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Abstract 

 

Water scarcity has become one of the major global concerns. Research has shown that more 

than one-third of the population throughout the world resides in water-stressed regions now. 

Reverse osmosis (RO) desalination has recently been highlighted as a clean technology that is less 

energy intensive using membranes rather than directly consuming fossil fuels. 

Advances in nanomaterials have opened new possibilities for RO membrane materials. Zeolites 

are one of the candidate materials due to their crystalline structures and durability. However, the 

performance of zeolite membranes has not been successful for practical use due to poor water flux. 

Thus, we used molecular dynamics simulations to investigate, at the molecular level, a series of 

potential zeolite types which have been rarely studied for application in desalination. We determine 

diffusion coefficients and the structure of water when it passes through pores of these zeolites. In 

addition, we examine the potential of mean force for water or ions as they move into and through a 

zeolite membrane in order to evaluate how favourable the passage of the molecule of interest 

through each membrane is. This provided us with some criteria (i.e. water permeability and ion 

selectivity) to judge if the membrane is likely to have suitable desalination performance. Without 

this molecular-level understanding, selection of zeolite materials for desalination membranes is 

difficult. 

Some widely-studied types and potential types of zeolites were selected for our study. The 

common types have all 3-dimensional (3-D) pore structures, while the potential zeolites have 1-

dimensional (1-D) cylindrical pores. To investigate the water dynamics and structure in these 

different pores, we employed molecular (MD) dynamics simulations. The MD results showed the 

water self-diffusivity, which indicates a molecular mobility, in the 1-D pores is up to 18-time higher 

than that of the 3-D pores. As it was found that water molecules formed clusters, water droplets, and 

moved collectively at low water density in the zeolite pores, the water collective diffusivity, which 

is directly related to water flux, was also measured for the all the case of zeolites. This collective 

diffusivity through the 1-D pore zeolites was around one order of magnitude higher than that of the 

3-D pore zeolites, suggesting our 1-D zeolites selected are promising as high flux membranes. 

To evaluate the thermodynamic stability for water or ion of interest when they pass across the 

zeolite membranes, the potential of mean force calculations were carried out using MD simulations. 

We selected one of the 3-D pore zeolites (LTA) and another of the 1-D pore zeolites (VET) for the 

membrane. In general, these membranes had a moderate energy barrier to water transport, but a 

very high barrier to sodium or chloride ion transport except the VET membrane. The chloride ion 
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had a minimum in the potential of mean force at the pore entrance and a preference for the chloride 

ion to enter the pore than to enter the bulk solution for the system considered. However, VET has a 

lower energy barrier to water passage and a comparable high energy barrier to sodium ion transport 

compared to the LTA membrane. The VET membrane may be feasible as a desalination membrane 

if there is some chemical modification done on the pore to effectively reject the chloride ion. This 

issue will be more studied and addressed in our future work. 
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Chapter 1 Introduction 

 

1.1 Background 

With intensive industrialisation and climate change, water scarcity has become one of the major 

global concerns. Research has shown that more than one-third of the population throughout the 

world resides in water-stressed regions and this is expected to increase to two-thirds by 2025 (Li et 

al., 2013, Elimelech and Phillip, 2011). Supplying drinking water in a clean and safe way is 

currently a primary challenge to address. The desalination process has substantial potential to 

provide new fresh water from non-conventional resources such as seawater, which accounts for 

over 97% of the total water. Although desalination by thermal process, such as distillation, is still 

popular in areas with plentiful energy sources, reverse osmosis (RO) desalination has now been 

highlighted as a clean technology by using membranes rather than consuming fossil fuels directly 

(Charcosset, 2009, Eshoul et al., 2015, Shenvi et al., 2015). 

RO techniques require a membrane that water permeates into and passes through at high 

pressure, but the salt ions of seawater are not allowed to enter due mainly to size exclusion effects. 

Ideally, the best membrane for desalination has a combination of high salt ion rejection and high 

water flow rate. But it is rare for high rejection performance and rapid water flow to both be 

achieved on membranes, since the reduced molecular sieving effect of a larger pore membrane 

normally leads to lower rejection, despite the higher water flux. For example, a polyamide 

composite membrane that is widely used for desalination exhibits distinct trade-off correlations 

between permeability and rejection characters (Geise et al., 2011, Raval et al., 2015). Thus, the 

most significant challenge in this field is to develop higher flux membranes while retaining their 

rejection properties. 

Recently, advances in nanomaterial synthesis have opened new possibilities for membrane 

materials. Nano-crystalline materials, particularly carbon nanotubes (CNTs), demonstrate 

exceptional water transport due to its well-defined one-dimensional channels which give rise to 

almost ‘frictionless’ flow (Cohen-Tanugi and Grossman, 2012, Thomas and Corry, 2016). This 1-D 

path allows the water to be driven with low friction as the water molecules are surrounded by 

hydrophobic channel walls (Majumder et al., 2005, Holt et al., 2006). However, use of CNT 

membranes has problems such as low salt rejection due to the challenges of creating well-packed 

and well-aligned channels with suitable desalting pores. Nanoporous graphenes have also been 

investigated computationally for desalination purposes, showing a high potential for greatly 
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improved water permeability that could arise from the ultrathin graphene layer, while keeping high 

mechanical strength (Cohen-Tanugi and Grossman, 2012, Surwade et al., 2015). Despite these 

promising properties, there are key technical challenges to make a high density of uniform 

nanopores on the ultrathin layer for application to a desalination membrane. 

Other nanoporous materials, zeolites, have attracted great interest as alternative materials for 

desalination membranes (Li and Wang, 2010, Drobek et al., 2012, Rodríguez-Calvo et al., 2014). 

They have crystalline structures that can be relatively simply fabricated in many different ways. 

Also, these materials can be applied in many practically useful forms such as substrates, 

nanoparticles, or thin-films (Gascon et al., 2012, Rodríguez-Calvo et al., 2014). Since zeolites have 

a lot of different framework types which describe the network of tetrahedrally-coordinated atoms of 

a zeolite molecule, they are classified as three-capital-letter codes. This is so-called Framework 

Type Code that is derived from the common name of the zeolite materials. The widely-used types 

of zeolites for membranes are ZSM-5 zeolite (ZSMfive, MFI-type) and zeolite A (Linde Type A, 

LTA-type) which have been intensively studied for desalination (Murad et al., 1993, Li et al., 

2004b, Li et al., 2008, Li et al., 2004a, Li et al., 2007, Lin and Murad, 2001, Liu et al., 2008, 

Malekpour et al., 2008, Kumakiri et al., 2000, Duke et al., 2009, Gopalakrishnan et al., 2006, 

Drobek et al., 2012, Cho et al., 2011, Liu and Chen, 2013). Their desalinating capability and well-

defined channels have attracted considerable interest in industrial applications. To date, however, 

only partial success has been achieved for practical use due to poor water permeability. Therefore, 

zeolites which have cylindrical sub-nanometre 1-D pore channels are proposed to be useful as high 

flux desalination membranes along with advantages of their simple fabrication and natural 

abundance.  

To evaluate the suitability of potential zeolite types as desalination membranes, a systematic 

study for the zeolites must be performed by scrutinising water behaviour depending on their pore 

sizes and structures. Furthermore, the performance of the zeolite membranes also have to be 

assessed by measuring how favourable water or ion transport through the membrane is since a 

desalination membrane allows water to pass through, but effectively block salt ions. To achieve 

these molecular-level studies, molecular dynamics (MD) simulation are a very appropriate method 

because this approach enables us to achieve the quantification of water movement and structure 

through the zeolites and their thermodynamic characterisation. 

The aim of this thesis is to investigate water transport in zeolite frameworks that have been 

widely studied, as well as in unexplored types of zeolite frameworks which have high potential for 

desalination, using MD simulations. This molecular-level approach will enable us to gain a deep 
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understanding of the water behaviour occurring in both the widely-used and potential zeolites, then 

allow us to compare and understand the water behaviour in different zeolite types with an aim of 

assessing whether those are promising or not as membrane materials. In addition, free energy 

studies will be carried out to examine the thermodynamic stability of water or ion passing through 

those zeolite membranes. The results of the free energy calculations will give insight into the 

membrane selectivity by showing how thermodynamically favourable the particle permeation into 

or through the membranes is. The findings of this thesis is expected to open new possibilities of 

zeolites as membranes for future desalination. 

 

1.2 Scope and Research Contributions 

The study area of this thesis will cover diffusional and structural properties of water in zeolites 

with potential use for desalination membranes at the molecular scale via MD simulations. The 

selected zeolites are all siliceous (pure silica) types with different pore structures. The pure silica 

membranes are expected to have a hydrophobic property of inner pores which may provide 

frictionless pathway for water transport. The zeolites with three-dimensional (3-D) pore channels 

are MFI-, LTA-, and FAU-type which have been extensively studied as desalination membrane 

materials in recent decades. One-dimensional (1-D) pore channel holders are VET-, TON-, and 

CFI-type zeolites that are potential materials for desalination membranes. For the 1-D zeolites as 

membranes, there are some issues that have to be achieved such as crystal growth direction since it 

should be more beneficial when the 1-D channels grow in the direction perpendicular to membrane 

surfaces. Few studies have recently attempted tuneable zeolite structures such as crystal direction, 

thickness, and morphology, then they have partly succeeded and continue to develop. It is thus 

worthwhile to conduct fundamental studies on those unexplored 1-D zeolites as well as the widely-

studied 3-D zeolites for future references to desalination membranes. 

We employ molecular dynamics simulations for our molecular-level studies. Some important 

points to be considered in these MD studies are that there are a number of ensemble algorithms 

being used to integrate equations of motion of particles in a molecular system. Previous studies 

have reported that different algorithms may result in different dynamical properties of particles 

(Krishnan et al., 2013, Bernardi et al., 2010, Yong and Zhang, 2013, Thomas and Corry, 2014), thus 

validation work on the selected ensemble has to be done to produce reliable results for water 

transport. The first work of this thesis will deal with studies of different thermostatting (temperature 

controller) ensembles on diffusional and structural behaviour of the water in zeolites. The second 

work is to study the widely-used 3-D pore zeolites and the potential 1-D pore zeolites for evaluating 
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their water fluxes to be when these zeolites are built as membranes. The third work gives an 

intuitive idea of the stability of water or ion transport across the zeolite membranes using the PMF 

calculations. 

The follows are the major tasks to be undertaken in this thesis. 

 Discover the effects of various MD ensembles on dynamical and structural behaviour of 

water in zeolites; when NVE (microcanonical), NVT (canonical), NVT to zeolite 

framework only, NVT to water only, NPT, or NPH ensemble is applied individually to a 

system, it will be studied how they vary the diffusivity and the distribution pattern of water. 

 Investigate the clustering of water in zeolite pores and its effect on diffusion rates and 

structures of the confined water. 

 Explore water behaviour depending on the shape and diameter of 1-D pores of zeolites (i.e. 

VET, TON, CFI); the relation of the pore shape (circular: VET and CFI, elliptical: TON) 

and diameter (TON ˂ VET ˂ CFI) to water diffusivity and distributional structure will be 

evaluated. 

 Understand effects of the pore shape, size, and dimensionality on water behaviour in 3-D 

pore zeolites; it will be explored how the pore shape (cage-like: LTA and FAU, cylindrical: 

MFI), diameter (MFI ˂ LTA ˂ FAU), and how pore alignment make varied outcomes. 

 Generate the free energy profiles of water or ion transport across the zeolite membranes; the 

difference of the energy barrier between water, sodium and chloride ion permeation into a 

membrane will be demonstrated. 

 

1.3 Sections of Thesis 

The thesis consists of seven chapters. 

Chapter 1 covers the motivation and introduction of my PhD project, scope of the study and the 

contributions made to the research area. 

Chapter 2 shows a literature review on a variety of reverse osmosis (RO) desalination 

membrane materials, and more focuses on the previous work on zeolite desalination membranes. 

Chapter 3 introduces a brief principle of molecular dynamics simulation and how it works for 

the membrane science, also the previous MD studies on zeolites as RO membranes. 
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Chapter 4 presents a comprehensive study on transport properties and structures of water in 

zeolites. 

Chapter 5 is a comparison study of water behaviour in the widely-studied 3-D zeolites and the 

potential 1-D zeolites. This chapter evaluates potentials of the zeolites as desalination membranes in 

terms of water flux. 

Chapter 6 ranges over the free energy changes of water, sodium and chloride transport across 

the zeolite membranes by measuring the potential of mean force (PMF). The outcomes will give a 

guidance to judge those zeolite membranes for desalination. 

Chapter 7 is a summary section for this thesis and suggests future research directions in zeolite 

RO desalination membranes. 
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Chapter 2 Zeolites as Porous Membranes 

 

This chapter briefly outlines the background, current knowledge, and recent research on reverse 

osmosis desalination membranes which motivated and initiated the research of this thesis. We 

discuss the knowledge, limitations, and potentials for membrane materials, focusing on zeolites 

which are the materials studied in this thesis. 

More specific relevant theories, methodologies, and recent studies will be thoroughly reviewed in 

the next chapter to provide a background to our research on zeolite membranes using molecular 

dynamics simulations. 

 

2.1 Introduction to reverse osmosis desalination 

Desalination is important for the production of clean water from seawater or brackish water, 

which is required to meet the water demand for food, agricultural, human activities. This process 

can be carried out in many different ways. Conventional methods include thermal technologies such 

as multi-stage flash (MSF) and multi-effect distillation (MED) which have been most widely used 

worldwide, especially in oil-producing countries (Khawaji et al., 2008, Darwish and El-Dessouky, 

1996, Humplik et al., 2011, Kesieme et al., 2013). Membrane-based technologies have also been 

proposed and used recently, including electrodialysis (ED), reverse osmosis (RO), and forward 

osmosis (FO) (Sadrzadeh and Mohammadi, 2008, McGinnis and Elimelech, 2007, Lee et al., 2011, 

Li and Wang, 2010, Shenvi et al., 2015). These membrane-based processes are deemed 

environmentally-friendly due to the less energy intensive operation compared to the thermal 

processes. Of the membrane processes, RO is regarded as the most promising and leading 

technology in desalination (Eshoul et al., 2015, Inukai et al., 2015, Shenvi et al., 2015). In osmosis, 

osmotic pressure is generated by concentration differences between solutions, which draws the 

solvent from the less concentrated solution (e.g. pure water) through a semi-permeable membrane 

into the more concentrated solution (e.g. seawater) until both concentrations reach the same level 

(Figure 2-1). Conversely, in reverse osmosis (RO), external pressure greater than the osmotic 

pressure is applied to the higher concentration solution so that water goes through a semi-permeable 

membrane to the fresh water, but salts are rejected by the membrane (Figure 2-1). 
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Figure 2-1 Schematic illustrations of osmosis process and reverse osmosis (RO) desalination 

process. 

 

In the RO process, there are two major features that are required, that is, high water flux and 

high salt rejection. In general, these two parameters are a trade-off in that an increase in the flux 

may bring about low salt rejection and vice versa. However, substantial efforts have recently been 

made to satisfy the commercially-applicable high flux together with high enough salt rejection for 

drinking-quality water (Humplik et al., 2011, Lee et al., 2011, Giwa et al., 2016, Shenvi et al., 

2015). To fulfil this aim, developments in membrane materials should be in the forefront. The 

membrane used in RO desalination is called a RO desalination membrane or RO membrane.  

The first RO membrane was a cellulose acetate (CA)-based membrane. CA monomer is the 

basic repeating unit that can be linked and crosslinked, resulting in fabric matrices that are porous. 

These cellulosic polymer membranes and their blends with other materials lead to an effective 

separation performance that can be tuned for the particular application (Basta et al., 2003, El-Saied 

et al., 2003, Ferjani and Roudesli, 2000, Ferjani et al., 2000, Ferjani et al., 2002). For example, 

blending with a small fraction of poly(methylhydrosiloxane) was shown to greatly improve salt 

rejection since it played as a crosslinking agent for CA, but decreased the water transport rate due to 

the enhanced hydrophobicity (Ferjani et al., 2002, Ferjani et al., 2000, Li and Wang, 2010). 

However, excessive polymer additives in CA was found to result in deterioration of polymer 

compatibility, causing poor performance (El-Saied et al., 2003). 

One of the most successful membranes for desalination is a polyamide (PA)-derived membrane. 

Many studies have intensively focused on PA thin film composite (TFC) membranes (Figure 2-2) 

which consist of; (1) a non-woven fabric, (2) a polysulfone substrate, and (3) a cross-linked PA 

working layer; due to their high salt rejection and cost effective fabrication. For this membrane, two 
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bottom layers, the fabric and substrate, give mechanical strength to one another as well as the top 

layer, and the very dense top layer absorbs water and retains salts on application of a pressure 

gradient (Raval et al., 2015). Most studies of this membrane focus on trying to improve water 

permeation while keeping the same level of rejection (Ghosh et al., 2008, Ghosh and Hoek, 2009, 

Freger et al., 2002, Belfer et al., 1998b, Belfer et al., 1998a, Jin and Su, 2009, Kang et al., 2007b, 

Kim et al., 2000, Kim et al., 2009, Il Kim and Kim, 2006, Li et al., 2008a, Li et al., 2007a, Roh et 

al., 2006, Saha and Joshi, 2009, Kim et al., 2003). For instance, optimising the PA polymerisation 

(the key parameter for controlling desalination properties), by tuning of the monomer concentration, 

changing of the solvent used for the casting solution, and changing the reaction conditions, leads to 

different surface morphologies and pore densities (Petersen, 1993, Ghosh and Hoek, 2009, Madaeni 

et al., 2009, Roh et al., 2006, Ghosh et al., 2008). Furthermore, a variety of monomer (amines and 

acid chlorides) combinations have been studied (Li et al., 2007a, Li et al., 2008a, Kim et al., 2000, 

Saha and Joshi, 2009, Kim et al., 2003). Thanks to this great deal of effort on membranes, it has 

been possible to impressively enhance the PA TFCs’ water flux while maintaining salt retention. 

Nevertheless, there are still drawbacks that restrict its practical use. Very dense PA surface layers 

cause fouling on the surface, which gradually deteriorates membrane performance. Also, chlorine 

attack on the amide bond in PA membranes breaks the surface PA linkage, which degrades the 

working layer. Above all, despite the enhanced water permeability, TFC membranes are still limited 

by poor water flux (6.6 × 10−6 m3 m−2 s−1) (Raval et al., 2015). 

 

 

Figure 2-2 A schematic of the interfacially polymerised polyamide (PA) thin film composite 

membrane. Acid chloride groups from trimesoyl chloride (TMC) monomers and amine groups from 

m-phenylenediamine (MPD) monomers are highly reactive to one another, generating a dense 

polyamide polymer. Since TMC tends to be in organic solvent and MPD in water, they can be 

polymerised at the interface between organic and water phases [Adopted and modified from Ref 

(Kim et al., 2005)]. 
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2.2 Recent trends in RO desalination membrane materials 

Due to the disadvantages mentioned earlier for the commercial TFC membranes, coupled with 

results of rapid development in crystalline nanomaterials, nanostructured membranes are now also 

being considered. Recently, ultra-flux nanomaterial membranes have received intensive attention as 

potential replacements for the TFC membranes. Since it is generally accepted that higher water 

permeability membranes demand lower pressure for water transport, the desalination energy 

consumption is consequently reduced. Of the promising candidates, so far carbon nanotube (CNT) 

membranes have exhibited the greatest promise for future use. 

Well-aligned CNT membranes have demonstrated 4 or 5 orders of magnitude higher water flux 

than the values expected based on hydrodynamic theories (Holt et al., 2006, Majumder et al., 2005, 

Elimelech and Phillip, 2011, Alexiadis and Kassinos, 2008, Shenvi et al., 2015). This exceptional 

feature may be attributed to the molecular smoothness of inner tubes where water passes as if the 

internal walls are lubricated (Corry, 2008, Falk et al., 2010). To prevent salt ions from permeating 

pores, the entrance of CNTs must be chemically modified to have functional groups that reject ions, 

or the pore size of nanotubes must be smaller than the ion diameter. However, to date, no successful 

practical outcomes on CNT have shown comparable salt rejection for desalination to that of 

conventional TFC membrane (Trivedi and Alameh, 2016, Shenvi et al., 2015). The possible 

explanation is that it is very challenging to produce well-defined CNTs without defects or to make 

adequate desalting diameters of the nanotubes. Furthermore, the CNT fabrication cost is much 

higher than that for the current polymeric membrane. 

Another carbonaceous membrane being recently highlighted is nanoporous graphene. Graphene 

is an atomistic-thick single layer of hexagonally-arranged carbon atoms. This material gained much 

interest due to its unique electronic characteristics which may be applied for electronic devices 

(Rodríguez-Calvo et al., 2014, Humplik et al., 2011). It also has a high mechanical strength (Lee et 

al., 2008) and impermeability to even very small molecules like helium in its pristine form (Bunch 

et al., 2008). However it has been considered as a high flux membrane if pores are generated in the 

sheet. Recently, large area graphene layers have been successfully fabricated and transferred in roll-

to-roll production (Bae et al., 2010), which opens the possibility of large-scale graphene membrane 

production. Some molecular dynamics (MD) simulations (Sint et al., 2008, Suk and Aluru, 2010) 

have been carried out to study water and ion transport through graphene with nanopores. The 

nanoporous graphene with diameters of ~5 Å  studied by Sint et al. (Sint et al., 2008) behaved as an 

ionic sieve with high selectivity and transparency. Suk and Aluru (Suk and Aluru, 2010) examined 

water transport across a porous graphene membrane and compared it with that of a carbon nanotube 
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(CNT) membrane of short-length (<10 nm). For the pore size of ca. 7.5 Å  in diameter, water flux 

was higher for the CNT membrane than the single-layer nanoporous graphene, but for the bigger 

pores (ca. 27.5 Å ), the graphene membrane showed the higher flux. These theoretical results 

indicate the feasibility of high flux desalination membranes using nanoporous graphene. Very 

recently, nanoporous single-layer graphene has been experimentally developed as a desalination 

membrane by Surwade et al. (Surwade et al., 2015), showing exceptional results of nearly 100% 

salt rejection and high water volume flux of up to 1 m3 m−2 s−1 that is five orders of magnitude 

higher than the commercial polymeric membrane. However, it is very challenging to create sub-

nanometer pores uniformly on the sheet. Also, a high density of pores can deteriorate the 

mechanical strength of the membrane (Surwade et al., 2015) and the cost of porous graphene 

fabrication is very high owing to the need to use expensive perforating methods such as oxygen 

plasma etching (Surwade et al., 2015), electron beam irradiation (Fischbein and Drndić, 2008), and 

ion bombardment (Lucchese et al., 2010, Ahlberg et al., 2016). Therefore, the commercialisation of 

this thin-layer membrane is still far from realisation. 

Another material that has been extensively considered as a membrane over the last decade is 

zeolite. Zeolites are three-dimensional nanostructures with a great variety of classes in terms of 

structure and elemental composition. According to the compositional elements, zeolites can be 

categorised, and common categories include silicas, aluminosilicates, and aluminophosphates 

(Kitao et al., 1999, Humplik et al., 2011, Filippov et al., 2012). In addition, to specify the structure 

of zeolites, three-letter codes have been widely used for identification of zeolites. Around 200 

different structures have been identified to date (First et al., 2011, Baerlocher and McCusker, 2015). 

The identifying codes will be often referred to in the rest of the thesis. 

Due to their chemical and physical varieties, zeolites have been extensively studied for use as 

pervaporation and gas separation membranes. Also, their well-defined crystallinity and different 

chemical functionalities provide great potential for use in areas that range from biophysics to 

materials science (Ceyhan et al., 2007, Jiang et al., 2011, Gascon et al., 2012). Moreover, they can 

be chemically, thermally, and mechanically stronger than some polymeric membranes used for 

desalination. Murad et al. were first to report on potential use of zeolite membranes for ion removal 

from water using a computational approach (Murad and Powles, 1993, Lin and Murad, 2001, Murad 

et al., 1993, Murad, 1996). According to their simulations, the membranes made of ZK-4 (LTA-

type) or pure silica LTA (Leiggener et al., 2008, Rigo et al., 2013) exhibited a perfect sodium 

rejection in RO process. However, very few experimental attempts on zeolitic RO membranes were 

done until 2004, and only a few types of zeolite (Figure 2-3) have received attention. This has been 
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due to the higher fluxes and selectivity that have been obtained compared to those in commercial 

TFC membranes (Drobek et al., 2012, Lee et al., 2011). 

 

 

Figure 2-3 Three-dimensional representations of (A) LTA zeolite with pores of 0.4 nm diameter 

and (B) MFI zeolite with 0.56 nm pores [Reproduced from Ref (Lee et al., 2011)]. (C) Two-

dimensional drawing of aluminosilicate zeolite [Reproduced from Ref (Granda-Valdés et al., 

2006)]. 

 

2.3 Zeolites as desalination membrane materials 

Zeolite membranes (Figure 2-4) are typically fabricated by the hydrothermal method and 

deposited onto porous steel or ceramic substrates (Li et al., 2004a, Malekpour et al., 2008, Liu et al., 

2008, Li et al., 2004b, Li et al., 2007b, Li et al., 2008b). The thickness of membranes needs to be in 

the micro-meter scale to maintain high selectivity and enough permeance for practical use. The 

reports on zeolite A (Si:Al = 1:1, LTA-type) application for desalination suggested a good 

resistance of the zeolite layer to high pressure and solution concentration (Kumakiri et al., 2000). 

MFI-type zeolites have attracted even more attention for desalination purposes (Li et al., 2004a, 

Duke et al., 2009, Li et al., 2007b, Li et al., 2004b, Li et al., 2008b, Liu et al., 2008). 
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Figure 2-4 Schematic drawings of (A) MFI zeolite membrane (B) Type A zeolite-embedded 

membrane [Adopted and modified from Ref (Jeong et al., 2007, Lee et al., 2011)]. 

 

MFI zeolites possess straight channels and zigzag channels linked to one another, producing 3-

D channels with 0.55 nm-sized pores suitable for hydrated ion removal (Kazemimoghadam, 2010). 

