 Discussion 

When data were aggregated across a broad region of south-east Australia, we recorded 

marked scale-invariance in the landscape-level relationship between estimates of 

woodland bird species richness and vegetation area. Threshold models, with a very similar 

change point, were always best-supported, regardless of the landscape size. However, 

when relationships were analysed for two separate regions of our overall study area, 

scale-specific patterns in the shape of the species-area relationship emerged. Our findings 

have important implications for the interpretation and application of landscape-level 

species-area analyses, especially where the objective is to inform actions seeking to 

maintain or enhance species richness in human-modified landscapes. 
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 Threshold relationships in landscapes of different sizes 4.5.1

As hypothesised, we consistently recorded a threshold in the relationship between 

estimates of species richness and vegetation area, irrespective of both the size of the 

landscape units, and how the data were aggregated/subset. Thresholds of vegetation 

extent have been observed in a number of landscape-scale studies that have examined 

the relationship between species richness and vegetation area (Radford et al., 2005; 

Maron et al., 2012; Morante-Filho et al., 2015; Ochoa-Quintero et al., 2015; Richmond et 

al., 2015). These studies have highlighted that vegetation area has reduced or no effect on 

species richness above the threshold point, contrasting with the expected monotonic 

increase in richness associated with a traditional (power or exponential) species-area 

model (De Camargo & Currie, 2015).  

 

A key mechanism that has been proposed to explain thresholds in the relationship 

between species richness and vegetation extent relates to the configuration of habitat in a 

landscape (Swift & Hannon, 2010). Andrén (1994) hypothesised that the deleterious 

effects of habitat fragmentation may exacerbate the adverse impact of habitat loss at low 

levels of habitat cover (<30%) in landscapes, thereby explaining the occurrence of a 

sudden change (threshold) in the rate at which species richness varies with area. The 

threshold values we recorded at each landscape size for our entire study extent 

corresponded with the 30% ‘fragmentation threshold’ value proposed by Andrén (1994). If 

the configuration of habitat in low cover landscapes is the major determinant of the 

threshold patterns we observed at the 25 km2, 100 km2 and 400 km2 landscape sizes, this 

would suggest that the effects of fragmentation on our focal assemblage are scale 

invariant.  

 

However, a notable finding of our study was that apparent scale-invariance in the 

relationship at different landscape sizes broke down when data were subset into regions. 

This finding indicates that different processes are potentially acting on the species-area 

relationship in different-sized landscapes in the regional subsets we examined. One such 

mechanism may relate to differences in temporal patterns of vegetation clearing. Radford 

et al. (2005) highlighted that the value corresponding with a threshold would be expected 

to shift to a higher level of (landscape-scale) vegetation area as the extinction debt carried 

by landscapes is ‘paid’. Extinction debt reflects the occurrence of species post-vegetation 

clearing (habitat loss), which are ultimately on a trajectory towards local extinction (Tilman 

et al., 1994; Ford et al., 2009; Swift & Hannon, 2010). This process was ruled out by 
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Maron et al. (2012) as explaining the difference in threshold values recorded in their study 

of woodland birds in 100 km2 landscapes, compared with the study of Radford et al. 

(2005), because the former study recorded a higher threshold value from a region in which 

broadscale clearing was more recent. 

 

Our results for 100 km2 landscapes are consistent with the findings of Maron et al. (2012) 

and Radford et al. (2005). However, we recorded the reverse pattern in 25 km2 

landscapes; a higher threshold value from southern landscapes (approximately 37% 

vegetation cover) compared with northern landscapes (approximately 15% cover). Part of 

our northern subset includes landscapes that have experienced Australia’s greatest rates 

of deforestation in recent decades—namely northern New South Wales and southern 

Queensland (Bradshaw, 2012). By contrast, historical clearing in the extent covered by our 

southern subset—largely corresponding with the state of Victoria—generally occurred over 

100 years ago (Bradshaw, 2012), with comparatively much lower forest loss since the 

1970s (Evans, 2016). The different threshold values for 25 km2 landscapes may in part 

reflect different stages of the ‘payment’ of the extinction debt, with the influence of recently 

cleared (<50 years) landscapes in part of the northern subset acting to reduce the level of 

vegetation cover at which a threshold is realised. If this is the case, it highlights that the 

effect of extinction debt on landscape-level species richness may be prominent at finer 

scales of analysis, with other factors moderating the relationship between species richness 

and vegetation area at coarser scales. 

 

 Influence of landscape attributes on species richness at different scales 4.5.2

Turner and Tjørve (2005) proposed that the scale at which landscape heterogeneity is 

most likely to influence species-area relationships ranges over several orders of 

magnitude, encompassing the landscape sizes we have analysed here. Indeed, we found 

that native vegetation area had a weaker effect on species richness as range in elevation 

(a proxy for landscape heterogeneity (Belmaker & Jetz, 2011)) increased, and that this 

was evident at all three landscape sizes across the northern and southern regions. 

However, contrary to our expectation, this interaction was not significant in 100 km2 and 

400 km2 landscapes from our northern subset. We expected that in larger landscapes, 

increasing range in elevation would dampen the effect of area per se, as species richness 

would reflect a response to the greater heterogeneity of these landscapes. This is because 

high species turnover (i.e. greater beta diversity) between habitat types in heterogeneous 

landscapes may contribute to increased landscape-scale richness (i.e. gamma diversity) 
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(Fahrig et al., 2011; Burgess & Maron, 2015), thereby moderating the effect of habitat area 

per se. In other words, for the same amount of habitat, more heterogeneous landscapes 

may be expected to support more species. The significant negative interaction between 

vegetation area and range in elevation in southern landscapes of all three sizes indicates 

that beta diversity associated with habitat heterogeneity may contribute strongly to 

landscape-scale patterns of richness, and that the moderating effect of landscape 

heterogeneity on the effect of area is scale invariant in this region. Notably, the fact that 

the moderating effect of range in elevation on vegetation area was not significant in 100 

km2 and 400 km2 landscapes from our northern subset indicates that clearing biases 

associated with non-random clearing may not always confound observed area effects. 

 

The effect of vegetation area was also moderated by Manorina occurrence in our northern 

and southern subsets, at all three landscape sizes. We expected that this interaction would 

be important at the finest scale of analysis (25 km2), given a large body of research has 

documented that these highly-competitive native species are important drivers of bird 

assemblages in sites (Mac Nally et al., 2014a; Mac Nally et al., 2014b), patches (Maron et 

al., 2011) and (small) landscapes (25 km2) (Robertson et al., 2013). However, our results 

did not support this prediction. The positive interaction term was significant at all three 

landscape sizes in northern landscapes, although it was only significant in 100 km2 

landscapes from our southern landscapes.  

 

This result potentially underscores the importance of increasing vegetation extent 

(including more core habitat) for woodland birds, given the preference of Manorina 

honeyeaters for edge habitats (Maron et al., 2013; Thomson et al., 2015). We expected 

that this association would become less important at coarser scales, because, for a given 

percent cover of native vegetation extent, larger landscapes (i.e. 100 km2, 400 km2) would 

be expected to have more core habitat. However, it may be that an increase in the amount 

of edge habitat for a given percent cover of native vegetation extent underpins the 

significant positive interaction between vegetation area and Manorina reporting rate at 

coarser scales. Alternatively, the results we obtained may be a reflection of the 

confounding influence of other landscape attributes, such as productivity (and associated 

energy availability), which may be positively correlated with both increased species 

richness (Storch et al., 2005; Symonds & Johnson, 2008; Luck et al., 2010) and Manorina 

occurrence (Montague-Drake et al., 2011; Maron et al., 2013). 
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 Conclusion 4.5.3

Our study took the novel approach of exploring the relationship between bird species 

richness and native vegetation area in landscape units of different sizes. In general, we 

found that the relationship reflected a threshold value of vegetation extent, irrespective of 

the size of the landscape examined. However, the threshold value differed depending on 

how data were aggregated/subset. These differences in the relationship potentially 

represent a complex interaction of factors that have differing effects on the species-area 

relationship among scales and regions. 

 

We highlight two key messages from this study. First, extrapolating the findings of species-

area studies to other scales and systems is likely to result in a misrepresentation of the 

effect of area on species richness. This is because of scale- and geographical-

dependence in factors that act on the landscape-level species-area relationship. Second, 

we reiterate a message that has been highlighted by others (Lindenmayer et al., 2005; 

Johnson, 2013; Toms & Villard, 2015), in urging caution in the interpretation and use of 

thresholds for guiding the management of landscapes. Accordingly, the application of 

thresholds to inform vegetation protection or restoration targets that seek to maximise 

species richness, should be underpinned by analyses of the focal system and assemblage 

at the grain size in which management actions will take place. 
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CHAPTER 5  

 

THE IMPLICATIONS OF USING THRESHOLDS FROM LANDSCAPE-SPECIFIC 

SPECIES-AREA RELATIONSHIPS TO GUIDE CONSERVATION ACTIONS 

 

 

To be prepared for submission to Biological Conservation 

 

 

 

 

 

Plate 4 Brigalow (Acacia harpophylla) woodland adjacent to a cleared pasture—Brigalow 

Belt South (Darling Downs), southern Queensland (photo: M. Maron) 
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5.1 Abstract 

Observed thresholds in the relationship between species richness and native vegetation 

extent can guide conservation actions in human-modified landscapes. For example, 

particular landscapes could be targeted for native vegetation protection and/or restoration 

to prevent precipitous species declines. However, this approach may be ineffective if 

observed thresholds do not accurately represent the manner in which species richness 

responds to habitat amount at the landscape level. Accounting for landscape attributes 

that confound identification of thresholds in the species-area relationship may allow for a 

more thorough understanding of the effect of vegetation area, thereby enhancing the utility 

of thresholds for incorporation into conservation target setting. Using a case study of 

woodland birds in a rapidly changing region of eastern Australia, I explore how accounting 

for landscape-specific differences in species-area relationships can alter the prioritisation 

of landscapes for conservation actions such as vegetation protection or restoration. 

Observed thresholds in species-area relationships, where landscape attributes such as 

topography and soil fertility were accounted for, implied different prospective conservation 

actions to those informed by a threshold derived from a non-landscape-specific species-

area model. Specifically, the number and location of landscapes that could be the focus of 

conservation interventions differed depending on the species-area model used to guide 

the prioritisation. Accounting for landscape attributes that potentially confound species-

area analyses is important where thresholds are to be used to guide actions that seek to 

maintain or enhance species richness in human-modified landscapes. 

 

5.2 Introduction 

The species-area relationship is an important tool for informing conservation actions that 

aim to address or predict the impacts of habitat loss (Desmet & Cowling, 2004; Kitzes & 

Harte, 2014; Matthews et al., 2014b). Of particular interest is the functional form and 

shape of the relationship, as this reveals the rate at which species richness changes with 

habitat area (Whittaker & Triantis, 2012). Interpretation of the form and shape of the 

relationship can underpin management interventions that focus on mitigating species loss 

via habitat protection and/or restoration (Radford et al., 2005; Possingham et al., 2015), as 

well as guide predictions about how future changes to habitat area may affect patterns of 

species richness (Kitzes & Harte, 2014; Ochoa-Quintero et al., 2015).  

 

In ‘landscapes’—mosaics of thousands to tens of thousands of hectares (McAlpine et al., 

2016), featuring a mix of elements including habitat (i.e. native vegetation) and non-habitat 
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(i.e. human land uses) (Tscharntke et al., 2012)—habitat area is a key determinant of 

species richness (Pardini et al., 2010; Fahrig, 2013; Cunningham et al., 2014a). Notably, a 

number of recent studies have detected a threshold in the relationship between species 

richness and habitat area at the landscape level, where, unlike a classic power or 

exponential species-area curve, the slope suddenly changes at a particular amount of 

habitat (Radford et al., 2005; Lima & Mariano-Neto, 2014; Morante-Filho et al., 2015; 

Ochoa-Quintero et al., 2015; Richmond et al., 2015). Generally, these threshold models 

reveal that the loss of species is much more rapid below the threshold value of habitat 

area (Swift & Hannon, 2010). 

 

Thresholds are an important concept from an applied conservation perspective, as they 

represent potential ‘targets’ upon which conservation actions and predictions can be based 

(Guénette & Villard, 2005; Huggett, 2005; Rhodes et al., 2008). For example, in landscape 

units of 100 km2 located in south-east Australia, Radford et al. (2005) found that woodland 

bird species richness exhibited a sharp decline with habitat area in landscapes with less 

than 10% native vegetation cover, but was not affected by habitat area above this 

threshold. Based on this finding, Radford et al. (2005) advocated that landscape-scale 

native vegetation cover in their study area be maintained at well over 10% to avoid species 

richness declining to the low values observed where this threshold was breached. Ochoa-

Quintero et al. (2015) recorded a much higher threshold value when relating the species 

richness of Brazilian forest birds and mammals to forest area in 100 km2 landscape units. 

Using an observed threshold value of 43% forest cover as the point below which species 

richness declined sharply with forest area, Ochoa-Quintero et al. (2015) predicted how 

future forest loss may affect species richness at the landscape scale.  

 

Despite the promise of using thresholds to guide management actions and inform 

predictions of future change, the concept is not without limitations. For example, variation 

in observed thresholds among different taxa and regions precludes generalities from being 

derived about what threshold value should be used to underpin conservation actions 

(Lindenmayer & Luck, 2005; Johnson, 2013; van der Hoek et al., 2013). Moreover, from a 

landscape ecological perspective, observed thresholds may be an artefact of confounding 

factors that distort the relationship between species richness and area. The ‘spurious 

thresholds hypothesis’ (Maron et al., 2012) suggests that thresholds may arise because of 

the intersection of separate species-area relationships for landscapes with different 

attributes (i.e. differences in soil fertility). This hypothesis draws on two interrelated 
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themes, both of which I have explored in earlier chapters of this thesis: (1) that the amount 

of habitat in a landscape is correlated with abiotic attributes like soil fertility because 

anthropogenic patterns of vegetation clearing are non-random (Chapter 2); and (2) that the 

effect of habitat area on species richness differs in landscapes with different attributes (i.e. 

there is an interaction between area and attributes like soil fertility or topography) 

(Chapters 3 and 4). A failure to account for potentially confounding factors such as soil 

fertility and topography may translate to inaccurate habitat protection or restoration 

prescriptions, if they are informed by observed thresholds (Maron et al., 2012). 

 

In this chapter, I examine the implications of accounting for landscape attributes when 

using species-area relationships to inform landscape-scale conservation actions. I test 

how observed thresholds could guide conservation actions aiming to maintain landscape-

scale species richness under two scenarios of future vegetation clearing. I use the case 

study of woodland bird species richness in the Brigalow Belt South bioregion of southern 

Queensland, Australia—a heavily modified region that has experienced a recent increase 

in rates of vegetation loss—to explore these questions. This analysis draws upon the two 

key themes of the spurious thresholds hypothesis: (1) patterns of vegetation loss and 

retention at the landscape-level are non-random, and are correlated with abiotic landscape 

attributes; and (2) the shape of the relationship between species richness and native 

vegetation area differs depending on landscape attributes. The aim of this study is to 

examine the extent to which using observed threshold values from different species-area 

models—including landscape-specific models—yields different outcomes in terms of (1) 

informing potential conservation actions such as the spatial distribution of landscapes that 

should be the focus of vegetation protection/restoration to avoid sharp declines in species 

richness; and (2) predictions of the response of species richness to current and future 

landscape-scale habitat amount. 

