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Abstract

Activity recognition is being applied in an increasing number of applications. They include

health monitoring of the elderly, discovery of frequent behavioural patterns, monitoring

of daily life activities (e.g. eating, tooth brushing, sleeping), and analysis of exercise ac-

tivities (e.g. swimming, running). Current approaches for activity recognition usually use

the process of data preprocessing, feature extraction, activity model learning and activity

recognition. Most of the previous research pipeline these steps and create static models

for processing activity data and recognizing activities. The static models have predefined

data sources that are tightly coupled with the models and never change once the models

are created. However, the static models are unable to deal with sensor failures and sensor

replacements that are quite common in real scenarios. Moreover, additional information

provided by newly available data sources from dynamically discovered new sensors may

potentially refine the activity model if this information can discriminatively characterize a

specific activity class. However, the static models cannot leverage this additional informa-

tion for self-refinement due to the static assumption of data sources.

The primary goal of our research is to design and develop frameworks for activity recog-

nition with dynamically available data sources, and propose and develop algorithms for

activity model adaptation with the additional information provided by those data sources.

In this thesis, we first provide a critical literature review in the areas of contexts modelling,

context management, sensor modelling and sensors in mobile devices, activity recognition,

activity model retraining and adaptation, and sensor dynamics in activity recognition. We

then present the research on our activity recognition framework that makes the following

key contributions.

First, we propose a hybrid method that integrates Latent Dirichlet Allocation with conven-

tional classifiers for learning a generic activity model with minimum annotated data. The

hybrid method is able to alleviate the problem of data sparsity and requires a little amount

of labelled activity data. Furthermore, it can deal with different variants of activity patterns

since it is created with activity data of multiple users. The generic activity modelling serves

as the starting point of our activity model adaptation with dynamically available sensor

data. However, it can also serve as an independent component for other applications such

as activity personalization.

Second, based on the generic model, we propose a framework for low-level activity (e.g.

running, walking) recognition with dynamically available sensors. The components of the
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framework include a basic classifier, instance selection and smoothing. Firstly, we use Ad-

aBoost as our basic classifier as it is flexible with feature dimensionality and it can auto-

matically select the discriminative features during the learning process. Secondly, we pro-

pose to select the most informative instances for activity model adaptation in an unsuper-

vised manner. The instances contain features of the new sensor data, and the information of

new sensors are incorporated seamlessly through the adaptation process. Finally, we design

smoothing methods by integrating the graphical models such as Hidden Markov Model and

Conditional Random Field with the basic classifier AdaBoost.

Finally, we propose a framework for high-level activity (e.g, making coffee) recognition with

dynamically available contexts. We propose sensor and activity models to address sensor

heterogeneity and populating contextual information. Knowledge-driven and data-driven

methods are proposed for incorporating the new contexts. The knowledge-driven method

specifies the parameters of the new contexts with external knowledge in an unsupervised

manner, and the data-driven method learns the parameters of the new contexts with the

users’ data using the proposed learning-to-rank technique and temporal regularization. Ex-

tensive experiments and comprehensive comparisons demonstrate the effectiveness of the

proposed frameworks.
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CHAPTER 1

Introduction

1.1 Motivation

Activity recognition has experienced its wide application in the past decades. For example,

recognizing human lifestyle can help to evaluate energy expenditure [3]; monitoring human

activity in smart homes enables just-in-time activity guidance provisioning for elderly peo-

ple and those suffering from cognitive deficiencies [20]; detecting walk and counting steps

can help to monitor elderly health [15]. On the one hand, constantly emerging sensing de-

vices and sensing techniques provide an unprecedented opportunity for recognizing differ-

ent activities. The examples include resistive pressure sensing matrix [137] for recognizing

gym exercises, sensors [74] on smartphone for classifying daily activities, thermal sensors

[49] for monitoring household activities. On the other hand, some activity recognition ap-

plications are driven by social needs. For example, the world wide growing elderly pop-

ulation 1 requires the development of activity monitoring programs for the elderly safety.

Fitness tracking functions 2 become popular in social network applications, and they enable

the users to monitor their daily activity level.