Some studies into MFI membranes proved that enhancing ion selectivity reduces water permeability 

with increasing RO operation time. It is generally believed that some sodium ions permeate the 

pores and hinder water molecules from entering, thereby reducing the water flux. Thus, overlapping 

of the crystalline zeolitic layers has been used to prevent ion permeation. Such membranes operated 

under RO system for hours showed that the Na+ rejection varies from 76.7% to 99.4% (Li et al., 

2004a, Liu et al., 2008). Compared to the conventional PA membrane which has >98% sodium 

rejection (Kang et al., 2007a, Li and Wang, 2010), the zeolite desalination membrane still has not 

reached the commercial standard. The lower rejection than the theoretical prediction of 100% may 

be attributed to non-selective inter-crystal pores where a small quantity of ions could pass through 

during RO process.  

As in the case of the polymeric membranes, RO desalination properties of zeolite membranes 

are dependent on the applied pressure, temperature, feed concentration as well as pore size (Li et al., 

2008b, Li et al., 2007b). The variation in such conditions influences the ion flux more than the 

water flux which mainly depends on its diffusion rate inside channels. For example, at higher 

temperature, the ion flux increases more than the water flux, leading to a decrease in selectivity. 

With increasing feed (NaCl solution) concentration, for the zeolites with a negatively charged 

surface (e.g. ZSM-5), ion flux is significantly increased because the higher concentration increases 

both the driving force and effective pore size (Li et al., 2008b, Li and Wang, 2010). The possible 

reason is that with an increase in ion concentration, the electrically charged double layer formed at 

the membrane surface may shrink due to the screening effect of cations on the surface (Labbez et 

al., 2003), resulting in an increase of the effective pore size for ion passage (Huisman et al., 1998). 
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Also, the presence of other cations (e.g. Ca2+, Al3+) has an effect on the water flux and NaCl 

rejection decreases since the cations influence effective pore sizes and ion-water interactions. The 

strong screening effect of the high valence cations on the zeolite surface potential gives rise to the 

opening of inter-crystal pores for ion flow (Li et al., 2008b). 

An experimental study on comparison of RO performances between silicalite (all-Si MFI-type) 

and ZSM-5 (Al-containing MFI) was carried out (Duke et al., 2009). Silicalite was expected to be a 

better RO performer than the Al-containing type due to its monopolar surface charge. Additionally, 

same experimental and simulation works have been carried out on the water dynamics in MFI-type 

zeolites with different chemistries at varying temperature and the loading number of water 

molecules (Zhang et al., 2012, Arı et al., 2009, Ahunbay, 2011). The results indicated that water 

diffusivities in pores are improved with increasing temperature and hydrophobicity of inner 

channels (e.g. silicalites) as expected, whereas water adsorption by MFI zeolites is higher for 

hydrophilic ZSM-5 (Al-containing MFI) than that of its counterparts since Al in zeolite frameworks 

provides hydrophilicity and hydrophilic surface functionalities (e.g. OH−) contribute to water 

adsorption enhancement.  

Although, apart from the applied pressure, the driving factors of water transport have not been 

clearly explained in RO process to date, it could be inferred from the previous studies that 

hydrophilic zeolites could absorb water more significantly than non-hydrophilic zeolites, while 

hydrophobic inner pores could have a lubricating effect so that water passes through quicker than in 

hydrophilic pores. In addition, zeolite pore size and shape is another key factor that influences water 

movement. Thus, a deeper molecular-level understanding of water transport through porous zeolites 

will be of importance for development of future RO membrane materials. In addition, other types of 

zeolites which have yet to be studied for their potential as membrane materials should be 

investigated in detail since only a few types of zeolite have been examined. 

 

2.4 Summary 

There are a broad range of membrane materials including organic, inorganic and hybrid 

materials. (e.g. polymeric, polymer composites, inorganic, and organic-inorganic composite 

membranes) 

Nanoporous materials (e.g. CNTs, graphenes, zeolites) have attracted massive research interest 

as RO desalination membranes due to their high thermal, chemical, and mechanical stabilities 

compared to conventional polymeric membranes. Among these candidates for the membrane, 
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zeolites are promising materials because of their variety of crystalline structures and chemistries 

which could be suitable for RO desalination. Experimental studies have examined several types of 

zeolite for their suitability as RO membranes, then show some potentials, but have found that they 

are not practical due to low water permeability. 

To date, only a few types of zeolite have been intensively studied, which are LTA-types (e.g. 

zeolite A) and MFI-types (e.g. ZSM-5). It is therefore necessary to investigate some other forms of 

potential zeolite, and to obtain a deep understanding to such materials for future use of desalination 

membranes. In this chapter, we discussed some of the features of membranes that determine their 

suitability as RO membranes. 

This thesis will focus on zeolites, and two of the key questions: the dependence of diffusion of 

water through zeolites on the pore structure; and the influence of the structure of the pore opening 

on the entry of water and ions into a zeolite pore. 
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Chapter 3 Molecular Dynamics Simulation and Application to Study 

of Transport through Zeolites 

 

3.1 Principles of Molecular dynamics 

Molecular dynamics (MD) simulation is one of the most powerful tools available to study 

molecular physics in systems on the atomic scale. Properties, that are almost impossible to access 

using experimental approaches, can be investigated; conditions highly controlled and molecular-

level understanding of the processes obtained [see discussion in (Ebro et al., 2013, Schlick, 2002)]. 

For that reason, MD has been helpfully used to apply zeolites in various fields such as 

nanotechnology, biophysics, and materials science (Gascon et al., 2012, Jiang et al., 2011, Ceyhan 

et al., 2007). Specifically in the field of nanomaterials, MD is a powerful method to gain molecular-

level insight into physical phenomena in nanoporous materials. By using MD, it is expected that 

quantification of nanoparticle movement through nanostructures and characterisation of the 

materials are achieved. 

Classical molecular dynamics simulations are based on Newtonian mechanics. According to 

Newton’s 2nd law of motion, there is a relationship between the force on particle i (Fi), mass (mi), 

and acceleration (ai) 

 

 

 

where ri indicates the position of particle i, and t is time.  

In a molecular system, the force on atom i (Fi) can be defined as follows 

 

 

 

(3-2) 

(3-1) 
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where the force exerted on atom i is generated by the other N-1 molecules, U(rN) is potential energy 

which is a function of all the particles in the system, and rN = (r1, r2,…rN) represents a series of 3N 

molecular positions (Ebro et al., 2013). The kinetic energy of the system can be expressed as  

 where pi is the momentum of atom i. Also, the total energy for the system can 

be described as a sum of the kinetic and potential energies (H = K + U). Now, the classic equations 

of motion for a system that conserves the total energy can be written as  (Allen, 2004). 

 

 

 

 

where vi represents the velocity of atom i. The motion of all atoms can be defined by their 

successive positions, velocities, and forces generated from the combination of equations 3-2 and 3-

3. In practice, the positions and velocities of the particles are evolved with a time interval by 

numerically integrating the first-order differential equations 3-3. This molecular trajectory is a basis 

of predicting a bulk system, and relating it to physical phenomena. 

The most widely used integrator in MD simulations is the Verlet algorithm. There are different 

versions which have been employed, such as the classical form and a ‘leapfrog’ form (Verlet, 1967, 

Verlet, 1968, Hockney and Eastwood, 1988a). In this thesis, however, we focus on a ‘velocity’ 

Verlet form that is commonly used and is employed in numerical calculations in the present project. 

The general equation for this integrator can be expressed from the Taylor expansions for the particle 

positions and velocities; it is as written below (Meller, 2001, Allen, 2004). 

 

 

 

(3-3a) 

(3-3b) 

(3-4a) 

(3-4b) 
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In equations (3-4), ∆t indicates time step. The velocities and positions can be propagated in this 

scheme. 

Each of the atoms in a given system interacts with neighbouring atoms, and the interaction 

potential can be defined using two main approaches. This mathematically-defined potential is called 

a ‘force field’. One approach is the ab initio method used to derive the force field, which solves 

electronic structures of atomic nuclei from quantum mechanics, then calculates the interatomic 

potential and fits these results to a functional form. In many cases, the ab initio force field 

represents accurate and precise interatomic potentials, but allows us to calculate only a small 

molecular system (hundreds of atoms) for time scales of hundreds of picoseconds, resulting in 

difficulties describing the macroscale properties of molecules such as their bulk dynamics and 

structures.  The empirical method determines the interatomic potential by approximation of the 

potentials from experimental results. The potential has bonding and non-bonding contributions. 

From such interactions, the potential energy terms can be determined (Weiner et al., 1986, 

Jorgensen et al., 1984, van Gunsteren and Berendsen, 1987, Mayo et al., 1990, Smith et al., 2012). 

The total interaction potential (Utot) of the molecular system can be expressed as a sum of 

contributions due to various interactions. A commonly used form is: 

 

 

 

where Ubond, Uang, and Udihed are bonding intramolecular interactions representing the stretching, 

bending, and torsion which occur between bonded atoms, respectively. UvdW and Ucoul indicate van 

der Waals interactions and electrostatic interactions, respectively, both types describe non-bonded 

interactions and can be employed to represent intramolecular and/or intermolecular interactions, 

sometimes used to define the dihedrals (torsion motions). A set of such mathematical functions and 

numerical parameters is used to represent the potential energy of a system of atoms in molecular 

simulations. This method can reproduce the bulk behaviour of the molecules well if sufficient 

experimental data is available, as the force field is derived by fitting experimental results. It also can 

be used to simulate a much bigger system containing hundreds of thousands of atoms for 

(3-5) 

(3-4c) 
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nanoseconds or even microseconds. However, it applies to the particular system and conditions 

used in the parameterisation, and its transferability to different systems and other conditions must 

always be validated.  The interaction terms to be included in the total energy and input parameters 

are varied depending not only on different molecular systems, but on methods to derive the 

potentials and parameters. In the present thesis, only Ubond, Uang, UvdW and Ucoul terms will be 

adopted to model zeolites, water, and salt ions. Detailed specifications of the functional forms and 

numerical parameters will be dealt with in further chapters 4, 5, and 6. 

To model bulk systems, periodic boundary conditions (PBC) are commonly used. PBCs make 

the simulation system like an infinite bulk system to prevent problems caused by finite boundary 

effects as the PBC removes the boundary effect. This algorithm assumes the simulated unit cell is a 

single repeating unit of the large scale system, and enables us to calculate and predict the bulk 

properties of the unit as shown in Figure 3-1 for a 2-D system. However for very small simulation 

systems or statistically-nonequilibrated systems, the use of the PBCs leads to deviations from the 

bulk system, which may be due to truncation of the correlation interactions. 

 

 

Figure 3-1 An illustration of 2-D periodic system. Particles in a unit box can move to or from the 

periodic replicas. Once a particle crosses over the box boundary, an image particle moves in from 

the opposite side to replace it. Both real (filled) and image (empty) neighbouring particles are taken 

into account for the interaction calculations. 
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In MD simulations, when calculating non-bonded atom-atom (pairwise) interactions, in 

principle, a large number of pairwise interactions must be taken into account to consider all possible 

interactions between each atom i and all other surrounding atoms j. This may consume a substantial 

computing time, i.e. a high cost. Due to this reason, it is generally assumed that the pairwise 

interactions are short-ranged, which means UvdW (rij) = 0 if the pair distance goes beyond certain 

distance, rij ˃ rcut (Jensen, 2007). This is called potential cutoff, and is able to save the computing 

time by excluding some pairwise calculations. However, although this algorithm makes the 

simulation more efficient, still a considerable time will be required. To make a MD simulation more 

economic, lists of neighbouring pairs of atoms can be introduced. Verlet suggested that a potential 

sphere around an atom is surrounded by a skin, giving a larger sphere (Verlet, 1967) as shown in 

Figure 3-2. 

 

 

Figure 3-2 A neighbour list on its initial construction, and changes in atomic positions every 

several time-steps. The large solid circle represents a potential cutoff sphere, and the dashed circle 

indicates a list sphere. White particles represent atoms inside the cutoff sphere, and grey particles 

are atoms between the list and cutoff spheres. The list must be rebuilt before atoms originally 

outside the list boundary (black particles) have entered the potential cutoff range. 

 

Here the potential sphere is defined by radius of the cutoff rcut, and the extended sphere is called 

‘list’ and defined by radius of the list rlist. A neighbour list is built in which all the neighbour atoms 

of each atom appear, for the pair distance within rlist at the beginning of a simulation, then the pairs 

in the list are used in the force/energy evaluation routine over the next few time steps. Atoms that 

originally appear on the list may move in and out of the potential sphere, but they are always 

considered, until a new list is formed. From time to time, the list must be rebuilt. This occurs if any 

of the pairs outside the list has moved into the potential cutoff boundary. It is thus important to 

update the neighbour list automatically in order to accurately refine the pairwise interaction. The list 

radius rlist is a compromise parameter that you are free to choose, but must be longer than the cutoff 
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radius since the parameter is set as the cutoff plus the estimated distance particles may move in 

certain time-steps. The larger list will reduce the frequency of the list updates, but will not make an 

efficient saving on computing time compared to the smaller list (Allen and Tildesley, 1987). 

In addition to computing the short-range interactions, the correct handling of long-range 

interactions is another key issue in evaluating non-bonded interactions. The electrostatic charge 

(Coulombic interaction) can be defined by both short- and long-range potentials. As for the van der 

Waals interaction, the short-range (real contribution) of Coulombic interaction is evaluated using 

the distance between atomic charges and the potential cutoff rcut: 

 

 

 

where qi, qj are the charges on atoms i, j and  is the permittivity of free space. However, the long-

range Coulombic charges (imaginary contribution) take the simulation cell and its periodic images 

into account. The long-range interaction can be defined as 

 

 

 

where n is the lattice vector n = (nxLx, nyLy, nzLz) and r is the distance vector (rxij, ryij, rzij) between 

atoms i and j. The summation of the terms in equation (3-7) converges if the summation is carried 

out in an appropriate order. The Ewald sum is one of the most widely used summation methods to 

evaluate the long-range interaction (Allen and Tildesley, 1987, Essmann et al., 1995, Toukmaji and 

Board, 1996). This scheme involves a decomposition of the summation in equation (3-7) into two 

rapidly convergent terms. The scheme works by surrounding each charge in a system by a charge 

distribution of equal magnitude and opposite sign. The counter-charge screens the original long-

range potential, making it short-ranged. Then this is added in real space. Also, an imaginary charge 

distribution of the same sign as the charges is introduced to cancel out the effect of the screening 

charge. This second is added in reciprocal space. However, this method can be computationally-

expensive for a large system since the computing time is proportional to . Thus, some alternative 

(3-6) 

(3-7) 
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schemes have been developed. One of such widely adopted methods is the Particle-Particle-Particle 

mesh (PPPM) Ewald sum (Hockney and Eastwood, 1988b). The scaling of PPPM is faster than that 

of Ewald, and is  times. In this summation, short-range interactions are directly calculated 

and long-range interactions are measured by interpolating the charges onto a mesh. Thus, Poisson’s 

equation (Jackson, 1999), which describes the electric field formed by the charge distribution, can 

be solved on this mesh to calculate the interactions. In such method, there are several variants to 

interpolate the charges onto a mesh (Toukmaji and Board, 1996). 

In many cases of MD simulations, molecules in a system are simply modelled using non-

bonded interaction terms (i.e. UvdW + Ucoul) for their intramolecular and intermolecular potentials. 

For some other molecules, that have a flexible geometry but tend to stay close to their most stable 

geometry such as solids, intramolecular bonding interactions must be considered. These molecules 

can be generally constructed by the following bonding terms 

 

 

 

 

where kr, kθ are the bond force constant and the angle force constant, respectively, and r0 is the 

equilibrium bond distance. θjik indicates the angle made by atoms j, k around the centred atom i, and 

θ0 is the equilibrium angle. By means of the bonding terms, it is assumed that the bond involves a 

stretching motion between adjacent atoms in a molecule by a harmonic potential with the specified 

equilibrium distance while the three-atom angle has a bending motion by a harmonic oscillation 

with the equilibrium angle. These mathematical models in MD simulations have been used as 

reliable representations for intramolecular motion. Thus, they will be adopted and employed for 

modelling bonded structures in the rest of the thesis. Another form of bonding interaction will be 

also used to evaluate some specific case, and will be dealt with in detail for Chapter 6. 

If intramolecular bonding interactions are not the main focus of interest, it is also common to 

keep molecules rigid, in order to increase computational efficiency, and to avoid unwanted classical 

contributions made from modes involving high bonding frequencies, which is for most ranges of 

temperature of interest in the ground state. The method to achieve this is called a ‘Bond constraint’ 

(3-8) 

(3-9) 
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that is often used to make molecules, formed by bonding terms, rigid by fixing the bond length and 

angle. Thus, the rigid molecule is assumed to be a reasonable model for its experimental one, and its 

rigidity makes no significant effects on other molecules in a system. In classical mechanics, in 

general the constraint algorithm can be implemented through the method of Lagrangian multipliers 

(Goldstein, 1980). For instance, if there are two atoms i and j with a fixed bond length b, given their 

atomic coordinates, equations for the bond constraint can be written as 

 

 

 

 

In equations of motion, the constraint forces exerted on the atoms will be added to the interaction 

forces to give 

 

 

 

where ⋀ is the undetermined multiplier. 

 

 

 

 

Considering one constraint to be imposed, the multiplier ⋀ can be simply calculated through 

equations (3-12). In general, however multiple constraints can be carried out, and will be generating 

a number of the equations. Thus, the constraints will become more violated as the simulation 

proceeds since the equations of motion are propagated by some approximation scheme in specified 

time steps (i.e. the numerical error will be propagated) (Allen, 2004). To rectify this issue, various 

(3-10a) 

(3-11) 

(3-12a) 

(3-10b) 

(3-12b) 
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ideas have been developed to determine the constraint forces, then to apply them in a way that the 

constraints are properly executed at the end of each time step specified. For the Verlet integration, 

this algorithm is called SHAKE (Ryckaert et al., 1977). The SHAKE algorithm will be used for 

rigid water molecules we model in further chapters. 

Figure 3-3 shows a flowchart for molecular dynamics simulations. As shown in the diagram, 

the simulations involve producing trajectories and then using them in order to calculate the 

properties of the system (Ebro et al., 2013, Haile, 1992). 

 

 

Figure 3-3 Flowchart of molecular dynamics simulations [Adopted and modified from Ref (Ebro et 

al., 2013)].   

 

In many cases, storing the trajectories produced in MD for the water transport process is of 

importance since trajectories can be the raw data to be processed and analysed to obtain the 

properties of the system at a further stage. Generating trajectories involves three main steps: 

initialisation; equilibration; and production (Haile, 1992, Schlick, 2002). In initialisation, the 

number and type of atoms in the system, boundary conditions, and system size should be set. In 

addition, the particles’ initial positions, velocities, and forces can be normally set up at this stage by 

building an initial atomic configuration, assigning random velocities to the atoms, and calculating 
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forces on the atoms using the chosen force-field potential. Since the initial state is unlikely to be 

typical of the equilibrium distribution, it should be simulated to relax to its equilibrated level. This 

takes place in the equilibration step. There are both internal and external factors contributing to the 

equilibrium state. All potential terms that represent bonding and non-bonding interactions occurring 

in the molecular system are the internal factors, and the external factors include temperature and 

pressure controls: the thermostat and barostat, respectively. Two general methods are often used to 

simulate a molecular system under constant temperature rather than constant energy. One simple 

and reliable approach is to rescale atomic velocities of the system at every certain interval 

(Andersen, 1980). This random velocity assignment obeys the Maxwell-Boltzmann distribution. So-

called ‘velocity rescaling’ can be defined as an occasional random coupling with a thermal bath. 

The random rescaling may apply to individual atoms, or to the whole system. Another common 

method is to introduce an external thermal reservoir which is linked to the system (Hoover, 1985, 

Allen, 2004). An example is the ‘Nosé-Hoover thermostat’ which will modify the general equations 

of motion given earlier as 

 

 

 

 

 

where ξ indicates a friction coefficient that can be varied in time. Q is a thermal damping parameter 

which is redefined by a relaxation rate  for thermal fluctuations, Nf (≈ 3N) is the number of 

degrees of freedom, T0 stands for the selected temperature to be kept constant, and T is the 

instantaneous temperature. When the system temperature is higher than the target temperature (T ˃ 

T0), the friction coefficient ξ will increase (be positive), then the system will start to cool down. The 

reverse situation will take place when T ˂ T0. In some cases for heterogeneous systems or 

nonequilibrium conditions (e.g. water absorption in nanopores or fluid flow through 

nanostructures), this scheme may produce non-ergodic molecular behaviour, i.e.  

(3-13a) 

(3-13b) 

(3-13c) 
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(Krishnan et al., 2013, Yong and Zhang, 2013), but it can be cancelled out by employing multiple 

chains of the thermal reservoir. Similar approaches can be also used to fix the pressure of the 

system, which are called ‘barostat’. Further details on thermostat and also barostat, how these 

ensemble methods are applied to and their effects on the molecular system will be discussed in 

Chapter 4.  

For studies of water diffusion in zeolites, in the equilibration stage, the water molecules should 

be allowed to relax within the framework of membrane atoms that are already equilibrated or 

allowed to equilibrate to typical positions at the same time as the water. This step ensures that the 

randomly assigned initial values for position and velocity will not affect the system to be simulated. 

In the final step, production, the main MD simulation is done with a defined number of time steps 

after the system has been equilibrated. During this period, the raw data or trajectories, are analysed 

and stored for analysis and prediction of system properties using post-processing. This trajectory 

cannot be directly obtained from experiments due to the difficulty of measuring the time evolution 

of all the positions and momenta of all the particles in a system, so MD simulations play a pivotal 

role in predicting many practical bulk properties and understanding the property of nano-scale 

system (Haile, 1992, Nasrabadi and Foroutan, 2011). One of the post-processing methods to 

evaluate transport properties of molecules is a diffusion coefficient measurement. This 

measurement can be quantified in two ways through the self-diffusion coefficient and collective 

diffusion coefficient. The self-diffusion coefficient is indicative of the molecular mobility by 

representing the spontaneous mixing of molecules among themselves, and the collective diffusion 

coefficient is directly related to the transport diffusion (Gubbins et al., 2011) that indicates the ratio 

of the flux of molecules in a fluid to a concentration gradient (Smith and Hashemi, 2009). In 

studying water diffusion in zeolites, thus the water mobility and flux through nanopores of zeolites 

can be quantitatively examined by these diffusion measurements.  

The investigation into this spontaneous molecular mixing and/or bulk movement is carried out 

using equilibrium molecular dynamics simulations. Sometimes non-equilibrium molecular 

dynamics methods are employed to study the transport properties of molecules by applying external 

forces like a pressure gradient, mimicking the real conditions. This approach might give us a more 

intuitive value for the fluid flux, however in this case the equilibrium results were computationally 

efficient. Thus, in the present thesis, we focus on the equilibrium MD approach to examine the 

diffusion properties. Mathematical means to calculate both coefficient calculations and their 

applications will be discussed in depth for studies in further chapters.  
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Another method to examine structural properties of molecules is a distribution function that 

measures the average value of a probability as a function of an independent variable. One typical 

example is the radial distribution function that evaluates the probability of finding an atom of 

interest as a function of distance from a centred atom in respect to that atom expected from bulk (a 

completely uniform distribution) (Jensen, 2007). Figure 3-4 shows a schematic image representing a 

simple case of particle distribution. 

 

 

Figure 3-4 A schematic representation of an example of particle distribution in the radial 

distribution function measurement. 

 

Here the probability of finding the particle of interest can be given by the number of particles, in a 

spherical shell between r and r + dr, relative to the total average number of particles in a sphere 

with radius r. For water molecules in zeolites, we are able to examine the local distribution of water 

in zeolite pores using this method. We will discuss mathematical expressions and applications of 

the function in next chapters. 

The free energy calculation is often used to evaluate which state of a system is more 

thermodynamically favourable (that is, lower free energy) by comparing two different states where 

the system sits in. Thus, water and ion transport across a zeolite pore can be quantitatively 

examined using this approach to compute the free energy difference between successive stages 

where a molecule is assumed to pass through. The computed free energy profile will give a good 

indicator of whether the transport is likely or unlikely to happen for each type of molecule.  
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In statistical mechanics, this problem can be solved by the potential of mean force (PMF) that is 

related to the probability that a part of the system takes on a  configuration,   (Roux, 1995). That 

is  where H(r,p) is the total energy of 

the system as a function of coordinates and momentums of particles, kB is the Boltzmann constant, 

and  is the Dirac delta function (Arfken et al., 2013). The PMF is then given by 

.  is a reference point and  can be set to 

zero as long as its absolute free energy is not required. It is difficult to measure this directly if some 

configurations are rarely observed. Therefore, an “umbrella sampling” or “stiff spring” method can 

be used to approximate this (Roux, 1995, Hermans and Lentz, 2014). In umbrella sampling, the 

desired configuration is sampled more intensively (so-called ‘high sampling’) than in the natural 

system by adding a biasing force, often using a harmonic potential. The position of the biasing force 

is moved along the reaction coordinate to sample different “windows”. The averages are then 

calculated with a re-weighting term for each window that counters the effects of the biasing in 

calculation of the PMF. 

Alternatively, a “stiff spring” approach can be used, which tightly binds the system and each 

configuration. This is problematic if it perturbs the surroundings, but can be useful if the constraints 

are simple. We will discuss the mathematical background on and the methodology to apply this 

approach for a system with zeolite and bulk solution in Chapter 6. 

 

3.2 Zeolites studied by MD simulations 

The main purpose of using MD to simulate zeolites is to understand physical aspects of their 

properties which cannot be obtained directly from experiments. Also, results from MD simulations 

of new membrane candidates could be very helpful in designing and modelling new materials for 

future applications. 

In nanoporous materials, zeolites are extensively studied experimentally for various 

applications (Rimer et al., 2014, Rodríguez-Calvo et al., 2014). Nevertheless, physical behaviour of 

molecules passing through zeolite pores has yet to be well understood. 

To date, only a few types of zeolite have been studied, mainly for LTA-types (e.g. ZK-4, zeolite 

A) and MFI-types (e.g. silicalite-1, ZSM-5) (Lin and Murad, 2001, Leiggener et al., 2008, Hughes 

et al., 2011, Yang et al., 2007, Zhang et al., 2012, Turgman-Cohen et al., 2013). Among those 

studies, some work has focused on water dynamics, such as water diffusion in nanochannels and 

water adsorption by the zeolite to gain atomic-scale insights into correlation between water 
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behaviour and the nanoporous materials (Hughes et al., 2011, Zhang et al., 2012, Yang et al., 2008, 

Turgman-Cohen et al., 2013).  It is found that hydrophobic inner channels (e.g. all-silica LTA-type, 

silicalite-1) have a faster diffusion rate than their hydrophilic counterparts (e.g. zeolite A, ZSM-5). 