 

5.3 Methods 

 Study region 5.3.1

The Brigalow Belt South (BBS) bioregion covers approximately 12.5% (215,967 km2) of 

Queensland (Queensland Department of Environment and Heritage Protection, 2016) 

(Figure 5.1). It is one of 89 bioregions in Australia, with each defined based on attributes 

associated with climate, geology, landform and biodiversity (Department of the 

Environment, 2012a). Historically, the BBS bioregion was characterised by extensive 

forests of brigalow (Acacia harpophylla), as well as various woodland communities 
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dominated by eucalypts (Eucalyptus spp.) (Seabrook et al., 2006). Substantial landscape 

transformation, including rapid and extensive clearing of woodlands and forests to facilitate 

agricultural production, has occurred in the BBS bioregion since the 1950s (McAlpine et 

al., 2002; Seabrook et al., 2006). More than 60% of the native vegetation of the bioregion 

has been cleared, with a particular focus on fertile areas (Seabrook et al., 2006; Eyre et 

al., 2009). 

 

Unregulated broadscale clearing of native vegetation in Queensland ended in 2006. This 

resulted in a substantial reduction in annual clearing rates of remnant (previously 

uncleared) native vegetation. Furthermore, provisions were introduced in 2009 to protect 

non-remnant vegetation classified as ‘high-value regrowth’, identified as vegetation 

communities that have not been cleared since at least 1989. The mean rate of remnant 

vegetation clearing for the period 2009-2011 in the BBS bioregion was approximately 

3,500 ha/year (Queensland Government, 2015). However, upon changes to the vegetation 

management framework in Queensland in 2013, rates of remnant and high-value regrowth 

vegetation clearing increased. Across Queensland, approximately four times (397%) more 

remnant woody vegetation was cleared during the period 2013-2014 compared with 2010-

11 (Queensland Department of Science, Information Technology, Innovation and the Arts, 

2014; Queensland Department of Science, Information Technology and Innovation, 2015). 

In the Queensland Brigalow Belt (comprising the BBS and Brigalow Belt North bioregions), 

clearing rates of remnant woody vegetation increased by approximately two and a half 

times (267%) over the same period (Queensland Department of Science, Information 

Technology, Innovation and the Arts, 2014; Queensland Department of Science, 

Information Technology and Innovation, 2015). In 2016, amendments to Queensland’s 

Vegetation Management Act 1999 were being considered, whereby protection for remnant 

and high-value regrowth vegetation would (again) be strengthened. In the context of its 

extensive historical modification, and the recent policy changes (and proposed changes) to 

the management of native vegetation in Queensland, the BBS bioregion represents a 

highly relevant case study region by which to showcase how different observed thresholds 

in the species-area relationships can guide our understanding of (and response to) the 

effects of habitat loss. 

 

In the preceding chapters of this thesis, I explored non-random patterns of vegetation 

clearing (Chapter 2), and landscape-specific species-area relationships (Chapter 3), using 

100 km2 landscape units. In Chapter 4, I demonstrated scale-dependence in these 
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relationships. The BBS bioregion was a part of the study extent in all of these analyses. 

While the results of these previous analyses were derived for broader extents (albeit, 

encompassing the BBS bioregion), I use these results here to exemplify how different 

landscape-scale species-area relationships (and associated threshold values) potentially 

entail different predictions and conservation outcomes, in a region subject to rapid and 

ongoing change. For the purposes of this analysis, I consider the form and shape of the 

species-area relationships observed for south-east Australian woodland birds (Chapter 3) 

to be representative of how woodland bird richness varies with area in the BBS bioregion. 

It is important to note that the study presented in the chapter represents a demonstration 

of the utility and potential limitations of the threshold concept for informing the 

management of landscapes, rather than an exhaustive analysis of bird species richness in 

the BBS bioregion.  

 

For this analysis, I overlaid a 100 km2 grid on the BBS bioregion, and discarded all grid 

cells (‘landscape units’) that overlapped the boundary of the bioregion. A total of 1904 

complete 100 km2 landscape units were incorporated into this analysis (Figure 5.1). 
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Figure 5.1 Brigalow Belt South study extent, showing the 1904 x 100 km2 landscape units 

 

 Data extraction 5.3.2

I extracted data on the area of native remnant woodland/forest vegetation in each 

landscape unit, using the Queensland Herbarium’s Regional Ecosystems version 9.0 

mapping (Queensland Department of Science, Information Technology and Innovation, 

2016). This dataset, mapped at a scale of 1:100,000, identifies the extent of remnant 

native vegetation as at 2013. The Queensland Regional Ecosystem mapping underpins 

the native vegetation mapping that was used in preceding chapters of this thesis (the 

Australian Government’s National Vegetation Information System map version 4.1 

(Department of the Environment, 2012b)). A comparison of the similarity of the two 

datasets revealed a strong correlation in terms of mapped remnant woody vegetation 

extent (Pearson’s correlation coefficient = 0.99). Additionally, I used the Queensland 

Government’s proposed regulated vegetation management map (Queensland Department 
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of Natural Resources and Mines, 2016) to identify the area of each landscape mapped as 

high-value regrowth vegetation (including areas that are currently mapped, and those that 

are proposed to be included in the regulated vegetation mapping dataset, should 

amendments to Queensland’s vegetation management framework be enacted).  

 

To account for landscape attributes known to influence both patterns of clearing (Chapter 

2), and the form and shape of the species-area relationship (Chapter 3), I extracted 

information about the topographic and soil properties of each landscape unit. The range in 

elevation, representing the difference between the highest and lowest point in each 

landscape, was calculated using a 90 m digital elevation model (Jarvis et al., 2008). A 

proxy for landscape-scale soil fertility was determined by identifying the proportional area 

of each landscape unit that was mapped as a high fertility landzone. Landzone refers to 

the underlying geological characteristics of mapped (pre-clearance) vegetation 

communities under the Queensland Regional Ecosystem framework, and this measure 

was used by Maron et al. (2012) to characterise landscape productivity in the BBS 

bioregion. Landzone measures were strongly correlated (Pearson’s correlation coefficient 

= 0.70) with mean soil cation exchange capacity of landscapes—the proxy for soil fertility 

that was used in the exploration of landscape-scale species-area relationships in Chapter 

3. 

 

As noted in Chapters 3 and 4, consideration of landscape attributes such as topographic 

heterogeneity and soil fertility allowed for a more refined exploration of the effect of 

‘habitat’ area (by way of the proxy native remnant woody vegetation area). Specifically, 

this approach recognised that species within the broad assemblage of birds under 

examination may respond differently to vegetation types subsumed within the overall 

characterisation of habitat extent (native remnant woody vegetation area), and that these 

differential responses may be predictably related to landscape attributes such as 

topography or soil fertility which likely act on the type and quality of vegetation occurring in 

these different landscape types. 

 

 Effect of current vegetation extent on species richness 5.3.3

I examined how observed landscape-scale species-area relationships can inform 

conservation actions based on current patterns of remnant woody vegetation extent in the 

BBS bioregion. In Chapter 3 of this thesis, I highlighted that the shape of the species-area 

relationship was different depending on the particular attributes of landscapes. Of note 



95 
 

was the prevalence of a threshold in these relationships, although the amount of native 

vegetation cover corresponding with the threshold varied depending on the attributes of 

the landscapes under consideration. To highlight this, the modelled species-area 

relationships from the Chapter 3 analysis when ‘all landscapes’ were aggregated (n=251), 

and for two landscape-specific subsets (landscapes categorised by soil fertility and range 

in elevation), are presented in Figure 5.2.  

 

Ochoa-Quintero et al. (2015) explored how an observed threshold in the landscape-scale 

species-area relationship could be used to prioritise landscapes for conservation actions in 

northern Brazil. Based on an observed threshold of approximately 43% forest cover, 

Ochoa-Quintero et al. (2015) identified landscapes with vegetation extent that was below 

this value, as well as landscapes with intermediate (up to 70% ) and high (above 70%) 

forest cover. By mapping landscapes according to these classifications, Ochoa-Quintero et 

al. (2015) were able to compare how many landscapes breached the threshold under a 

probabilistic model of deforestation, thereby allowing for the identification of landscapes 

that should be prioritised for protection.  

  

Using a similar approach to Ochoa-Quintero et al. (2015), I identified landscapes in the 

BBS bioregion where native remnant woody vegetation area was considerably above, 

marginally above and below threshold values observed in Chapter 3. I define ‘considerably 

above’ as a landscape in which current vegetation area is at least 10% above the 

threshold, and ‘marginally above’ as a landscape with vegetation area within 10% of the 

threshold value. Initially, I used the observed threshold value from the species-area 

relationship describing ‘all landscapes’ (from the Chapter 3 analysis)—approximately 28% 

remnant vegetation area (Figure 5.2a)—to conduct this exercise. Expanding upon the work 

of Ochoa-Quintero et al. (2015), I also explored how the number of landscapes in each of 

these categories compared when landscape-specific thresholds were used to guide the 

classification. This was based on observed species-area relationships for landscapes with 

higher and lower soil fertility (Figure 5.2b) and landscapes that were less hilly and more 

hilly (Figure 5.2c). I used the median value of range in elevation from the analysis in 

Chapter 3 (213 m asl) to distinguish less hilly and more hilly landscapes in the BBS 

bioregion, and fertile landzone area to distinguish higher and lower fertility landscapes 

(>50% and <50% of landscape mapped as fertile landzone, respectively). 
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Additionally, I used the various species-area models to generate predictions of mean 

species richness based on current woody vegetation cover in landscapes of the BBS 

bioregion. Importantly, the species-area models from Chapter 3 (Figure 5.2) described 

estimates of species richness at a standardised level of sampling, and do not represent 

estimates of total richness. As such, mean predicted richness based on habitat amount in 

landscapes of the BBS bioregion should be viewed as a comparable index of richness that 

is not confounded by variable sampling effort. 

 

(a) 

(b)   (c) 

 

Figure 5.2 The most parsimonious models describing the relationship between estimates 

of woodland bird species richness and vegetation area in 251 100 km2 landscapes in 

south-east Australia. The top plot (Figure 5.2a) shows the relationship for ‘all landscapes’ 

(n=251), while the bottom plots display landscape-specific relationships, where landscape 

units were categorised by soil fertility (left) (Figure 5.2b) and elevation (right) (Figure 5.2c) 

 

 Projected effect of future clearing on species richness 5.3.4

I generated two scenarios of future vegetation loss in the BBS bioregion, and used 

different observed species-area thresholds to explore how bird species richness may be 

affected. Seabrook et al. (2006) noted that clearing in the bioregion has been concentrated 

in areas with fertile soils, with larger remnants of native vegetation restricted to areas of 

lower production value. This evidence for non-random patterns of vegetation clearing is in 
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accordance with the results presented in Chapter 2 of this thesis, whereby in eastern parts 

of Australia, remnant native vegetation extent at the landscape scale tended to be lower in 

landscapes that were (1) more fertile, and (2) flatter. Indeed, the amount of remnant woody 

vegetation remaining in landscapes in the BBS bioregion being analysed here is correlated 

with both of these landscape attributes—negatively with fertile landzone area (Pearson’s 

correlation coefficient = –0.64) , and positively with range in elevation (Pearson’s 

correlation coefficient = 0.38). As non-random vegetation loss is clearly evident in this 

bioregion, I restricted the future clearing scenarios to landscapes classified as both higher 

fertility (>50% mapped as fertile landzone) and less hilly (range in elevation <213 m) (n = 

825 landscapes, hereafter, ‘fertile and flat landscapes’).  

 

Based on recent trends in clearing, I developed two scenarios of future vegetation loss to 

apply to fertile and flat landscapes. The first, the ‘lower rate of clearing scenario’, is 

represented by the annual clearing rate of 3,500 ha/year, corresponding with the average 

amount during the period of lower clearing rates in the study area (2009-2011). The 

second, the ‘higher rate of clearing scenario’, applies a conservative multiplier of 2.5 to the 

lower rate of clearing scenario figure of 3,500 ha/year. This is intended to simulate a 

continuation of more recent land clearing rates, which increased by approximately 2.67 

times between the 2009-2011 period and the 2013-2014 period. As such, the higher rate 

of clearing scenario corresponds with the loss of 8,750 ha/year of remnant woody 

vegetation. 

 

Using ArcGIS version 10.1 (ESRI, 2012) and Geospatial Modelling Environment (Beyer, 

2012), I generated predictions of vegetation loss over a 20 year period. This translates to a 

total loss of 70,000 ha and 175,000 ha of remnant woody vegetation for the lower and 

higher rate of clearing scenarios, respectively. I converted the polygon map of remnant 

woody vegetation extent to a raster with 100 m (1 ha) pixel resolution, and randomly 

generated points—each of which represented 1ha of clearing—within the extent of 

remnant vegetation occurring in the 825 fertile and flat landscapes, up to a total amount of 

70,000 and 175,000 ha for the two scenarios. Remnant woody vegetation occurring within 

protected areas mapped by the Queensland Government was excluded from future 

clearing. The random point generation was repeated 100 times, and the average amount 

of vegetation loss in each landscape was subsequently calculated. 
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I explored how many landscapes breached observed thresholds of vegetation extent under 

each of the future clearing scenarios, using two different species-area models. I applied 

the ‘all landscapes’ model, with its 28% threshold (Figure 5.2a), and a threshold more 

specific to the landscapes in which the clearing scenarios were focussed—namely a 

threshold of 22% associated with fertile landscapes (Figure 5.2b) (flat landscapes had a 

threshold of 28%). Adapting the approach used by Ochoa-Quintero et al. (2015), and 

focussing on the higher rate of clearing scenario, I examined how observed thresholds of 

vegetation extent could inform the identification of landscapes for conservation 

interventions given projections of future habitat loss. Finally, I compared how mean 

landscape-scale species richness for the BBS bioregion compared when using the ‘all 

landscapes’ and soil fertility species-area models to generate predictions of richness 

based on future habitat amount under the two clearing scenarios. 

 

5.4 Results 

 Current patterns of vegetation extent 5.4.1

Based on 2013 remnant vegetation mapping, approximately half (52%) of the landscape 

units in the BBS bioregion have less than 28% native remnant woody vegetation extent 

(Table 5.1; Table 5.2), the threshold for ‘all landscapes’ combined. However, the 

proportion of landscapes with remnant vegetation extent below a threshold differed by up 

to 5% (96 landscapes), depending on the landscape type and the associated threshold(s) 

used to guide the classification (Table 5.1; Figure 5.3). This equates to a land area of 

almost 1 million hectares for which there is a discrepancy regarding whether a landscape-

scale threshold of vegetation extent has been breached.  

 

Landscape-specific species-area models revealed contrasting results. For example, in 

higher fertility landscapes, 71% of landscapes have remnant vegetation extent below the 

recorded threshold value of 22% cover for this landscape type (Table 5.2). Conversely, 

only 37% of lower fertility landscapes have remnant vegetation extent below the 

landscape-specific threshold value of 42% cover (Table 5.2). Similarly, relatively more flat 

landscapes (57%) have remnant vegetation extent below the threshold value for this 

landscape type compared with hilly landscapes (17%) (Table 5.2).  

 

Despite differences in the relative number of landscapes falling below thresholds of 

vegetation extent, estimates of mean landscape-scale species richness for the BBS 

bioregion were similar irrespective of the species-area model(s) used to generate 
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predictions (Table 5.3). Indeed, predictions of richness based on the ‘all landscapes’ 

model, and the landscape-specific models associated with soil fertility and elevation, 

differed by only two species (Table 5.3). 