Currently, most of the research approaches in this area create static models for processing

activity data and recognizing activities. The static models have pre-defined data sources

that never change once the models are created. However, sensor failure and sensor re-

placement/addition are quite common in real scenarios, and this has been demonstrated

1https://data.oecd.org/pop/elderly-population.htm
2https://www.techinasia.com/wechat-sports-fitness-tracker
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by Luis et al. [92] in their work. More importantly, additional information provided by

dynamically available data sources may potentially refine activity models, since this infor-

mation is usually correlated with a specific activity class. For example, Riboni et al. [124]

find that additional location information can help to filter out impossible candidate activity

classes and resolve the ambiguity. Zhan et al. [162] demonstrate in their work that vision

features are able to improve the recognition accuracy for static activities, probably because

static activities have similar acceleration features but have different vision signs. However,

the static models cannot make use of those additional information as their data sources are

pre-defined. The underlying reason is that in conventional machine learning methods for

activity recognition, the sensor data is usually processed into feature vectors, and the pa-

rameters of a particular machine learning method map the feature vectors into the activity

classes through a series of mathematical operations. The parameters are learned with the

annotated data through minimizing the loss function (varies across different machine learn-

ing methods). With new data sources coming, the parameters corresponding to their sensors

data are unknown, and the trained classifier cannot leverage the new sensor data for classi-

fication.

There exists some research that considers a dynamic sensor selection for context recognition.

However, those works assume prior knowledge about the dynamically selected sensors,

because they have a separate classifier for each of the sensors, or the parameters for this

sensor data are pre-trained.

The primary goal of the research presented in this thesis is to design and develop activity

recognition frameworks that are able to incorporate information provided by dynamically

available data sources for both low-level primitive and high-level complex activity recogni-

tion, and design and develop algorithms for activity model adaptation with the new infor-

mation. The low-level physical activities (e.g. running, cycling) are primitive, and they are

usually recognized with on-body sensors (e.g. accelerometers, gyroscopes). On the contrary,

high-level daily activities (e.g. making sandwich) are more complex, and they are usually

recognized with environment-instrumented sensors (e.g. object sensors) and on-body sen-

sors. Sensor readings of low-level activities are not semantically interpretable, so in general

machine learning methods are employed to map the features extracted from continuous

sensor readings to target activities. In contrast, high-level activities are characterised with

contexts that are human readable, and those contexts are processed from sensor data. For

2
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example "making sandwich" can be described with location context "kitchen" and object

contexts "knife" and "bread".

1.2 Challenges

Incorporating information provided by dynamically available sensors for activity recogni-

tion and activity model adaptation is a non-trivial task, and there are several challenges that

need to be addressed in developing such frameworks. The challenges include:

• Challenge 1: How to learn a generic activity model that caters for people performing

activities differently.

People perform activities differently due to their differences in physical conditions, age, etc.

While a generic activity model can be achieved by learning the model with labelled data,

annotating a large amount of activity data is expensive and time-consuming 3.

• Challenge 2: How to perform the activity model adaptation to incorporate information

provided by new sensors.

New sensors result in new features for the activity model, the parameters for those features

can be either determined with knowledge-driven methods, or learned with data-driven

methods. The knowledge-driven methods leverage the existing knowledge base or com-

mon sense to specify those parameters, while data-driven methods select the new instances

to retrain the model and learn the parameters. The challenges are:

• Challenge 3: How to get the knowledge from existing knowledge base, and how to use

the knowledge for high-level activity model creation and adaptation.

• Challenge 4: How to select the most informative instances for retraining the activity

model without supervision in data-driven methods.

3Annotating activity data costs 4-6 times more than collecting activity data [2].
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For the activity model to be adapted automatically with newly available sensor data, we

select the instances along with their classified class label for retraining. Existing methods

for classifier retraining and adaptation usually select the instances classified with high con-

fidence, but those high-confidence instances usually reside far from the decision boundaries

and do not benefit the model refinement and accuracy improvement.

• Challenge 5: How to make sure that the newly incorporated information does not

negatively impact the recognition performance of the activity model.

Incorporating more information can cause the problem of feature redundancy or model

overfitting. In other words, how to select the most discriminative features to guarantee

the improvement of recognition performance of the activity model after adaptation.