In addition, hydrophilic zeolites exhibit a larger water adsorptivity than the hydrophobic ones. It is 

also conclusive that the general trend of water transport through nanopores is that water flux 

becomes higher with increasing temperature, increasing pore size, and/or decreasing water loadings. 

A number of studies have considered the dynamics of liquids passing through zeolite pores 

(Demontis et al., 2012, Arı et al., 2009, Demontis et al., 2010, Gabrieli et al., 2012, Demontis et al., 

1995, Hughes et al., 2011, Fleys et al., 2004, Joshi et al., 2014). Arı et al. used MD simulations with 

the COMPASS force-field (Fleys et al., 2004) to investigate water dynamics for silicalite-1 (all-

silica MFI-type) and Na-ZSM-5 (Si/Al = 95, 191 MFI-type) zeolites at different temperatures, 297, 

354, and 393 K (Table 3-1) (Arı et al., 2009). This study suggested that diffusion rates are reduced 

as the fraction of aluminium is increased in the framework due to an ion-dipole interaction that 

inhibits water moving in Na-ZSM-5. The activation energy of water diffusion rises with decreasing 

Si/Al ratio, which implies MFIs with more Al require higher energy to move water. The water 

structure is highly ordered in silicalite-1 channels at low temperature, but is found to become less 

ordered with increasing temperature and decreasing Si/Al ratio. This is due to the H-bond 

interactions being less dominant. 

 

Table 3-1 Diffusion coefficients (× 10−9 m2 s−1) of water molecules in silicalite-1 and ZSM-5 (Si/Al 

= 191 and 95) at 297, 354, and 393 K (Reproduced from Ref (Arı et al., 2009)) 

 

 

 

In addition, using MD techniques, Demontis et al. studied water behaviour when it is in zeolite 

Na A (Na:Si:Al = 1:1:1, LTA-type) and NaCa A (Ca:Na:Si:Al = 0.5:0.5:1.0:1.0, LTA-type) at 

different water loadings, 40, 120, and 200 molecules per unit cell (Figure 3-5) (Demontis et al., 

2010). A unit cell is the simplest and smallest repeating unit in a 3-D crystal structure and often 

referred to in MD simulations. Water loading per unit cell means the number of water molecules 
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residing in the crystal’s unit cell, indicating the water number density. In the study, the authors 

calculated the activation energies to water transport, depending on the different loadings. They 

derived the activation energies by fitting the gradient of ln k versus 1/T from the Arrhenius 

equation, ln k = (−Ea/RT) + ln A, where T is the temperature, k is the rate constant, R is the universal 

gas constant, A is the frequency factor, Ea is the activation energy, and D = k in this case where D is 

the water diffusion coefficient. The activation energy for water diffusion reduced to almost half of 

that for zeolite Na A when the water loading increased from 40 /u.c. to 120 /u.c., but the reverse 

happened when increasing from 120 /u.c. to 200 /u.c.. This is in semi-quantitative agreement with 

the results obtained by two experimental techniques, pulsed field gradient nuclear magnetic 

resonance (PFG NMR) and quasi-elastic neutron scattering (QENS). This trend implies that, with a 

range of water loadings 40 to 120 per unit cell, the interaction between water molecules and the 

charge-compensating cations (Na+) becomes less important in governing water diffusion since the 

number of molecules not belonging to the first hydration shell is greater. Between water loadings of 

120 /u.c. and 200 /u.c., however as the channels of zeolite Na A become more saturated with water, 

the activation energy increases. Unlike the Na A, for zeolite NaCa A, reliable data for activation 

energies with 40 molecules/u.c. was not obtained due to the very low diffusivity at the low loading 

of zeolite NaCa A channels, while the activation energy was increased when the loading increased 

from 120 /u.c. to 200 /u.c.. 

 

 

Figure 3-5 Activation energies to water diffusion as a function of water loading in zeolites: open 

triangles (blue line) from the work done in (Demontis et al., 2010); open diamonds (wine-coloured 

dotted line) from Ref (Wu et al., 2009); open hexagons (violet dashed line) from Ref (Wu et al., 

2009); open circles (red line) from QENS experiments in Ref (Paoli et al., 2002); full circles (black 

line) from PFG NMR experiments in Ref (Paoli et al., 2002). [Reproduced from Ref (Demontis et 

al., 2010)] 
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In addition to aluminosilicate zeolites mentioned above, more recently aluminophosphate 

zeolites have been investigated using molecular dynamics methods (Demontis et al., 2012). This 

research studied the physical properties of water adsorbed in AlPO4-5 (AFI-type) and SSZ-24 (all-

silica AFI-type) at different temperatures and water loading. This MD study showed that water 

molecules adsorbed in pores of AlPO4-5 form helicoidal chains running along the pore channel, 

which was also experimentally studied and verified (Floquet et al., 2004), whereas the simulations 

suggest that the structure of water molecules in SSZ-24 are linear chains along the channel axis. 

This structural difference is believed to stem from the smaller effective diameter of SSZ-24 than 

that of AlPO4-5, and the Al-P alternation of AlPO4-5. Figure 3-6 indicates distribution functions of 

water molecules projected on the zeolites’ 2-D cross sections perpendicular to the channel axis. As 

mentioned earlier, distribution functions can be obtained by calculating the probability of a property 

as a function of some independent variable. Here the distribution functions represent the 

probabilities that water molecules sit at a particular position in the stationary zeolites. Thus, the 

figure shows the more dense lines, the higher probability of the presence of water, meaning that 

water molecules adopt different symmetries according to different water loading densities within 

AlPO4-5 and SSZ-24, respectively. Notably in AlPO4-5, hexagonal symmetry was found at the 

highest loading (108 molecules/simulation cell), and indicated the presence of the helicoidal water 

chains. 

Demontis et al. found the diffusivities for both zeolites increased with decreasing water density 

and even overwhelmed that of bulk water at 24 loadings per individual zeolite box. The higher 

diffusivity for lower loadings can be explained by more available positions for water molecules to 

be in, that is an entropic effect. The energy barriers to diffusion are ca. 10 and 15 kJ mol1 for SSZ-

24 and AlPO4-5, respectively, both are lower than that of the bulk (ca. 19 kJ mol1). This 

phenomenon could be attributed to the smaller number of H-bonds in each of the zeolites than in 

bulk, and the weaker H-bonds with the inner surfaces than the intermolecular H-bonds. Also, both 

types of zeolite have hydrophobic inner walls that may provide energetically-favourable 

environment for water diffusion. The difference in activation energies between two frameworks is 

largely due to the different atomic charges. 

 



42 

 

 

Figure 3-6 Distribution functions of water oxygens displayed on the cross sections of the zeolites at 

300 K and at different loading. Left-sided projections (from top to down): AlPO4-5 with 108, 72, 

48, and 24 water molecules; right-sided projections (from top to down): SSZ-24 with 100, 72, 48, 

and 24 water molecules [Reproduced from Ref (Demontis et al., 2012)]. 

 

Hughes et al. have intensively studied materials for RO membranes in a broad range from 

conventional polyamide composites (Hughes and Gale, 2010, Hughes and Gale, 2012) to zeolites 

(Hughes et al., 2011) using MD techniques. They suggested four different zeolites as new types of 
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RO desalination membranes. The zeolites they focused on (pure silica MTF-, SFF-, VET-, GON-

type) are 1-D channel frameworks (Figure 3-7) closely analogous to aligned nanotubes (Holt et al., 

2006, Majumder et al., 2005) and thus may be expected to show a higher permeability than zeolites 

with two or more dimensional pores because the diffusion takes place in a single direction. Also, the 

systems were selected to have pores with a size that is expected to reject salt ions and let water 

smoothly pass through. The MD results showed that water diffuses through the zeolites at a faster 

rate than that of the polymer composite membranes commercially used. In addition, free energy 

perturbation calculations (Truhlar, 2008) were performed, which calculated the free energy 

difference (∆A) between two states by  where ∆U is the potential 

energy difference between the two states, kB is the Boltzmann constant, and <…>0 is the ensemble 

average over sample configurations at state 0. At this point, the two states 0 and 1 mean ‘before’ 

and ‘after’ a chemical reaction and/or configurational change. Using this method, in the study, it 

was possible to determine how thermodynamically favourable ions of interest find the zeolite pores 

compared to when the ions in bulk solution. It was revealed that all four zeolite membranes studied 

here have a high free energy difference between Cl− ions inside and outside the pore. Assuming Na+ 

to enter the pore, extra energy penalty will be required to break the charge balance with its counter 

ion, Cl− due to the charge separation. Consequently, the zeolites are considered to reject the main 

salt from the bulk solution. 
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Figure 3-7 1-D pore zeolites as viewed along the 1-D channel: (a) MTF, (b) SFF, (c) VET, and (d) 

GON. Silicon and oxygen atoms are coloured in yellow and red, respectively [Reproduced from Ref 

(Hughes et al., 2011)]. 

 

From the results of studies on water diffusion in nanochannels, in general, it may be concluded 

that diffusion is improved for increasing temperature, decreasing water loadings, and weaker charge 

attractions between the channel walls and fluid. However, Al-containing zeolites such as ZSM-5, 

zeolite A, and AlPO4-5 exhibit enhanced water adsorptivities in relation to pure silica zeolites since 

their hydrophilicity is improved due to the electrical charges. This tendency stems from the fact that 

the hydrophilic character offers a larger number of non-bonding interactions with water molecules. 

 

3.3 MD studies on water and ion transport through various membranes 

Some work has been done with MD simulations to examine water and/or ion transport during 

the RO process. One study by Cohen-Tanugi and Grossman explored the RO performance of 

nanoporous graphenes as a function of pore size, pore chemistry, and applied pressure (Cohen-

Tanugi and Grossman, 2012). Their MD data indicated that the salt rejection performance strongly 
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depends on having a pore diameter that is adequate to allow water permeation while hindering ions. 

The water flux of such membranes is generally several orders of magnitude higher than existing 

polymeric membranes. In addition, it was observed that the chemistry of the graphene pores notably 

influences the water flux. OH-functionalised pores were shown to have roughly double the water 

permeability due to their hydrophilic surface nature compared to the H-functionalised hydrophobic 

pores. In this ultrathin membrane, the variation in water flux may arise from the different behaviour 

of water molecules around the pores. The hydroxyl groups broaden the pore effective area available 

to water molecules than the hydrogen-functionalised groups due to the water affinity to the OH 

groups. In addition, the water molecules make a greater number of configurations by the additional 

hydrogen-bonding from the –OH groups. Unfortunately, the increase in water flux is accompanied 

by lower ion rejection, due to the substituting ability of the pore –OH groups for water molecules in 

the hydration shell of the ions that permeate the pore more easily by being dehydrated and re-

hydrated with the hydroxyl groups. 

Other works related to membranes have attempted to scrutinise ion transport in confined model 

cylindrical pores with effective radius ranging from 2.5 to 6.5 Å  (Richards et al., 2012b, Richards et 

al., 2012a). For example, the purpose of the work done by Richards et al. is to gain a deep 

understanding about correlations between anion transport and the effective radii of nanopores 

(Richards et al., 2012a, Richards et al., 2012b). Energy barriers to ion permeation through the pores 

were observed to depend heavily on pore size and ion properties. To investigate a variation in the 

free energy for each anion passing across the pore, they carried out a potential of mean force (PMF) 

calculation using umbrella sampling (Roux, 1995, Hermans and Lentz, 2014). PMF gives the free 

energy profile along a trajectory path. The free energy variation is given by ‘work’ done on a 

system in a reversible equilibrium process, thus is equal to the integral of a force exerted over the 

trajectory. This trajectory is often called ‘reaction coordinate r’. As mentioned earlier, the free 

energy (A) can be defined with the canonical partition function for a system, therefore given as 

 (Roux, 1995).  

The computed free energy change for ion transport through a pore where the ion can fit with its 

full primary hydration shell are small compared to when the ion in bulk water since the ion is only 

required to rearrange its inner shell and/or to displace the secondary hydration shells. The free 

energy barrier in a pore with sizes between the bare ion and hydrated ion are relatively high due to 

the need for partial dehydration of the ion. When the pore is too small for bare ions to fit, energy 

barriers in this pore become very large. The general ordering of energy barriers for the hydrated 

anions is F− > Cl− > NO2
− > NO3

− at the range of pore radii from 3.3 to 6.5 Å . 
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Some studies have been performed on water and ion transport through zeolite membranes in 

terms of free energy calculations which play a critical role to evaluate the performance as a 

desalination membrane (Hughes et al., 2011). Hughes et al. used the thermodynamic perturbation or 

the free energy perturbation (FEP) method (Chipot and Pohorille, 2007), to determine the free 

energy difference between NaCl ions in bulk water and the zeolites, for identifying the 

thermodynamically favourable region for the salt ions in the desalination membrane system The 

study (Hughes et al., 2011) showed hydrated Cl− ions are highly unlikely to enter the zeolite 

membrane from the bulk solution, while hydrated Na+ ions might be easier to penetrate it according 

to the FEP calculations. However, as long as the counter ions (Cl−) seldom enters the zeolite 

channel at the same time when the sodium ions moves into it, it would be unlikely for the hydrated 

Na+ to enter the pore. It is believed that an additional energy must be taken into account to break the 

charge balance between sodium cations and chloride anions due to the charge separation. 

More work on water and ions behaviour with zeolite membranes have to be carried out using 

the free energy calculations in order to find and assess a new class of zeolites for desalination 

membranes. In addition to the umbrella sampling and FEP, the stiff spring method has been often 

used as a PMF approximation. This method is based on the fact that differentiation of the free 

energy with respect to a specified coordinate r is equal to minus the ensemble average of the force 

applied on a target molecule at the fixed configuration. Thus, a number of continuous simulations at 

equally quantified r generates the mean values of the force, then can be integrated to obtain the free 

energy profile for the molecule passing along the full trajectory. In this thesis, therefore, we will 

carry out free energy studies using the stiff spring approach on water or ion penetration into widely-

used and potential zeolite membranes. All those details about theoretical background, method, and 

discussion will be dealt with in Chapter 6. 

 

3.4 Summary and conclusions 

Molecular dynamics (MD) simulation is one of the most useful and widely-used tools to 

achieve such purpose of studies since it helps investigators to access molecular-level physical 

properties of materials, and predict the properties of macroscopic materials. 

Computational methods have been adopted and utilised to investigate several types of zeolite 

for their suitability as desalination membrane. MD techniques have been also used to explore ion 

transport in nanopores by quantifying energy barriers to ion permeation into the pore and examining 

the desalination performance of membranes with different pore diameters and different chemistries. 
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This project will explore the following aspects: gaining a deeper insight into water and ion 

transport through zeolite membranes in a desalination system; identifying a new class of zeolitic 

materials which have a high potential as a desalination membrane; understanding the influences of 

variations in zeolite topology and pore size upon water behaviour and ion rejection performance; 

predicting and suggesting the better zeolites in terms of desalination. 

First we will validate our MD approach by studying zeolites that have previously been 

investigated theoretically and/or experimentally. This will entail established force-fields which were 

used for these or similar type of zeolite in literature and the MD simulations will be carried out 

under the same condition as written in the literature and different ensemble methods (e.g. NVE, 

NVT, NPT) for comparison. The second part of the work is to explore a new class of zeolites that 

have a high potential to be used for desalination by employing reliable MD force-fields which 

already exist. We will then build models of these materials and study water diffusion within them. 

These simulation results may predict promising zeolites that could be useful as a future desalination 

membrane. The final step for this project is to examine the potential of mean force for water and ion 

movement through the membranes from bulk solution. This approach will help us determine 

whether or not Na+ and Cl are likely to be rejected, and also the structural properties of the pores 

that lead to enhanced diffusion. 

To achieve all these membrane performance of the target zeolites, diffusivities of water and/or 

water and ions in a periodic pore will be calculated. 
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Chapter 4 Water diffusion in zeolites: Molecular dynamics studies on 

effects of water loading and thermostat 

 

4.1 Abstract 

Molecular dynamics simulations were employed to investigate diffusion and structural 

properties of water molecules confined in one-dimensional zeolites. Several water loadings and 

thermostatting methods were used, and insight into the effects of these was obtained by comparing 

diffusion and structural properties. Water diffusion was characterised via mean square 

displacements (self and collective diffusivities) and radial distribution functions enabled the 

structural ordering of water for different pore sizes and loadings to be compared. Interestingly at 

lower loadings, molecules tend to form clusters and move collectively, while at higher loadings, the 

self-diffusion coefficient in the pores is similar to that in bulk water. The length of the simulation 

cell was varied to determine the system size effects on the results, and narrow pores were also 

investigated in order to examine how this affected the effectiveness of water transport through the 

zeolite. 

 

4.2 Introduction 

Zeolites and zeolite-like materials (e.g. metal organic frameworks) have attracted considerable 

attention over the last few decades due to their versatile industrial applications as materials for 

catalysis, absorption, and molecular sieving (Auerbach et al., 2003, Granda-Valdés et al., 2006). 

Their flexibility stems from the large range of nanoporous crystal structures (Baerlocher and 

McCusker, 2015, First et al., 2011, Gascon et al., 2012) that their chemistry allows them to form. In 

addition, their chemical composition and reactivity can be varied. Such materials have recently been 

employed as membrane materials (Drobek et al., 2012, Lee et al., 2011, Zhu et al., 2013, Duke et 

al., 2009, Li and Wang, 2010). We select zeolites that have pore sizes that are sufficiently small that 

small ions and molecules are expected to be excluded from the pores due to a molecular sieving 

effect, and focus on the diffusion coefficients of water in these materials. 

Molecular dynamics (MD) simulations have proven to be a reliable method to characterise the 

kinetics, dynamics and thermodynamics of nanostructures at the molecular scale, enabling the 

probing of time and length scales which are previously difficult to access experimentally. The 



55 

 

possibility of mimicking the behaviour of atomic and molecular clusters can therefore help to 

predict and successively fine tune better materials for specific applications. With the advancement 

of computing performance, MD simulations can be employed for bigger and more complex 

structures e.g. water transport across zeolitic systems (Lin and Murad, 2001, Hughes et al., 2011, 

Liu and Chen, 2013). 

Carbon nanotubes (CNTs) and porous graphene are alternative membrane materials that possess 

well-defined pores; the pore size can be under 1 nm, which is molecular sieving to small ions and 

molecules (Wang et al., 2013, Cohen-Tanugi and Grossman, 2014, Holt et al., 2006). Both materials 

exhibit exceptional water flow rates through the pores due to the fact that the hydrophobicity as well 

as straightness of the pores provide water molecules inside with “hyperlubricity” (Alexiadis and 

Kassinos, 2008, Holt et al., 2006, Cohen-Tanugi and Grossman, 2012). However, from an 

experimental point of view, making such small and well-defined pores is very difficult to achieve. 

Techniques for formation of uniform pore size and high pore density materials are still far from 

being commercially viable for membranes (Liu and Chen, 2013). In contrast, zeolites naturally exist 

as well-defined crystalline structures and the pores are well packed, giving a high pore density. Due 

to this practical advantage, zeolites that have well-defined one-dimensional (1-D) pores of sub-

nanometre diameter are proposed to have high potential as membrane materials. This work thus 

studies on 1-D zeolite based membranes. 

Both experimental and simulation results have identified that water in hydrophobic and/or 

nanoporous structures forms clusters at some loadings (Ohba et al., 2005, Demontis et al., 2008, 

Iiyama et al., 2006). In computational simulations, water is easily filled up along the nanopores 

using either a manual or grand canonical Monte Carlo (GCMC) approach, while experiments can 

control the water loading in generally two ways: a pre-heating method and a pressure-induced 

infiltration. For the pre-heating method, the nanoporous structure/material is pre-heated in a vacuum 

condition, then cooled down with varying vapour pressure, resulting in varied amounts of water 

loading in the pore. The other method controls the water loading in nanostructures by compressing a 

water-nanostructure chamber at various loading rates. 

Small-angle x-ray scattering (SAXS) experiments and GCMC studies have shown that water 

molecules begin to form clusters that are 6 Å  in diameter at 0.6 relative pressure (P/P0) within a 11 

Å  width slit-pore and the cluster size becomes bigger with increasing the pressure (higher water 

loading) due to combination of clusters (Ohba et al., 2005). Also, it has been found that water 

assemblies of 15 Å  diameter are formed and the structure has ice-like order in slit-pores of 16.3 Å  

in width at P/P0 = 0.6 using x-ray diffraction (XRD) measurements and reverse Monte Carlo 
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simulations (Iiyama et al., 2006). Recently, some interesting studies have been carried out for slit-

pores of different widths (7 and 11 Å ) and at different pressures (P/P0), revealing that the kinetics of 

water assembly is dominantly influenced by the pore width at low pressure (under P/P0 = 0.5) and 

water adsorption rate is faster for the narrower pores at just above the critical pressure (0.4 for 7 Å  

width and 0.6 for 11 Å ) (Ohba and Kaneko, 2009). In addition, cage-like pores (LTA-type zeolite) 

can also hold water clusters: α-cages with 10 Å diameter have 24 molecules in a cluster, whereas β-

cages with 6 Å  have 4 molecules (Demontis et al., 2008). Despite these efforts, understanding water 

behaviour in nanopores is still far from complete. 

As we expect water clustering to have a significant impact on water diffusivity and in particular 

on the transport diffusion coefficient, in this work we will examine structural and dynamical 

properties of zeolite-confined water in relation to cluster size and stability. In previous work (Bussai 

et al., 2002, Zhang et al., 2009, Arı et al., 2009, Hughes et al., 2011), water diffusivity in zeolites 

has been studied by considering self-diffusion coefficients, which quantify the rate of diffusion of a 

single molecule within a fluid in equilibrium, and the simulation results have been validated by 

comparison with experiment. In the present work, collective diffusion coefficients, which quantify 

the flow of molecules, were also calculated since the fluid flux is related to the collective diffusivity 

and is therefore important for assessing the suitability of zeolites as a membrane. At very low 

densities, the self-diffusion and per-molecule collective diffusion coefficients become equal, but 

with the higher water loadings we are considering, this is not the case.   

In order that MD simulations resemble experimental conditions, temperature control 

algorithms, so-called thermostats, are often used. Thermostats can be classified into two major 

categories: stochastic thermostats, which include Andersen and Langevin (LGV) thermostats; and 

deterministic thermostats, which include Gaussian, Berendsen, kinetic rescaling, and Nosé-Hoover 

(NH) thermostats. Of the deterministic thermostats, the Nosé-Hoover and Gaussian thermostats 

have been shown to generate the canonical (NVT) and isokinetic canonical ensemble (NVT-iso) 

respectively (Evans and Morriss, 2008), and are therefore widely used. In this work we will use a 

Nosé-Hoover thermostat, which gives good agreement with experimental results for molecular 

diffusion (Hünenberger, 2005, Basconi and Shirts, 2013), and compare the results obtained with 

those obtained using adiabatic (unthermostatted) simulations. Thermostats can be applied to the 

whole system or parts of it: in the case of zeolites they could be applied to the water, the zeolite or 

both. It has been found that unphysical behaviour can take place due to the misuse of thermostats, 

especially for heterogeneous systems such as water-absorbed in nanostructures and in 

nonequilibrium conditions, e.g. in the presence of flow. Often the streaming velocity rather than the 
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peculiar velocity is thermostatted, and this can result in the thermostat doing work on the system 

(Bright et al., 2005). 

A number of studies have compared the effects of thermostats on water diffusion when 

confined in porous materials. Krishnan et al. (Krishnan et al., 2013) reported their influence on 

pressure-driven water within carbon nanotubes. They compared NH, Berendsen and LGV 

thermostats, and found that the particular type of thermostat used can influence the behaviour of 

water confined in the smaller pores at lower temperatures (Krishnan et al., 2013). We have recently 

found that thermostatting the framework / walls of a confined fluid rather than the whole system or 

just the fluid inside it (e.g. keeping the walls rigid), has a significant effect on properties of fluids 

undergoing Couette flow (Bernardi et al., 2010). Yong and Zhang (Yong and Zhang, 2013) 

extended this work, comparing the effects of LGV, dissipative particle dynamics (DPD) and 

simulations with NH chain thermostats on Couette flow of Lennard-Jones particles, thermostatting 

walls and/or fluid and found that thermostatting the walls gave better agreement with experiments 

in terms of the fluid transport coefficients. A recent work on the diffusion rates of water through 

carbon nanotubes subject to pressure gradients showed discrepancies in the results obtained using 

different thermostatting methods (Thomas and Corry, 2014). All these studies show that when 

thermostatting is not carried out appropriately, for confined systems under flow, this can result in 

unphysical, and rather unpredictable, behaviour such as unusual thermal and kinetic conditions of 

flow (i.e. extreme temperature and rate) (Chi et al., 2014). 

Differently to those studies, we will focus on determining diffusion coefficients using 

equilibrium simulations. Even in the absence of external fields or gradients, it has been observed 

that water can form clusters at low loadings that will flow in one direction for periods of time 

(Alberto, 2007). These clusters will therefore have a streaming component to their velocity that will 

change with time. It is therefore important to be sure that the thermostatting mechanism is not 

enhancing or diminishing this effect. For equilibrium simulations the results for uniformly 

thermostatted systems and unthermostatted systems should converge in the thermodynamic limit. 

This will be checked for the systems considered in this paper. As we are ultimately interested in 

studying flow under pressure gradients where thermostats are necessary to prevent the system from 

heating up (Hünenberger, 2005) it is important to check that at equilibrium the use of wall 

thermostats are effective for these systems.  

The purpose of this study is to gain deeper insight into changes in confined fluid flow with 

different loadings. We will observe if clustering of the water occurs, and what affect that has on the 

diffusion of water. To ensure that the behaviour we are observing is not due to the thermostatting 
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mechanism, we examine a number of different thermostats. These results will be of use in future 

studies of zeolitic systems as membrane candidates. 