 

Table 5.1 Summary of landscape classifications, based on observed thresholds from ‘all 

landscapes’ and landscape-specific species-area models. The percentage of landscapes 

aligning with each of the three classifications (current remnant vegetation extent below, 

marginally above, considerably above threshold) was summed for landscapes categorised 

by soil fertility (lower and higher fertility landscapes), and for landscapes categorised by 

range in elevation (more and less hilly landscapes). All percentage values have been 

rounded to the nearest whole number 

Model(s) used to guide 

landscape 

classification* 

% landscapes  

below 

threshold 

% landscapes 

marginally 

above threshold 

% landscapes 

considerably 

above threshold 

‘All landscapes’ species-

area model 

52 (n=984) 8 (n=144) 41 (n=776) 

Soil fertility species-area 

models 

(higher and lower fertility 

landscapes) 

54 (n=1027) 9 (n=180) 37 (n=697) 

Elevation species-area 

models  

(more and less hilly 

landscapes) 

49 (n=931) 8 (n=158) 43 (n=815) 

* Based on species-area relationships presented in Chapter 3 of this thesis. Note that the 

most parsimonious model for more hilly landscapes was an exponential model (see Figure 

5.2c), although the level of support and explained variation in this model was similar to that 

of the threshold model. I have estimated a threshold value of 17% cover for hilly 

landscapes, corresponding with the threshold value detected for this landscape type in the 

Chapter 2 analysis 
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Table 5.2 Classification of landscapes in the BBS bioregion by current remnant woody 

vegetation extent, according to threshold values observed from different species-area 

relationships. All percentage values have been rounded to the nearest whole number 

Model used to guide 

landscape classification 

(number of landscapes) 

Threshold 

value  

(% cover) 

% landscapes 

below 

threshold 

% landscapes 

marginally 

above 

threshold 

% landscapes 

considerably 

above 

threshold 

‘All landscapes’ species-

area model 

(n=1904) 

28 52 8 41 

Lower fertility landscapes 

species-area model 

(n=930) 

42 37 8 55 

Higher fertility landscapes 

species-area model 

(n=974) 

22 71 11 19 

Less hilly landscapes 

species-area model 

(n=1499) 

28 57 7 35 

More hilly landscapes 

species-area model 

(n=405) 

17 17 12 71 

 

Table 5.3 Predicted estimates of mean landscape-scale species richness for the BBS 

bioregion based on current habitat amount. The ‘all landscapes’ and landscape-specific 

species-area models (Figure 5.2) were used to generate predictions of richness 

Model(s) used to generate species 

richness prediction 

Mean 

richness 

Minimum 

richness 

Maximum 

richness 

‘All landscapes’ species-area model 51 39 59 

Soil fertility species-area models  

(higher and lower fertility landscapes) 

52 38 64 

Elevation species-area models 

(more and less hilly landscapes) 

50 36 61 
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(a) 

(b)                   (c) 

 

Figure 5.3 Classification of landscapes as ‘considerably above threshold’ (green), 

‘marginally above threshold’ (yellow), or ‘below threshold’ (orange) based on current 

remnant woody vegetation extent, using threshold values from different species-area 

models: (a) species-area model that does not account for landscape attributes (‘all 

landscapes’ model); (b) species-area models for higher and lower fertility landscapes; (c) 

species-area models for more and less hilly landscapes 

 

 Future patterns of vegetation extent 5.4.2

Under the higher rate of clearing scenario, native vegetation extent was projected to 

decline below a threshold of 28% in 27 of the 825 fertile and flat landscapes (Figure 5.4). 

However, the number and location of landscapes breaching a threshold differed when a 
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22% cut-off—derived from a species-area model for fertile landscapes—was used to guide 

the classification. In this instance, 47 fertile and flat landscapes breached the 22% 

threshold (Figure 5.4). Similarly, the number and location of landscapes breaching 

thresholds under the lower rate of clearing scenario differed depending on the threshold 

value used, with seven and 15 landscapes declining below 28% and 22% vegetation 

extent, respectively (Figure 5.4).  

 

Interestingly though, predictions of mean landscape-scale species richness for the 1904 

landscapes of the BBS bioregion were similar for the higher and lower clearing scenarios, 

despite these scenarios reducing the extent of woody vegetation by 175,000 and 70,000 

ha, respectively. Using the ‘all landscapes’ species-area model to generate predictions of 

richness yielded the same estimated mean richness for both scenarios: 51 species. 

Indeed, this corresponds with the mean predicted richness of landscapes based on current 

vegetation extent in the BBS bioregion (Table 5.3). When focussing specifically on the 825 

fertile and flat landscapes that were subject to vegetation removal, the higher clearing 

scenario implied a reduction of mean species richness from 46 (based on current 

vegetation extent) to 45 species in these landscapes.  

 

Using different species-area models to guide the identification of landscapes for 

conservation actions yielded different outcomes (Figure 5.5). In addition to the discrepancy 

in the number and location of ‘Highest priority’ landscapes—that is, those that will breach a 

threshold of vegetation extent (27 or 47 under the higher rate of clearing scenario, 

depending on the threshold value used)—the number and spatial distribution of 

landscapes in other priority categories varied. For example, the number of landscapes that 

could be the focus of vegetation protection so that a threshold is not breached given 

continued future clearing (‘Intermediate priority – above threshold’) was 133 when using 

the 28% threshold derived from the ‘all landscapes’ species-area model. However, 157 

landscapes were assigned to this priority category when landscape-specific (soil fertility) 

species-area models were used. The number of landscapes in which a combination of 

vegetation protection and active (and/or passive) revegetation could be undertaken to 

increase landscape-scale vegetation extent above a threshold value (‘Intermediate priority 

– below threshold’) was 215 and 273, where the ‘all landscapes’ and soil fertility model 

threshold values were used to guide the classification. Applying thresholds derived from 

the soil fertility species-area models revealed that 97 fewer landscapes had vegetation 

extent that was at least 10% above the threshold (‘Lower priority – high cover’) for these 
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landscape types, as compared with the prioritisation based on the all landscapes model 

and its 28% threshold. 

 

 

 

Figure 5.4 Landscapes where a threshold of vegetation extent will be breached under 

higher and lower scenarios of future clearing in fertile and flat landscapes. Two threshold 

values were applied – a 28% threshold identified from the ‘all landscapes’ species-area 

model, and 22% threshold that was identified for fertile landscapes. Landscapes that 

breached a threshold in the lower clearing scenario also breached the threshold in the 

higher clearing scenario (identified by bold black outline) 
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Figure 5.5 Example of identification of landscapes for conservation actions to mitigate 

impacts of future woodland and forest loss in the BBS bioregion. The classification of 

landscapes has been guided by thresholds in observed species-area relationships: the ‘all 

landscapes’ model, with a 28% threshold (left); and landscape-specific species-area 

models that accounted for soil fertility (higher fertility landscapes threshold 22%; lower 

fertility landscapes threshold 42%) (right). ‘Highest priority’ landscapes are those that will 

breach a threshold under the higher rate of clearing scenario. ‘Intermediate priority—above 

threshold’ are landscapes where vegetation extent will be ≤10% above a threshold post-

clearing; ‘Intermediate priority—below threshold’ are landscapes where vegetation extent 

is currently ≤10% below a threshold. ‘Lower priority’ landscapes are either high or low 

cover, where vegetation extent will be >10% above a threshold post-clearing, or is 

currently >10% below a threshold 

 

5.5 Discussion 

Using landscape-specific species-area models changed the spatial distribution of priority 

landscapes for maintaining or increasing remnant vegetation cover. Interestingly though, 

different species-area models generated similar predictions of mean landscape-scale 

richness based on existing remnant vegetation extent, and indicated that mean richness 

only exhibited a marginal decline with the projected loss of 175,000 ha of habitat across 

the BBS bioregion. These results highlight the potential utility of the threshold concept for 
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guiding landscape-scale conservation, yet also underscore the need for caution when 

interpreting landscape-scale species-area relationships. Specifically, uncritical application 

of an observed threshold may lead to ineffective conservation outcomes, such as 

protecting vegetation in landscapes where species are not at risk of imminent decline. 

Moreover, predictions of mean landscape-level richness should be interpreted with care, 

as these may mask important impacts to biodiversity arising from landscape change. 

 

 Using thresholds in the species-area relationship to classify and prioritise 5.5.1

landscapes 

The spatially-explicit, non-random scenarios of habitat loss explored, provide an example 

of how observed thresholds can be used to guide landscape management in a region 

facing ongoing change. In particular, I highlight that landscapes shown in Figure 5.5 that 

will breach an observed threshold (‘highest priority’), as well as those marginally above or 

marginally below (‘intermediate priority’), could be the focus for management actions that 

seek to avert the rapid loss of species associated with a decline in vegetation extent below 

a threshold. For example, regrowth vegetation could be protected and/or restoration 

activities prioritised in landscapes with remnant vegetation extent marginally below an 

observed threshold. Complementing this, the protection of remnant vegetation in these 

landscapes could be strengthened to minimise further loss. Additionally, active replanting 

could be undertaken to provide additional habitat in the longer term. Such actions may 

prevent the rapid loss of species that would occur if vegetation was to be cleared from 

these below-threshold landscapes, and result in gains in species richness as vegetation 

extent increases. 

 

However, a key finding of these analyses is that the spatial distribution of landscapes 

classified as above or below an observed threshold differed based on the species-area 

model used to guide the classification. This has important implications for the utility of 

thresholds in the species-area relationship for guiding the management of landscapes. In 

particular, actions that seek to avoid a threshold being breached, or enhance vegetation 

extent above a threshold, may fail to achieve an objective of maintaining or enhancing 

species richness if an erroneous or artefactual threshold is used to guide the identification 

of priority landscapes.  

 

In light of this, which landscapes should be prioritised for habitat interventions 

(protection/restoration) to avoid a rapid decline in species richness associated with a 
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threshold being breached? For example, should a 28% threshold, derived from a species-

area model that does not account for landscape attributes (‘all landscapes’), be used to 

prioritise landscapes for vegetation protection? Or are threshold values derived from 

models that account for landscape attributes more appropriate? Indeed, we know from the 

BBS bioregion that landscape factors like topographic heterogeneity (Burgess & Maron, 

2015) and soil fertility (Maron et al., 2012) act on patterns of bird species richness. 

Moreover, vegetation clearing (and thus, the amount of habitat in landscapes) in the 

bioregion is biased by these same landscape attributes. As such, using thresholds 

identified from landscape-specific species-area models to guide landscape prioritisation 

would address the key issues raised by Maron et al. (2012) regarding thresholds in the 

species-area relationship; namely: (1) the need to account for the confounding effect of 

non-random patterns of clearing, whereby habitat amount is correlated with abiotic 

landscape attributes; and (2) the importance of recognising that the effect of area is 

different in different landscape types, because of ecological factors like resource 

availability or habitat heterogeneity which interact with area to act on species richness. 

 

Where the resources available to undertake landscape-level conservation are limited, it is 

beneficial to identify those landscapes (or parts thereof) in which actions are expected to 

have the greatest effect (Hobbs & Kristjanson, 2003; Bennett & Mac Nally, 2004). For 

example, landscapes with intermediate levels of cover may provide the best cost-benefit 

ratio with respect to conservation action such as vegetation protection and restoration 

(Tambosi et al., 2014; Rappaport et al., 2015). Because thresholds entail a discrete point 

at which species loss accelerates with habitat loss, they are a useful basis upon which to 

define habitat protection and restoration targets. As such, landscapes in which protection 

and/or revegetation actions will prevent a threshold from being breached, or enhance 

habitat extent above a threshold, may be ideal candidates for priority management and/or 

policy interventions (Banks-Leite et al., 2014). 

 

Moreover, implementing management actions in landscapes where they are unlikely to 

achieve the desired outcomes represents a waste of limited conservation funds 

(Carwardine et al., 2008). Replanting vegetation is an expensive undertaking 

(Lindenmayer et al., 2012; Smallbone et al., 2014; Ikin et al., 2016). For example, 

approximately AU$2 million was spent on replanting 2000 ha of vegetation in the heavily 

cleared Holbrook region of southern New South Wales, Australia (Barrett et al., 2008). 

Furthermore, opportunities for management interventions are particularly constrained 
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where such actions may conflict with agricultural land use in productive environments 

(Vesk & Mac Nally, 2006). This is highly pertinent for Australian woodland birds, as 

productive landscapes are the priority for the implementation of conservation actions 

(Watson, 2011). 

 

It is vital that conservation actions are underpinned by an accurate understanding of the 

effect of area on biodiversity. Accounting for those factors which may distort the shape of 

the species-area relationship—namely abiotic factors which are both correlated with 

vegetation extent, and interact with habitat amount to affect the occurrence of species—

will contribute to a more robust understanding of the effect of area. This entails clear 

benefits for conservation actions focussed on managing habitat area at the landscape 

level. 

 

 Predicted species richness using different species-area models 5.5.2

Predictions of mean landscape-scale richness, based on existing remnant vegetation 

extent, were surprisingly consistent among different species-area models. This may be 

partly explained by the fact that, irrespective of what model(s) were used to generate 

predictions—be it the ‘all landscapes’ model, or landscape-specific models associated with 

soil fertility or topography—vegetation extent had little effect on richness at higher levels of 

cover. That is, in higher cover landscapes, loss of habitat had little effect on landscape-

scale richness. Moreover, the range in predicted richness was similar among the different 

landscape types. While area clearly has contrasting effects in different landscape types at 

particular levels of cover—namely, at and below threshold values of vegetation extent—

this did not translate to differences in predictions of species richness when averaged 

across over 1900 landscapes at the regional scale. 

 

Even with the removal of up to 175,000 ha of remnant woody vegetation, predictions of 

mean species richness among the 1904 landscapes of the BBS bioregion remained largely 

unchanged from predictions based on current vegetation extent. However, in the 825 

fertile and flat landscapes in which the simulated removal occurred, an average of one 

species was lost per landscape. While this appears a small impact arising from the loss of 

a large amount of habitat, there are several important considerations relating to this 

finding. First, the species-area models used to generate predictions of species richness in 

fertile and flat landscapes exhibit a very slight decline in species richness above recorded 

threshold values. This is somewhat analogous to the finding of De Camargo and Currie 
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(2015), who noted a peak in a landscape-scale species-area relationship, whereby 

richness was highest at an intermediate level of habitat cover, and declined towards lower 

and higher levels of habitat amount. While the thresholds I identified clearly illustrate that 

habitat area has its strongest effect at low levels of cover, the slight decline in richness 

with habitat area above the observed thresholds entails that a loss of vegetation in 

landscapes with current vegetation extent above a threshold actually results in a very 

slight increase in species richness. The marginal gains in predicted richness with habitat 

loss in higher cover landscapes may represent a slight offset to the loss of species with 

habitat removal in landscapes below a threshold of vegetation extent, or in landscapes 

where a threshold is breached. 

 

Second, it is important to note that among the 825 fertile and flat landscapes that were the 

focus of the scenario analysis, only a small proportion (approximately 2% on average) of 

remnant woody vegetation cover was removed from any one landscape. This approach 

likely spread the impact of the projected landscape-scale loss, and could be refined by 

using a more sophisticated probabilistic model of loss. For example, Ochoa-Quintero et al. 

(2015) considered various correlates of forest loss in their Amazon study area, including 

proximity of previous deforestation, distance to roads, rivers and settlements, abiotic 

attributes associated with topography, soil and climate, and location of protected areas, to 

predict where future forest loss would be most likely to occur. 

 

Third, similar predictions of mean landscape-scale species richness potentially obscure a 

key finding of this study. That is, it is important to explore how the shape of the species-

area relationship can guide the interpretation of patterns of richness among multiple 

landscapes. A measure of mean landscape-level richness reveals nothing about how 

richness varies with area among multiple landscapes, whereas the shape of the 

relationship, including the occurrence and position of thresholds, illustrates the manner in 

which richness changes along a gradient of landscape-level habitat cover from entirely 

cleared to entirely vegetated.  