• Challenge 6: How to exploit the temporal information in human behaviour for both

low- and high-level activity learning, activity model adaptation and activity recogni-

tion.

The advantage of temporal information in human activity recognition has been extensively

demonstrated by previous work. Embedding the temporal characteristic into activity mod-

elling and activity model adaptation is a non-trivial task.

• Challenge 7: How to deal with sensor heterogeneity for high-level activity model

adaptation.

There are different types of sensors that can be used for high-level activity recognition, and

the readings of sensors of different types may need to be processed differently for activity

model adaptation when the sensors are dynamically available.

1.3 Thesis statement and contributions

In this thesis, we address aforementioned challenges and the shortcomings of the conven-

tional activity recognition methods that assume pre-defined data sources and create static
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activity recognition models. This thesis proposes to design and develop activity recogni-

tion frameworks that are able to perform activity model adaptation when new data sources

become available. The adaptation process integrates the new information into the frame-

works, and hence refines the activity models in terms of recognition accuracy, scalability,

robustness. The key features of the frameworks include: a collaborative semi-supervised

method for creating a generic activity model with minimum labelled data from multiple

users; temporal smoothing and regularization methods that leverage the temporal informa-

tion in the human activity for filtering out the outliers; an instance selection method that is

able to select the most informative instances for activity model adaptation without human

intervention; a data-driven learning-to-rank activity model adaptation method that person-

alizes the activity model to a particular user to achieve high accuracy; a knowledge-driven

activity model adaptation method that leverages third-party knowledge and incorporates

the new sensor data without supervision. The contributions of this thesis are presented in

more details in the following subsections.

1.3.1 Generic activity modelling

We design and develop a generic low-level activity modelling method that learns activ-

ity model with minimum labelled data of different users. We demonstrate that an activity

model learned with data of one user cannot be scaled to others due to the differences in

their physical conditions, gender and age, etc. For the activity model to be generic, we learn

the model with data from multiple users so that it is able to cope with variants of activity

patterns. Latent Dirichlet Allocation (LDA) is leveraged to model the activity data as it is ef-

fective in collaborative learning and is able to leverage the partially labelled data of various

users to overcome the problem of data sparsity [164]. Since LDA cannot be applied to the

activity data directly, we hybrid it with conventional machine learning methods. Therefore,

in the hybrid approach, we first use the initial labelled data to train the conventional clas-

sifiers, and then estimate the class assignment of the activity data (labelled and unlabelled)

with the hybrid method. In the third step, we use the class assignment of the activity data

from the second step to retrain the classifiers. This process is repeated until it converges. The

generic activity modelling serves as the starting point of our activity model adaptation with

dynamically available sensor data. However, it can also serve as an independent component

for other applications such as activity personalisation.
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We evaluate the proposed method with a large number of datasets, and show that it outper-

forms the supervised method and conventional semi-supervised method. We also examine

the factors (e.g. labelling percentage) that have impact on the recognition performance.

The hybrid method for creating the generic activity model addresses challenge 1. In the

second step of the hybrid method, the topic assignment of a particular instance considers

the topic assignment of the neighbouring instances, and hence it addresses challenge 6.

1.3.2 Physical activity recognition with dynamically available sensors

We develop a framework for low-level physical activity (e.g. walking, running) recognition

with dynamically available sensors and semi-supervised learning method. The components

of the framework include basic classifier, instance selection and smoothing. Specifically, we

investigate conventional machine learning methods and find that AdaBoost suitably serves

our purpose, as it is flexible with feature dimensionality and it can automatically select the

discriminative features during the learning process. Second, we propose to select the most

informative instances for retraining without human annotation. Since the sensor data from

physical activities cannot be semantically interpreted, we incorporate the dynamically avail-

able sensor data by retraining the activity model with the selected instances that contain the

features of the new sensor data. Third, we design smoothing methods by integrating the

graphical models such as Hidden Markov Model and Conditional Random Field with the

basic classifier AdaBoost. The smoothing methods leverage the temporal information em-

bedded in the human activities that the current activity is more likely to be continued in the

next time slot. Finally, we investigate the conditions under which the opportunistically dis-

covered sensors are beneficial to the recognition performance, we propose two hypotheses

and validate them with controlled experiments.