 

4.3 Background and methods 

4.3.1 Water structure and transport properties 

In this work, we consider the structure and transport of water in zeolite nanopores, and consider 

how these vary with loading and thermostatting mechanisms. As noted above, clustering of water in 

hydrophobic nanopores at moderate loading has been experimentally observed in (Ohba et al., 2005, 

Iiyama et al., 2006) by in situ SAXS and in situ XRD. In simulations, this effect can be qualitatively 

observed through direct visualisation of the water molecules within the pore, and can be 

quantitatively characterised by calculation of the radial distribution function g(r) that for two 

particles of the same species is 

 

 

 

where Ns is the number of particles in a spherical shell of radius between r and r + dr and volume 

Vs, centred on a particle of interest, and ρ is the average particle number density for the whole 

system. This is most appropriate for study of spherically symmetric systems where it becomes equal 

to 1 when the particles are uniformly distributed. It can be measured experimentally by scattering 

spectroscopy. For the asymmetric systems considered here where the water molecules are confined 

to a pore, it is more useful to consider a function which is modified to account for the confinement 

g(r)pore 

 

 

 

where Vps represents the accessible volume of the pore shell between r and r + dr (i.e. the portion of 

the spherical shell that is in the pore), ρp is defined as the particle number density of the pore and rp 

(4-1) 

(4-2) 
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is the radius of the pore.  Here we use the approximation that Vps ≈ 2πrp
2dr which will be accurate at 

large r and overestimate g(r)pore at r ≈ rp, however since the accessible pore volume can only be 

estimated, this approximation is accepted. Use of g(r)pore is appropriate for the characterisation of 

density profiles in one dimensional pores and will have a value of 1 at all r if the particles are 

uniformly distributed in the pore. 

Transport within a pore can be quantified through the self-diffusion coefficient Ds, and the 

collective diffusion coefficient Dc which is directly related to the transport diffusion coefficient 

(Gubbins et al., 2011). Self-diffusion represents the spontaneous mixing of particles among 

themselves, as such it is an indicator of molecular mobility. Experimentally, self-diffusivity can be 

determined by using pulsed field gradient nuclear magnetic resonance (PFG NMR) (Bussai et al., 

2002) and quasielastic neutron scattering (QENS) measurements (Gubbins et al., 2011, Jobic et al., 

1999), however from the self-diffusivity measurement, discrimination of collective motion, i.e. 

transport of nano-sized water droplet, is not possible. The collective diffusivity, which is more 

important parameter for evaluation of a zeolite as a potential membrane. The transport diffusivity is 

given by the ratio of the flux of molecules in the fluid due to a concentration gradient (Smith and 

Hashemi, 2009), (  where J is the flux, Dt is the transport diffusion coefficient, C is 

the concentration, and z is the position), and is directly related to the collective diffusion coefficient 

through a thermodynamic factor (Gubbins et al., 2011) (  where µ  is 

the chemical potential). Thus, the membrane performance in terms of flux can be evaluated by the 

collective diffusion coefficient. Transport/collective diffusivities in zeolites have been 

experimentally measured by QENS (Jobic et al., 1999) and by direct experimental measurements 

(Kapteijn et al., 1995). 

The self-diffusion coefficient can be obtained by monitoring the mean square displacement 

(MSD) of each water molecule within the system, and if the motion is diffusive it will be given by 

the Einstein relationship 

 

 

 

where ri(t) is the position of the ith particle at time t, d is the system dimensionality and N is the 

number of molecules in the pore. The collective diffusion coefficient per molecule  monitors the 

MSD of the centre-of-mass (com) of all the water molecules in a pore 

(4-3) 
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where M is the number of pores,  is the centre-of-mass of the N water 

molecules in the jth pore, and  represents the mean collective diffusion coefficient of 

individual molecule. In the limit of low density, or if the water moves as a cluster,  and  will 

converge to the same value. 

In the bulk (i.e. isotropic systems), each direction contributes equally to the diffusion 

coefficients:  

 

 

 

where 

 

 

 

Dx, Dy, Dz represent diffusion coefficients in x, y, z direction, respectively, and D is a global 

diffusion coefficient. 

In one-dimensional pores however, the water diffusion is constricted to a pore along the z-axis 

and the relationship between D and Dz changes 

 

 

 

(4-6) 

(4-4) 

(4-5) 

(4-7) 
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4.3.2 Simulations algorithms 

For our simulations we used an all-atom model and periodic boundary conditions (PBCs) in all 

directions. We consider a number of different molecular dynamics algorithms/ensembles: (i) 

constant volume and energy (NVE); (ii) constant volume with the temperature of the full system 

thermostatted (NVT); (iii) constant pressure with the temperature of the full system thermostatted 

(NPT); (iv) constant pressure and enthalpy (NPH); (v) constant volume with the temperature of the 

water thermostatted (NVT-w); (vi) constant volume with the temperature of the zeolite 

thermostatted (NVT-z). The simplest simulation approach is to carry out NVE simulations where 

the dynamics is simply Newtonian and the system samples a microcanonical distribution (Rapaport, 

2004). All calculations were carried out using LAMMPS (Plimpton, 1995, Shinoda et al., 2004, 

Martyna et al., 1994). 

Thermostatted dynamics is often used to generate a canonical distribution (NVT) and closely 

mimic experimental conditions. In this work this is achieved using a Nosé-Hoover chain thermostat 

(Thijssen, 2007), which links the system to multiple fictitious heat baths with the heat flowing in 

and out of the system in order to keep the average temperature at the target value. A damping 

parameter Q, determines the strength of the bath coupling. The value of Q will not change the 

ensemble, but it will affect the instantaneous rate of change of energies. 

The pressure can also be controlled using a Nosé-Hoover barostat with a damping parameter, 

Wg, generating a NPH ensemble or an NPT ensemble when combined with a thermostat. As well as 

thermostatting the whole system, either the water or zeolite can be thermostatted. Thermostatting 

the zeolite only is particularly useful when simulating flow i.e. when it is important that the 

streaming velocity of the water is not misinterpreted as a contribution to the thermal energy.  

The equations of motion for our system are 

 

 

 

   for k=1,…,M 
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   for k=2,…,M  1 

 

 

where ri represents the position of a given particle i having mass of mi, pi is the momentum of 

particle i and Fi denotes force exerted on the particle i. The term pg is the modularly invariant form 

of the cell momenta (Martyna et al., 1994, Shinoda et al., 2004), ξk and pξk are the thermostat 

variable and its conjugated momentum of the kth thermostat, respectively. Wg and Qk are the 

damping parameters of barostat and kth thermostat respectively, and control the oscillation 

frequency of the instantaneous pressure and temperature. Nf is the number of degrees of freedom 

and T0 is the target temperature. There are several possible implementations of the Nosé-Hoover 

NPT equations, and this follows that used in LAMMPS (Plimpton, 1995, Shinoda et al., 2004, 

Martyna et al., 1994). 

By considering the different molecular dynamics algorithms considered above, we will be able 

to check that the thermostatting mechanism does not influence the structure and dynamics of the 

water molecules in the zeolite pores. 

 

4.3.3 Zeolite membrane construction and potential 

Several MD simulations were carried out at different water loadings. We mostly focused on the 

VET framework as a membrane model which possesses cylindrical-like one dimensional channels 

with hydrophobic internal walls composed of Si and O only. All pores in the framework that are 

accessible to the water are approximately cylindrical and the accessible volume for water molecules 

is 78.2 Å 3/1000 Å 3. According to crystallographic data (Freyhardt et al., 1996, Baerlocher and 

McCusker, 2015), the effective diameter of the pore is 5.9 Å , and this is anticipated to be a useful 

material for applications such as water purification since pores of this size are expected to let water 

pass through while fully rejecting small ions and molecules including hydrated sodium and chloride 

ions. A unit cell of VET was taken from the crystallographic database (Baerlocher and McCusker, 

(4-8) 
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2015), the unit cell size is 13.048 x 13.048 x 4.948 Å  for x, y, z coordinates, respectively and the 

angles between all lattice vectors are 90°, it consists of 17 Si and 34 O atoms with a single 5.9 Å  

pore. In all the calculations we use a periodic simulation box with the pore aligned with the z-axis. 

The simulation box was composed of 2 x 2 crystallographic unit cells in the x, y-coordinates, and 

from 7 unit cells in the z-direction, making an initial cell size of 26.096 x 26.096 x 34.636 Å  with 

476 Si and 952 O (see Figure 4-1(a), (b)). In order to check the stability of the zeolite structure 

using the selected force field and to relax the structure at the desired temperature and pressure, an 

equilibration simulation run was carried out on the framework with constant pressure and 

temperature ensemble (NPT) at 300 K and 1 atm before placing water molecules inside. 

In order to examine the effects of pore width on the results, the TON zeolite was also 

considered. This material has the same chemical composition but a smaller pore width (4.6 x 5.7 Å ). 

Like VET, TON has 1-D channels, however the pores are slightly elliptic and the unit cell size is 

13.859 x 17.420 x 5.038 Å  for x, y, z coordinates, respectively, with the angles between all lattice 

vectors being 90°. The unit cell comprising 24 Si and 48 O atoms, was replicated to construct a 2 x 

2 x 7 simulation box, with the z-axis aligned with the pore. The simulation size is 27.718 x 34.840 x 

35.266 Å  with 672 Si and 1344 O (see Figure 4-1(c), (d)). The accessible volume of the TON 

membrane is 80.4 Å 3/1000 Å 3. The TIP4P-Ew water model (Horn et al., 2004) was used, as it gives 

reasonable agreement with experimental data in terms of structure and diffusion rates (Cohen-

Tanugi and Grossman, 2014, Horn et al., 2004, Horn et al., 2005) even though the model is unable 

to represent the intramolecular vibration of water. This model consists of three atoms (H, O, H) 

rigidly constrained and one massless charged particle that is 0.125 Å  away from the oxygen in the 

direction of the centroid of the molecule. A Lennard-Jones (LJ) intermolecular interaction exists 

between the oxygen atoms 
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Figure 4-1 Simulation cells used for the two zeolites considered (zeolites represented by wires, 

oxygen coloured in red and silicon in yellow): VET views along the (a) z-axis (slightly distorted 

towards x-direction to better show the geometry of pores, the representations viewed in this 

direction were applied in the same manner in the rest of the chapter) and (b) x-axis; and TON views 

along the (c) z-axis; and (d) x-axis. x-, y-, z-directions of each zeolite cell are in periodic boundary 

condition. 

 

 

 

where ε is the well depth of potential, rij is the distance between atoms, and σ is the distance at 

which the LJ energy is zero (Smit, 1992). In addition there is a Coulombic potential between 

charges on the hydrogen atoms and the massless particle. For interactions between the zeolite atoms 

and between zeolite-water interactions we used the Buckingham potential 

 

(4-9) 
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where A, ρ, and C are constants (Jensen, 2007). 

The three-body non-bonding interaction for the O-Si-O is given by 

 

 

 

where kθ is the force constant, θjik is the angle made by the three atoms, and θ0 is the equilibrium 

angle. 

Parameters for zeolite-zeolite interactions were derived by Hughes et al. (Hughes et al., 2011) 

who further developed the potential of Sanders et al. (Sanders et al., 1984). As the potential of 

Sanders et al. reproduced its zeolite structure well but the mechanical and electronic properties, the 

potential was refitted to first principle calculations values in order to match elastic constants and 

static dielectric constants of the zeolite. For water-zeolite interactions, we used parameters from 

experiments of de Leeuw and Parker (de Leeuw and Parker, 1998) for the interaction of α-quartz 

with water slightly adjusted by Hughes et al. in order to better match the binding energy obtained 

by quantum mechanical MP2 calculation. 

 

4.3.4 MD simulations 

The energy of the system (zeolite + water) was firstly minimised using the conjugate gradient 

algorithm, then equilibrated for 1 ns. A 2 ns simulation using a time step of 1 fs in isobaric-

isothermal (NPT) ensemble followed to produce an equilibrated phase point. A NH barostat and 

thermostat with relaxation time of 1 ps (i.e. damping parameter of 1/ps) each were applied and 

variation in volume was monitored depending on the water loading, then the average volume for 

each case was employed for the constant volume simulations: NVE, NVT, NVT-z, NVT-w. 

(4-10) 

(4-11) 
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To model the long range Coulombic interactions, the particle-particle-particle mesh (PPPM) 

Ewald sum (Hockney and Eastwood, 1988b) was used. The SHAKE algorithm (Ryckaert et al., 

1977) was used to constrain the geometry of the water molecule. 

Ten independent runs were performed for each system considered. All the systems were re-

minimised and equilibrated for 1 ns using a time step of 1 fs under NVT ensemble at 300 K before 2 

ns production runs with different ensemble approaches were carried out: NVE, NVT, NVT-w, 

NVT-z, NPH, NPT.  

Two different water loadings were considered: 6 and 32 water molecules per channel (7 unit 

cells long) for the VET zeolite for each of the thermostatting methods. Three longer channels were 

also considered for the smaller loading (i.e. 14, 21 and 28 unit cells with 12, 18 and 24 water 

molecules respectively). In addition the results for the TON zeolite with a loading of 6 water 

molecules per channel (7 unit cells long) were also considered. Due to the different unit cell sizes 6 

water molecules in pores which are 7 unit cells correspond to different densities; using the available 

volumes given in (Baerlocher and McCusker, 2015), they would correspond to densities of 0.39 g 

cm3 for VET and 0.52 g cm3 for TON. 

 

4.4 Results and discussion 

4.4.1 Transport properties 

We firstly considered water diffusion in the VET zeolite with simulation cells constructed with 

7 unit cells in the z direction and two different water loadings, 6 and 32 water molecules/pore, 

which we refer to as VET6 and VET32 systems, respectively. Mean square displacement (MSD) 

measurements were performed to determine self-diffusion and per-particle collective transport 

coefficients given by equations (4-3) and (4-4), respectively, as well as their components in each 

direction. Theoretically, diffusion under confinement is divided mainly into three types of 

behaviour (Gubbins et al., 2011): one follows Fick’s law in which MSD of the fluid increases 

linearly with time, the second is a slower mode referred as the anomalous diffusion (Nguyen and 

Bhatia, 2012) not strictly following the Fickian behaviour, and the other is the single-file diffusion 

(Felderhof, 2009, Alexander and Pincus, 1978, Fedders, 1978) where the MSD is linearly 

proportional to the square root of time. The Fickian mechanism takes place when there are large 

enough pores for the guest molecules to pass each other, and when guest-guest and host-guest 

collisions allow movement in three-dimensions. Anomalous diffusion can occur due to confinement 

when fluid motion is restricted due to the channel shape. Single-file diffusion arises from the 
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motion in pores that are small enough that the molecules cannot pass one another but the motion in 

one dimension unrestricted. This will occur in narrow, one-dimensional, smooth pores and can 

result in unusually high fluxes in narrow pores. 

In this study, the water molecules diffusing through the zeolite channels are found to follow 

Fickian-like behaviour regardless of the ensemble and of the thermostatting mechanism employed. 

Linear relations for the MSD with time are obtained even though the pores are one-dimensional. 

This indicates that the pores are sufficiently wide that molecules can pass each other. It is also 

indicates that the pores are quite cylindrical with adsorption to all sites on the pore walls are of 

similar strength. The VET zeolite therefore resembles wide CNTs. As shown in Figure 4-2, water 

transport in z direction is the main component of the three-dimensional diffusion and displacement 

in x- and y-directions makes nearly no contribution to the MSD. In directions normal to the pore 

wall, the MSD increases linearly with time for a very short period (< 1 ps), until the complete 

restriction of motion in those directions occurs. Thus, the pores aligned one-dimensionally have 

both molecular and collective diffusion in one direction. The self and collective diffusion 

coefficients ( , ) with different water loadings are summarised in Table 4-1. 

 

 

Figure 4-2 MSD of the water molecules in a VET zeolite. MSD for x, y, z directions (Dsx, Dsy, Dsz, 

respectively). The inset plot is a magnified MSD at 0 to 10 ps of this figure. x and y contributions to 

MSD were nearly identical, therefore they are indistinguishable as shown in the figure. The periodic 

simulation cell had 7 unit cells in the direction parallel to the pore, and 6 water molecules in each 

pore. The simulation was carried out in the NVT ensemble. 
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As shown in Table 4-1 and Figures 4-3 and 4-4, MSD data is insensitive to the way in which 

the system is thermostatted. When small numbers of particles are considered, it would be expected 

that there is some difference in the results obtained with different ensembles due to finite-size 

effects, however despite this, even unusual ensembles (NVT-w, NPH) give very similar results to 

other ensembles for water diffusing through the channel. 

 

Table 4-1 z-component of the diffusion coefficients for water in zeolites 
 

 VET6  VET32 

Ensemble / 10−9 m2 s−1 / 10−9 m2 s−1  / 10−9 m2 s−1 / 10−9 m2 s−1 

    

NVE 7.8 ± 1.2 6.9 ± 1.2  2.3 ± 0.1 0.5 ± 0.1 

NVT 8.1 ± 1.2 7.2 ± 1.2  2.1 ± 0.1 0.5 ± 0.1 

NVT-w 7.8 ± 0.9 7.2 ± 0.9  2.1 ± 0.1 0.5 ± 0.1 

NVT-z 8.7 ± 1.2 8.1 ± 1.2  2.2 ± 0.1 0.5 ± 0.1 

NPH 8.7 ± 1.2 8.1 ± 1.2  2.2 ± 0.1 0.5 ± 0.1 

NPT 7.5 ± 0.6 6.6 ± 0.9  2.2 ± 0.1 0.4 ± 0.1 
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Figure 4-3 MSD of the (a) molecules of water and (b) centre-of-mass of the water in a VET zeolite. 

The periodic simulation cell had 7 unit cells in the direction parallel to the pore, and 6 water 

molecules in each pore. The simulations were carried out using various thermostatting mechanisms 

as indicated in the legend. The terms NVT-z and NVT-w refer to cases where only the zeolite or 

water was thermostatted, respectively.  

 

 

Figure 4-4 MSD of the (a) molecules of water and (b) centre-of-mass of the water in a VET zeolite. 

The periodic simulation cell had 7 unit cells in the direction parallel to the pore, and 32 water 

molecules in each pore. The simulation was carried out using various thermostatting mechanisms as 

indicated in the legend. The terms NVT-z and NVT-w refer to cases where only the zeolite or water 

was thermostatted, respectively. 

 

For a loading of 6 water molecules/pore (VET6), very similar results were obtained for the 

molecular and com MSD, which is consistent with the observation that water molecules inside the 
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pores tend to form clusters and move collectively most of the time (see Figure 4-6). In contrast, 

there is a substantial difference between the molecular MSD and the com MSD for the 32 water 

molecules/pore loading (VET32) where clusters do not appear to form.  

The z-component of the self-diffusion coefficients for VET6 is 7.5  8.7 × 10−9 m2 s−1, while 

for VET32 it is 2.1 to 2.3 × 10−9 m2 s−1 that is similar to that of bulk water (2.2  2.4 × 10−9 m2 s−1) 

(Horn et al., 2004, Krynicki et al., 1978, Mills, 1973), indicating VET32 diffusion in this direction 

is similar to that in the bulk. These correspond to values of global Ds of 2.5  2.9 × 10−9 m2 s−1 and 

0.7  0.8 × 10−9 m2 s−1 for VET6 and VET32, respectively.  These values are consistent with those 

in Ref (Hughes et al., 2011) using the same force field (Hughes et al., 2011, Sanders et al., 1984), 

assuming 5 unit cells formed pore used for that work (Figure 9 of (Hughes et al., 2011)). As we 

demonstrate below, at low loadings the values obtained for the diffusion coefficients is very 

sensitive to the number of unit cells used and not just to the loading.  

As stated before, the per-molecule collective diffusion coefficients we obtained (6.6  8.1 × 

10−9 m2 s−1) are almost identical to our self-diffusion counterparts at the lower loadings, indicating 

that water is forming stable clusters. While at higher loadings the collective diffusivities per 

molecule are ca. 0.5 × 10−9 m2 s−1 which is 4 times lower than their counterparts. 

 

4.4.2 Structural properties 

The radial distribution function (RDF) quantifies how particles are distributed around each 

other in a certain specified region. We used gpore(r) to characterise cluster sizes and distributions 

along the channels, where the oxygen atoms of the water molecules were selected as the species of 

interest.  

Figure 4-5 shows gpore(r) for VET6 (4-5(a)) and VET32 (4-5(b)) and using a range of 

ensembles. The results obtained using the different ensembles are almost indistinguishable for both 

VET6 and VET32, indicating that the thermostatting/barostatting mechanisms had little effect on 

the structures. As it can be seen in Figure 4-5(a), for VET6 there is a very high peak at short 

distances (ca. just below 3 Å ) corresponding to the nearest neighbour water molecules, followed by 

another peak at about 4 Å  which drops to about one at about 6 Å  and then falls to a value closer to 

zero. The positions of the peaks correspond well with those in g(r) for the oxygen atoms of TIP4P 

water (Horn et al., 2004, Hughes et al., 2011). It should be noted that pore radius is about 3 Å  and 

that the minimum distance between water molecules at the edge of one pore and those at the edge of 
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an adjacent pore is about 7 Å . Therefore the peak at 6 Å  suggests that the water molecules tend to 

form stable clusters, and the lengths of these clusters are about 6 Å . This phenomenon, to some 

extent, is consistent with the finding from the study mentioned earlier in which water molecules 

have a 6 Å  size assembly as a starting clustering length in the 11 Å  width slit-pore, water clusters 

with this size seem very stable (Ohba et al., 2005). Integration of gpore(r) to 6 Å  gives a value of 6.5 

(it can be higher than 6 due to the approximation for the pore shell volume made in equation (4-2)), 

indicating that all the 6 water molecules tend to be clustered together most of the time. This is 

verified in Figure 4-6, which shows snapshots of the VET6 for the NVT simulation. Furthermore 

the clusters appear to be of similar length to their width, consistent with a cluster of length 6 Å . The 

fact that there is a small deviation in gpore(r) from zero at 7 Å  is likely to be due to water molecules 

that have dissociated from the cluster for short periods of time, and at distances beyond this there 

may also be a contribution from water molecules in adjacent pores.  

Considering Figure 4-5(b), it is seen gpore(r) for the water oxygen atoms in VET32 is similar to 

g(r) for bulk water (Horn et al., 2004, Hughes et al., 2011), with a value close to 1 for r > 6 Å . 

Again, this is consistent with the absence of discrete clusters of water molecules in the system at 

this density. This is also seen in Figure 4-7 which shows snapshots of the VET32 system at various 

times. 

 

 

Figure 4-5 The pore radial distribution function, gpore(r) for the O-O atoms of the water molecules 

in (a) VET6 and (b) VET32. The simulations were carried out using various thermostatting 

mechanisms as indicated in the legend. The terms NVT-z and NVT-w refer to cases where only the 

zeolite or water was thermostatted, respectively. 
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Figure 4-6 Snapshots taken from the VET6 simulations (water represented by ball-and-sticks and 

zeolites by wires, oxygen coloured in red, hydrogen in white, silicon in yellow): (a) view along the 

z-axis and (b)-(d) views along the x-axis initially, at 1000 ps, and at 2000 ps, respectively. Only 

water molecules in the front pores are shown in (b)-(d), for better visualisation. All x-, y-, z-

directions are in periodic boundary condition. 
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Figure 4-7 Snapshots taken from the VET32 simulations (water represented by ball-and-sticks and 

zeolites by wires, oxygen coloured in red, hydrogen in white, silicon in yellow): (a) view along the 

z-axis and (b)-(d) views along the x-axis initially, at 1000 ps, and at 2000 ps, respectively. Only 

water molecules in the front pores are shown in (b)-(d), for better visualisation. All x-, y-, z-

directions are in periodic boundary condition. 

 

4.4.3 Effects of pore size and length on properties 

In Table 4-2, we report the diffusion coefficients depending on the length of the simulation cell 

and the size of the pores. The water density for VET6, VET12-double, VET18-tri, and VET24-quad 

has been kept constant (0.39 g cm3) while the length of the simulation cell is increased i.e. double, 

three-times, and four-times respectively. This density corresponds to having six water molecules in 

each of the four pores of VET, built with 2 x 2 x 7 unit cells. As shown in Figure 4-8, VET12-

double consisted of 2 x 2 x 14 unit cells while 2 x 2 x 21 and 2 x 2 x 28 cells were used for VET18-

tri and VET24-quad respectively. Because the system is periodic, we are simulating an infinitely 

long pore. However, the periodicity of the cell means that that the properties observed might be 

different from those obtained without periodicity. In order to obtain results that are comparable with 

experiment, it is necessary to examine how the properties vary as the length of the periodic cell 

changes. In the VET6 system it was found that clusters of water molecules were formed and this 

places limitations on the maximum number of water molecules that can be in the cluster (i.e. 6) and 
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the spacing between clusters. It was therefore of importance to consider the effects of increasing the 

length of the pore while keeping the average density constant.  

 

Table 4-2 z-component of the diffusion coefficients for water in zeolites with various loadings, 

different simulation cell lengths in different types of zeolites 

 

 
Water density  

/ g cm−3 
Self ( ) / 10−9 m2 s−1 Collective ( ) / 10−9 m2 s−1 

    

VET6 a 0.39 8.1 ± 1.2 7.2 ± 1.2 

VET12-double b 0.39 3.4 ± 0.5 2.4 ± 0.5 

VET18-tri c 0.39 3.3 ± 0.4 1.5 ± 0.2 

VET24-quad d 0.39 3.4 ± 0.2 0.9 ± 0.1 

TON6 e 0.52 3.4 ± 0.2 1.9 ± 0.2 

VET6-tri f 0.13 11.3 ± 1.7 9.6 ± 1.2 

a 6 water molecules in a simulation cell of length 7 unit cells; VET-type zeolite 

b 12 water molecules in a simulation cell of length 14 unit cells; VET-type zeolite 

c 18 water molecules in a simulation cell of length 21 unit cells; VET-type zeolite 

d 24 water molecules in a simulation cell of length 28 unit cells; VET-type zeolite 

e 6 water molecules in a simulation cell of length 7 unit cells; TON-type zeolite  

f 6 water molecules in a simulation cell of length 21 unit cells; VET-type zeolite 
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Figure 4-8 Snapshots of (a) VET6, (b) VET12-double, (c) VET18-tri, and (d) VET24-quad (water 

represented by ball-and-sticks and zeolites by wires, oxygen coloured in red, hydrogen in white, 

silicon in yellow). Only water molecules in the front pores are shown for better visualisation. x-, y-, 

z-directions of each simulation cell are in periodic boundary condition. 