 

Furthermore, an average value of species richness may mask the fact that certain species 

are being disproportionately affected and potentially lost, due to their occurrence in 

landscapes which may be more exposed to the impacts of habitat loss. For example, 

species that preferentially inhabit productive woodlands may be more severely affected by 

habitat loss in a non-random clearing scenario (Lindenmayer & Luck, 2005; Lindenmayer 
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et al., 2010), yet this is not borne out in an average value of species richness among 

multiple landscapes across an entire region because other species may benefit from a 

more open mosaic (De Camargo & Currie, 2015). Indeed, the loss of woodlands on fertile 

soils has been implicated in the decline of species including the hooded robin 

(Melanodryas cucullata) (Priday, 2010) and the regent honeyeater (Anthochaera phrygia) 

(Kvistad et al., 2015), while the importance of these productive habitats for a broader 

ensemble of declining woodland species in south-east Australia has been widely reported 

(Watson, 2011; Stevens & Watson, 2013; Bennett et al., 2014). Moreover, non-random 

habitat loss may indirectly act on woodland birds via the domination of fertile remnants by 

Manorina honeyeaters, which have a strong effect on the composition of bird communities 

in modified environments (Maron & Kennedy, 2007; Mac Nally et al., 2014a; Thomson et 

al., 2015). The (average) loss of one species from fertile and flat landscapes is noteworthy, 

and likely masks the far more severe disruption to the composition of communities in these 

landscapes. 

 

From the perspective of guiding the management and conservation of landscapes, a 

complementary approach in which predictions about richness and changes thereto are 

considered alongside interpretation of the shape of the species-area relationship, should 

be undertaken. This would allow for the impact of habitat loss to be quantified both 

regionally (how many species are expected to be lost/gained on average among all 

landscapes, or subsets of landscapes), and for individual landscapes (in which landscapes 

are changes to species richness expected to be greatest). 

 

 Conclusion 5.5.3

This analysis demonstrates that the utility of the threshold concept for guiding 

management actions such as the establishment of minimum landscape-level habitat area 

targets can be enhanced by examining landscape-specific species-area models. More 

importantly, it highlights the potential pitfalls of uncritically using thresholds, given that 

different observed threshold values yielded different outcomes relating to potential 

conservation responses to current and future habitat amount and predictions of richness. 

As noted, this case study does not represent a definitive examination of patterns of 

woodland bird species richness in the BBS bioregion; rather, it exemplifies how different 

landscape-scale species-area relationships can be applied to guide the interpretation and 

management of broadscale patterns of species richness in a region exposed to 

substantial, ongoing change. Indeed, other factors, such as extinction debt (see Chapter 
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4), and the suitability of the matrix (including regrowth vegetation), likely contribute to 

landscape-scale patterns of richness in this region. Nonetheless, given the undoubted 

importance of remnant vegetation as a key determinant of species richness at the 

landscape level, considering landscape-specific relationships between species richness 

and remnant vegetation area should be undertaken when the species-area relationship is 

used to guide management actions and predictions of species richness. 
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CHAPTER 6  

 

THESIS SYNTHESIS AND CONCLUSION 

 

 

 

 

 

 

Plate 5 Native woodland retained in hilly, rocky landscape that is unsuited to agricultural 

production—New England Tablelands, Queensland/New South Wales border 
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6.1 Thesis overview 

Fundamental questions that conservation scientists and managers seek to address in the 

face of ongoing biodiversity loss include: 

 how much habitat must be conserved or restored/rehabilitated to avert or reverse 

declines in biodiversity?; 

 in which landscapes should these interventions be focussed?; and 

 what are the implications of future reductions or gains in area of native vegetation? 

 

Detailed knowledge of how the extent of native vegetation (and changes thereto) affects 

patterns of biodiversity is critical for addressing these pressing conservation questions. 

The species-area relationship describes how one of the most widely used biodiversity 

metrics—species richness—varies with vegetation area in modified landscapes. Yet, 

factors that potentially distort the relationship between species richness and vegetation 

extent at the landscape level are infrequently accounted for.  

 

In this thesis, I examined the interplay between landscape attributes such as topography 

and soil properties, the area of native vegetation that is retained in human-modified 

landscapes, and patterns of species richness. I have shown that attributes of landscapes 

that both underpin where humans clear and retain vegetation, and potentially act on 

patterns of species occurrence, should be considered in landscape-level species-area 

analyses. If such attributes are not accounted for, observed species-area relationships 

may incorrectly represent the effect of area. Conservation actions based on species-area 

analyses that are confounded by landscape attributes may fail to arrest or reverse declines 

in species richness, representing an ineffectual use of limited resources and funds. 

 

The following key findings emerge from this thesis, all of which are highly relevant to 

ecologists, biogeographers and practitioners/managers with an interest in the effect of 

area in human-modified landscapes: 

 

1. Non-random patterns of vegetation clearing can confound the exploration and 

interpretation of the effect of area. 

 

2. The effect of area was landscape-specific, and aggregating species-area data 

from different landscape types in a non-random clearing context may distort 

observed species-area relationships. 
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3. The effect of area, including its interaction with landscape attributes, was 

scale-dependent, although scale invariance was noted when data were 

aggregated across a broad region. 

 

4. The uncritical application of observed thresholds as targets for protecting or 

restoring vegetation among multiple landscape mosaics may lead to 

ineffective conservation outcomes. 

 

These key findings were arrived at by exploring four specific research questions, each of 

which contributed to addressing the overall aim of this thesis:  

 

How does accounting for landscape attributes that bias vegetation clearing, and interact 

with area to drive the occurrence of species, affect interpretation of the species-area 

relationship in human-modified landscapes?  

 

A brief overview of the findings of each research question is presented below, with the 

main conclusions highlighted in Table 6.1. 

 

In Chapter 2, I performed a review of studies that related native vegetation area to a 

response such as species richness, and conducted an empirical analysis of correlates of 

vegetation retention and clearing at the landscape scale. My literature review highlighted 

that the confounding effect of non-random vegetation clearing patterns was rarely 

considered or accounted for in studies of the effect of vegetation area in modified 

environments. This finding was put sharply into focus by my empirical analysis, which 

indicated that the area of native vegetation retained in landscapes in transformed regions 

of Australia and South Africa was consistently correlated with abiotic attributes—namely, 

soil properties associated with fertility, and range in elevation. This study highlights that 

accounting for vegetation clearing biases remains a gap in the practice of landscape 

ecology and biogeography. 

 

Consideration of the biasing effect of non-random clearing is particularly vital where the 

effect of vegetation area differs in landscapes characterised by particular attributes. This is 

because, in a non-random clearing context, landscapes with less native vegetation tend to 

be characterised by particular, predictable attributes such as fertile soils and flat 



114 
 

topography, while landscapes that retain more native vegetation will have different 

attributes (e.g. hilly and infertile). If the effect of area on species richness differs as a 

function of the attributes of landscapes, aggregating data from low cover landscapes that 

are flat and fertile, with data from high cover landscapes that are hilly and infertile, is likely 

to misrepresent how species richness is affected by vegetation extent at the landscape 

scale.  

 

Given that landscape-specific area effects may confound species-area analyses, I sought 

to quantify how species richness was affected by vegetation area in landscapes 

characterised by specific abiotic or anthropogenic attributes (Chapter 3). Specifically, I 

examined the extent to which the shape of the relationship between Australian woodland 

bird species richness and vegetation area differed when particular attributes of 100 km2 

landscapes were controlled for. I showed that the effect of native vegetation extent on 

species richness, as revealed by the shape of the species-area relationship, differed for 

landscapes characterised by (for example) higher soil fertility, flatter topography or higher 

incidence of competitive native bird species. I suggested that mechanisms such as 

topographic variability and its association with habitat heterogeneity, or the disruptive 

effect that aggressive Manorina honeyeaters have on woodland bird community 

composition, could explain why the effect of area differed in landscapes with particular 

attributes. 

 

Importantly, this analysis of landscape-specific area effects was conducted at a single 

spatial scale (100 km2 landscapes). However, conservation actions that are informed by 

observed ecological relationships may be ineffective if they are applied at the incorrect 

scale. Thus, it is crucial to determine whether ecological effects, such as that of vegetation 

area on species richness, exhibit scale-dependence or invariance. In Chapter 4, I took the 

novel approach of deriving estimates of Australian woodland bird species richness in 

landscapes at three scales of analysis (25 km2, 100 km2 and 400 km2), and relating these 

estimates to vegetation extent in each respective landscape size, so as to determine 

whether the effect of area on species richness was scale invariant. Indeed, the shape of 

the relationship—characterised by a threshold with a sudden change point at 

approximately 30% vegetation cover—was similar at all three scales. However, when two 

regional subsets of the data were analysed, scale-specific species-area relationships were 

apparent. Attributes of landscapes that interacted with vegetation area—namely, range in 

elevation, and the occurrence of Manorina honeyeaters—exhibited scale-specific effects 
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on species richness in the two regional subsets explored. This finding indicates that the 

moderating influence of landscape attributes such as topography on the effect of area 

exhibits scale-dependence. 

 

In Chapter 5, I examined the implications of accounting for non-random clearing (Chapter 

2) and landscape-specific area effects (Chapter 3) when using observed thresholds in 

species-area relationships to guide the management of landscapes. Using a case study of 

the Brigalow Belt South bioregion (BBS) of southern Queensland, Australia, I compared 

predictions of species richness, and the spatial distribution of landscapes that could be 

prioritised for conservation action, where these were generated by species-area models 

that did and did not account for landscape attributes. Landscapes that were identified as 

potential candidates for management actions (such as habitat protection or restoration) 

varied in location depending on what species-area model was used to guide the 

classification. Given the history of non-random vegetation clearing in the BBS bioregion, 

and the fact that the scenarios of future vegetation loss that were examined represented 

ongoing non-random loss (i.e. in flat and fertile landscapes), the importance of using 

landscape-specific species-area models was demonstrated through this case study. 
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Table 6.1 Main conclusions emanating from this thesis 

Research question  Main conclusions 

Chapter 2 

 

(Research question 1) 

 

Do landscape ecological studies 

typically consider non-random 

vegetation clearing when 

examining area effects, and what 

attributes bias patterns of 

vegetation clearing at the 

landscape scale? 

 The biasing effect of non-random vegetation 

clearing is rarely considered in the landscape 

ecology literature. 

 The amount of native vegetation remaining in 

landscapes in human-modified regions of Australia 

and South Africa is frequently correlated with 

attributes of landscapes such as soil properties 

and topography. 

 A failure to consider the correlation between 

vegetation area and landscape attributes may 

distort analyses of the effect of vegetation area. 

 

Chapter 3 

 

(Research question 2)  

 

Does the shape of the 

relationship between species 

richness and area differ 

depending on the attributes of 

landscapes? 

 The response of Australian woodland birds to 

vegetation area at the landscape scale varies 

depending on attributes of landscapes. 

 Landscape-specific area effects potentially reflect 

interactions between habitat amount, and other 

mechanisms which act on species, such as habitat 

heterogeneity or interspecific competition. 

 Combining data from different landscape types 

that exhibit landscape-specific area effects may 

misrepresent how species respond to vegetation 

extent. This will be exacerbated where vegetation 

extent is correlated with landscape attributes due 

to biased patterns of clearing. 

 

Chapter 4 

 

(Research question 3)  

 

Is the effect of vegetation area on 

species richness scale invariant? 

 The effect of vegetation area on Australian 

woodland birds differs in landscapes of different 

sizes, although scale invariance was noted across 

a broad region. 

 Scale-dependence in factors that moderate 

patterns of richness in interaction with vegetation 
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Research question  Main conclusions 

extent, such as topography, highlights the need to 

consider the potential for landscape-specific 

species-area relationships at multiple scales. 

 Extrapolating results of studies between different 

locations and scales should be undertaken with 

caution. This is especially pertinent to viewing 

observed thresholds as ‘targets’ to guide 

conservation actions, beyond the location and 

scale at which they were observed. 

 

Chapter 5 

 

(Research question 4) 

 

How can the landscape-scale 

species-area relationship guide 

broadscale conservation 

measures? 

 

 

 

 

 

 

 

 

 The number and location of landscapes identified 

for conservation interventions varied considerably 

depending on whether the species-area model 

used to guide the prioritisation accounted for 

landscape attributes like soil fertility or range in 

elevation. 

 Where clearing patterns are non-random, 

landscape-specific species-area models may 

provide a more accurate basis by which to explore 

the implications of future landscape change. 

 The uncritical application of thresholds as targets 

upon which to base conservation interventions 

may yield ineffectual outcomes for biodiversity. 

For example, this may entail wasted management 

effort in landscapes for which an intervention such 

as revegetation will not have the desired outcome 

(i.e. a gain in species richness).   

 

 Key findings in the context of existing research 6.1.1

In this thesis, I have shown that the area of native vegetation in landscapes is often 

correlated with factors that also have the potential to act on patterns of species richness. 

While non-random patterns of vegetation clearing, and the interaction between landscape 

attributes and area, are both concepts that are known to ecologists and biogeographers, 

consideration of the interplay between the two remains a key gap in the exploration of area 
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effects in modified landscapes. Addressing this gap acknowledges the biogeographic 

underpinnings of the species-area relationship, while allowing for a more nuanced 

appreciation of the effect of area that draws upon the key tenets of landscape ecology. 

  

The implications of non-random patterns of vegetation removal and retention are widely 

recognised with respect to the location of protected areas (Margules & Pressey, 2000; 

Pressey et al., 2002; Cowling & Pressey, 2003; Watson et al., 2014). Reserved lands 

frequently occur in areas where native vegetation is uncleared because of a lack of 

suitability for human land use (Margules & Pressey, 2000; Pressey et al., 2002; Cowling & 

Pressey, 2003; Watson et al., 2014). This bias potentially undermines the effectiveness of 

protected area networks, given a lack of representativeness in reserved lands (Joppa & 

Pfaff, 2009; Barr et al., 2011; Watson et al., 2014; Barnes, 2015; Butchart et al., 2015; 

Kuempel et al., 2016; Watson et al., 2016).  

 

Yet, the implications of non-random vegetation clearing and retention have received far 

less attention in analyses of the response of biodiversity to landscape modification 

(although see Seabloom et al. (2002); Rompré et al. (2009); Fischer et al. (2010a)), as 

compared with the widespread acknowledgement of vegetation clearing and retention 

biases in studies on the location and effectiveness of protected area networks. As outlined 

in Chapter 2, such biases can distort our understanding of the effect of area. For example, 

the importance of small areas of habitat (i.e. low cover landscapes) may be undervalued, if 

there is an implicit assumption that ‘bigger is better’ (Looney et al., 2009). However, a 

correlation between vegetation area and soil fertility associated with biased clearing, may 

mean that smaller areas are actually disproportionately important (Lindenmayer & Fischer, 

2006; Tulloch et al., 2015). To exemplify, small, productive habitats that support higher 

reproductive output may act as source habitats for the surrounding landscape, and be of 

great value for maintaining landscape-level populations, relative to larger, less-productive 

sink habitats (Pulliam, 1988). 

 

There are various reasons why the confounding effect of biased clearing patterns may not 

be applicable to analyses of area effects in modified landscapes—the effect of area may 

not be moderated by landscape attributes that are correlated with the amount of remaining 

native vegetation, or biased clearing patterns may not be a feature of the study extent. 

Nonetheless, just as biases in protected area locations can detract from the effectiveness 
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of reserve networks, so too can biases in landscape-level vegetation extent detract from 

our understanding of how species are affected by the transformation of landscapes.   