The proposed framework that is able to incorporate new sensors dynamically for low-level

activity recognition addresses challenge 2; the instance selection method addresses chal-

lenge 4; the basic classifier, AdaBoost, is able to select the most discriminative features, and

it addresses challenge 5; the combination with HMM and CRF leverages the temporal infor-

mation and addresses challenge 6.
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1.3.3 High-level activity recognition and adaptation with dynamically avail-

able contexts

We develop a framework for high-level activity recognition with dynamically discovered

contexts. Specifically, we design sensor models that facilitate the pre-processing of sensor

readings of the dynamically available sensors into high-level contexts, and the activity mod-

els that facilitate incorporation of those high-level contexts into the activity models. There

are different types of sensors in real environments, and even the sensor readings of the

same types of sensors can be interpreted differently if they are used for different purposes.

The sensor models provide a description of how to process the sensor readings into proper

contexts for recognizing activities, while the activity models interrelate the contexts with

activities.

Second, we propose a knowledge-driven method for the incorporation of the dynamically

available contexts without supervision. The parameters of the contexts with respect to dif-

ferent activity classes are estimated using descriptive texts of the activities from external

sources (e.g. website) using natural language processing methods. High-level activities are

usually described (or characterised) by different kinds of contexts, and those descriptions

can be obtained from external databases. Therefore, when discovering a sensor, the param-

eters can be specified from the descriptive texts without human intervention.

Third, we propose a data-driven method for the incorporation of the dynamically discov-

ered contexts with the learning-to-rank machine learning method and temporal regulariza-

tion. The data-driven method is a personalized method as it performs machine learning

with the activity data of a specific user. In the knowledge-driven method, the parameters

of new contexts are obtained from third-party databases, while in the data-driven method

the parameters are learned from the new activity data containing new contexts. The tem-

poral regularization is embedded into the activity learning process and it encourages the

neighbouring instances to have the same activity class. We also select the most informative

instances for the activity model adaptation and propose a thresholding method to guarantee

class balance.

The proposed framework that is able to integrate the new sensors for high-level activity

recognition and activity models adaptation addresses challenge 2; the proposed knowledge-
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driven method addresses challenge 3; the personalized learning-to-rank machine learning

method and temporal regularization in the proposed data-driven method addresses chal-

lenge 5 and 6 respectively; the proposed sensor models address challenge 7.

1.4 Thesis structure

The remainder of this thesis is structured as follows:

• Chapter 2 surveys the related work including context modelling, context management,

sensor modelling, overview of sensors in mobile devices, activity recognition methods,

activity model retraining and adaptation, sensor dynamic for activity recognition. We

discuss shortcomings of the existing approaches and analyse why they are inapplicable

in dynamic environments.

• Chapter 3 presents a generic activity modelling method that learns the generic activity

model with minimum labelled data.

• Chapter 4 describes and evaluates the framework of physical activity recognition and

its adaptation with dynamically available sensor data.

• Chapter 5 presents and evaluates the framework of high-level activity recognition and

its adaptation with dynamically available contexts.

• Chapter 6 concludes the thesis with a summary of this thesis contributions and dis-

cusses potential future research.
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Critical Literature Survey

In order to create a framework for mobile activity recognition, several areas of previous re-

lated work need to be critically reviewed. They include context modelling, context manage-

ment, sensor modelling and sensors in mobile devices, activity recognition, activity model

adaptation and sensor dynamics in activity recognition. The reasons we review this related

research are multifold. First, activity recognition in dynamic environments needs to incor-

porate sensors dynamically and automatically. Without prior knowledge about the sensors

we do not know how to process the sensor readings and use the information they provide

for recognising activities. The existing context and sensor modelling methods facilitate the

process of sensor discovery, preprocessing of sensor readings, and activity modelling and

adaptation, and it is necessary to evaluate how they need to be modified/refined to sup-

port activity recognition in dynamic environments. Second, by reviewing context sources in

mobile devices, we show the state-of-the-art sensors that are widely used and their appli-

cations in daily lives. We also analyse the general architecture of context sensing in mobile

devices and analyse whether it can be applied to activity recognition in dynamic environ-

ments. Third, as sensor-based activity recognition has been well studied by previous work,

our aim is not to extend previous artificial intelligence methods to achieve higher accuracy.