 

As can be seen in Table 4-2, VET12-double, VET18-tri, and VET24-quad produce similar z-

components of the self-diffusion coefficients (3.3  3.4 × 10−9 m2 s−1) but they are significantly 

lower than the self-diffusion coefficient in VET6. All diffusivities were determined from MSDs 

computed using the equations (4-3) and (4-4) in which MSDs of the confined water show linear 

diffusive regimes for all the extended zeolites. We also observe that the value of the z-component of 

the per-molecule collective diffusion coefficient vary, seeming to converge to a value of about 0.9 × 

10−9 m2 s−1 when the VET24-quad system is considered. Experimentally, there exists an ideal 

droplet size and distribution. If this includes droplets with a larger number of water molecules than 

that existing in the periodic cell, then that droplet cannot form. As the length of the pore, and hence 

the number of molecules in the periodic cell, increases (while keeping the density constant) the 

droplet size and its distribution will converge to the thermodynamic value. 
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As the number of the water molecules increases in the periodic system, the collective 

diffusivities per molecule will be lower as displayed in Table 4-2. Increasing the number of 

molecules allows formation of large clusters which diffuse less freely. 

The results shown in gpore(r) in Figure 4-9(a) clearly demonstrate differences in the water 

structure between VET6 and the extended zeolites. In VET6, gpore(r) drops below 1 at about 6 Å , 

suggesting that water clusters of 6 molecules exist and are quite stable. Comparing with VET12-

double, VET18-tri, and VET24-quad we see several differences although the water densities are the 

same. Firstly, when comparing to the second peak, the first peak is relatively higher for VET6. This 

is consistent with the formation of clusters in which more water molecules are involved in the first 

shell of the cluster: the first peak represents the average number of water molecules directly 

hydrogen-bonded to the molecule of interest, or its coordination number. In a water cluster in a 

pore, the water molecules at the ends of the cluster will have lower coordination numbers than those 

in the centre of the cluster, and therefore the longer the cluster, the higher the average coordination 

number will be. This will also be evident in the height of the second peak. Comparison of the 

heights of the first peak with different simulation cell lengths indicates that the average cluster size 

is growing considerably as the number of water molecules increases from 6 to 12 (with 

corresponding increases in the length of the cell), and there is a further increase in VET18-tri with 

little change going to VET24-quad. The length of these clusters grows and from the images in 

Figure 4-8, clusters of over 26 Å  form in VET24, however several clusters can co-exist and clusters 

of 6 molecules are still common. The formation of long clusters is reflected in the fact that gpore(r) is 

still well above 1 in the region 7 - 8.5 Å  in all cases considered in 4-9(a) except the VET6 system. 

These results indicate that in considering the relatively low water loadings where clusters tend to 

form, it is important to examine the system size effect before comparison of the results with 

experiment. Although the z-component of the self-diffusion coefficient in VET6 is well above the 

self-diffusion coefficient of bulk water, a more reliable value is obtained using the longer 

simulations cells. It is interesting to observe that this value is also above that of bulk water and 

VET32, indicating that the clustering results in enhanced self-diffusion just as shown in existing 

literature regarding water diffusion through nanotubes (Alberto, 2007, Falk et al., 2010, Cicero et 

al., 2008). Comparison of the collective diffusion coefficient in VET24-quad with that in VET32 

suggests that collective diffusion coefficient is only slightly lower at the higher loading, and that 

order of magnitude enhancement observed with VET6 was misleading.      

 



77 

 

   

Figure 4-9 The pore radial distribution function, gpore(r) for the O-O atoms of the water for (a) 

various loadings, and (b) different simulation cell lengths in different types of zeolites. 

 

Considering VET24-quad, we can conclude that at lower loadings the self-diffusion coefficient 

(Ds = Dsz/3 = 1.1 × 10−9 m2 s−1) is about 5 times higher than that found in commercially used 

polyamide membranes when hydrated ca. 0.2 × 10−9 m2 s−1 (Ding et al., 2014, Hughes and Gale, 

2010, Hughes and Gale, 2012). According to previous work on polyamide membranes, the hydrated 

membrane contains 23 wt% of water in the pores, meaning that the water density in the commercial 

membrane is 0.32 g/cm3 which is similar to that of the lower loadings case (0.39 g cm3) in this 

study. We can also compare these results to those from different zeolite membrane candidates that 

have been previously determined: the self-diffusivities have been reported as 1.0  4.0 × 10−9 m2 s−1 

(Bussai et al., 2002, Yang et al., 2008, Joshi et al., 2014, Caro et al., 1987) when 0.47 g/cm3 of 

water is loaded in MFI zeolites, while hydrated LTA zeolites have values of  ~0.5 × 10−9 m2 s−1 

(Demontis et al., 2010, Lin and Murad, 2001). Those values are comparable to and about 2 times 

lower than VET24-quad (1.1 × 10−9 m2 s−1), respectively. Given that MFI and LTA zeolites possess 

fully-connected 3-D pores, well-defined 1-D channels of VET will produce much higher water 

transport in one-direction than the 3-D pores. This high diffusivity can be associated with the 

hydrophobic nature of the pore which enhances the formation of nanodroplets. Even for the higher 

loadings, i.e. 32 water molecules per pore, diffusivities are approximately four times higher than the 

polyamide membranes, and the self-diffusion coefficient in the z-direction nearly corresponds to the 

self-diffusion coefficient for bulk water. At high loadings water-water interactions becomes 

dominant for the diffusive behaviour as opposed to water-zeolite interactions. 

In VET6 and TON6, 6 water molecules were placed in simulation cells consisting of 7 unit 

cells, however due to the different pore sizes their number densities were different (0.39 g cm3 for 
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VET6 and 0.52 g cm3 for TON6). Figure 4-9(b) compares gpore(r) for these systems and the results 

indicate the water molecules do not form stable 6 membered clusters in TON6. The shifted second 

peak suggests the formation of chains of molecules, however the linearity of the MSD versus time 

indicates molecules can pass one another. Comparison of the snapshots in Figures 4-10 and 4-6 

verify this result and also indicate that the chains vary in length and are less stable. TON6 has a 

lower self-diffusion coefficient than VET6, and its self-diffusion and collective diffusion 

coefficients differ, however it should be noted that the results are similar to those obtained for 

VET24-quad, and the collective diffusion coefficient is somewhat higher.  

We also consider the effect of density on the results by comparing the results of 6 water 

molecules in a pore consisting of 21 unit cells in the z-direction (VET6-tri) with VET6.  The VET6-

tri (6 water molecules/triple-longer pore) results a slightly higher self and collective diffusivity than 

VET6, although the statistical significance of the difference is marginal. Figure 4-9(b) compares 

gpore(r) for these systems and the results are very similar, indicating that the structures in the two 

cases are very similar. Presumably as the density of the water decreases, a phase transition will 

occur and the clusters will dissociate, however even at this low density of 0.13 g/cm3, this has not 

occurred. Effect of density difference and same density with different pore geometries on transport 

and structure of water confined in zeolites will be further studied in the next chapter. 
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Figure 4-10 Snapshots of TON6 simulations (water represented by ball-and-sticks and zeolites by 

wires, oxygen coloured in red, hydrogen in white, silicon in yellow): (a) view along the z-axis and 

(b)-(d) views along the x-axis initially, at 1000 ps, and at 2000 ps, respectively. Only water 

molecules in four of the pores are shown in (b)-(d), for better visualisation. x-, y-, z-directions of 

each simulation cell are in periodic boundary condition. 

 

4.5 Conclusions 

In this study, transport and structural properties of water inside zeolites were explored using 

MD simulations, with the aim of assessing a class of candidate zeolites as membrane materials. 

Force fields previously validated against experimental data were employed. Different 

thermostatting strategies were investigated. The thermostatting mechanism had little effect on the 

diffusion coefficients for water confined in a VET zeolite and even produced consistent results with 

those obtained from NVE and NPT simulations. 

Long, narrow pores with the same loading and/or the same density were also examined. 

Considering low loadings of water, when the simulation cell size was increased while keeping the 

same density as VET6, self-diffusivities in the z-direction were observed to converge to ca. 3.4 × 

10−9 m2 s−1. It should be noted that at low loadings, it is important to ensure that the number of unit 
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cells along the pore is sufficient that convergence to thermodynamic behaviour is obtained or 

otherwise non-physical results are obtained due to the upper bound on the number of water 

molecules in the water cluster. For example the results obtained for VET6 (6 water molecules per 

pore) does not give an accurate prediction for the self-diffusion coefficient of a system with a 

loading of 0.39 g cm3 because it prevents the formation of clusters larger than 6 molecules. 

TON6 has a comparable self-diffusivity to that of VET24-quad, but a higher collective 

diffusivity per particle. This is because the water molecules did not form a stable cluster, resulting 

the collective diffusivity being significantly lower than the self-diffusivity. 

High diffusion rates for both low and high water loading were measured compared with 

commercially-available polyamide membranes. The self-diffusivities for VET24-quad, VET32, and 

TON6 were all higher than for the polyamide membrane (ca. 0.2 × 10−9 m2 s−1) that are currently 

used for water desalination, suggesting that these materials may be useful. In particular, the fully-

loaded VET32 had a comparable self-diffusion rate with bulk water (2.3 × 10−9 m2 s−1) even though 

the water density of VET32 was twofold higher (2.1 g/cm3). 

This study on the diffusional and structural properties of confined water in zeolites has analysed 

a number of important issues that need to be considered in evaluation of diffusion coefficients for 

fluids in pores using computational methods. It suggests that the one dimensional cylindrical pores 

can result in higher diffusivities, guiding the selection of future membranes for practical 

applications. 
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Chapter 5 Water structure and transport in zeolites with pores in one 

or three dimensions: a molecular dynamics simulation study 

 

5.1 Abstract 

Molecular dynamics simulations were carried out to explore the kinetic and structural properties 

of water diffusing through several types of zeolite with pore sizes that make them suitable for 

application as membranes for small ion filtering. Zeolites with pores in one and three dimensions 

were considered and insights into the effect of the structures of the zeolites were obtained by 

studying diffusion and ordering of the confined water.  Interestingly, water molecules in the zeolites 

with pores in one-dimension showed up to 2.5-fold higher diffusivities than in those with pores in 

three-dimensions for a given water density and a similar pore diameter. The distribution of water 

molecules across pores and the number of water molecules in a specified region were also 

investigated to determine the effects of pore shape and size on the water assembly. The arrangement 

and the number of water molecules in a cluster were observed to depend heavily on the shape and 

size of pores. The present study provides a deeper understanding of how various structural features 

affect the dynamics and structure of the water within zeolites. 

 

5.2 Introduction 

Zeolites are microporous crystalline materials that are widely used as membranes in ion 

exchange, gas separation and desalination due to a variety of channel structures, pore sizes and 

chemical compositions. In particular, with increasing global demand for clean water, zeolite 

membranes have attracted growing attention as desalination materials in the last decades due to 

their high selectivity, chemical stability and mechanical strength. Lin and Murad (Lin and Murad, 

2001, Murad and Lin, 2001) carried out computational studies on the separation of water from NaCl 

solution using a ZK-4 (all-silica LTA zeolite) membrane to demonstrate their utility. 

Kazemimoghadam (Kazemimoghadam, 2010) synthesised hydroxysodalite (SOD zeolite) and set 

the prepared membrane in a lab-scale reverse-osmosis system to test desalination performance. 

Another computational study on zeolites as membranes by Liu and Chen (Liu and Chen, 2013) 

compared MFI with FAU zeolites, and considered the effects the of hydrophilicity, membrane 

thickness and water loading. Recently, MFI-type zeolites, silicalite (all-silica) and ZSM-5, have 
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been intensively studied in experiments and computer simulations to investigate their use as future 

desalination materials (Wenten and Khoiruddin, 2016, Liu and Chen, 2013, Dong et al., 2015, Zhu 

et al., 2013, Drobek et al., 2012). However, despite the intensive efforts to study their suitability as 

for water purification, zeolites and zeolite-incorporated membranes are still not a suitable 

commercial option due to their poor water flux. 

In recent years, carbon nanotubes (CNTs) and porous graphene have been studied as an 

alternative to conventional polymeric membrane materials (Corry, 2011, Cohen-Tanugi and 

Grossman, 2012, Wang et al., 2013, Cohen-Tanugi and Grossman, 2014, Gai et al., 2014). The 

advantage of these materials is that their pores are well-defined and the pores can be manufactured 

with sizes of less than 1 nm, which is suitable for rejection of salt ions (Wang et al., 2013, Cohen-

Tanugi and Grossman, 2014, Holt et al., 2006). Also, ultrafast water flow takes place through the 

pores due to their smooth and hydrophobic walls (Alexiadis and Kassinos, 2008, Holt et al., 2006, 

Cohen-Tanugi and Grossman, 2012). However, manufacturing high density, small and well-defined 

pores of uniform pore size is very challenging, and not commercially viable with current techniques 

(Liu and Chen, 2013). In contrast, zeolites are crystalline structures that are naturally-occurring or 

can be more easily fabricated. The pores in zeolites are well-defined and closely-packed, giving a 

high pore density. Also, zeolites with channels/pores all in aligned in one direction (which we refer 

to as ‘1-D pores zeolites’) and suitable pore diameter show a high potential as desalination 

membrane materials due to their higher water flow rates as in the case for CNT. 

Only a few studies have been carried out on the performance of 1-D pore zeolites in 

desalination. Hughes et al. (Hughes et al., 2011) investigated the behaviour of water in all-silica 1-

D pore zeolites and their use as desalination membranes by employing quantum mechanical and 

molecular dynamics calculations, and found higher self-diffusivities than those obtained from 

conventional polyamide membranes (ca. 0.2 × 10−9 m2 s−1) (Ding et al., 2014b, Hughes and Gale, 

2010, Hughes and Gale, 2012). In addition, it was shown that the penetration of Cl− into the 

framework was energetically unfavourable. In our previous work (Han et al., 2015), two different 1-

D pore zeolites (i.e. VET- and TON-type) were examined, and self-diffusion coefficients were 

found to be around 5 times higher than that in commercial aromatic polyamide membranes (Ding et 

al., 2014a) with water densities of 0.39 and 0.52 g cm3. Additionally, we found promising 

collective diffusion coefficients of 11.5  23.4 × 10−9 m2 s−1.1 

                                                 
1 Note that a non-standard definition was used in Chapter 4, whereas these values are obtained using the standard 

definition (see equation (5-3)). 
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Although it is still challenging to align 1-D pores normal to the zeolite surface, some attempts 

have recently been made to control the direction of the crystal growth. It is reported that zeolite 

crystal patterns can be controlled by using organic molecules, called zeolite growth modifiers, to 

tailor crystal direction, thickness, and morphology (Rimer, 2012, Rimer et al., 2014). Therefore, the 

technique will make it more feasible to use 1-D pore zeolite membranes for desalination.  

Studies on water behaviour within hydrophobic two-dimensional (2-D) slits and three-

dimensional (3-D) pores has previously been carried out both experimentally and computationally. 

Small-angle X-ray scattering (SAXS) and grand canonical Monte Carlo (GCMC) studies have 

revealed that water molecules form clusters which are 6 Å  in diameter within a 11 Å  width slit-pore 

under 0.6 relative pressure (P/P0), and with increasing pressure (higher water loading) the cluster 

becomes larger due to fusion of different clusters (Ohba et al., 2005). Another study found that ice-

like structures of water clusters, which were about 15 Å  in diameter, are formed in slit-pores of 16.3 

Å  width at P/P0 = 0.6 by using X-ray diffraction (XRD) measurements and reverse Monte Carlo 

simulations (Iiyama et al., 2006). In addition, some interesting studies have been performed for slit-

pores of different widths (7 Å  and 11 Å ), showing that the kinetics of the water assembly is mainly 

affected by the pore width at low pressure (under P/P0 = 0.5) and that water adsorption rates are 

faster for the narrower pores at just above the critical pressure (0.4 for 7 Å  width and 0.6 for 11 Å ) 

(Ohba and Kaneko, 2009). Water clusters also form within cage-like pores of the LTA zeolite: 11 Å  

diameter α-cages hold 24 molecules in a cluster, whereas 6 Å  β-cages can hold 4 molecules 

(Demontis et al., 2008). However, a complete theoretical understanding of water behaviour in 

nanostructures is still lacking. 

In this study molecular dynamics (MD) simulations are used to characterize the kinetics, 

dynamics and structure of water confined in zeolites with different dimensionality and morphology. 

As found in our previous work (Han et al., 2015), clustering of water has a significant impact on the 

self and collective diffusion coefficients. Therefore, we examine how the cluster size and stability 

affect water diffusivity in 1-D pore zeolites and zeolites with channels in three directions (referred 

to as ‘3-D pore zeolites’) that could potentially offer faster diffusion rates than the most commonly 

considered 3-D channel zeolites (i.e. MFI and LTA) or the commercial polymeric membranes. 
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5.3 Methods 

5.3.1 Zeolite construction and force field 

Six different types of zeolites were investigated and compared in this work. Three 1-D pore 

zeolites (VET, TON, CFI) that possess cylinder-like 1-D channels with hydrophobic internal walls 

composed of Si and O only were studied, as well as three widely studied 3-D pore zeolites (MFI, 

LTA, FAU), which have three-dimensionally connected pores and cages in the frameworks. We 

only considered zeolites with pore sizes that are sufficiently small to exclude Na+ and Cl ions 

through molecular-sieving. 

All pores in the 1-D pore zeolites considered are large enough to be accessible by water, and 

according to crystallographic data (Freyhardt et al., 1996, Baerlocher and McCusker, 2015), the 

pores for VET and CFI are cylindrical with an effective diameter of 5.9 and 7.2 Å , respectively, 

whereas TON has slightly elliptic pores with dimensions 4.6 × 5.7 Å .  The unit cells of the 1-D pore 

zeolites were taken from the crystallographic database (Baerlocher and McCusker, 2015). The unit 

cell of VET consists of 17 Si and 34 O atoms with orthogonal lattice vectors with lengths (a × b × c) 

13.048 × 13.048 × 4.948 Å . The TON unit cell has orthogonal lattice vectors with lengths 14.105 × 

17.842 × 5.256 Å  and is composed of 24 Si and 48 O. The unit cell of CFI has orthogonal lattice 

vectors with lengths, 13.961 × 5.264 × 25.967 Å  and there are 32 Si and 64 O. The 1-D channels in 

the VET and TON are aligned with c lattice vector, while CFI possesses 1-D pores in the direction 

of the b lattice vector.  In our results below we consider the pores to be aligned with the z-axis (so 

the x, y and z axes are parallel to the a, b and c lattice vector in VET and TON; and the x, y and z 

axis parallel to the a, c and b lattice vectors in CFI).  Each simulation box was composed of 2 × 2 

crystallographic unit cells in the x and y directions and 28, 21 and 14 unit cells in the z-direction for 

VET, TON and CIF, respectively (see Figure 5-1). The accessible volumes for the water molecules 

are 78.2, 80.4, 133.8 Å 3/1000 Å 3, respectively for VET, TON and CFI. 

MFI has straight channels parallel to the y-axis with dimensions 5.1 × 5.5 Å  which are 

perpendicular to channels whose centres zigzag in the x-direction, and with dimension 5.3 × 5.6 Å . 

LTA has 4.1 Å  pores in all three directions that are connected by cavities with diameters of about 

11 Å . FAU possesses larger pores (7.4 Å ) with cavities of similar size to those in LTA. 

Interestingly, the FAU cylindrical channels cross diagonally at 45° to the xy-, yz- and xz- planes of 

unit cell.  The simulation cell for MFI was built from 2 × 2 × 3 unit cells (40.180 × 39.476 × 39.426 

Å ) in x, y, z-coordinates, LTA was of 3 × 3 × 3 unit cells (35.757 × 35.757 × 35.757 Å ), and FAU 

was of 2 × 2 × 2 unit cells (48.690 × 48.690 × 48.690 Å ). The simulation boxes for the 3-D pore 
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zeolites considered here have angles of 90° between all lattice vectors. The details of the zeolites 

studied here are summarised in Table 5-1 and Figure 5-1. 

An equilibration simulation was carried out on empty frameworks at a constant pressure and 

temperature (NPT) of 300 K and 1 atm in order to check the stability of the zeolite structures and 

confirm the suitability of the choice of force fields. 

 

Table 5-1 Details of zeolite candidates for desalination membranes (Baerlocher and McCusker, 

2015, First et al., 2011) 

Channel Framework Name Chemical formula LCDa (Å ) PLDb (Å ) 

3-D 

MFI Silicalite-1 [Si
96

O
192

] 6.3 4.4 

LTA ZK-4 [Si
24

O
48

] 11.0 4.2 

FAU Zeolite Y [Si
192

O
384

] 11.2 7.3 

1-D 

VET VPI-8 [Si
17

O
34

] 6.4 5.9 

TON Theta-1 [Si
24

O
48

] 5.7 5.1 

CFI CIT-5 [Si
32

O
64

] 7.4 7.2 

a Largest cavity diameter: size of the largest sphere that can fit at some position in the pore 

b Pore limiting diameter: size of the largest sphere that can pass through the pore 
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Figure 5-1 Zeolite frameworks considered in this work, showing lines between silicon (yellow) and 

oxygen (red) atoms in each case. In each case the structure is oriented to view it along the widest 

straight pore. For CFI and MFI the view is along the b lattice vector, for FAU it is along the (1,1,1) 

vector and in the other cases it is along the c lattice vector. A similar scale is used in each of the 

figures. 1-D pore zeolites are on the left, and the 3-D pore zeolites are on the right. Unit cells are 

shown by dashed lines. 

 

The TIP4P-Ew (Horn et al., 2004) force field was used for water as it gives reasonable 

agreement with experimental data in terms of structure and diffusion coefficients (Cohen-Tanugi 

and Grossman, 2014, Horn et al., 2005). The water molecule is modelled by three atoms (H, O, H) 

and one massless charged particle, and the molecule kept rigid using the SHAKE algorithm 
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(Ryckaert et al., 1977).  There is a Lennard-Jones (LJ) intermolecular interaction between the water 

oxygen atoms and Coulombic potentials between charges on the hydrogen atoms and the massless 

particle.  

To model the interactions between the zeolite atoms and between zeolite-water, the 

Buckingham potential was used, 

 

 

 

where A, ρ, and C are constants, rij is the distance between atoms. The parameters for the zeolite 

intramolecular interactions used were those determined by Hughes et al. (Hughes et al., 2011) who 

further developed the SiO2 interatomic potentials (Sanders et al., 1984). For water-zeolite 

interactions, we used parameters for the interaction of α-quartz with water, which was originally 

derived by de Leeuw and Parker (de Leeuw and Parker, 1998), then later adjusted by Hughes et al. 

for the zeolite-water potential in order for the better agreement with the binding energy obtained by 

MP2 ab-initio quantum calculations. A three-body non-bonding harmonic angle potential, with the 

parameters obtained by Sanders et al. (Sanders et al., 1984), was used to maintain the geometry of 

O-Si-O in the zeolite framework. The particle-particle-particle mesh (PPPM) Ewald sum (Hockney 

and Eastwood, 1988b) was employed for long ranged Coulombic interactions. 

 

5.3.2 Characterisation of transport and structure of water in zeolites 

Water diffusion can be examined by consideration of the self-diffusion coefficient Ds which is 

indicative of the molecular mobility and the collective diffusion coefficient Dc that is directly 

related to the transport diffusion coefficient (Gubbins et al., 2011). The transport diffusivity 

represents the ratio of the flux of molecules in the fluid to a concentration gradient (Smith and 

Hashemi, 2009), (  where J is the flux, Dt is the transport diffusivity, C is the 

concentration, and z is the position), and is directly related to the collective diffusion coefficient 

through a thermodynamic factor (Gubbins et al., 2011) (  where µ  is 

the chemical potential). Thus, the flux of water through the material and its utility as a membrane 

can be evaluated by the collective diffusion coefficient. For real world membranes, the flux is 

(5-1) 
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driven by a pressure gradient hydrodynamic permeance K is one of the most important factors to 

evaluate the performance of the real world membrane. K is a degree of the quantity of the flux 

under a steady state by the applied pressure, and a proportional factor of the flow rate induced by 

the pressure gradient. This non-equilibrium-driven permeance is physically correlated to the 

equilibrium-driven collective diffusion coefficient:  where V is the volume of 

the membrane and N is the number of diffusing molecules (Falk et al., 2015). Therefore, the 

hydrodynamic permeance performance of membranes can be estimated by measuring the collective 

diffusivity based on equilibrium MD simulations. 

Self-diffusion coefficients can be experimentally determined using pulsed field gradient nuclear 

magnetic resonance (PFG-NMR) (Bussai et al., 2002) and quasi-elastic neutron scattering (QENS) 

techniques (Jobic et al., 1999, Gubbins et al., 2011). Transport/collective diffusivities in zeolites 

have also been experimentally measured by QENS (Jobic et al., 1999) and by direct experimental 

measurements (Kapteijn et al., 1995). 

In simulations the diffusion coefficient can be obtained by measuring the mean square 

displacement (MSD) for each water molecule in the system, and if the motion is diffusive (MSD 

varies linearly in time) it will be defined by the Einstein relationship: 

 

 

 

where ri(t) is the position of the ith particle at time t, and N is the number of molecules in the 

framework.  To calculate the collective diffusion coefficient the MSD of the centre-of-mass (com) 

of all the water molecules in a pore is computed: 

 

 

where  and Np is the number of molecules in the pore. 