 

Taken together, the findings of Chapters 3 and 4 highlight the need for caution when 

interpreting the effect of vegetation extent on species richness in modified landscapes. In 

these chapters, I demonstrate that the effect of area differs by landscape type and by 

spatial scale. Particular care is required where a threshold presents in this relationship, 

given that thresholds are an intuitive and simple metric upon which to base landscape 

management actions. A key criticism of thresholds is a lack of generality in the amount of 

vegetation corresponding with a sudden change in the ecological response (Huggett, 

2005; Lindenmayer & Luck, 2005; Bestelmeyer, 2006; Groffman et al., 2006; Rhodes et 

al., 2008; Johnson, 2013; van der Hoek et al., 2013; van der Hoek et al., 2015). This 

precludes widespread application of ‘generic’ targets upon which to base landscape-level 

habitat protection or revegetation actions.  

 

My findings lend weight to this cited limitation in the applied utility of thresholds, given that 

the threshold values I recorded varied considerably depending on the attributes and size of 

landscapes under examination. As shown in Chapter 5, differences in observed thresholds 

can have large implications for applied conservation, such as the identification of 

landscapes in which to prioritise vegetation protection or restoration. Nonetheless, a 

threshold identified from an analysis in which the confounding effects of biased clearing 

patterns and landscape-specific area effects are controlled for, does represent a 

potentially useful measure upon which to base applied conservation interventions. 

Importantly though, such application must be restricted to the specific assemblage, scale 

and study extent from which the threshold was observed, and should not be generalised to 

other assemblages, scales and/or geographic localities (van der Hoek et al., 2015). 

 

Using a case study of Australian birds allowed me to explore how competitive native 

species act on landscape-level species-area effects. Manorina honeyeaters are a unique 

and exceptional example of hypercompetitive native species, which have benefited greatly 

from landscape modification (Howes & Maron, 2009; Montague-Drake et al., 2011; Maron 

et al., 2013; Robertson et al., 2013; Howes et al., 2014; Mac Nally et al., 2014a; Kutt et al., 

2015; Thomson et al., 2015). Indeed, Mac Nally et al. (2014a, pg. 1080) claimed “The 

ecological despotism of the genus Manorina amounts to one of the most powerful 

controllers of the constitution of avian assemblages anywhere on earth”. I found that 
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woodland bird species richness responded differently to vegetation extent depending on 

the occurrence of noisy miners (Manorina melanocephala) and/or yellow throated miners 

(M. flavigula) (Chapters 3 and 4). However, surprisingly, species richness tended to be 

higher in landscapes with a higher incidence of these species, with richness peaking at 

intermediate levels of vegetation cover (Chapter 3). I propose that Manorina occurrence 

moderates the effect of landscape-level vegetation extent on species richness, and that 

this is underpinned by mechanisms including resource availability (i.e. soil fertility), habitat 

configuration (i.e. edge length) and/or habitat degradation/simplification. For example, in 

landscapes where Manorina honeyeaters are prevalent, enhanced productivity and 

resource availability (per unit area of habitat) may be offset by the adverse impacts that 

Manorina honeyeaters, which favour edge habitats in productive woodlands and forests, 

have on many species. 

 

While there is a large body of research on the adverse effect of Manorina honeyeaters on 

woodland birds at the site and patch scale, less is known about how these species affect 

assemblages at the landscape level. My unexpected finding that richness was higher in 

landscapes where these birds were more prevalent underscores a need to derive a more 

detailed understanding of how woodland birds are affected by Manorina honeyeaters, in 

interaction with habitat area, at the scale of entire mosaics. This knowledge could guide 

landscape-level approaches to addressing the adverse impacts of Manorina honeyeaters, 

such as where revegetation could be prioritised to reduce the strong influence these 

species have on the occurrence of a large suite of woodland birds.  

 

The questions explored in this thesis represent a thorough interrogation of the key themes 

of the ‘spurious thresholds hypothesis’, proposed by Maron et al. (2012). I have shown 

empirically that patterns of vegetation clearing are frequently biased by abiotic attributes, 

and that the shape of the relationship between species richness and vegetation area 

varies in landscapes characterised by these same attributes. As such, it is conceivable 

that aggregating data from different landscape types in a non-random clearing context 

could indeed present as an artefactual threshold. Since the hypothesis was introduced by 

Maron et al. in 2012, a number of landscape-level investigations have reported thresholds 

in the relationship between species richness and vegetation area. Notably, Lima and 

Mariano-Neto (2014) highlighted a lack of correlation between soil fertility and forest area, 

thereby excluding biased clearing as a confounding factor in their identification of a 

threshold in the relationship between forest tree species richness and landscape-scale 
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forest cover in the Atlantic Forest of Brazil. Yet, the potential for the confounding effect of 

non-random patterns of vegetation clearing to bias these observed relationships remains 

largely unacknowledged (Estavillo et al., 2013; Morante-Filho et al., 2015; Ochoa-Quintero 

et al., 2015; Richmond et al., 2015; Muylaert et al., 2016). Given the conjecture about the 

threshold concept for informing management, my research emphatically supports Maron et 

al.’s (2012) message that biased clearing patterns should be a central consideration in the 

examination of area effects in modified landscapes.   

 

6.2 Implications of this research 

 Key implications for analyses of the effect of area  6.2.1

The process of, and impacts arising from, habitat loss occur at the scale of entire 

landscape mosaics (Radford & Bennett, 2007; MacRaild et al., 2010). Increasingly, efforts 

to address biodiversity declines in modified environments are being undertaken at the 

landscape level (Radford et al., 2005; Fischer & Lindenmayer, 2006; Tscharntke et al., 

2012; Bennett, 2016). Thus, understanding the response of biodiversity to habitat loss 

among entire mosaics is of fundamental importance. Supported by the results presented in 

this thesis, I advocate that researchers engaged in studies of the effect of habitat area at 

the landscape level consider and account for potential confounding effects of non-random 

clearing. Additionally, I encourage ecologists and biogeographers to consider the 

complexity—namely the key (broad) ecological mechanisms/processes that underpin 

patterns of species occurrence—subsumed within measures of vegetation area among 

landscapes that differ broadly in their attributes. To guide future studies of area effects in 

modified landscapes, I provide a simple flowchart checklist to indicate when biased 

clearing patterns and landscape-specific relationships should be considered (Figure 6.1). 

 

While the focus of this research has been on the response of Australian woodland bird 

species richness to landscape-scale habitat area, I note that the key findings of this thesis 

are applicable to a range of other ecological responses and geographic locations. Biased 

clearing patterns and landscape-specific area effects are likely to be just as relevant to 

investigations where vegetation area is related to the occurrence of individual species 

(including threatened species), reproductive success, elements of behaviour/activity, or 

individual health/physiology. Indeed, studies that I reviewed in Chapter 2 that did consider 

the confounding influence of non-random clearing included examinations of the effect of 

area on the occurrence of individual woodland bird species (Polyakov et al., 2013), bat 
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activity patterns (Basham et al., 2011), beetle community structure (Looney et al., 2009), 

and koala (Phascolarctos cinereus) presence (Januchowski et al., 2008).  

 

For example, Looney et al. (2009) highlighted that grassland beetle community 

composition and abundance was largely driven by soil fertility in habitat remnants. They 

concluded that an expected positive effect of vegetation area (patch size) was moderated 

by soil fertility, because smaller remnants were on fertile soils (Looney et al., 2009). This 

underscores another important consideration: if non-random clearing is evident at the 

scale of individual patches—that is, a correlation exists between patch size and (for 

example) soil fertility—then the key findings and implications outlined herein would 

translate to analyses of the effect of patch area. In summary, where the ecological 

mechanisms underpinning a particular response (i.e. breeding success, behaviour, 

occurrence) vary spatially as a function of landscape attributes, it is likely that the effect of 

habitat area will be moderated by these same landscape attributes.  

 

 Key implications for applied landscape management 6.2.2

Conservation interventions that focus on native vegetation area (or changes thereto) 

should be underpinned by an understanding of the effect of area that is not confounded by 

clearing biases and landscape-specific area effects. As emphasised in this thesis, actions 

that are focussed on averting declines in, maintaining or enhancing species richness at the 

landscape level can be informed by observed species-area relationships. These actions 

include the establishment of clearing limits in landscapes to avoid an observed threshold 

being breached, the strategic protection of vegetation in landscapes with vegetation cover 

that is near an observed threshold, or revegetation actions that seek to enhance 

landscape-level vegetation cover. A robust understanding of the effect of area, where 

confounding factors are accounted for, will allow for two key questions relating to such 

actions to be addressed: 

 

1. How much vegetation needs to be protected/revegetated in a landscape to achieve 

a particular biodiversity objective (reverse decline of/enhance species richness)?; 

and 

2. Given current patterns of landscape-level vegetation extent (or projected future 

changes to vegetation extent), in which landscapes should particular actions be 

focussed? 
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It is vital that we can accurately address these two questions. Given the constraints on 

conservation funding and resources (Carwardine et al., 2008), and to improve 

transparency between conservation objectives and the ongoing demand for land clearing 

associated with human development needs, we need to ensure that any interventions are 

implemented in a targeted and strategic way, so as to maximise the likelihood that they 

achieve an objective such as enhancing landscape-level richness. To exemplify, 

undertaking expensive revegetation activities in higher-cover landscapes where species 

richness varies little with changes to vegetation cover is unlikely to have an effect on 

landscape-level richness (Cunningham et al., 2014a). Conversely, establishing limits to 

further clearing in low cover landscapes may yield a large benefit, by preventing rapid 

declines in species richness associated with small losses of habitat (Radford et al., 2005; 

Ochoa-Quintero et al., 2015). Critically, a robust appreciation of the effect of area will 

provide more certainty around how much vegetation needs to be managed, and where 

this should occur among multiple landscapes. 

 

A detailed knowledge of the response of a specific assemblage of conservation concern to 

landscape-level vegetation extent can also inform other management actions. For 

example, such knowledge could be used to guide conservation measures incorporated 

into national planning instruments, such as the Brazil Forest Code which establishes limits 

to clearing on private land (Soares-Filho et al., 2014), or to inform regional policy decisions 

relating to vegetation management. This latter point is particularly pertinent in Australia 

currently, given active debates about changes to vegetation management laws in the 

states of New South Wales (relaxing) and Queensland (strengthening). A detailed 

understanding of how an assemblage responds to changes in native vegetation extent 

could also inform the assessment of impacts arising from proposed developments. Where 

an assemblage is of conservation concern, the significance of habitat loss needs to be 

quantified as part of the environmental impact assessment process (Wintle et al., 2012). 

Associated with this, determining the area of habitat that needs to be offset as part of the 

management of impacts stemming from development (Maron et al., 2015b) would benefit 

from a detailed understanding of the effect of area on the assemblage exposed to the 

impact. 
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Figure 6.1 Framework to guide studies of area effects in modified landscapes. This 

decision tree focusses on landscape attributes—broad characteristics of landscapes such 

as the fertility of the soil, or range in elevation—and how these attributes may correlate 

with vegetation extent (non-random clearing) and moderate the effect of area (landscape-

specific area effects) 

 

6.3 Limitations, caveats and future research directions 

There are several important limitations and caveats associated with the findings of this 

research. First, collecting species occurrence data to address landscape-level questions 

for numerous landscapes across a broad extent is time consuming, expensive and labour-
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intensive. As such, I drew upon species occurrence records contained within BirdLife 

Australia’s New Atlas of Australian Birds to examine how vegetation extent affected 

patterns of species richness among over 200 landscape units. A clear advantage of 

collecting data in the field is that it allows for biases associated with sampling, such as the 

number, timing and spatial distribution of surveys to be controlled for. I sought to minimise 

sampling bias in the estimates of species richness I used in this thesis, by enacting a 

number of hierarchical rules. In summary, this approach sought to ensure that estimates 

were not confounded by variable sampling protocols, survey effort (number of surveys in a 

landscape), the location of surveys in a landscape, or the timing of surveys in a landscape. 

This latter point is noteworthy in the context of south-east Australia—it ensured that 

seasonal (native) migrants were represented in the data, and allowed for temporal 

variation in climatic conditions (i.e. drought/very wet periods) across the duration of the 

Atlas project from which data were extracted, to be captured.  

 

Second, this research explored broad ecological patterns over a large extent. The data 

used to examine how species richness responds to native vegetation area, as well as 

attributes of landscapes that potentially influence this relationship, were selected such that 

the resolution of the datasets was appropriate to address the questions being posed. 

While some datasets were relatively coarse (i.e. climate and soil data at a resolution of 

approximately 1 km), an average value of these datasets was derived for landscape units 

of 100 km2 to explore how the effect of area is moderated by broad attributes of 

landscapes. Moreover, the vegetation data used in this research—namely the Australian 

Government National Vegetation Information System mapping—was at a finer scale of 

100 m. 

 

I also highlight four general considerations associated with investigations of species-area 

patterns that are pertinent to this research. (1) While species richness is a ubiquitous 

measure of biodiversity, it is not without inherent limitations. As has been highlighted by 

numerous authors, measures of species richness (and analyses of changes thereto) can 

mask how the composition of assemblages compare, or vary in response to environmental 

change (i.e. vegetation clearing) (Radford et al., 2005; Bennett et al., 2006; Fleishman et 

al., 2006; Villalobos et al., 2013; Matthews et al., 2014b; Lindenmayer et al., 2015; Yong et 

al., 2016). This is potentially problematic because a small (or no) change in species 

richness may obscure a large conservation impact, such as compositional changes that 

mask the loss of highly-sensitive species (Radford et al., 2005), or species that have 
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disproportionately important functional roles in an assemblage (Banks-Leite et al., 2012; 

De Coster et al., 2015). Furthermore, a measure of species richness is not indicative of the 

viability of populations of species (Radford et al., 2005; Fleishman et al., 2006; Fattorini & 

Borges, 2012). To exemplify, a single individual which is representative of a species on a 

trajectory towards (local) extinction contributes equally to an aggregate measure of 

richness as do records of species which have numerous individuals and secure 

populations (Radford et al., 2005; Kitzes & Harte, 2014).  

 

As discussed in this thesis, attributes of landscapes such as the occurrence of highly 

competitive Manorina honeyeaters may cause undesirable changes to landscape-level 

woodland bird communities (Chapter 3). However, this may not dramatically alter species 

richness (and if unaccounted for, potentially distort observed species-area relationships) 

because of compositional changes that are associated with the occurrence of noisy and/or 

yellow-throated miners (Howes et al., 2014; Kutt et al., 2015). Additionally, the loss of 

vegetation across multiple landscapes may only result in the (average) loss of a small 

number of species (Chapter 5). The significance of this habitat loss can be difficult to 

assess without knowing the identity of the lost species (Banks-Leite et al., 2012). An 

enhanced understanding of the effect of area on species richness, as explored in this 

thesis, will be particularly beneficial for the analysis and management of landscapes where 

it is used as a complement to other ecological information (i.e. the composition, viability 

and functional role of species in an assemblage).   

 

(2) In this thesis, I have focussed primarily on spatial patterns. However, a key component 

of the analysis of landscapes, and the fields of landscape ecology and conservation 

biogeography, is the influence of temporal factors (Whittaker et al., 2005; Bennett et al., 

2006; Lindenmayer et al., 2008; Szabo et al., 2011; Wu, 2013; Kitzes & Harte, 2015). I 

touch on extinction debt in Chapter 4, when inferring potential mechanisms explaining 

regional differences in the observed effect of vegetation area on species richness. An 

important follow up to the analyses outlined in this thesis would be to explore how 

landscape attributes moderate species-area relationships, where the potential effects of 

extinction debt (i.e. time lags in the loss of species post-vegetation clearing) are explicitly 

accounted for. 