Instead, our goal is to leverage the statistic and probabilistic characteristics used in artificial

intelligence to address the challenges met by activity recognition in dynamic environments

(i.e. opportunistic discovery of sensors, activity model adaptation). Finally, we review the

research on activity model adaptation and sensor dynamics in activity recognition, that are

related to our work.
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In what follows, we review several context modelling and management methods, followed

by sensor modelling methods and the state-of-the-art sensors in mobile devices. After that,

we discuss the activity recognition techniques in the previous sensor-based activity recog-

nition area. Finally, we review the most profound works in activity model adaptation and

sensor dynamics in activity recognition. In this survey we discuss the advantages and short-

comings of the existing approaches and analyse why they are inapplicable in our case.

2.1 Context modelling and management

More than a decade of research on software engineering of context-aware applications has

led to the approach that creates a context model for each context-aware application. The

context management system is used for gathering, preprocessing, and reasoning upon con-

text information on behalf of the application based on this application’s context model. This

approach makes the design, development, and management of context-aware applications

easier and allows to reuse the gathered context for multiple context-aware applications. The

approach is an extension of the distributed computing middleware - the middleware is ex-

tended by the context management system that allows application designers to design the

context model (context information types required by the application, sensor readings pre-

processing rules, and a logic for reasoning upon context information to recognize situations).

In this section, we review representative context modelling and management methods.

2.1.1 Context modelling

Fact based context modelling

Henricksen et al. [47, 48] proposed a fact-based Context Modelling Language (CML). Cen-

tral to the approach is the fact-based classification of contextual information that is of interest

for a particular context-aware application. In addition, the approach also allows designers

to define the rules that reason upon the gathered contextual information and recognize situ-

ations (high level abstract contexts). Those situations are usually important for the context-

aware applications as they need to perform adaptation when the situations change. The
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Figure 2.1: Graphical context modelling.

designers use a variant of first-order-logic to define situations that are of interest to the ap-

plication. Therefore in this approach, the context information used by the application is

predefined and the situations that need to be reasoned upon are also static.

The CML language is an extension of Object-Role Modelling (ORM) and models context fact

types as object types (ellipses in Figure 2.1) and relationships between the object types. For

example, Figure 2.1 shows facts that a person can be characterised by the other contexts such

as activity or device (e.g. the person is engaged in certain activity or using a device). Context

fact types are classified into four types, they are static, profiled, sensed and derived fact types.

Static and profiled context information is provided by the users (static does not change in its

life-time and profiled is rarely updated), while sensed data is sensor-provided (physical or

logical sensors) and can be updated with increasingly available data. Derived information

is derived by from available context using some derivation rules.

Ontology based context modelling

Ontological context modelling leverages the description logic (DL) to explicitly define con-

cepts and their relationships. Therefore in ontology based context modelling, context rea-

soning is based on the description logic [13]. In the ontological approach, context informa-

tion (e.g. activity) is organized into a hierarchical structure of classes, with each class being

described by a number of properties. The datatype properties specify the characteristics of

the classes, and the object properties define the relationships between classes. The proper-
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Figure 2.2: An example of ontology-based context modelling.

ties are characterized by their domain and range, with the domain referring to the classes

that can be described by the properties and the range referring to restrictions of either all

the classes whose instance can be assigned to the property (object property) or the datatype

(datatype property).

As an example shown in Figure 2.2, the ontology class MakeHotDrink is a subclass of MakeDrink,

and hasDrinkType is one the properties of MakeHotDrink. Therefore, the domain of hasDrink-

Type is MakeHotDrink and the range is the DrinkType class. The individuals of DrinkType, e.g.

coffee and tea, are the possible values of the hasDrinkType property.