Water clusters were expected to form in the hydrophobic inner-pores of the zeolites with small 

to moderate loading as found in our previous work (Han et al., 2015) and experimentally proved by 

(5-2) 

(5-3) 
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in situ SAXS and in situ XRD (Ohba et al., 2005, Iiyama et al., 2006). In simulations, this 

phenomenon can be observed through direct visualisation of the water molecules within the 

framework, and quantitatively characterised by calculating the radial distribution function g(r) 

 

 

where Nsh is the number of water oxygen atoms in a shell of radius between r and r + dr and 

volume Vsh, centred on a particle of interest, and ρ is the average water number density in the 

system (i.e. calculated using the total volume of the simulation cell). This is most appropriate for 

the study of spherically symmetric systems where g(r) reaches 1 when the particles are isotropically 

distributed. For the systems with 1-D pores that are considered here it is more useful to consider a 

function which is modified to account for the confinement g(r)1-D pore 

 

 

where Vps is the potential water accessible volume of the pore shell between r and r + dr (the 

portion of the spherical shell that is in the pore), ρp is given as the average particle number density 

of the whole pore and rp is the pore radius. Here it is assumed that Vps ≈ 2πrp
2dr will be reasonably 

accurate at larger r (r > rp) and may overestimate g(r)1-D pore at r ≈ rp, however since the accessible 

volume of 1-D pore can only be estimated, this approximation is accepted. Therefore, g(r)1-D pore is 

expected to have a value of 1 at large r if the molecules are uniformly distributed in the pore.  For 

the 3-D pores, we only calculate the usual distribution function given by equation (5-4). 

 

5.3.3 Simulation procedure 

Water molecules were loaded onto each zeolite structure and the energies were minimised. The 

volume of each system at 300 K and 1 atm was then determined using 1 ns simulations with a 1 fs 

time step in the isobaric-isothermal (NPT) ensemble with a Nosé–Hoover (NH) barostat and 

thermostat, and a relaxation time of 1 ps. After relaxation of each system, their properties were 

determined using thermostatted constant volume (NVT) simulations. A NH thermostat was used to 

(5-4) 

(5-5) 
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fix the temperature at 300 K, and the properties were calculated over a 2 ns simulation with a time 

step of 1 fs. Twenty independent runs were performed on each system. 

In most cases water molecules were added to the pores of the zeolites to give a densities of 0.39 

g cm3 in the accessible pore volume, which corresponds to the loading density of VET zeolite that 

was considered in our previous study (Han et al., 2015). For the MFI zeolite, this density is obtained 

with MFI13 (13 water molecules in 2 unit cells) and MFI80 (80 molecules in 12 unit cells). MFI 

with 16 water molecules in two unit cells (MFI16, 0.47 g cm3) was also simulated as a reference 

case to validate our force-field and methodology by comparison with previous work on MFI, since 

MFI16 at this density has been extensively studied in the past (Joshi et al., 2014, Bussai et al., 2002, 

Hughes et al., 2011). Table 5-2 gives information on the number of zeolite unit cells and the number 

of water molecules in the zeolites for each system simulated in the present work.  A “System code” 

is also given in Table 5-2 to allow clear reference to the each of the systems considered in the paper.  

 

Table 5-2 Information on initial setups of simulation 

 

System 

code 

Water density a 

/ g cm3 

No. of water 

molecules 

No. of unit 

cells 

Simulation cell size 

x Å  × y Å  × z Å  

MFI16 0.47 16 1×1×2 20.090×19.738×26.284 

MFI13 0.39 13 1×1×2 20.090×19.738×26.284 

MFI80 0.39 80 2×2×3 40.180×39.476×39.426 

LTA127 0.39 127 3×3×3 35.757×35.757×35.757 

FAU411 0.39 411 2×2×2 48.690×48.690×48.690 

VET24 0.39 96 2×2×28 26.203×26.203×139.109 

TON15 0.39 117 2×2×21 28.210×35.684×110.376 

CFI24 0.39 192 2×2×14 27.922×51.934×73.696 

a Water density in the accessible volume of the zeolite 
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We applied the all-atom model potential described above, and used periodic boundary 

conditions in three dimensions. All algorithms and calculations employed in this study used the 

LAMMPS code (Plimpton, 1995, Shinoda et al., 2004, Martyna et al., 1994). 

 

5.4 Results and discussion 

5.4.1 Validation work on water diffusion within MFI 

We firstly examined water transport in the MFI zeolite with simulation cells composed of 2 unit 

cells containing 16 water as a reference work, which we referred to as MFI16 system. We then 

compared these results to MFI13 and MFI80, i.e. 13 water molecules in 2 unit cells and 80 water 

molecules in 12 cells, respectively, which correspond to the same loading density (0.39 g cm3) 

applied to all other zeolites. Mean square displacement (MSD) calculations were used to determine 

self-diffusion coefficients given by equation (5-2), and their components in each direction. Fickian 

diffusion takes place when pores are big enough for the guest molecules to pass each other, and 

when guest-guest and host-guest collisions result in movement in three-dimensions (Gubbins et al., 

2011). Anomalous diffusion can arise from confinement of the fluid (Nguyen and Bhatia, 2012). 

Single-file diffusion is an extreme case which can arise when 1-D pores become small enough to 

prevent molecules from passing each other (Felderhof, 2009, Alexander and Pincus, 1978). This, in 

conjunction with smooth pore may result in unusually high fluxes. 

In our systems, Fickian diffusion was always observed due to the width of the pores and the 

simulation conditions. As shown in Figure 5-2, MFI has straight cylindrical channels lying along y-

direction, and channels that zigzag along the x-direction. There are no open pores in the z-direction 

lying in the xy plane, however due to the connectivity of the pores (see Figure 5-2) diffusion in the 

z-direction can still occur. Therefore, water diffusion in the z-direction only has a contribution to the 

overall MSD at short timescales. The MSD in the y-direction is higher than that the x-direction. 

This tendency was observed in all MFI systems studied here irrespective of the water loading and 

simulation cell size, as indicated in Table 5-3.  

Results for the reference case (MFI16)  are similar those in the literature for each component of 

the self-diffusion coefficient, however we note that there is a large variation in published results for 

both experimental and computational studies. Global water self-diffusion coefficients of  ~1.00 to 

1.91 × 10−9 m2 s−1 have been reported in experimental (Caro et al., 1986, Bussai et al., 2002) and 

recent computational studies (Arı et al., 2009, Hughes et al., 2011, Joshi et al., 2014). The MD 
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calculated self-diffusion coefficients in the x-direction were ca. 0.69  2.60 × 10−9 m2 s−1, y-

direction had a range of 1.24  6.50 × 10−9 m2 s−1, and the range in the z-direction is ~0.79 × 10−9 

m2 s−1 (Bussai et al., 2002, Arı et al., 2009, Hughes et al., 2011). These diffusion coefficients are 

comparable to our global Ds (0.88 ± 0.08 × 10−9 m2 s−1) and its components (Dsx: 0.93 ± 0.11 × 10−9 

m2 s−1, Dsy: 1.51 ± 0.11 × 10−9 m2 s−1, Dsz: 0.20 ± 0.02 × 10−9 m2 s−1).  

 

 

Figure 5-2  Schematic drawing of the channel system of MFI zeolite. 

 

Table 5-3 Self-diffusion coefficients for water in MFI zeolite with different loadings and different 

simulation cell size a 

 
Water density b 

/ g cm−3 

Dsx 

/ 10−9 m2 s−1 

Dsy 

/ 10−9 m2 s−1 

Dsz 

/ 10−9 m2 s−1 

Ds 

/ 10−9 m2 s−1 

      

MFI16 c 0.47 0.93 ± 0.11 1.51 ± 0.11 0.20 ± 0.02 0.88 ± 0.08 

MFI13 d 0.39 1.31 ± 0.13 1.60 ± 0.12 0.23 ± 0.02 1.05 ± 0.09 

MFI80 e 0.39 1.13 ± 0.05 1.36 ± 0.05 0.34 ± 0.01 0.94 ± 0.04 
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a The error bars are the standard error of the mean for the diffusion coefficient calculated from 

20 independent runs 

b Water density in the accessible volume of the zeolite 

c 16 water molecules in 2 unit cells; MFI-type 

d 13 water molecules in 2 unit cells; MFI-type 

e 80 water molecules in 12 unit cells; MFI-type 

 

Measurements of the diffusion coefficients were also made for MFI13 (13 water molecules in a 

simulation cell consisting of 1×1×2 unit cells) and MFI80 (80 water molecules in the simulation 

cell) which has a similar loading to MFI13, but is extended six-fold (2×2×3 unit cells). As 

summarised in Table 5-3, these two cases share the same water loading (0.39 g cm−3), however the 

larger system has slightly lower diffusion coefficients due to the possibility for formation of larger 

water clusters (Han et al., 2015). The fact that the diffusion coefficient only changes by a very small 

amount indicates that the system size is sufficient. The diffusion coefficients in MFI16 are slightly 

lower which is consistent with it having a slightly higher density (0.47 g cm−3).  

 

 

Figure 5-3 The radial distribution function, g(r), for oxygen atoms of the water molecules in MFI 

with various loadings. 

 

To assist in characterizing the structural properties of water confined in MFI, we calculated the 

radial distribution function (RDF). For the 3-D pore systems, g(r) given by equation (5-4) was 
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evaluated for the oxygen atoms of water, and the density in (5-4) for MFI16, MFI13 and MFI80 is 

1.54 × 103 g cm3, 1.25 × 103 g cm3 and 1.28 × 103 g cm3, respectively. As displayed in Figure 

5-3, a sharp, high peak is observed at about 2.8 Å  for MFI16, MFI13 and MFI80 and the general 

features are the same in all cases. This is similar to the results obtained previously (Hughes et al., 

2011, Bussai et al., 2003). The positions of the characteristic peaks corresponded well with those 

obtained for the oxygen-oxygen g(r) of liquid TIP4P-Ew (Horn et al., 2004, Hughes et al., 2011). 

The reduction in the height of the peaks in the RDF curve for MFI16 is consistent with the clusters 

of water molecules in all systems having the same density since calculation of g(r) using equation 

(5-4) uses the density of the water in the system, which will be higher in the case of MFI16. In 

addition there is a cross-over in g(r) for MFI13 and MFI16 suggesting that the water clusters might 

be a little larger in the higher density MFI16 case. We also note that the pore radius of MFI (ca. 2.6 

Å ) prevents formation of spherical water clusters because the first shell of a spherical cluster has a 

radius of about 3.4 Å .  

The number of water molecules in the first shell was obtained by integrating Nsh over the first 

peak (to 3.4 Å ). All three samples showed nearly identical numbers of water molecules present in 

this shell (3.4  3.6 molecules). These results therefore show that the structural and transport 

properties of MFI can be described using simulations and indicate that our selected force field and 

simulation parameters give results that are consistent with those published. 

 

5.4.2 Properties of water in zeolites with 3-D pore channels 

Similar studies were carried out on two widely used zeolites, LTA and FAU. Both frameworks 

have been of practical interest and possess 3-D pore channels. Nevertheless, little research has been 

carried out on water diffusivity and the structure of the water in these systems. 

The LTA framework is built with alternate arrangements of double 4-rings (d4r) and sodalite 

(sod) cages, forming open structures with 4.1 Å -diameter pore openings and 11 Å -diameter cavities 

while FAU has alternate double 6-rings (d6r) and sod units, creating 7.4 Å -diameter pores and 12 

Å -diameter cavities. Both zeolites were loaded with water molecules in their inner frameworks with 

the same density (0.39 g cm−3) as MFI80 (corresponding to 127 and 411 molecules for LTA and 

FAU, respectively). As shown in Figures 5-4 and 5-5, water molecules tend to be within the cavities 

in both zeolites most of the time, although a few molecules occasionally hop to a neighbouring 

cavity. This implies that water prefers to form clusters at moderate density when confined, as shown 

in previous studies (Iiyama et al., 2006, Ohba et al., 2005, Ohba and Kaneko, 2009) and the cavity-
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trapped particles rarely diffuse out to other cavities due to the high energy barrier generated by the 

small opening between the cavities, and the need for the clusters to change shape or break up. 

 

 

Figure 5-4 Snapshots from the simulation of water within the LTA-type zeolite (water represented 

by ball-and-sticks and zeolites by wires, oxygen coloured in red, hydrogen in white, and silicon in 

yellow): views along the (a) x-axis, (b) y-axis, and (c) z-axis. 

 

 

Figure 5-5 Snapshots from the simulation of water within FAU-type zeolite (water represented by 

ball-and-sticks and zeolites by wires, oxygen coloured in red, hydrogen in white, and silicon in 

yellow): views after rotation by 45° clockwise about the (a) x-axis, (b) y-axis, and (c) z-axis. 

 

Consistent with these observations, water self-diffusivity in the cage-containing zeolites were 

noticeably lower than in the cylinder-containing zeolite, MFI. (see Table 5-4) Unlike in MFI, the 

pores lying along the x, y and z directions are identical so the x-, y-, and z-components of the 

diffusion coefficient are the same. For LTA, which has a narrower pore entrance, Ds was found to 

be about 5 times lower (0.19 ± 0.02 × 10−9 m2 s−1) than in MFI for the given density, whereas FAU 

has a Ds that is more than double that of LTA. Although water molecules in FAU move to and from 

neighbouring cavities more freely than in LTA due to a wider opening (7.4 Å ), the Ds (0.43 ± 0.01 

× 10−9 m2 s−1) is also lower than that in MFI. This suggests that the shape of the zeolite channel 

might be even more influential on water transport than it size for under these condition since Ds is 

higher for MFI than for FAU. Although MFI has smaller pores, they are cylindrical. 
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Table 5-4 Diffusion coefficients for water in the 3-D pore zeolites at the given water density a 

 

Water 

density b 

/ g cm3 

 

Dx 

 

/ 109 m2 s1 

Dy 

 

/ 109 m2 s1 

Dz 

 

/ 109 m2 s1 

Diffusion 

coefficient 

/ 109 m2 s1 

MFI80 c 0.39 

Ds 1.13 ± 0.05 1.36 ± 0.05 0.34 ± 0.01 0.94 ± 0.04 

Dc 3.07 ± 0.46 3.58 ± 0.70 0.77 ± 0.08 2.47 ± 0.41 

LTA127 d 0.39 

Ds 0.20 ± 0.01 0.19 ± 0.01 0.19 ± 0.02 0.19 ± 0.02 

Dc 0.27 ± 0.06 0.26 ± 0.04 0.27 ± 0.05 0.27 ± 0.05 

FAU411 e 0.39 

Ds 0.44 ± 0.02 0.43 ± 0.01 0.43 ± 0.01 0.43 ± 0.01 

Dc 1.09 ± 0.19 1.04 ± 0.13 1.14 ± 0.15 1.09 ± 0.16 

a The error bars are the standard error of the mean for the diffusion coefficient calculated from 

20 independent runs 

b Water density in the accessible volume of the zeolite 

c 80 water molecules in 12 unit cells; MFI-type 

d 127 water molecules in 27 unit cells; LTA-type 

e 411 water molecules in 8 unit cells; FAU-type 

 

The values of Dc are also shown in Table 5-4. It is observed that Dc for MFI (cylindrical pore), 

is more than twice that of the zeolites with cages, i.e. LTA and FAU. This also indicates that the 

flux of water tends to depend on the geometry of the pore as well as the pore size since FAU has 

wider pores (opening: 7.4 Å , cavity: 11.0 Å  in diameter) than MFI. FAU has a larger Dc (1.09 × 

10−9 m2 s−1) than LTA (0.27 × 10−9 m2 s−1), which is consistent with its larger Ds. MFI has different 

directional collective diffusion coefficients due to the asymmetric alignment of pores in each 

direction. As shown in the self-diffusion for MFI, the z-component of the collective diffusivity has 

the lowest value (0.77 × 10−9 m2 s−1), and the global coefficient is 2.47 × 10−9 m2 s−1 which is far 

higher than those obtained in LTA and FAU. The collective and self-diffusion coefficients become 

equal when the motions of the molecules can be considered independent. It can be seen that they are 

more similar in LTA than in MFI and FAU. In addition, the enhancement in LTA is not as much as 

that of MFI. From these trends, we conclude that the collective movement of water in framework 
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channels is largely influenced by the geometry and size of pores, indicating a cylindrical structure 

and larger size may be more favourable for the collective motion. 

For FAU, the orientation of the pores in the xy plane and the lattice vectors of the unit cell are 

not perpendicular to each other, but are at 45°. However, due to the symmetry of the unit cell, the 

components of the diffusion coefficient in the directions along the pores are equal to those along the 

x, y, z axes.  

Figure 5-6 compares RDF for the water oxygen atoms in the 3-D pore zeolites. LTA and FAU 

show very similar peak positions, and a slightly more distinct peak at 4.2 Å  (second hydration layer) 

than is observed in MFI where this feature appears as a shoulder to the first peak.  This might be 

because in LTA and FAU there are cages that are large enough for water molecules to form 3-D 

clusters. The position of the highest peak at 2.8 Å  in all cases implies there is a well-formed first 

shell, and is also in good agreement with the observed position of the first peak for bulk water 

(Horn et al., 2004). The differences in peak height is partly due to the differences in the proportion 

of the simulation cells that can be filled with water.  Although the density of water in the pores is 

the same in all cases, the density used in equation (5-4) is the density of water in the simulation cell, 

so will be different in each case. Using data in Table 5-2, these densities are 0.038 g cm−3, 0.083 g 

cm−3, and 0.106 g cm−3 for MFI, LTA, and FAU, respectively. This fact also results in a large 

difference in peak heights between the bulk and confined water (Horn et al., 2004). 

The number of water molecules within 3.4 Å  of each other was determined to be 4.3 for FAU, 

4.2 for LTA and 3.6 for MFI. This also suggests that zeolites with cages have a more favourable 

environment for formation of stable tetrahedral water clusters. 
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Figure 5-6 Radial distribution function, g(r), for oxygen atoms of the water molecules in the 3-D 

pore zeolites with the same water density within the pore. 

 

5.4.3 Properties of water in zeolites with 1-D pore channels 

Several studies have previously considered zeolites with 1-D channels (Hughes et al., 2011, 

Han et al., 2015, Bushuev and Sastre, 2011), however in order to compare the results with those 

obtained for the 3-D pores, we have carried out additional calculations to obtain results with 

loadings of 0.39 g cm−3 in each case. 

 

  

Figure 5-7 MSD of the (a) molecules of water and (b) centre-of-mass of the water in VET, TON, 

and CFI zeolites. 
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Figure 5-7 shows single molecule MSD and centre-of-mass MSD plots versus time obtained for 

VET, TON, and CFI zeolites. All MSD trajectories showed the Fickian diffusive behaviour. We 

note that, as expected by (Han et al., 2015), molecular displacement in directions other than the 

channel orientation makes little contribution to the MSD. The self- and collective diffusion 

coefficients determined using equations (5-2) and (5-3), respectively, and are presented in Table 5-

5. 

 

Table 5-5  Component of the diffusion coefficients in the pore direction for water in 1-D pore 

zeolites at the given water density a 

 
Effective 

diameter / Å  

Water density b 

/ g cm−3 

Ds,z 

/ 10−9 m2 s−1 

Dc,z 

/ 10−9 m2 s−1 

     

VET24 c 5.9 0.39 3.45 ± 0.22 23.36 ± 3.24 

TON15 d 4.6 × 5.7 0.39 2.90 ± 0.21 8.61 ± 0.83 

CFI24 e 7.2 0.39 1.02 ± 0.06 10.44 ± 0.83 

a The error bars are the standard error of the mean for the diffusion coefficient calculated from 

20 independent runs 

b Water density in the accessible volume of the zeolite 

c 24 water molecules per channel in a simulation cell of length 28 unit cells; VET-type zeolite 

d 15 water molecules per channel in a simulation cell of length 21 unit cells; TON-type zeolite 

e 24 water molecules per channel in a simulation cell of length 14 unit cells; CFI-type zeolite 

 

Comparing the results in Table 5-5 and those in Table 5-4, it can be seen that the self-

diffusivities for water in the z-direction in the 1-D channels were up to 18-times higher than the 

largest component of the values in three-dimensional channels for the same loading density, and all 

the results for the 1-D channels considered were higher than any of the 3-D results. CFI and MFI 

had similar values for the maximal components of the self-diffusion coefficient, (approximately 1.0 

× 10−9 m2 s−1) but the collective diffusion coefficient in the direction along the pore for CFI is 

around 3-times higher than the collective diffusion in the y-direction for MFI.  The total collective 

diffusion coefficient (i.e. averaged over the three directions), is still larger in CFI than in MFI, 
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although the corresponding self-diffusion coefficient is lower. This indicates that the shape and 

dimensionality of pores significantly influence the dynamics of water in the pores; the cylindrical, 

1-D channels have the largest diffusion coefficients along the pores. The fact that MFI, with its 

cylindrical channels, had the highest Ds and Dc of the 3-D pore zeolites also supports that finding. 

Overall, the 1-D pores lead to enhanced water movement due to the one-directed and well-defined 

pathway and a relatively smooth potential energy surface along the pores. This smooth energy 

landscape of the inner pores leads to Fickian diffusion in the long term, after a short-term (ca. 10 ps) 

ballistic diffusion (Nguyen and Bhatia, 2012). Also, the confinement results in formation of water 

clusters, even at the low loadings, and thus water molecules diffuse like a part of the stable cluster 

on timescales that are large (˃10 ps) compared to the vibrations of the molecules, in accordance 

with the previous reports (Iiyama et al., 2006, Ohba et al., 2005, Han et al., 2015, Nguyen and 

Bhatia, 2012). 

The dynamics and structure of water clusters in a slit-pore are also influenced by the slit width 

(Ohba and Kaneko, 2009). For the given water density, VET was found to have the highest 

diffusion coefficient (Dc,z = 23.36 × 10−9 m2 s−1), while TON had the lowest (Dc,z = 8.61 × 10−9 m2 

s−1). Although CFI has the largest pore (largest LCD and PLD) its collective diffusion is lower than 

that of VET, and higher than that of TON. This tendency may be due to the size and shape of the 

water cluster and the intermolecular interaction between zeolite-water and water-water. It is thought 

that with a 3 Å  radius, the VET pore allows formation of small stable water clusters at low loading, 

however all water molecules have contact with the zeolite walls so the zeolite-water interaction has 

a dominant influence on the diffusion. However, CFI has bigger pores in which water molecules are 

able to form larger clusters in a specified area, and water-water interactions become more common. 

In TON, the smaller, elliptic pores resulted in formation of chains of single water molecules, so 

again the zeolite-water interaction dominates. Thus, despite the existence of the smaller pore in 

TON than in CFI, the collective diffusivities for TON and CFI are similar to each other. We 

propose that this is due to a balance between the pore size, cluster shape and dominant interaction 

potentials. 

In comparison with the results obtained for the 3-D pore zeolites, the component of the 

collective diffusivity along the pore of TON was about 2.5-times higher than that of the largest 

component for MFI (3.58 × 10−9 m2 s−1) which has the largest diffusion coefficients of the 3-D 

candidates considered here. The value of Dc,z for VET is more than one order of magnitude greater 

than the components of Dc for LTA, which had the lowest diffusion coefficient of the 3-D pore 

zeolites. Due to these findings, it is expected that zeolites with 1-D cylinder-type pores are very 

promising as high flux membranes since the cylindrical pore directs water droplets to flow in one-
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direction, if it is possible to orient them so that the pores are normal to the required direction of 

flow. 

Figure 5-8 also demonstrates the different distributions of water clusters in the 1-D pore 

zeolites. Multiple ordered-structures of water occurred in a channel of VET, whereas in TON there 

are several single-file-like assemblies across a channel. The zeolite with the widest pore, CFI, 

resulted in formation of larger clusters containing more water molecules.  

 

 

Figure 5-8 Snapshots: (a) top view of the pores along the z-axis and (b) side view of the pore 

channels along the x-axis taken from the VET24 simulation, (c) top view of the pores along the z-

axis and (d) side view of the pore channels along the x-axis taken from the TON15 simulation, (e) 

top view of the pores along the y-axis and (f) the side view of the pore channels along the x-axis 

taken from the CFI24 simulation. All x-, y-, z-directions are in periodic boundary condition. (Water 

represented by ball-and-sticks and zeolites by wires, oxygen coloured in red, hydrogen in white, 

silicon in yellow, water molecules only in the front pores are shown in (b), (d), (f) for better 

visualisation) 
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To quantify the distribution of water confined in the 1-D pore zeolites, the normalised RDF, 

g(r)1-D pore, given by equation (5-5) was calculated. In Figure 5-9, the RDF curves showed clearly 

different characteristics depending on the pore size and shape of the three 1-D pore zeolites. All 

three frameworks indicated the presence of a first hydration shell characterised by a sharp peak at 

2.8 Å . However, the characteristics of the second peak differ. VET has a clear broad peak at around 

4.3 Å  for the second shell of the cluster indicative of tetrahedral bonding, then the peak significantly 

drops and becomes flat after 6 Å . TON has a shoulder to the first sharp peak, then the shoulder 

drops quite gradually and flattens out at 6 Å , suggesting a lack of tetrahedral structure in TON as 

also seen in Figure 5-8. CFI shows a second peak at around 4.6 Å  which is slightly shifted to higher 

values of r and is broader than that of VET. The first and second peaks are also more similar in 

height, however we note that using the definition in (5-5), when r is smaller than the pore diameter 

the peak height is underestimated. The RDT suggests that in CFI, the water forms larger clusters 

than in VET and the water within the cluster behaves more like bulk water than in other 1-D pore 

zeolites. 

 

 

Figure 5-9 The normalised radial distribution function, g(r)1-D pore, for oxygen atoms of the water 

molecules in the 1-D pore zeolites with the same water density. 

 



109 

 

5.5 Conclusions 

In this work, diffusion coefficients and structural properties of water inside zeolites were 

studied using MD simulations. The methodology adopted for this study were validated by 

comparison with both computational and experimental data for water diffusion in MFI-type zeolite. 

Zeolites with 3-D pore channels (MFI, LTA, and FAU) were investigated, and the water 

diffusion coefficients and the structure of water within them were determined. The water loading 

densities were chosen to be 0.39 g cm−3. MFI was found to have a higher self-diffusion coefficient 

than LTA and FAU which seems to be associated with the MFI having straight cylindrical pore 

channels perpendicular to zigzag cylindrical channels, while the latter ones both have spherical-like 

cages where water molecules can be trapped. Self-diffusion coefficients were 0.94 × 10−9 m2 s−1, 

0.19 × 10−9 m2 s−1, and 0.43 × 10−9 m2 s−1 for MFI, LTA, and FAU, respectively. The ordering of 

structures of water in LTA and FAU displayed the first and second hydration shells more clearly 

than in MFI due to the cages in LTA and FAU which were sufficiently large to hold clusters and 

molecules. 