 

(3) Native vegetation extent, such as woodland or forest cover, is widely used as a broad 

proxy for habitat in studies of area effects in modified landscapes (Radford et al., 2005; 



127 
 

Haslem & Bennett, 2008; Desrochers et al., 2011; Smith et al., 2011; Maron et al., 2012; 

Cunningham et al., 2014a). I have taken such an approach in this thesis, whereby the 

focal assemblage was related to the area of native woody vegetation (woodland/forest). 

The broad bird assemblage considered was restricted to species that are associated with 

woodland and forest habitat, and excluded species that can occur and persist in cleared 

environments lacking woody vegetation. While variation in woodland and forest types 

occurs across the extent that I examined, in broad terms, the habitat type is typified by 

woodlands and forests dominated by trees of the genus Eucalyptus. Nonetheless, other 

woodland and forest types, which also provide habitat resources for numerous members of 

the focal bird assemblage, do occur throughout the study region, albeit, as a much smaller 

fraction of the overall extent of remnant native vegetation. Aggregating these different 

woodland/forest types into a single ‘habitat’ class meant that I was unable to explicitly 

account for potential differential effects of specific vegetation types on the focal 

assemblage. Importantly though, the landscape attributes I considered, such as 

topographic variation or soil fertility, may have indirectly accounted for heterogeneity in 

woodland types, and the contribution they made to patterns of species richness. 

 

I used a binary habitat/non-habitat conceptualisation of landscapes (Forman, 1995; 

Lindenmayer et al., 2008; Fahrig, 2013) to explore the effect of native vegetation cover on 

bird species richness. I note however that the habitat/non-habitat approach has attendant 

caveats. First, this approach tends to de-emphasise the role of the matrix (the ‘non-

habitat’) in shaping ecological responses in fragmented landscapes (Ricketts, 2001; Ewers 

& Didham, 2006; Koh & Ghazoul, 2010; Mendenhall et al., 2014). To address this, I 

considered whether matrix land use intensity moderated the effect of native vegetation 

area on species richness in Chapter 3. My results indicated that the shape of the 

relationship between species richness and native vegetation area differed for high- versus 

low-intensity matrix land use landscapes, although in a multivariate mixed model, the 

interaction between vegetation area and matrix land use intensity was not important. 

Nonetheless, I hypothesise that matrix land use intensity does potentially moderate area 

effects in landscapes, and this effect may be captured by other attributes of landscapes. 

For example, fertile and flat landscapes may facilitate more intensive land use (i.e. 

mechanised irrigated monocultures as compared with livestock grazing of native pastures), 

while land use in hilly, infertile is less intensive. If dispersal across the matrix is a function 

of land use intensity (Maron & Fitzsimons, 2007; Attwood et al., 2009), this may serve to 

moderate the effect of vegetation area. The interplay between land use intensity, broad 
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attributes of landscapes like soil fertility, and the effect of native vegetation area on 

biodiversity, warrants further examination. Indeed, this may be conceptualised as ‘non-

random land use’ and its confounding influence on observed area effects—an extension of 

the exploration of the implications of non-random clearing. 

 

Second, it has been highlighted in the landscape ecology literature that habitat is a 

species-specific concept (Hobbs, 2005; Fischer & Lindenmayer, 2006; Lindenmayer & 

Fischer, 2007; Radford & Bennett, 2007; Price et al., 2009; Ockinger et al., 2010; Betts et 

al., 2014). A criticism of the habitat/non-habitat approach is that individual species will 

have different responses to spatial patterns (amount and configuration) of a broad 

characterisation of habitat such as ‘woodland’ in modified landscapes (Fischer & 

Lindenmayer, 2007; Fahrig et al., 2011; Betts et al., 2014; Matthews et al., 2014b; 

Almeida-Gomes et al., 2015). I propose that studies exploring area effects using a 

habitat/non-habitat conceptualisation may benefit from consideration of landscape 

attributes which potentially moderate the response of assemblages to landscape patterns. 

Such an approach acknowledges that the effect of a broad conceptualisation of habitat 

area (i.e. woodland cover) potentially differs depending on attributes of a landscape. That 

is, rather than all woodland being considered of ‘equal’ habitat value for the focal 

assemblage, it recognises that species in an assemblage may perceive and respond to 

fertile, productive woodlands differently to infertile woodlands, or that the effect of 

woodland area in flat, homogenous landscapes may be different to woodland occurring in 

a hilly, heterogeneous landscape, or that species richness may respond differently to 

woodland area in landscapes in which Manorina honeyeaters are prevalent.  

 

(4) In this thesis, I focussed on how the effect of area is potentially moderated by broad 

attributes of landscapes. These attributes were selected given that they have been shown 

to affect the occurrence of Australian woodland birds, and included soil properties 

(Thomson et al., 2007; Watson, 2011; Stevens & Watson, 2013; Razeng & Watson, 2015), 

topographic heterogeneity (Radford et al., 2005; Burgess & Maron, 2015), and the 

occurrence of Manorina honeyeaters (Kutt et al., 2015; Thomson et al., 2015).  

 

However, there is substantial evidence that spatial patterns in Australian woodland birds 

are underpinned by a raft of factors at multiple scales. For example, site attributes such as 

the occurrence of woody debris (Antos et al., 2008; Ikin et al., 2015), leaf litter (Montague-

Drake et al., 2009; Ikin et al., 2014), and the occurrence of hemiparasitic mistletoe plants 
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(Bowen et al., 2009a; Watson & Herring, 2012) variously influence the occurrence of birds 

in modified landscapes. Moreover, geomorphological features such as creek lines, and 

associated riparian vegetation have been shown to be a disproportionately important driver 

of bird occurrence (Bennett et al., 2014; Haslem et al., 2015; Nimmo et al., 2015). Indeed, 

this may in part relate to an association between creeks, riparian/floodplain vegetation and 

enhanced soil fertility and vegetation productivity (Bennett et al., 2014). Fire is an 

important driver of the occurrence of birds in Australian woodlands and forests, given its 

influence on the age and structure of vegetation (Barton et al., 2014; Burgess & Maron, 

2015; Haslem et al., 2016). Scattered paddock trees (Fischer et al., 2010b; Hanspach et 

al., 2011), and regrowth vegetation (Bowen et al., 2009b; Lindenmayer et al., 2012; 

Smallbone et al., 2014) have also been shown to affect the spatial composition of bird 

communities, due to the habitat resources they provide as a complement to remnant 

native vegetation. 

 

It would be interesting to explore how these various factors potentially moderate area 

effects in modified landscapes where patterns of vegetation retention are non-random. 

Indeed, this may provide a more detailed level of understanding about why the effect of 

area differs in landscapes broadly characterised by, for example, fertile soils or hilly 

topography. For example, increased resource availability in remnant vegetation occurring 

in fertile landscapes may be underpinned by mistletoe density, or the presence of 

productive riparian vegetation; hilly landscapes may be more exposed to fire impacts, 

which may serve to increase the structural heterogeneity of vegetation remnants; or the 

effect of remnant vegetation may be moderated by the occurrence of scattered trees or 

regrowth vegetation, in heavily cleared production environments. There are numerous 

opportunities and directions by which to explore not only how Australian birds relate to 

native remnant vegetation extent, as examined in this thesis, but why the effect differs in 

different landscape types. 

 

6.4 Concluding remarks 

As quoted in the Introduction of this thesis, Watson (2011) stated that the value of remnant 

woodland patches for Australian birds differs based on their position within a landscape, 

because of the different abiotic properties that characterise the remnants. Just as Watson 

(2011) noted that “not all woodlands are the same”, I use the results of this thesis to 

highlight that not all landscapes are the same. Both the amount of habitat in a landscape, 

and its effect on species richness, can be moderated by the attributes of the landscape. 
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Recognising this variability among multiple landscapes should be a key focus of future 

studies of the effect of area in human-modified environments. 
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APPENDICES 

 

Appendix A 

 

Chapter 2 

 

Appendix A: Table A1 Bioregions aligning with each of the broad geographic categories 

explored in the empirical analysis. Bioregions were based on the Interim Biogeographic 

Regionalisation for Australia (Department of the Environment, 2012a) and the Bioregions 

of South Africa, Lesotho and Swaziland (Mucina and Rutherford, 2006) 

 Broad geographic 

category 

Bioregions 

 

A
u

s
tr

a
li

a
 

North east 

 

Brigalow Belt North, Brigalow Belt South*, Central 

Mackay Coast, South Eastern Queensland 

Central east 

 

Brigalow Belt South*, Darling Riverine Plains, 

Nandewar, New England Tablelands, New South 

Wales North Coast, Sydney Basin 

South east 

 

Eyre Yorke Block, Murray Darling Depression, 

Naracoorte Coastal Plain, New South Wales South 

Western Slopes, Riverina, South East Coastal Plain, 

South Eastern Highlands, Southern Volcanic Plain, 

Victorian Midlands 

South west 

 

Avon Wheatbelt, Esperance Plains, Geraldton 

Sandplains, Jarrah Forest, Mallee, Swan Coastal Plain 

S
o

u
th

 A
fr

ic
a

 

North east 

 

Central Bushveld, Indian Ocean Coastal Belt, Lowveld, 

Sub-Escarpment Savanna 

Central east 

 

Dry Highveld Grassland, Mesic Highveld Grassland, 

Sub-Escarpment Grassland 

South west 

 

East Coast Renosterveld, Southwest Fynbos, West 

Coast Renosterveld, West Strandveld 

* note the Brigalow Belt South bioregion of eastern Australia was split across two broad 

geographic categories (North east and Central east) due to its size and north-south 

orientation  
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Appendix A1 

The Enhanced Vegetation Index (EVI) was used to provide a proxy for the productivity of 

remaining native vegetation in a landscape for this analysis. Australian and South African 

continental mosaic datasets (Paget & King, 2008) of the Moderate Resolution Imaging 

Spectroradiometer (MODIS) 16-day L3 Global 250 m EVI data 

(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod13q1) were 

obtained to examine this productivity relationship. Six mosaic datasets corresponding with 

the first 16-day mosaic available for each alternate month were acquired for each year for 

the period 2004-2013. Each EVI mosaic dataset was processed using its accompanying 

quality assurance (QA) dataset, whereby only pixels ascribed a QA rating of ‘good data – 

use with confidence’ were retained. Upon processing, the 60 individual mosaics were 

overlaid to determine an average EVI value for each pixel. The EVI data was resampled in 

ArcMap to a pixel size of 100 m and 30 m for Australia and South Africa respectively, to 

allow for congruence between the pixel sizes of the vegetation and EVI data for the two 

countries. This allowed for the derivation of an approximate EVI value for each native 

vegetation pixel, which could then be used to calculate the average EVI of all native 

vegetation in a landscape. 
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Appendix A: Table A2 Summary of literature review identifying whether studies that used vegetation area to explore an ecological 

response considered spatial abiotic heterogeneity, and whether such heterogeneity was linked to non-random patterns of vegetation 

clearing and retention. Full reference list for reviewed literature is provided below table. 

 

 

 

Abiotic heterogeneity considered – linked to non-

random patterns of vegetation clearing and 

confounding effect on area 

Abiotic heterogeneity considered – not linked to non-

random patterns of vegetation clearing 

Abiotic 

heterogeneity 

not considered 

in analysis 

Author(s) (year) 

Controlled 

for in study 

design 

Controlled or 

accounted for in 

data analysis 

Considered in 

interpretation and 

discussion of results 

Abiotic 

homogeneity in 

study system 

Efforts to control 

heterogeneity in 

study design 

Abiotic factor(s) as 

explanatory variables 

in addition to area 

Gonclaves et al. (2014)       x 

Hadley et al. (2014) x       

Ikin et al. (2014)       x 

Inclan et al. (2014)       x 

Johnstone et al. (2014)      x  

Lima and Mariano-Neto (2014)   x     

Martins et al. (2014)       x 

Robinson et al. (2014)       x 

Wulf and Kolk (2014)      x  

Zulka et al. (2014)      x  

Broughton et al. (2013)       x 

Davis et al. (2013)       x 

García-Marmolejo et al. (2013)      x  

Jauker et al. (2013)    x    

Marchi et al. (2013)       x 

Oliver et al. (2013)      x  

Polyakov et al. (2013)   x     

Reino et al. (2013)   x     
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Abiotic heterogeneity considered – linked to non-

random patterns of vegetation clearing and 

confounding effect on area 

Abiotic heterogeneity considered – not linked to non-

random patterns of vegetation clearing 

Abiotic 

heterogeneity 

not considered 

in analysis 

Author(s) (year) 

Controlled 

for in study 

design 

Controlled or 

accounted for in 

data analysis 

Considered in 

interpretation and 

discussion of results 

Abiotic 

homogeneity in 

study system 

Efforts to control 

heterogeneity in 

study design 

Abiotic factor(s) as 

explanatory variables 

in addition to area 

Robertson et al. (2013)   x     

Banks-Leite et al. (2012)       x 

Graham et al. (2012)       x 

Harrisson et al. (2012)       x 

Hinners et al. (2012)       x 

Knappova et al. (2012)      x  

Maron et al. (2012)  x      

Mathewson et al. (2012)       x 

Melles et al. (2012)       x 

Reitalu et al. (2012)     x   

Ribeiro et al. (2012)     x   

Sugiura and Taki (2012)       x 

Basham et al. (2011)  x      

Bollmann et al. (2011)      x  

Brückmann et al. (2011)     x   

Duggan et al. (2011)      x  

Haslem and Bennett (2011)       x 

Jamoneau et al. (2011)   x     

Moxham and Turner (2011)      x  

Nufio et al. (2011)       x 

Oliver et al. (2011)       x 

Peña et al. (2011)      x  

Poulin and Villard (2011)       x 
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Abiotic heterogeneity considered – linked to non-

random patterns of vegetation clearing and 

confounding effect on area 

Abiotic heterogeneity considered – not linked to non-

random patterns of vegetation clearing 

Abiotic 

heterogeneity 

not considered 

in analysis 

Author(s) (year) 

Controlled 

for in study 

design 

Controlled or 

accounted for in 

data analysis 

Considered in 

interpretation and 

discussion of results 

Abiotic 

homogeneity in 

study system 

Efforts to control 

heterogeneity in 

study design 

Abiotic factor(s) as 

explanatory variables 

in addition to area 

Püttker et al. (2011)    x    

Shanahan et al. (2011)       x 

Yen et al. (2011)    x    

Cerezo et al. (2010)       x 

De Sanctis et al. (2010)      x  

Desrochers et al. (2010)       x 

González-Varo (2010)       x 

Lasky and Keitt (2010)       x 

Lees and Peres (2010)    x    

Leyequien et al. (2010)       x 

Lindenmayer et al. (2010)      x  

Marshall et al. (2010)   x     

Mezquida and Benkman 

(2010) 
     x  

Norris et al. (2010)      x  

Pardini et al. (2010)    x    

Priday (2010)  x      

Stiles and Scheiner (2010)      x  

Vergara et al. (2010)      x  

Zurita and Bellocq (2010)       x 

Cagnolo et al. (2009)       x 

Caprio et al. (2009a)       x 

Caprio et al. (2009b)       x 
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Abiotic heterogeneity considered – linked to non-

random patterns of vegetation clearing and 

confounding effect on area 

Abiotic heterogeneity considered – not linked to non-

random patterns of vegetation clearing 

Abiotic 

heterogeneity 

not considered 

in analysis 

Author(s) (year) 

Controlled 

for in study 

design 

Controlled or 

accounted for in 

data analysis 

Considered in 

interpretation and 

discussion of results 

Abiotic 

homogeneity in 

study system 

Efforts to control 

heterogeneity in 

study design 

Abiotic factor(s) as 

explanatory variables 

in addition to area 

Carrete et al. (2009)       x 

Cherkaoui et al. (2009)       x 

Debuse et al. (2009)  x      

Ewers et al. (2009)       x 

Holland and Bennett (2009)       x 

Horváth et al. (2009)       x 

Kath et al. (2009)       x 

Looney et al. (2009)  x      

Magle and Crooks (2009)      x  

Mapelli and Kittlein (2009)      x  

Nufio et al. (2009)       x 

Raatikainen et al. (2009)      x  

Rogers et al. (2009)      x  

Sutton and Morgan (2009)       x 

Urquiza-Haas et al. (2009)      x  

Aparicio et al. (2008)      x  

Boulton et al. (2008)       x 

Cunningham et al. (2008)     x   

Götmark et al. (2008)      x  

Haslem and Bennett (2008)       x 

Januchowski et al. (2008)   x     

Ktitorov et al. (2008)      x  

Liira et al. (2008)       x 
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Abiotic heterogeneity considered – linked to non-

random patterns of vegetation clearing and 

confounding effect on area 

Abiotic heterogeneity considered – not linked to non-

random patterns of vegetation clearing 

Abiotic 

heterogeneity 

not considered 

in analysis 

Author(s) (year) 

Controlled 

for in study 

design 

Controlled or 

accounted for in 

data analysis 

Considered in 

interpretation and 

discussion of results 

Abiotic 

homogeneity in 

study system 

Efforts to control 

heterogeneity in 

study design 

Abiotic factor(s) as 

explanatory variables 

in addition to area 

Martensen et al. (2008)       x 

Renfrew and Ribic (2008)       x 

Struebig et al. (2008)       x 

Brown (2007)    x    

Bulman et al. (2007)   x     

dos Santos et al. (2007)     x   

Ewers et al. (2007)     x   

Gardner and Heinsohn (2007)       x 

Michalski and Peres (2007)    x    

Taki et al. (2007)    x    

Arroyo-Rodríguez and 

Mandujano (2006) 
      x 

Cagnolo et al. (2006)      x  

Castellon and Sieving (2006)       x 

Davis et al. (2006)       x 

Ernoult et al. (2006)       x 

Hamer et al. (2006)       x 

Husté et al. (2006)       x 

Lees and Peres (2006)    x    

Magness et al. (2006)       x 

McAlpine et al. (2006)      x  

Morimoto et al. (2006)       x 

Öckinger and Smith (2006)     x   



162 
 

 

 

Abiotic heterogeneity considered – linked to non-

random patterns of vegetation clearing and 

confounding effect on area 

Abiotic heterogeneity considered – not linked to non-

random patterns of vegetation clearing 

Abiotic 

heterogeneity 

not considered 

in analysis 

Author(s) (year) 

Controlled 

for in study 

design 

Controlled or 

accounted for in 

data analysis 

Considered in 

interpretation and 

discussion of results 

Abiotic 

homogeneity in 

study system 

Efforts to control 

heterogeneity in 

study design 

Abiotic factor(s) as 

explanatory variables 

in addition to area 

Swihart et al. (2006)       x 

Cristóbal-Azkarate et al. 

(2005) 
      x 

Drinnan (2005)   x     

Driscoll et al. (2005)       x 

Heikkinen et al. (2005)      x  

Jiguet et al. (2005)       x 

Lindenmayer et al. (2005)       x 

Michalski and Peres (2005)    x    

Nol et al. (2005)     x   

Radford et al. (2005)     x x  
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Appendix A: Figure A1 

 

AUSTRALIA – top to bottom: north east region, central east region, south east region, 

south west region; left column: temperate landscapes, right column: arid landscapes 

       

       

      

          

Figure A1.1 Univariate relationship between average cation exchange capacity and 

proportion native vegetation retained in landscape (logit transformed) 
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Figure A1.2 Univariate relationship between average clay content mass fraction and 

proportion native vegetation retained in landscape (logit transformed) 
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Figure A1.3 Univariate relationship between average pH and proportion native vegetation 

retained in landscape (logit transformed)       
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Figure A1.4 Univariate relationship between range in elevation and proportion native 

vegetation retained in landscape (logit transformed)   
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Figure A1.5 Univariate relationship between average annual rainfall and proportion native 

vegetation retained in landscape (logit transformed)   
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Figure A1.6 Univariate relationship between average annual temperature and proportion 

native vegetation retained in landscape (logit transformed)       
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Figure A1.7 Univariate relationship between average EVI of native vegetation and 

proportion native vegetation retained in landscape (logit transformed) 
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SOUTH AFRICA – top to bottom: north east region, central east region, south west region; 

left column: temperate landscapes, right column: arid landscapes 

 

      

    

      

Figure A1.8 Univariate relationship between average cation exchange capacity and 

proportion native vegetation retained in landscape (logit transformed)   
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Figure A1.9 Univariate relationship between average clay content mass fraction and 

proportion native vegetation retained in landscape (logit transformed) 
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Figure A1.10 Univariate relationship between average pH and proportion native vegetation 

retained in landscape (logit transformed)  
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Figure A1.11 Univariate relationship between range in elevation and proportion native 

vegetation retained in landscape (logit transformed)   
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Figure A1.12 Univariate relationship between average annual rainfall and proportion native 

vegetation retained in landscape (logit transformed)   
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Figure A1.13 Univariate relationship between average annual temperature and proportion 

native vegetation retained in landscape (logit transformed)   
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Figure A1.14 Univariate relationship between average EVI of native vegetation and 

proportion native vegetation retained in landscape (logit transformed) 
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Appendix B  

 

Chapter 3 

 

Appendix B: Table B1 This list of 232 birds represents those species recorded from 

surveys (as contained within the New Atlas of Australian Birds database) in the 251 

landscape units that were the focus of this analysis.  

Scientific name Common name 

Acanthagenys rufogularis Spiny-cheeked Honeyeater 

Acanthiza apicalis Inland Thornbill 

Acanthiza chrysorrhoa Yellow-rumped Thornbill 

Acanthiza iredalei Slender-billed Thornbill 

Acanthiza lineata Striated Thornbill 

Acanthiza nana Yellow Thornbill 

Acanthiza pusilla Brown Thornbill 

Acanthiza reguloides Buff-rumped Thornbill 

Acanthiza uropygialis Chestnut-rumped Thornbill 

Acanthorhynchus tenuirostris Eastern Spinebill 

Accipiter cirrocephalus Collared Sparrowhawk 

Accipiter fasciatus Brown Goshawk 

Accipiter novaehollandiae Grey Goshawk 

Aegotheles cristatus Australian Owlet-nightjar 

Ailuroedus crassirostris Green Catbird 

Alectura lathami Australian Brush-turkey 

Alisterus scapularis Australian King-Parrot 

Anthochaera carunculata Red Wattlebird 

Anthochaera chrysoptera Little Wattlebird 

Anthochaera phrygia Regent Honeyeater 

Aphelocephala leucopsis Southern Whiteface 

Aprosmictus erythropterus Red-winged Parrot 

Aquila audax Wedge-tailed Eagle 

Artamus cyanopterus Dusky Woodswallow 

Artamus leucorynchus White-breasted Woodswallow 

Artamus minor Little Woodswallow 

Artamus personatus Masked Woodswallow 

Artamus superciliosus White-browed Woodswallow 



189 
 

Scientific name Common name 

Aviceda subcristata Pacific Baza 

Barnardius zonarius Australian Ringneck 

Burhinus grallarius Bush Stone-curlew 

Cacatua galerita Sulphur-crested Cockatoo 

Cacatua sanguinea Little Corella 

Cacatua tenuirostris Long-billed Corella 

Cacomantis flabelliformis Fan-tailed Cuckoo 

Cacomantis pallidus Pallid Cuckoo 

Cacomantis variolosus Brush Cuckoo 

Calamanthus cautus Shy Heathwren 

Calamanthus pyrrhopygia Chestnut-rumped Heathwren 

Callocephalon fimbriatum Gang-gang Cockatoo 

Calyptorhynchus banksii Red-tailed Black-Cockatoo 

Calyptorhynchus funereus Yellow-tailed Black-Cockatoo 

Calyptorhynchus lathami Glossy Black-Cockatoo 

Carternornis leucotis White-eared Monarch 

Centropus phasianinus Pheasant Coucal 

Certhionyx variegatus Pied Honeyeater 

Ceyx azureus Azure Kingfisher 

Chalcites basalis Horsfield's Bronze-Cuckoo 

Chalcites lucidus Shining Bronze-Cuckoo 

Chalcites minutillus Little Bronze-Cuckoo 

Chalcites osculans Black-eared Cuckoo 

Chalcophaps indica Emerald Dove 

Chthonicola sagittata Speckled Warbler 

Cinclosoma castanotum Chestnut Quail-thrush 

Cinclosoma punctatum Spotted Quail-thrush 

Climacteris affinis White-browed Treecreeper 

Climacteris erythrops Red-browed Treecreeper 

Climacteris picumnus Brown Treecreeper 

Colluricincla harmonica Grey Shrike-thrush 

Colluricincla megarhyncha Little Shrike-thrush 

Columba leucomela White-headed Pigeon 

Coracina lineata Barred Cuckoo-shrike 

Coracina maxima Ground Cuckoo-shrike 

Coracina novaehollandiae Black-faced Cuckoo-shrike 

Coracina papuensis White-bellied Cuckoo-shrike 
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Scientific name Common name 

Coracina tenuirostris Cicadabird 

Corcorax melanorhamphos White-winged Chough 

Cormobates leucophaea White-throated Treecreeper 

Corvus tasmanicus Forest Raven 

Coturnix ypsilophora Brown Quail 

Cracticus nigrogularis Pied Butcherbird 

Cracticus torquatus Grey Butcherbird 

Cyclopsitta diophthalma Double-eyed Fig-Parrot 

Dacelo leachii Blue-winged Kookaburra 

Dacelo novaeguineae Laughing Kookaburra 

Daphoenositta chrysoptera Varied Sittella 

Dasyornis broadbenti Rufous Bristlebird 

Dicaeum hirundinaceum Mistletoebird 

Dicrurus bracteatus Spangled Drongo 

Drymodes brunneopygia Southern Scrub-robin 

Entomyzon cyanotis Blue-faced Honeyeater 

Eopsaltria australis Eastern Yellow Robin 

Eudynamys orientalis Eastern Koel 

Eurostopodus argus Spotted Nightjar 

Eurostopodus mystacalis White-throated Nightjar 

Eurystomus orientalis Dollarbird 

Falco longipennis Australian Hobby 

Falcunculus frontatus Crested Shrike-tit 

Geopelia cuneata Diamond Dove 

Geopelia humeralis Bar-shouldered Dove 

Geopelia striata Peaceful Dove 

Gerygone albogularis White-throated Gerygone 

Gerygone fusca Western Gerygone 

Gerygone levigaster Mangrove Gerygone 

Gerygone mouki Brown Gerygone 

Gerygone palpebrosa Fairy Gerygone 

Glossopsitta concinna Musk Lorikeet 

Glossopsitta porphyrocephala Purple-crowned Lorikeet 

Glossopsitta pusilla Little Lorikeet 

Glyciphila melanops Tawny-crowned Honeyeater 

Grantiella picta Painted Honeyeater 

Hieraaetus morphnoides Little Eagle 
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Scientific name Common name 

Lalage leucomela Varied Triller 

Lalage sueurii White-winged Triller 

Lathamus discolor Swift Parrot 

Leipoa ocellata Malleefowl 

Leucosarcia picata Wonga Pigeon 

Lichenostomus chrysops Yellow-faced Honeyeater 

Lichenostomus cratitius Purple-gaped Honeyeater 

Lichenostomus fasciogularis Mangrove Honeyeater 

Lichenostomus fuscus Fuscous Honeyeater 

Lichenostomus leucotis White-eared Honeyeater 

Lichenostomus melanops Yellow-tufted Honeyeater 

Lichenostomus ornatus Yellow-plumed Honeyeater 

Lichenostomus penicillatus White-plumed Honeyeater 

Lichenostomus plumulus Grey-fronted Honeyeater 

Lichenostomus virescens Singing Honeyeater 

Lichmera indistincta Brown Honeyeater 

Lophochroa leadbeateri Major Mitchell's Cockatoo 

Lophoictinia isura Square-tailed Kite 

Lopholaimus antarcticus Topknot Pigeon 

Macropygia amboinensis Brown Cuckoo-Dove 

Malurus cyaneus Superb Fairy-wren 

Malurus lamberti Variegated Fairy-wren 

Malurus melanocephalus Red-backed Fairy-wren 

Malurus splendens Splendid Fairy-wren 

Manorina flavigula Yellow-throated Miner 

Manorina melanocephala Noisy Miner 

Manorina melanophrys Bell Miner 

Manorina melanotis Black-eared Miner 

Melanodryas cucullata Hooded Robin 

Meliphaga lewinii Lewin's Honeyeater 

Melithreptus albogularis White-throated Honeyeater 

Melithreptus brevirostris Brown-headed Honeyeater 

Melithreptus gularis Black-chinned Honeyeater 

Melithreptus lunatus White-naped Honeyeater 

Menura alberti Albert's Lyrebird 

Menura novaehollandiae Superb Lyrebird 

Merops ornatus Rainbow Bee-eater 
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Microeca fascinans Jacky Winter 

Monarcha melanopsis Black-faced Monarch 

Myiagra cyanoleuca Satin Flycatcher 

Myiagra inquieta Restless Flycatcher 

Myiagra rubecula Leaden Flycatcher 

Myzomela obscura Dusky Honeyeater 

Myzomela sanguinolenta Scarlet Honeyeater 

Neochmia modesta Plum-headed Finch 

Neochmia temporalis Red-browed Finch 

Neophema elegans Elegant Parrot 

Neophema pulchella Turquoise Parrot 

Ninox connivens Barking Owl 

Ninox novaeseelandiae Southern Boobook 

Ninox strenua Powerful Owl 

Northiella haematogaster Blue Bonnet 

Nymphicus hollandicus Cockatiel 

Oreoica gutturalis Crested Bellbird 

Origma solitaria Rockwarbler 

Oriolus sagittatus Olive-backed Oriole 

Orthonyx temminckii Australian Logrunner 

Pachycephala inornata Gilbert's Whistler 

Pachycephala olivacea Olive Whistler 

Pachycephala pectoralis Golden Whistler 

Pachycephala rufiventris Rufous Whistler 

Pachycephala rufogularis Red-lored Whistler 

Pardalotus punctatus Spotted Pardalote 

Pardalotus striatus Striated Pardalote 

Petrochelidon nigricans Tree Martin 

Petroica boodang Scarlet Robin 

Petroica goodenovii Red-capped Robin 

Petroica phoenicea Flame Robin 

Petroica rodinogaster Pink Robin 

Petroica rosea Rose Robin 

Phaps chalcoptera Common Bronzewing 

Phaps elegans Brush Bronzewing 

Philemon citreogularis Little Friarbird 

Philemon corniculatus Noisy Friarbird 
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Phylidonyris niger White-cheeked Honeyeater 

Phylidonyris novaehollandiae New Holland Honeyeater 

Phylidonyris pyrrhopterus Crescent Honeyeater 

Pitta versicolor Noisy Pitta 

Platycercus adscitus Pale-headed Rosella 

Platycercus elegans Crimson Rosella 

Platycercus eximius Eastern Rosella 

Plectorhyncha lanceolata Striped Honeyeater 

Podargus ocellatus Marbled Frogmouth 

Podargus strigoides Tawny Frogmouth 

Polytelis anthopeplus Regent Parrot 

Polytelis swainsonii Superb Parrot 

Pomatostomus ruficeps Chestnut-crowned Babbler 

Pomatostomus superciliosus White-browed Babbler 

Pomatostomus temporalis Grey-crowned Babbler 

Psephotus haematonotus Red-rumped Parrot 

Psephotus varius Mulga Parrot 

Psophodes olivaceus Eastern Whipbird 

Ptilinopus magnificus Wompoo Fruit-Dove 

Ptilinopus regina Rose-crowned Fruit-Dove 

Ptilinopus superbus Superb Fruit-Dove 

Ptilonorhynchus maculatus Spotted Bowerbird 

Ptilonorhynchus violaceus Satin Bowerbird 

Ptiloris paradiseus Paradise Riflebird 

Purnella albifrons White-fronted Honeyeater 

Pycnoptilus floccosus Pilotbird 

Pyrrholaemus brunneus Redthroat 

Rhipidura albiscapa Grey Fantail 

Rhipidura rufifrons Rufous Fantail 

Scythrops novaehollandiae Channel-billed Cuckoo 

Sericornis citreogularis Yellow-throated Scrubwren 

Sericornis frontalis White-browed Scrubwren 

Sericornis magnirostra Large-billed Scrubwren 

Sericulus chrysocephalus Regent Bowerbird 

Smicrornis brevirostris Weebill 

Sphecotheres vieilloti Australasian Figbird 

Stagonopleura bella Beautiful Firetail 
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Stagonopleura guttata Diamond Firetail 

Stipiturus malachurus Southern Emu-wren 

Strepera graculina Pied Currawong 

Strepera versicolor Grey Currawong 

Struthidea cinerea Apostlebird 

Sugomel niger Black Honeyeater 

Symposiarchus trivirgatus Spectacled Monarch 

Todiramphus macleayii Forest Kingfisher 

Todiramphus pyrrhopygius Red-backed Kingfisher 

Todiramphus sanctus Sacred Kingfisher 

Tregellasia capito Pale-yellow Robin 

Trichoglossus chlorolepidotus Scaly-breasted Lorikeet 

Trichoglossus haematodus Rainbow Lorikeet 

Turnix melanogaster Black-breasted Button-quail 

Turnix varius Painted Button-quail 

Tyto novaehollandiae Masked Owl 

Zoothera heinei Russet-tailed Thrush 

Zoothera lunulata Bassian Thrush 

Zosterops lateralis Silvereye 
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Appendix C 

 

Chapter 4 

 

Appendix C: Table C1 This list of birds represents those species recorded from surveys 

(as contained within the New Atlas of Australian Birds database) in the landscape units 

that were the focus of this analysis. 