The 1-D pore zeolites (VET, TON, and CFI) had components of the self-diffusion coefficients 

in the direction of the pore up to 18-times higher than the largest components of the self-diffusion 

coefficients determined for the 3-D pore zeolites. However, CFI, the larger pore, showed a 

comparable diffusion coefficient to MFI (ca. 1.0 × 10−9 m2 s−1). The collective diffusivity was also 

determined by measuring centre-of-mass MSDs for both 3-D and 1-D pore zeolites. The range of 

the component of the collective diffusion coefficients parallel to the pore was from 8.6 × 10−9 m2 s−1 

to 23.4 × 10−9 m2 s−1 for 1-D pore zeolites.  That is, the collective diffusion coefficient is around 

one order of magnitude larger than those of the 3-D pore zeolites (0.3 × 10−9 m2 s−1 to 3.6 × 10−9 m2 

s−1). The results obtained suggest that the hydrophobic cylindrically-shaped pore significantly 

enhances the water transport in one-direction. These indicates that the 1-D pore zeolites are very 

promising as high flux membranes, if manufacturing methods can be developed to produce large 

membranes with the pores parallel to the water flow.  However, the enhancement in the diffusion 

coefficient is sufficiently large that even if the zeolites were randomly oriented, the 1-D pore 

zeolites could be preferable to the 3-D pore zeolites.  We note that we have not taken entrance 

effects into account in this paper and that is currently under investigation. 

The structure of water in 1-D pore zeolites varied depending on the size and shape of pores. 

VET with about 6 Å -diameter cylinders had clearer four-coordinate molecules in a pore than the 

smaller and elliptical pore in TON. The largest pores, which were considered in CFI, had water 

structures more typical of bulk water. 
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Chapter 6 Potential of Mean Force for Understanding Water and Ion 

Transport across Zeolite Membranes 

 

6.1 Background 

In previous chapters (see Chapter 4 and 5), we have studied water transport and structure within 

different geometries of zeolite. Thus, it has been shown how the size and shape of zeolite pores 

influence the motion of the confined water molecules. These results have given some important 

criteria to select zeolites with a favourable inner geometry for fast water diffusion. However, from a 

practical viewpoint, it is important to consider the effects of the pore entrance and its functional 

groups on water/ion transport, since it is necessary to determine if these molecules and ions are 

likely to enter the pores from the bulk solution. This chapter outlines several previous works 

relevant to our purpose, theoretical concepts behind the method, and our results and discussion on 

water/ion transport through zeolite membranes. 

MD simulations have considered water and/or ion transport in nanochannels of various 

materials for application as desalination membranes. Corry examined carbon nanotubes (CNTs) as 

the membranes by studying water and ions passing through CNT pores of different size ranging 

from 1.6 to 3.8 Å  in effective radius (Corry, 2008). In order to evaluate the barrier for water and 

ions entering pores in a series of CNTs studied (i.e. (5,5), (6,6), (7,7), and (8,8)), he calculated the 

potential of mean force (PMF) for a representative particle, either water or ions, which was drawn 

from bulk solution into the centre of the pore along a trajectory path. It was shown that there is no 

large energy barrier to water permeation in all CNTs considered except the CNT with smallest pore 

(5,5) that requires 3.3 kJ mol1. In contrast, sodium ion transport showed significant differences in 

the energy barrier ranging from ca. 2.1 to 96.2 kJ mol1 for the widest to the narrowest pore. In later 

work, Cory extended his studies on use of CNTs for desalination (Corry, 2011). The membranes 

were composed of a bundle of (8,8) CNTs with four different functional groups added to their top 

rim. PMF results showed Na+ entrance to the pores requires far higher energy when there are 

cationic functional groups at CNT pore mouth (i.e. functionalised with four NH3
+) than for the 

pristine CNT, while Cl− entering anionically-functionalised pores (i.e. functionalised with eight 

COO− or four COO−) required slightly higher energy than for the pristine CNT. CNT functionalised 

with –OH groups resulted in lower water permeation, but higher Na+ ion flux under a hydrostatic 

pressure when functionalised with four –OH groups compared to the non-functionalised pores. This 
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was explained by the electrostatic attraction that was introduced between the groups and water, 

while the functional groups assisted Na+ penetration. However, both water and sodium ion fluxes 

were suppressed with increasing the number of –OH groups at the pore entrance, which was 

proposed to be due mainly to the increased steric hindrance. Another CNT study was performed by 

Beu who investigated a series of CNTs with wider pores than those studied by Corry for potential 

membrane technology (Beu, 2010). The CNTs examined were the (8,8) to (12,12) CNTs, ranging 

from 3.8 to 6.5 Å  in effective radius. Unlike the membranes mentioned earlier, single-channel 

membranes were employed here with two graphene layers positioned on each pore entrance, and 

these were immersed in NaCl and NaI aqueous solutions. In the work, PMF profiles for water and 

salt ions transport were calculated from the average position probabilities  of each 

component of the solutions in (8,8) and (10,10) CNTs, showing that Cl and I faced relatively high 

energy barriers around 21 kJ mol1 to enter the (8,8) pore compared to 13 kJ mol1 for Na+ whereas 

all the ions experienced similar energy barriers around 8.4 kJ mol1 to enter the (10,10) pore of 5.1 

Å . Therefore, it is clear from these studies that pore size, pore functional group, and ion type are 

critical influencers of water and ion permeation through CNTs. 

More recently, Richards et al. systematically studied anions crossing idealised model pores, 

defined by Lennard-Jones (LJ) interactions, with effective radius sizes from 2.5 to 6.5 Å  in 

consideration of the transport mechanism of the anions dissolved in drinking water (Richards et al., 

2012a, Richards et al., 2012b). They showed free energy profiles of each ion (F, Cl, NO2
, NO3

) 

passing through one-dimensional pores as functions of pore size and ion type by calculating the 

PMF. Since these ions are surrounded by water molecules in aqueous solution (hydration), energy 

barriers were examined for each ion in three pore size regimes: Regime 1 is the range of pore sizes 

where the ion can be inserted with the full first hydration shell; Regime 2 considers pore sizes 

between the naked ion size and the hydrated ion size; Regime 3 is the pore size smaller than the size 

of the bare ion. It was found that the free energy barrier for each ion entering the pores drops with 

increasing the effective pore size. In particular, the energy barrier declined significantly when the 

ion transport occurs in Regime 1 relative to in Regime 2 for fluoride and chloride, whereas in 

Regime 2 relative to in Regime 3 for nitrate and nitrite. This can be explained by the fact that partial 

dehydration occurring in Regime 2 requires higher energy for F and Cl than for NO3
 and NO2

 

because F and Cl ions are bound more tightly to their neighbouring waters. This phenomenon was 

also confirmed by consideration of PMF calculations for a given pore of radius 3.3 Å . All the ions 

studied belong to Regime 2 (partial dehydration occurring) in this pore, and it was found that the 

free energy barriers were 114.6, 89.1, 46.4, and 27.2 kJ mol1 for F, Cl, NO2
, and NO3

, 
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respectively. This work gives us atomic-level insight into the dynamical and structural mechanism 

for the entrance of anions and the surrounding water molecules when into the pores of various size. 

Despite the possibility that zeolites could be use as membranes for separation and purification 

technology, relatively little work has been done on these materials, and only a few types of zeolite 

have been considered in depth (MFI, LTA, and FAU). Transport of water and dissolved salt into 

zeolites of various types has been rarely explored. Hughes et al. employed a free energy 

perturbation (FEP) method (Chipot and Pohorille, 2007), to calculate the free energy difference 

(Hughes et al., 2011). They evaluated the free energy difference for states of hydrated/dehydrated 

ions, zeolite-trapped/non-trapped bare ions, and hydrated ions inside/outside zeolites. This 

calculation uses a staging method in which a series of successive states are built between the two 

states. For example, the free energy of ion dehydration is computed by stripping the surrounding 

water from the ion of interest by gradually reducing the ion-water interactions, resulting in the full 

hydration to nothing. Through this process, the study showed Cl ions are very unlikely to penetrate 

the zeolite membrane from bulk solution, while it is relatively likely for Na+ ions to enter it, 

according to the FEP result. 

The FEP method is an efficient approach for determining the free energy difference ∆A for 

discrete states of interest. For continuous systems like membranes with bulk solutions in and around 

them, another approach for computing ∆A, the PMF method, allows profiles using an 

approximation technique when a particle of interest passes through the membrane from bulk 

solution. 

For this reason, in this chapter a systematic study will be carried out to investigate water and 

salt ions passing across various zeolite membranes with different pore geometries by means of PMF 

calculations. By doing this, we are able to discuss differences in free energy profiles between 

different pore sizes, shapes, and orientations as well as between 3-D pores and 1-D pores of zeolites 

broadly. Conclusions on the suitability of membranes for desalination will be made from 

consideration of the dynamical properties of the confined water studied in the previous chapters and 

energy barriers for entrance of water/ions to the membrane. 
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6.2 Algorithms and methods 

6.2.1 Potential of mean force 

To obtain the free energy profiles, we use potential of mean force (PMF) calculations in which 

we consider a particle permeating along a reaction coordinate passing across from bulk solution 

through the membrane pores. As mentioned earlier in Chapter 3, the PMF concerns the relative 

probability that part of the system is fixed at a particular configuration  and a reference point  

(Roux, 1995). The PMF can be defined by 

 

 

 

where  is the PMF for the system at the fixed configuration,  is the reference point, and the 

probability density is given by  where 

H(r,p) is the total energy of the system as a function of coordinates and momentums of particles 

(Roux, 1995). kB is the Boltzmann constant and  is the Dirac delta function (Arfken et al., 

2013). It is generally difficult to measure the PMF directly if some configurations are rarely 

observed. To obtain a high sampling for some particular configuration of interest, a biasing force is 

often applied to the system for the required configuration. 

In this study, we fix one particle (i.e. water or ion) on the reaction coordinate by using a 

harmonic potential (Uh) with a large spring constant, which is called the stiff spring method. The 

reaction coordinate here is defined in the z-direction through the centre of one pore of the zeolite 

membrane,  quantifies the displacement of the particle from the centre of the pore. A point far 

from the zeolite membrane in the bulk solution ( ) is chosen as the reference point for the 1-

particle PMF, thus , and the PMF is now approximated by 

 

. 

 

(6-1) 

(6-2) 
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Since in a desalination application, solution molecules are transferred by a trans-membrane 

pressure gradient, we are interested in exploring the PMF along the reaction coordinate which is 

perpendicular to the membrane surface. We fix the distance between the centre-of-mass of the 

membrane and the molecule of interest using the harmonic potentials. Due to symmetric 

contributions, constraints in x- and y-directions are zero, and the 1-D PMF can be obtained by 

integrating over all configurations of the molecule at each specified position λ along the 1-D 

coordinate: 

 

 

 

where  is the average  when the stiff spring force is applied to the system of the 

molecule of interest at λ. Therefore, the PMF is also given by. 

 

 

 

The free energy profile is now determined by the integration of minus the average forces which are 

given from the system of the molecule tightly bound at each of the equally spaced positions 

between λ0 and λ1 along the reaction coordinate (Hermans and Lentz, 2014). To perform PMF 

calculations in our MD simulations, we used the harmonic potential with spring force constant of 

2.168 eV Å 2 (corresponding to 209 kJ mol1 Å 2) to fix the centre-of-mass of a water molecule or 

an ion for the required configuration in a specified point (dλ = 1 Å ) along the coordinate. To make a 

high sampling for the desired configuration under a thermodynamical equilibrium, such large spring 

constant (i.e. 2.168 eV Å 2, 50 kcal mol1 Å 2) was chosen and strong enough to hold the particle on 

the desired position with surrounding equilibrium since the particle deviated from the intended 

position with the lower spring constant. Otherwise, it would take a very long time and be hard to 

have the high sampling for each configuration along the coordinate. 

(6-4) 

(6-3) 
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This approach was used to examine the free energy barrier at points along the reaction 

coordinate, therefore we can evaluate how thermodynamically favourable movement of the particle 

(i.e. water or ion) through bulk water, an interface between water and a membrane, and the inner 

membrane is. 

 

6.2.2 Force fields: Potential parameters 

As in the previous chapters of the thesis, the intramolecular potentials of silica zeolites were 

defined by the Buckingham pair function and the O-Si-O harmonic function parameterised 

originally by Sanders et al., then modified by Hughes et al. (Sanders et al., 1984, Hughes et al., 

2011). The zeolite-water intermolecular potentials and water potentials were also the same as those 

selected for the studies in Chapter 4 and 5 (see sections 4.3.3 and 5.3.1). In addition to the force 

fields used for zeolite bulk system, in this chapter additional potentials need to be taken into 

account for membrane interaction with the solution. Sodium chloride (NaCl) is the main source of 

the salt in seawater and brackish water. This is easily dissociated into ions that exist in aqueous 

solution. Thus, the interaction of the ions with water and the membrane need to be defined. 

Moreover, in reality the actual silica structure has hydroxyl groups on its surface in which the 

hydroxyl functionalisation takes place due to defects of the zeolite surface exposed to aqueous 

environment (Baram and Parker, 1996, Makimura et al., 2010). The bare Si element is four-

coordinated and O is two-coordinated. Defects in the silica structure due to cleaving lead to 

unsaturated Si and O sites which must be saturated with –OH and –H groups, respectively. In this 

simulation, it was assumed that all zeolite frameworks of interest are ideally structured without 

inner defects, but outer surfaces of the membrane, after being cleaved to be placed in water, are 

fully hydroxylated on their uncoordinated sites. 

Interatomic potentials of the salt ions were parameterised by the force field based on 

interactions with TIP4P-Ew water model. This was developed by Joung and Cheatham who 

modified the AMBER parameters (Joung and Cheatham, 2008, Joung and Cheatham, 2009). The 

potentials for hydroxylated zeolites were adopted from the studies on SiO2 nanostructures in 

aqueous environment in order to obtain the interactions with the aqueous solution (i.e. bulk water 

and NaCl ions) (Cruz-Chu et al., 2006, de Lara et al., 2015). These potentials for the ions and the 

hydroxylated zeolites were described by Lennard-Jones (LJ) function (see equation 4-9 in Chapter 

4). The Lorentz-Berthelot (LB) mixing rules (Allen and Tildesley, 1987) are applied to combine the 

LJ potential parameters for determining the interatomic interactions in this complex system. The LB 

rules are simply defined as: ; . 
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Potentials for the hydroxyl groups, functionalising the membrane surfaces, are defined by the 

force field developed for –OH groups on various oxides (mainly in SiO2) (Baram and Parker, 1996). 

The force field used the Morse potential function to describe the bonding between O and H in the 

hydroxide group: 

 

 

 

where D and β are the parameter constants, and r0 is the equilibrium distance between O and H in 

the hydroxyl group. These parameters were originally defined by Saul et al. (Saul et al., 1985), then 

adjusted by Baram and Parker for the oxides (Baram and Parker, 1996). 

 

6.2.3 Zeolite membrane construction and simulation procedure 

Crystal structures like zeolites may have many different surface morphologies depending on the 

direction of crystal growth or crystal cleavage (Greń et al., 2010). To find out the most stable 

surface (the lowest surface energy), the static lattice energy minimisation is employed to construct 

zeolite membranes with stable surfaces. The zeolite simulation cells for this test must be built with 

zero dipole moment by the two region method (Tasker, 1979, Rai, 2012). Two regions of the bulk 

zeolite are initially constructed with two dimensional periodic condition for the plane of the zeolite 

surface, leaving the perpendicular direction to the surface non-periodic. A half-sized cell of this 

bulk is then built in the same way, leaving the cleaved surface of interest non-periodic. The 

following illustration gives a schematic idea for this approach. 

 

(6-5) 
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Figure 6-1 A schematic drawing of the two region method for interfaces in the two-block cell (left 

picture) and surfaces in the single-block cell (right picture). The bulk blocks in a and b directions 

are periodic, and in c direction are non-periodic. 

 

The single-block cell has the cleaved surface while the two-block cell represents the bulk zeolite. 

The atoms in region A are explicitly relaxed, but those in region B are kept frozen to their 

equilibrium position during the minimisation process. The interatomic potentials used for this 

process are same as those adopted for describing the interactions in the bulk silica zeolite (Hughes 

et al., 2011). 

 

Through this static lattice minimisation, the surface energy of each cleaved face is evaluated by 

 

 

 

where γ is the surface energy, Ucs represents the energy of the zeolite block with cleaved surface, 

and Ub is the energy of the two-block bulk zeolite, and A is the surface area. Since the atoms in 

region B are held fixed, the interaction energy of all the atoms in region B of the bulk zeolite with 

all other atoms in region B of the cleaved zeolite is cancelled out in the surface energy calculation 

(Greń et al., 2010, Rai, 2012). Therefore, the surface energy implies the energy per unit area 

(6-6) 
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required to cleave the surface relative to the energy per unit area for the bulk composed of the same 

number of atoms. The lower surface energy is expected to have a more stable surface. 

To construct zeolite membranes, two characteristic types of zeolite framework are selected 

from the zeolites studied in Chapter 5, in order to study water and ion transport through. LTA has 3-

D pores composed of 4.1 Å  diameter pore openings that are connected by cavities with diameters of 

about 11 Å . Depending on facets to be cleaved, this zeolite may exhibit various surface 

morphologies, resulting in different energy barriers to the molecule of interest. The other zeolite 

type is VET that has well-defined 1-D cylindrical pores of 5.9 Å  diameter. For LTA, we use 27 unit 

cells (3 × 3 × 3 in x, y, z-coordinates) as an initial cell, and then cleave both sides of xy plane to 

form the most stable surfaces according to the static lattice minimisation process, followed by 

introduce –OH and –H groups to all the dangling sites of 3-coordinated Si and 1-coordinated O, 

respectively. For VET, 90 unit cells (3 × 3 × 10) are used as an initial cell, then cleaved and –OH 

functionalised in the same way without minimisation process, given that VET has only one possible 

stable surface due to its simple periodic geometry and the fact that the surface of silica is more 

stable when surface silicon atoms are singly –OH coordinated than those with silicon atoms 

geminally coordinated (Baram and Parker, 1996, Greń et al., 2010). 

Both sides of the membrane surfaces are now filled with water molecules and NaCl ions in a 

ratio of 809 to 9 (equivalent to 35 g/L, w/v of NaCl/water). This mimics seawater reservoirs around 

the membrane. The simulation cells we employ for LTA and VET membranes will be shown in the 

results and discussion section of this chapter. 

Energy minimisation is carried out for all the simulated systems before the systems are 

equilibrated at 300 K and 1 atm using 250 ps simulations with a 0.5 fs time step in NPT ensemble 

coupled with a NoséHoover (NH) barostat and thermostat, and a relaxation time of 0.5 ps. The 

PMF profiles for the particle of interest (i.e. a water molecule or an ion) are determined using the 

stiff spring method while NVT ensemble is applied to the membrane together with NPT to the bulk 

solution. The target particle at each position, which is equally spaced along the reaction coordinate, 

is fixed for 250 ps with a 1 fs time step each for an equilibration and production. 20 independent 

runs were performed for each target particle for each membrane system. 

We apply the all-atom model potential described earlier, and use periodic boundary conditions 

in three dimensions of the simulation system. As in the previous studies of Chapter 4 and 5, long 

ranged Coulombic interactions are treated by the PPPM Ewald sum (Hockney and Eastwood, 

1988b). All algorithms and calculations employed for the study use the LAMMPS code (Shinoda et 

al., 2004, Martyna et al., 1994). 
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6.3 Results and discussion 

6.3.1 Static lattice energy minimisation 

To investigate the stability of possible surfaces of a LTA membrane, energy minimisation 

simulations have been carried out in this study. The structure of LTA consists of truncated 

octahedral cages (sod cages, also called β-cages) and double 4-rings (d4r) which are bridges 

between the sod cages. This array of cages and rings makes large cavities which is called α-cages. 

According to previous studies on the surface stability of LTA (Sugiyama et al., 1999, Wakihara et 

al., 2005, Greń et al., 2010), the single 4-ring (s4r)-cleaved surface (see Figure 6-2 (a)) and d4r-

cleaved surfaces (see Figure 6-2 (b), (c)) were found to be stable. The s4r surface refers to one 

where the surface is constructed from the complete sod cages, resulting in s4r-terminated pore 

openings (with d4r cleaved in half). The LTA surfaces can be formed with pore openings at the end 

of the d4r (see Figure 6-2 (b)) or the face of d4r (see Figure 6-2 (c)). These surfaces are referred to 

as d4r-e and d4r-f, respectively. The previous simulation study showed that the s4r surface is the 

most stable according to a static minimisation calculation (Greń et al., 2010), while the d4r surfaces 

were shown to be the most stable surfaces using experimental work (Sugiyama et al., 1999, 

Wakihara et al., 2005). Thus, we set up 2-block bulk materials with the different surfaces (i.e. s4r, 

d4r-e, d4r-f), and compare them with their 1-block counterparts using the minimisation method 

described earlier. 

 

 

  

Figure 6-2 Configurations of 2-block bulk with (a) s4r surface, (b) d4r-e surface, and (c) d4r-f 

surface. Each image is shown as viewed from above the xz plane. The x- and y-axis are periodic, but 

(a) (b) (c) 
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the z-axis is non-periodic. The bottom layers represent Block 1 and the upper layers represent Block 

2. Block 1 can be replicated to build a single-block cell with the cleaved surface. Oxygen atoms are 

red or light-green coloured and silicon atoms are yellow or green coloured. 

 

Simulations were performed by allowing halves of each block to relax (an upper half of Block 1 and 

bottom half of Block 2), and holding the other halves fixed at 300 K using a NH-thermostatted NVT 

ensemble. The surface energies (γ) obtained, according to equation (6-6), are 2.57 J m2, 2.60 J m2, 

and 2.61 J m2 for s4r, d4r-e, and d4r-f, respectively. These values are higher than the literature 

data (Greń et al., 2010), which are 0.136 J m2, 0.152 J m2, and 0.152 J m2 for s4r, d4r-e, and d4r-

f, respectively. This may be due to the fact that we carried out these tests at 300 K.  This method is 

often performed at 0 K to prevent the vibrational motions of the block (Rai, 2012), and it is 

presumed that the literature values were obtained from 0 K simulations. Nevertheless, the trend in 

our results is consistent with those in the published work. 

 

6.3.2 Potential of mean force 

To investigate energy barriers for a molecule penetration into the membrane pores and the free 

energy changes over a whole trajectory of the molecule passing across the membrane, we chose the 

potential of mean force (PMF) calculations using the stiff spring method. Unlike the free energy 

perturbation (FEP) approach (Chipot and Pohorille, 2007), which calculates a series of discrete 

states where the molecule of interest possibly experiences, the method we described earlier in 

section 6.2.1 allows study of the continuous states of the molecule passing through zeolite 

membranes. 

Initially, zeolite membrane models were built for the free energy calculations. Two membranes 

were constructed using LTA (a 3-D pore type) with s4r or d4r-e surfaces functionalised with –OH 

groups. Another membrane was constructed using VET, 1-D cylindrical pore type, with the one 

possible stable surface. Due to the simple periodic geometry of the VET, there is only one type of 

surface can be the most stable, given that the fact that the surface of silica is more stable when 

surface silicon atoms are singly –OH coordinated than those with silicon atoms geminally 

coordinated (Baram and Parker, 1996, Greń et al., 2010). The hydroxyl-functionalised surfaces are 

shown in Figure 6.3. 
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Figure 6-3 Molecular structures of repeating unit of (a) VET, (b) LTA with a d4r-e surface, and (c) 

LTA with s4r surface. (d) LTA-d4r-e and (e) LTA-s4r are viewed from the xz plane rotated by 30° 

along the z-axis. Silicon atoms are represented as yellow lines, oxygen atoms as red lines and 

hydrogen atoms as white lines, respectively. 

 

After the addition of –OH groups to the unsaturated surface atoms, simulation cells for each 

membrane with bulk solution were set up as shown in Figure 6-4. 

 

(a) 

(d) 

(b) (c) 

(e) 
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Figure 6-4 Simulation systems: (a) VET membrane and (b) LTA-d4r-e membrane. The zeolite 

membranes are shown as the same way as in Figure 6.3. Bulk water layers are placed on both top 

and bottom sides of the membranes, which are represented as transparent white-dotted layers. The 

light blue-coloured particles (larger) represent chloride ions and the blue particles (smaller) are 

sodium ions. All the directions of the simulation cells are periodic. A simulation cell for LTA-s4r 

membrane was built as for the VET and LTA-d4r-e membranes.  

 

The PMF calculations for all the particles of interest (i.e. water molecule, Na+ or Cl ion) 

passing through the LTA membrane with each surface were carried out in order to investigate the 

effect of surface morphology on energy barriers to their entrance and the free energy changes over 

their full trajectories through the pores. Since all the pores were symmetric in the z-direction, we 

were able to effectively measure the PMF by sampling the trajectory points of data in a 

symmetrised way. 

 

(a) (b) 
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Figure 6-5 PMF (red) and the mean force (black) curves for transport of water and ions. The solid 

curves are PMF (red) and the mean force (black) for each particle passing through LTA-d4r-e 

membrane and the dashed curves are those for LTA-s4r membrane. The mean force was defined by 

 at each position, and sampled in a symmetrised way. The error bar indicates the standard 

error of the symmetrised sampling at each position. 

 

As shown in Figures 6-3 and 6-4, both LTA membranes have large cages with 8-ring pores as the 

main entrance for molecular transport. This narrow pore of 4.1 Å  diameter is expected to provide a 

high energy barrier to passage of large molecules. Due to the different terminations of LTA, 

however the LTA-d4r-e has an approximately 4 Å  long partial pore before the diameter reaches it 

minimum size, whereas and the LTA-s4r has a 6.5 Å -long pore before it reaches the narrow region 

(8-ring). 

The energy barriers to water or ion entrance and the free energy changes over each regime of 

the trajectory through LTA-d4r-e are qualitatively similar to those obtained from LTA-s4r 

membrane, as shown in Figure 6-5. This is attributed to the same geometry and length of the inner 

pore which was positioned in a range from about -10 Å  to 10 Å . Thus, the qualitative trends in the 

PMF profiles for each particle of interest in this regime are almost identical to each other.  
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Chloride ion encounters a high energy barrier of 0.45 eV (43.42 kJ mol1) to movement into the 

two LTA membranes from the bulk solution. Hence, it seems unlikely to happen due to the size 

exclusion effect since the diameter of hydrated Cl is about 7.6 Å  (Richards et al., 2012a). 