Scientific name  Common name 25 km2 100 km2 400 km2 

Acanthagenys rufogularis Spiny-cheeked Honeyeater x x x 

Acanthiza apicalis Inland Thornbill x x x 

Acanthiza chrysorrhoa Yellow-rumped Thornbill x x x 

Acanthiza lineata Striated Thornbill x x x 

Acanthiza nana Yellow Thornbill x x x 

Acanthiza pusilla Brown Thornbill x x x 

Acanthiza reguloides Buff-rumped Thornbill x x x 

Acanthiza uropygialis Chestnut-rumped Thornbill x x x 

Acanthorhynchus tenuirostris Eastern Spinebill x x x 

Accipiter cirrocephalus Collared Sparrowhawk x x x 

Accipiter fasciatus Brown Goshawk x x x 

Accipiter novaehollandiae Grey Goshawk x x x 

Aegotheles cristatus Australian Owlet-nightjar x x x 

Ailuroedus crassirostris Green Catbird x x x 

Alectura lathami Australian Brush-turkey x x x 

Alisterus scapularis Australian King-Parrot x x x 

Anthochaera carunculata Red Wattlebird x x x 

Anthochaera chrysoptera Little Wattlebird x x x 

Anthochaera phrygia Regent Honeyeater x x x 

Aphelocephala leucopsis Southern Whiteface x x x 

Aprosmictus erythropterus Red-winged Parrot x x x 

Aquila audax Wedge-tailed Eagle x x x 

Artamus cyanopterus Dusky Woodswallow x x x 

Artamus leucorynchus White-breasted Woodswallow x x x 

Artamus minor Little Woodswallow  x x 

Artamus personatus Masked Woodswallow x x x 

Artamus superciliosus White-browed Woodswallow x x x 

Atrichornis rufescens Rufous Scrub-bird   x 
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Aviceda subcristata Pacific Baza x x x 

Barnardius zonarius Australian Ringneck x x x 

Burhinus grallarius Bush Stone-curlew x x x 

Cacatua galerita Sulphur-crested Cockatoo x x x 

Cacatua sanguinea Little Corella x x x 

Cacatua tenuirostris Long-billed Corella x x x 

Cacomantis flabelliformis Fan-tailed Cuckoo x x x 

Cacomantis pallidus Pallid Cuckoo x x x 

Cacomantis variolosus Brush Cuckoo x x x 

Calamanthus cautus Shy Heathwren x x x 

Calamanthus pyrrhopygia Chestnut-rumped Heathwren x x x 

Callocephalon fimbriatum Gang-gang Cockatoo x x x 

Calyptorhynchus banksii Red-tailed Black-Cockatoo x x x 

Calyptorhynchus funereus Yellow-tailed Black-Cockatoo x x x 

Calyptorhynchus lathami Glossy Black-Cockatoo x x x 

Carternornis leucotis White-eared Monarch x x x 

Centropus phasianinus Pheasant Coucal x x x 

Ceyx azureus Azure Kingfisher x x x 

Chalcites basalis Horsfield's Bronze-Cuckoo x x x 

Chalcites lucidus Shining Bronze-Cuckoo x x x 

Chalcites minutillus Little Bronze-Cuckoo x x x 

Chalcites osculans Black-eared Cuckoo x x x 

Chalcophaps indica Emerald Dove x x x 

Chthonicola sagittata Speckled Warbler x x x 

Cinclosoma punctatum Spotted Quail-thrush x x x 

Climacteris affinis White-browed Treecreeper   x 

Climacteris erythrops Red-browed Treecreeper x x x 

Climacteris picumnus Brown Treecreeper x x x 

Colluricincla harmonica Grey Shrike-thrush x x x 

Colluricincla megarhyncha Little Shrike-thrush x x x 

Columba leucomela White-headed Pigeon x x x 

Coracina lineata Barred Cuckoo-shrike x x x 

Coracina maxima Ground Cuckoo-shrike x x x 

Coracina novaehollandiae Black-faced Cuckoo-shrike x x x 

Coracina papuensis White-bellied Cuckoo-shrike x x x 

Coracina tenuirostris Cicadabird x x x 

Corcorax melanorhamphos White-winged Chough x x x 
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Cormobates leucophaea White-throated Treecreeper x x x 

Corvus tasmanicus Forest Raven x x x 

Coturnix ypsilophora Brown Quail x x x 

Cracticus nigrogularis Pied Butcherbird x x x 

Cracticus torquatus Grey Butcherbird x x x 

Cyclopsitta diophthalma Double-eyed Fig-Parrot  x x 

Dacelo leachii Blue-winged Kookaburra x x x 

Dacelo novaeguineae Laughing Kookaburra x x x 

Daphoenositta chrysoptera Varied Sittella x x x 

Dasyornis broadbenti Rufous Bristlebird x x x 

Dicaeum hirundinaceum Mistletoebird x x x 

Dicrurus bracteatus Spangled Drongo x x x 

Drymodes brunneopygia Southern Scrub-robin x  x 

Entomyzon cyanotis Blue-faced Honeyeater x x x 

Eopsaltria australis Eastern Yellow Robin x x x 

Eudynamys orientalis Eastern Koel x x x 

Eurostopodus argus Spotted Nightjar x x x 

Eurostopodus mystacalis White-throated Nightjar x x x 

Eurystomus orientalis Dollarbird x x x 

Falco longipennis Australian Hobby x x x 

Falcunculus frontatus Crested Shrike-tit x x x 

Geopelia cuneata Diamond Dove x x x 

Geopelia humeralis Bar-shouldered Dove x x x 

Geopelia striata Peaceful Dove x x x 

Gerygone albogularis White-throated Gerygone x x x 

Gerygone fusca Western Gerygone x x x 

Gerygone levigaster Mangrove Gerygone x x x 

Gerygone mouki Brown Gerygone x x x 

Gerygone palpebrosa Fairy Gerygone  x x 

Glossopsitta concinna Musk Lorikeet x x x 

Glossopsitta porphyrocephala Purple-crowned Lorikeet x x x 

Glossopsitta pusilla Little Lorikeet x x x 

Glyciphila melanops Tawny-crowned Honeyeater x x x 

Grantiella picta Painted Honeyeater x x x 

Hieraaetus morphnoides Little Eagle x x x 

Lalage leucomela Varied Triller x x x 

Lalage sueurii White-winged Triller x x x 
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Lathamus discolor Swift Parrot x x x 

Leucosarcia picata Wonga Pigeon x x x 

Lichenostomus chrysops Yellow-faced Honeyeater x x x 

Lichenostomus cratitius Purple-gaped Honeyeater x x x 

Lichenostomus fasciogularis Mangrove Honeyeater  x  

Lichenostomus fuscus Fuscous Honeyeater x x x 

Lichenostomus leucotis White-eared Honeyeater x x x 

Lichenostomus melanops Yellow-tufted Honeyeater x x x 

Lichenostomus ornatus Yellow-plumed Honeyeater x x x 

Lichenostomus penicillatus White-plumed Honeyeater x x x 

Lichenostomus virescens Singing Honeyeater x x x 

Lichmera indistincta Brown Honeyeater x x x 

Lophochroa leadbeateri Major Mitchell's Cockatoo x x  

Lophoictinia isura Square-tailed Kite x x x 

Lopholaimus antarcticus Topknot Pigeon x x x 

Macropygia amboinensis Brown Cuckoo-Dove x x x 

Malurus cyaneus Superb Fairy-wren x x x 

Malurus lamberti Variegated Fairy-wren x x x 

Malurus melanocephalus Red-backed Fairy-wren x x x 

Malurus splendens Splendid Fairy-wren x x x 

Manorina flavigula Yellow-throated Miner x x x 

Manorina melanocephala Noisy Miner x x x 

Manorina melanophrys Bell Miner x x x 

Melanodryas cucullata Hooded Robin x x x 

Meliphaga lewinii Lewin's Honeyeater x x x 

Melithreptus albogularis White-throated Honeyeater x x x 

Melithreptus brevirostris Brown-headed Honeyeater x x x 

Melithreptus gularis Black-chinned Honeyeater x x x 

Melithreptus lunatus White-naped Honeyeater x x x 

Menura alberti Albert's Lyrebird  x x 

Menura novaehollandiae Superb Lyrebird x x x 

Merops ornatus Rainbow Bee-eater x x x 

Microeca fascinans Jacky Winter x x x 

Monarcha melanopsis Black-faced Monarch x x x 

Myiagra cyanoleuca Satin Flycatcher x x x 

Myiagra inquieta Restless Flycatcher x x x 

Myiagra rubecula Leaden Flycatcher x x x 
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Myzomela obscura Dusky Honeyeater x x x 

Myzomela sanguinolenta Scarlet Honeyeater x x x 

Neochmia modesta Plum-headed Finch  x x 

Neochmia temporalis Red-browed Finch x x x 

Neophema elegans Elegant Parrot  x x 

Neophema pulchella Turquoise Parrot x x x 

Ninox connivens Barking Owl x x x 

Ninox novaeseelandiae Southern Boobook x x x 

Ninox strenua Powerful Owl x x x 

Northiella haematogaster Blue Bonnet x x x 

Nymphicus hollandicus Cockatiel x x x 

Oreoica gutturalis Crested Bellbird x x x 

Origma solitaria Rockwarbler x x x 

Oriolus sagittatus Olive-backed Oriole x x x 

Orthonyx temminckii Australian Logrunner x x x 

Pachycephala inornata Gilbert's Whistler x x x 

Pachycephala olivacea Olive Whistler x x x 

Pachycephala pectoralis Golden Whistler x x x 

Pachycephala rufiventris Rufous Whistler x x x 

Pardalotus punctatus Spotted Pardalote x x x 

Pardalotus striatus Striated Pardalote x x x 

Petrochelidon nigricans Tree Martin x x x 

Petroica boodang Scarlet Robin x x x 

Petroica goodenovii Red-capped Robin x x x 

Petroica phoenicea Flame Robin x x x 

Petroica rodinogaster Pink Robin x x x 

Petroica rosea Rose Robin x x x 

Phaps chalcoptera Common Bronzewing x x x 

Phaps elegans Brush Bronzewing x x x 

Philemon citreogularis Little Friarbird x x x 

Philemon corniculatus Noisy Friarbird x x x 

Phylidonyris niger White-cheeked Honeyeater x x x 

Phylidonyris novaehollandiae New Holland Honeyeater x x x 

Phylidonyris pyrrhopterus Crescent Honeyeater x x x 

Pitta versicolor Noisy Pitta x x x 

Platycercus adscitus Pale-headed Rosella x x x 

Platycercus elegans Crimson Rosella x x x 
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Platycercus eximius Eastern Rosella x x x 

Plectorhyncha lanceolata Striped Honeyeater x x x 

Podargus ocellatus Marbled Frogmouth x x x 

Podargus strigoides Tawny Frogmouth x x x 

Polytelis swainsonii Superb Parrot x x x 

Pomatostomus superciliosus White-browed Babbler x x x 

Pomatostomus temporalis Grey-crowned Babbler x x x 

Psephotus haematonotus Red-rumped Parrot x x x 

Psephotus varius Mulga Parrot   x 

Psophodes olivaceus Eastern Whipbird x x x 

Ptilinopus magnificus Wompoo Fruit-Dove x x x 

Ptilinopus regina Rose-crowned Fruit-Dove x x x 

Ptilinopus superbus Superb Fruit-Dove x x x 

Ptilonorhynchus maculatus Spotted Bowerbird x x x 

Ptilonorhynchus violaceus Satin Bowerbird x x x 

Ptiloris paradiseus Paradise Riflebird x x x 

Purnella albifrons White-fronted Honeyeater x x x 

Pycnoptilus floccosus Pilotbird x x x 

Rhipidura albiscapa Grey Fantail x x x 

Rhipidura rufifrons Rufous Fantail x x x 

Scythrops novaehollandiae Channel-billed Cuckoo x x x 

Sericornis citreogularis Yellow-throated Scrubwren x x x 

Sericornis frontalis White-browed Scrubwren x x x 

Sericornis magnirostra Large-billed Scrubwren x x x 

Sericulus chrysocephalus Regent Bowerbird x x x 

Smicrornis brevirostris Weebill x x x 

Sphecotheres vieilloti Australasian Figbird x x x 

Stagonopleura bella Beautiful Firetail x x x 

Stagonopleura guttata Diamond Firetail x x x 

Stipiturus malachurus Southern Emu-wren x x x 

Strepera graculina Pied Currawong x x x 

Strepera versicolor Grey Currawong x x x 

Struthidea cinerea Apostlebird x x x 

Sugomel niger Black Honeyeater x x x 

Symposiarchus trivirgatus Spectacled Monarch x x x 

Todiramphus macleayii Forest Kingfisher x x x 

Todiramphus pyrrhopygius Red-backed Kingfisher x x x 
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Todiramphus sanctus Sacred Kingfisher x x x 

Tregellasia capito Pale-yellow Robin x x x 

Trichoglossus chlorolepidotus Scaly-breasted Lorikeet x x x 

Trichoglossus haematodus Rainbow Lorikeet x x x 

Turnix melanogaster Black-breasted Button-quail  x  

Turnix varius Painted Button-quail x x x 

Tyto novaehollandiae Masked Owl x x  

Zoothera heinei Russet-tailed Thrush x x x 

Zoothera lunulata Bassian Thrush x x x 

Zosterops lateralis Silvereye x x x 

 

 