Compared to the Na+ barrier, the lower energy barrier for the Cl entrance can be explained by the 

fact that the kinetic diameter of the solvated Cl is smaller, and the Cl is relatively loosely bound to 

its solvating water molecules compared to Na+ (Hummer et al., 1996, Mancinelli et al., 2007). This 

can be inferred from the fact that the free energy of Na+ solvation is lower than that of Cl (Hummer 

et al., 1996), also the water molecules solvating around Na+ are more ordered and less influenced by 

neighbouring environment such as ion concentration than those in the Cl hydration shell 

(Mancinelli et al., 2007). This could make it easier to rearrange the water molecules in the hydration 

shell of Cl and stabilise the central Cl by replacing it hydrating water molecules with the surface 

hydroxyl groups when the Cl approaches in the vicinity of the pore. But, the energy barrier is still 

high for the penetration to the centre of the membrane. 

In the Cl PMF curves, wells of 0.06 eV (5.79 kJ mol1) and 0.11 eV (10.61 kJ mol1) for the 

LTA-d4r-e and LTA-s4r membranes, respectively, appear in the range of -14 Å  < z < -9 Å  and 9 Å  

< z < 14 Å . They are sufficient for the Cl to be likely to be trapped in this region at room 

temperature. This behaviour can also be explained by the properties of Cl hydration described in 

the previous paragraph since the chloride ion may be stabilised by the hydroxyl groups 

functionalised on the surfaces of either LTA-d4r-e or LTA-s4r membrane. Furthermore, positioning 

of the Cl at the pore entrance seems to be more favourable when it stays around the half-cleaved 

cage pore (LTA-s4r) due to the morphology of the pore being able to embrace the hydration shell 

together with the surface functional groups. 

There is some quantitative difference in the PMF for water in the range of -12 Å  to -7 Å  (and 7 

Å  to 12 Å ). The LTA-s4r shows the slightly higher energy barrier (ca. 0.05 eV, 4.82 kJ mol1) than 

for the LTA-d4r-e (0.025 eV 2.41 kJ mol1), in these ranges. These energy barriers against water 

transport from the bulk range (z < -12 Å  or z > 12 Å ) can be explained by the geometry of pore 

vicinity. As mentioned earlier, the LTA-d4r-e has the partial pore due to the d4r termination, while 

the LTA-s4r has the slightly longer pore due to the half-cleaved cage termination (see Figure 6-3). 

Hence, this morphological difference results in different energy barriers for the water to overcome. 

The water entrance to the centre of the α-cages in a range of -7 Å  < z < 7 Å  will face a higher 

energy barrier which is about 0.20 eV (19.30 kJ mol1) when it goes from the pore opening in either 

LTA-d4r-e or LTA-s4r membrane. Since the free energy is based on the probability distribution of 

the molecule of interest (see theories in section 6.2.1), water is less likely to be in the narrow pore 
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(8-ring, 4.1 Å  diameter) than in the bulk, thus energy will be required to transport a water molecule 

into the pore, even though the effective diameter of a water molecule is smaller (2.75 Å  (Zhang and 

Xu, 1995)) than the pore opening. The high energy barrier seems to be partly attributed to the 

stabilised Cl around the pore since it has to be removed for the water molecule to enter the pore. In 

addition, the hydroxyl functional groups around the surface may enhance the electrostatic attraction 

to water, which may contribute the high energy barrier. This behaviour can be compared with water 

entrance to an unfunctionalised pore with similar diameter (e.g. (6,6) CNT with 4.7 Å  pore 

diameter) showing the energy barrier of 1.67 kJ mol1 (Corry, 2008). Nevertheless, the energy 

barrier for water penetration into the functionalised LTA pore is expected to be overcome due to the 

high pressure applied in a real RO system (Kumakiri et al., 2000). 

The PMF curve for sodium ion transport through either LTA-d4r-e or LTA-s4r membrane 

shows that it is highly unlikely for the ion to enter the pore. The sodium ion will experience 

extremely high energy barrier of about 0.90 eV (86.84 kJ mol1) in order to approach the centre of 

the pore in either of the LTA membranes. This seems to stem from the significantly larger diameter 

of the hydrated Na+ (8 Å  (Li et al., 2004)) than the narrow inner pore of 4.1 Å . To some extent, this 

value is comparable to that of sodium ion passage through the (6,6) CNT mentioned earlier because 

its PMF indicates 69.04 kJ mol1 (Corry, 2008), considering that the CNT pore is slightly larger (4.7 

Å ). The broader curve appearing in the figure implies that the free energy begins to change when 

the hydrated Na+ becomes close to the extended pore made by the s4r termination since the s4r-

terminated zeolite has the longer pore opening than one with d4r-e termination. 

Now, we see the free energy profiles for transport of each particle of interest through the VET 

membrane. These profiles are shown in Figure 6-6.  
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Figure 6-6 PMF and the mean force curves for transport of water (black curve), sodium ion (blue 

curve), and chloride ion (light-blue curve) across the VET membrane. 

 

The VET membrane we built with the most stable surface has well-defined cylindrical pores 

with the kinetic diameter of 5.9 Å  (see Figure 6-3(a)). This size is expected to be sufficiently large 

for the water passage, and to effectively block the ion passage. 

However, the free energy profile for the chloride ion shows the unusual and unexpected trend as 

we assumed that the effective diameter of Cl is large enough (7.6 Å ) to be blocked by the VET 

pore (5.9 Å ). The stabilisation of Cl seems to happen just in and out of the pore as the free energy 

continues to drop until at -9 Å  (remember that the pore range is -12 Å  < z < 12 Å ). The deep well 

indicates that the Cl will be trapped in the pore entrances. This may be explained by the 

combination effect of the VET pore size and the surface functional groups. The VET pore is 

relatively large compared to the pore opening in the LTA membranes, thus the size of pore may 

accommodate the hydrated Cl if the hydrating molecules are rearranged. In addition, the surface 

hydroxyl groups may assist the stabilisation of the Cl. The molecular configurations around pores 

in the VET membrane are shown in Figure 6-7 which provides evidence to support this effect. 
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Figure 6-7 Images of molecular configurations: (a) the VET membrane, Na+, and Cl ions shown 

from the top view of the plane of the membrane; (b) the side view of the membrane and ions; (c) the 

zoom-in image of the top view of the membrane pore, ions, and neighbouring water molecules 

around Cl; (d) the side view of the same configuration as (c). Water layers are removed in (a) and 

(b), and the rest of water molecules except the water molecules of interest is removed in (c) and (d) 

for the clear visualisation. The same representation and colouring methods for each atom are 

applied as Figure 6-4. 

 

As shown in Figure 6-7, the chloride ions tend to sit on the entrance of the pore along with their 

neighbouring water molecules. This is a characteristic behaviour happening on the functionalised 

VET membrane, which is very different from that of the counter ion, Na+. 

In the PMF plot in Figure 6-6, the position of the pore channel is the range of -12 Å  < z < 12 Å , 

hence the extra region can be regarded as the range of the bulk water (z < -12 Å  and z > 12 Å ). As 

expected, water penetration into the pore is more likely than in the LTA membranes because the 

maximum energy barrier is 0.17 eV (16.40 kJ mol1) even though the energy value is much higher 

than the comparable data (1.67  7.50 kJ mol1) in the literature reported about (7,7), (8,8), and 

(10,10) CNTs (Corry, 2008, Beu, 2010). This high energy barrier is mainly due to the stabilised Cl 

(d) 

(a) (b) 

(c) 
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on the pore since it has to be removed for the water molecule to enter the pore. Also, given that 

those literature values didn’t consider the effect of pore functional groups, our value may be partly 

explained by the fact that the surface hydroxyl groups can make an additional contribution to the 

energy barrier. Further study needs to be carried out on this effect. Compared to the LTA 

membranes studied above, the VET membrane studied here is more favourable for water entering 

pores due to the wider kinetic pore than those of the LTA membranes. 

Another characteristic change in the free energy for the water transport is shown in the middle 

of the VET channel (-6 Å  < z < 6 Å ). In this region the PMF is very low, and even becomes slightly 

negative.  This suggests that the water molecule is placed in almost frictionless environment due to 

the non-polar well-defined cylindrical pore which gives a smoother potential energy surface along 

the inner wall than the cage-type wall (see discussion made earlier in sections 4.4.1 and 5.4.3). The 

smooth landscapes are also shown in the CNT studies since CNTs have non-polar smooth 

cylindrical pores (Beu, 2010, Corry, 2011). This may suggest that our VET membrane has a high 

water flux once the water overcome the pore entrance barrier if the membrane can effectively block 

Cl ions. 

The sodium ion entering the pore faces very high energy barrier of 0.77 eV (74.29 kJ mol1). 

The value is a bit lower than the case (86.84 kJ mol1) in the LTA membrane, but the amount 

entering can be considered negligible. This means that the transport of the hydrated Na+ is heavily 

dependent on the size exclusion effect when the transport takes place at the narrower path than the 

effective diameter of Na+. However the free energy drop in the middle of the pore indicates that 

once the ion has entered the pore, it is likely to stay there. 

The PMF results still suggest partial potential for the VET as desalination membrane in term of 

the low free energy for water passage within the pore and the high energy barrier to sodium ion 

entrance. To deeply understand this behaviour of Cl in the pore vicinity and to find the way to 

effectively reject the ion, further work needs to be carried out to investigate the effect of various 

NaCl concentrations and surface functional groups on the behavioural properties on the chloride ion 

since the water molecules hydrating the Cl are less ordered and more affected by the environment 

(Mancinelli et al., 2007). Moreover, the same system with larger MD simulation cells also needs to 

be studied since the simulation system size would affect these results as the larger number of 

repeating units could result in more statistically-reliable data and the larger/longer system could 

produce a different energy landscape compared to its smaller/shorter counterpart, especially for 

heterogeneous systems. 
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6.4 Conclusions 

In this chapter, we employed the potential of mean force approach to investigate the free energy 

changes and energy barriers for transport of water, sodium ion, and chloride ion through the 

expected pathway of a pressure-driven membrane system. 

LTA and VET types of zeolite were selected as potential membrane materials, and they were 

tested for the identification of the most likely surface facets. LTA had three possible surfaces with 

the highest stability identified by the static lattice energy minimisation method: s4r, d4r-e, and d4r-

f surfaces. However, VET had only one most stable surface as we avoided the unstable two-

uncoordinated silicon atoms which may be geminally coordinated by hydroxyl groups. 

To construct a membrane system, only s4r and d4r-e surfaces were chosen as the LTA 

membrane surfaces because the surface geometries of these two types are very different, while the 

surface of the VET membrane was built with a single OH coordinated to the singly-unsaturated Si 

atoms. 

The PMF profiles of the passage of water, Na+, and Cl through LTA suggested it had potential 

for use as a desalination membrane as it had a lower energy barrier to water transport than to ion 

transport. Two surface morphologies of LTA membrane provided different levels of 

thermodynamic stability for water molecules and ions in vicinity of the pore surface. Hence, slightly 

different energy barriers were generated, however in general similar trends in the free energy 

appeared in both types. The chloride ion was energetically more stable in just outside pores of LTA. 

This is believed that the surface hydroxyl groups made the ion stable by replacing its solvating 

water molecules, then coordinating the ion and that the presence of the chloride ion would have 

increased the barrier for entrance of the water on average. This means that on pores that did not 

have a chloride ion at the entrance, passage of water would be expected to be easier. This 

hypothesis deserves study in future work. 

The VET membrane showed the lower energy barriers to water and Na+ entrance compared to 

either of the LTA membranes. This would seem to provide promise for higher water flux, however 

the chloride ion is tightly held at the pore entrance and therefore would tend to block the passage of 

water more in this case than it does in LTA. The energy barrier to Na+ transport into the pore seems 

high enough even though it is lower than those of the LTA membranes. The chloride ion was 

unusually stable when it stayed around the pore, and the barrier to entrance to the pore was lower 

than the barrier for its remove from the pore entrance to the bulk. This seems to be attributed to the 
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combination effect of the surface hydroxyl groups and the VET pore size which seems to be large 

enough to accommodate the hydrated Cl. 

To obtain more intuitive data for permeability of each particle of interest, the permeability test 

must be carried out under pressure gradient in order to evaluate the flux performance. We have left 

this topic as our room for future work. 
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Chapter 7 Conclusions and Future Directions 

 

7.1 Conclusions 

In this thesis, we mainly considered dynamical and structural properties of water in various 

geometries of nanoporous zeolites. In addition, the feasibility of using some of the zeolite types as 

desalination membranes was evaluated. To achieve understanding to these issues, we employed 

molecular dynamics (MD) simulations that enabled us to closely look at the behaviour and stability 

of the molecular system, which is difficult to be achieved using macroscopic-scale experiments. 

To study the transport properties of the fluid in the nanopores, self-diffusion coefficients were 

measured for the water since computing the diffusivity can provide data to assist in understanding 

the molecular mobility of the fluid. Furthermore, collective diffusion coefficients were calculated. It 

was found that the fluid molecules formed clusters and moved collectively in the pores as also 

reported in some other literature (Iiyama et al., 2006, Ohba and Kaneko, 2009, Demontis et al., 

2008). The collective diffusivity results provide a bridge between the molecular scale motion and 

the macroscopic water flux since the value can be used to determine flux if the system has a 

concentration gradient. 

In our preliminary MD simulations, we tested which force fields, algorithms, and simulation 

system sizes are most appropriate. This is crucial to ensure that the results obtained are meaningful 

and use of inappropriate parameters may sometimes affect the flow of molecules critically 

(Bernardi et al., 2010, Krishnan et al., 2013, Thomas and Corry, 2014). Thus, to obtain reliable data 

for the behavioural properties of water, we tested our molecular systems by validating the force 

field we selected with various algorithms integrating the equations of motion (see theories in 

sections 3.1 and 4.3.2) and sizes of simulations cell. 

The zeolite model we used for this validation work were all silica VET-type zeolites which 

contain one-dimensional (1-D) cylindrical pores. These zeolites were selected due to our 

expectation that the non-polar 1-D cylindrical pores may have a relatively low friction in the inner 

pores as shown in even more extreme cases in studies on carbon nanotubes which reported ultrafast 

water transport due to their smooth and non-polar inner walls (Holt et al., 2006, Wang et al., 2013). 

Self-diffusion coefficients were measured for water molecules in the VET framework with two 

different water loading densities (6 or 32 molecules/pore), showing a good agreement with those of 

the study (Hughes et al., 2011) which adopted the same force field originally developed and 
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established for silica-water interaction (Sanders et al., 1984). Interestingly, our results could be 

reproduced using six different thermodynamic ensembles: NVE; NVT; NVT-w (thermostatting to 

water only); NVT-z (thermostatting to zeolite only); NPH; NPT, showing consistent results to each 

other as well as the published study in the NPT ensemble. Hence, it was found that our system built 

with the force field is insensitive to the way in which the system is thermostatted and/or barostatted. 

Another interesting finding of our study was that the water molecules at the low density in the VET 

form water clusters.  We measured the collective diffusivity by evaluating the centre-of-mass 

motion of the water clusters in each pore, and the results suggested that the individual water 

molecule in the cluster also diffuse collectively like the cluster because the collective diffusion 

coefficient per molecule showed a similar value to the self-diffusion counterpart at the low loading. 

For the high water loading density, we found that the water in the VET had a self-diffusion 

coefficient that was similar to the bulk value suggesting that the flow was bulk-like, although the 

water density was two-time higher than that of bulk water. This may indicate that fast water 

transport takes place through the VET pore even when the pore is filled full of water. The per-

molecule collective diffusivity was also measured at the high loading, which gave a rate that was 4 

times lower than its self-diffusion coefficient unlike the lower loading case. This indicates that the 

movement of the single water molecule in the pore is not like the averaged motion of the fluid at the 

high loading. 

The structural properties of water were characterised by the radial distribution function (RDF) 

which indicates the probability of finding another water molecule at any distance from a reference 

water molecule. The RDF results supported the water dynamics indicated by the diffusivity 

calculations, indicating that water molecules were mostly locally distributed around the centred 

water at the low loading. This implies that water clusters were formed and moved collectively in 

most of time due to the low water density under the highly-confined pore. At higher loading, the 

distribution becomes more uniform, like in bulk water except the higher probability around the 

reference water was higher due to the nano-confinement. 

Although the values we obtained for the water self-diffusivity were similar to those observed in 

previous work for both the high and low loading cases, for the low water loading there are some 

deviations from the mean value obtained from both of our work and the previous work. We 

believed this was due to the effect of the size of the simulation cell we used. Thus, we extended the 

VET pore channel by 2-, 3-, and 4-times while keeping the water density constant, and found that 

the value was converging to an about 2-times lower rate than the original value, and confirming that 

both our original results and the published results had not converged to the large system limit. In 
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addition, the collective diffusivity per molecule was no longer the same as the self-diffusivity in the 

extended pore. Nevertheless, the self-diffusivity of water in this pore was over one higher order of 

magnitude rate than those of the conventional polyamide desalination membranes (Hughes and 

Gale, 2012, Ding et al., 2014). 

At our second phase of study, we broadened our selection of zeolites. Zeolites with three-

dimensional pore structures were adopted first for investigation. They were MFI-, LTA-, and FAU-

type zeolites. All of them have been extensively studied as catalysts, ion exchangers, absorbents, 

and desalination membranes. However, only little work has been carried out to obtain a molecular 

insight into water dynamics and ion selectivity in these materials for application to membranes 

except the MFI zeolite. Due to many experimental and theoretical data available for MFI, we 

studied this for our validation work on the stability of the zeolite framework, diffusion coefficients 

and structural properties of water in the framework. 

The self-diffusion coefficients, obtained for the MFI with the force field used in our first study, 

were comparable to those of the literatures in terms of both the 3-D averaged value and the value of 

each dimensional component. Also, the structure of water in the framework showed good 

agreement with those in the literature. 

To compare water diffusivities of MFI with those of the other types, a simulation cell with 12 

unit cells in each direction was considered so that we could be confident that the size of the cell did 

not affect the behaviour of the water. Then, the water loading density was adjusted to be the same 

density used before for the VET. Two other 3-D zeolite frameworks were set up to be sufficiently 

large, then the same water density was loaded. Water in MFI was found to have a higher self-

diffusivity than water in LTA and FAU which seems to be associated with the fact that MFI has 

straight cylindrical pores perpendicular to zigzag cylindrical pores, while the latter ones both have 

spherical-like cages where water molecules can be trapped. However, the water diffusivity in FAU 

was double that of water in LTA, which seems to be attributed to the larger pore openings between 

the cages in FAU than those in LTA even though the size of the cages in FAU and LTA are fairly 

similar to each other. 

Considering the RDF results, the structure of water in LTA and FAU indicated the existence of 

the first and second hydration shells more clearly than in MFI due to the existence of the cages in 

LTA and FAU which were sufficiently large to hold clusters of molecules. 

As well as the VET framework, two more zeolites with 1-D cylindrical pores were investigated 

because the 1-D cylindrical pores led to fast water transport. The TON-type zeolite has slightly 
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elliptical pores with similar diameter to that of VET, and the CFI-type has well-defined cylindrical 

pores with 1.2-times larger diameter than those of VET. 

These 1-D pore zeolites had components of the self-diffusion coefficients in the direction of the 

pore up to 18-times higher than the largest components of the self-diffusion coefficients obtained 

for the 3-D pore zeolites. One interesting finding was that the CFI, the largest 1-D pore studied, 

showed a comparable diffusion coefficient to that of 3-D averaged global diffusion of the MFI. This 

means that the mobility of the individual water molecule is similar in CFI and MFI, which may be 

due to the larger number of water molecules fitting in a cluster in CFI than in MFI. Hence, the 

individual mobility may be more influenced by the water-water interaction than the water-zeolite 

interaction. But, the collective diffusion coefficient in the direction along the pore for CFI was 

around 3-times higher than the collective diffusion in the direction of the fastest diffusion for MFI. 

Even the global collective diffusion coefficient (i.e. averaged over the three directions) was still 

larger in CFI than in MFI. This indicates that the mobility of the whole cluster in CFI is still higher 

than that in MFI, which seems to arise from the fact that the well-defined pathway and a relatively 

smooth potential energy surface along the pore enhance the dynamics of the cluster. 

The structure of water in 1-D pore zeolites varied in the size and shape of pores. VET with 

about 6 Å -diameter cylinders had more four-coordinate molecules in the pore than the elliptical 

pore in TON. The largest pore, which were considered in CFI, had water structures more like 

typical bulk water. 

From this study, an understanding of water behaviour in nanopores was obtained.  It was found 

that the shape and dimensionality of pores significantly influence the dynamics of water in the pores 

and the 1-D cylindrical channels had the largest diffusion coefficients along the pores. Further 

evidence to prove this finding is that the cylindrical channels in MFI had the highest self-diffusivity 

and collective diffusivity of the 3-D pore zeolites. These indicates that the zeolites with 1-D 

cylindrical pores may be promising as high flux membranes, if manufacturing methods can be 

developed to produce large membranes with those cylindrical pores parallel to the water flow. 

These studies of diffusional and structural properties of water in various zeolite frameworks 

gave a deep insight into the effects of the water loading density, pore size and dimensionality on the 

water behaviour. However, from a practical viewpoint, it is important to consider the effects of the 

pore entrance and its functional groups on water/ion transport, since it is necessary to determine if 

these molecules and ions are likely to enter the pores from the bulk solution. 
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Among the 1-D and 3-D pore zeolites we studied, LTA and VET zeolites were selected as 

potential membrane materials for further study regarding pore entrance effects. LTA has 3-D pore 

structures with characteristic cages, but have the narrow pore openings, while VET has well-defined 

1-D cylindrical pores, and showed great potential in terms of water flux. The s4r and d4r-e surfaces 

were chosen to be the LTA membrane surfaces because the surface geometries of these two types 

are very different but both are thermodynamical stable, the most stable surface of the VET 

membrane was built.  In all cases a single OH was coordinated to the singly-unsaturated Si atoms 

formed from cleaving the material. 

We employed PMF calculations to measure the thermodynamical stability of the continuous 

state when the molecule or ion passes through the membrane. The PMF profiles of the passage of 

water, Na+, and Cl through LTA suggested it had potential for use as a desalination membrane as it 

had a lower energy barrier to water transport than to ion transport. Two LTA surface morphologies 

provided different levels of thermodynamic stability for water molecules and ions in vicinity of the 

pore surface. Hence, slightly different energy barriers were generated, however in general similar 

trends in the free energy appeared in both types. This indicates that the pore size plays the more key 

role than the pore morphology in terms of the entrance barrier in this case.  

Some interesting findings of this measurement is that Cl was energetically more stable when it 

was situated just outside pores of LTA even though the large energy barrier was generated when it 

penetrated the pore. It is believed that the surface hydroxyl groups made the ion stable by replacing 

its solvating water molecules, then coordinating the ion. Hence, this behaviour may affect the water 

passage, the energy barrier of water transport may be overestimated compared to no Cl on the pore. 

This effect will be more discussed in our future work. 

The VET membrane showed the lower energy barriers to water and Na+ entrance compared to 

either of the LTA membranes. This may be a promising aspect for higher water flux, however the 

chloride ion was unusually stable and was tightly held at the pore entrance. Therefore, it could 

block the passage of water more than it did in LTA. This may be due to the combination effect of 

the surface hydroxyl groups and the VET pore size which seems to be large enough to 

accommodate the hydrated Cl. The energy barrier to Na+ transport into the pore was high enough 

even though it was lower than those of the LTA membranes. 

To extend our study in future, relationships between the stability of the chloride ion and the 

membrane pore size or the surface functional group must be addressed. Also, to obtain more 

intuitive data for permeability of each particle of interest, the pressure-driven permeability test 

should be done to evaluate the membrane flux performance. 
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7.2 Future Directions 

As noted earlier, MD results obtained from various simulation cell sizes may differ, especially 

the time-evolution of the systems and the probability density. In the case of the LTA membrane, the 

membrane consists of β-cages and d4r-rings which are bridges between the β-cages. Thus, if we use 

the LTA membrane with long pore channels (LTA membrane extended in the direction of the 

channel), the effect of the change of the inner pore geometry on particle transport will be evaluated. 

This implies that the effect of inner pore walls on the particle transport as well as the effect of pore 

entrance can be clearly shown. Therefore, our zeolite membrane systems can be extended for the 

free energy calculations by extending the water layers and/or the zeolite membrane channels. 

The pore size and surface functional groups, –OH groups, may significantly affect the stability 

of ion entrance to the pore as shown in our free energy study. To clarify these effects, zeolite 

membranes with 1-D cylindrical pores with the narrower size (e.g. TON-type) can be investigated, 

and/or studies of zeolite membrane surfaces with various functional groups (e.g. –COOH, –NH2) 

would be of particular research interest since these functional groups as well as –OH groups have 

been experimentally shown to functionalise the silica surface through chemical modifications (Cash 

et al., 2012, de Oliveira et al., 2016). By modifying the surface groups, the effect of different 

surface chemistries on the free energy change for transport of each particle can be studied. 

To obtain more practical results for the membrane performance, water and ion flux must be 

measured under a pressure gradient which mimics the real RO system. In MD simulations, the 

pressure gradient can be made using various approaches,  such as use of movable atomic pistons or 

applying forces to part of water layers (Liu and Chen, 2013, Thomas and Corry, 2016, Heiranian et 

al., 2015). 

AlPO4-5 is one of aluminophosphate zeolites and AFI-type which has well-defined 1-D 

cylindrical pores (Bordat et al., 2007, Coulomb et al., 2013). The pure silica of the same type also 

exists and is called SSZ-24 (Demontis et al., 2012). Hence, our study may extend to different 

chemical components on the same framework geometry as the silica. By studying water diffusional 

and structural properties, and free energy change of each transport through those as well as 

water/ion fluxes, we will be able to gain some understanding to the effect of different chemistries of 

zeolites on water behaviour and membrane performance. All of these comprehensive studies are 

expected to broaden the area of zeolite materials as desalination membranes. 
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