The hierarchy of classes in ontological modelling results in an architecture of superclass and

subclass, the subclass inherits all the properties of the superclass. As such, contextual in-

formation can be arranged at multiple levels of granularity. Together with class properties

and individuals (instances), the ontologies are able to capture and encode domain knowl-

edge. The knowledge base is divided into TBox and ABox, where TBox contains knowledge

describing class hierarchies (i.e. relations between classes) while ABox contains ground sen-

tences stating where in the hierarchy individuals belong (i.e., relations between individuals

and classes).
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2.1.2 Context management

The general architecture of the context management system is illustrated in Figure 2.3. In

the low layer, sensor readings are processed into context information that is required by the

application, i.e. defined by the context model. In the middle layer, the components include

the context models that describe context information types required by the application and

a repository of context information that is gathered based on these models. In the higher

layer, there is a situation model that describes how the gathered context is reasoned upon to

derive high level abstract context (situations), hence the higher layer describes the logic that

is used for reasoning upon context. The context management system provides interfaces so

that the applications are able to query the context information or request notifications upon

situation changes that require the applications perform adaptation.

The context model and logic used for context reasoning in this general architecture vary

from one approach to another. For example, Henricken et al. define situations in the form

of predicate logic: S(v1, · · · , vn) : ϕ, where S is the name of the situation, {v1, · · · , vn} are

variables and ϕ is logical expression in which the variables are confined to set {v1, · · · , vn}.

The logical expression consist of basic expressions connected through logical connectives,

with each basic expression denoting one facet of the situation. At runtime, sensor readings
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are processed into context information and the aggregation of multiple contexts are reasoned

upon against the pre-defined rules to infer high level situation.

While in ontology based methods, individuals are instantiated based on the sensor observa-

tions and a situation can be established by interlinking the multisource sensor observations,

this is equivalent to relating the individuals by properties. The individuals and the rela-

tions between them, which represent the current fact, are then put into ABox and ontologies

reasoning is performed either to check knowledge consistency or to derive new knowledge

(find the most specific class for the individual). Ontology based context modelling is widely

applied due to fact that it is supported by various tools. For example, the ontologies can

be created and edited by graphical tools such as protege2, several reasoners such as Pellet3,

FACT++4, Jena5 and OWLAPI6 can be used to reason over the created ontologies. They even

provide APIs for program languages such as Java so that the reasoning can be performed in

real time progressively.

Hu et al. [52] extended the general architecture even further since they introduce autonomy

into the context management system. Central to their system is the dynamic discovery and

self-configuration of the context sources. In order to deal with the heterogeneity of sensors,

they use Process Chains to pre-process the data from context sources into required con-

text information, which is supported by SensorML that specifies the information required

for processing sensor readings. To facilitate the dynamic discovery of context sources, the

context management system introduces several managers, they include Context Source Man-

ager which manages communication with/for context sources, provides sensor discovery,

and registration and configuration services; Application Context Subscription Manager which

stores context subscription defined by application designers; Reconfiguration Manager which

performs cross-layer context mapping.

2http://protege.stanford.edu/
3http://clarkparsia.com/pellet/
4http://owl.man.ac.uk/factplusplus/
5https://jena.apache.org/
6http://owlapi.sourceforge.net/
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2.1.3 Discussion

Both of the context modelling and management approaches have their own disadvantages.

For example, CML represents all context facts uniformly in a “flat” model, which results in

its lack of expressiveness for hierarchical architectures, and emphasizes unevenly on partic-

ular dimensions of context facts [13].

Hu et al. propose an autonomic context management system able to discover new sensors

and provide a mapping from the required context to available sources of context informa-

tion. However, they focus on reliability and self-configuration of the system and do not

address the problem of adapting the reasoning techniques due to dynamically discovered

context sources, especially the ones of which we do not have prior knowledge.

In ontology based context managements, even though a probabilistic ontological frame-

work [45] has been proposed to incorporate temporal information and data uncertainty, it is

still vulnerable in realistic scenarios due to its guarantee of decidable reasoning procedures.

Moreover, the overhead of realization process should never be overlooked [13].

In addition, both of the mentioned approaches use a particular logic (e.g. FOL and DL ) to

infer high level situations. Even though expressive and easy to understand, they are vul-

nerable to data uncertainty and sensor noises. Moreover, the inference rules are pre-defined

with the domain knowledge, hence the static inference engine makes them inapplicable in

dynamic environments as they are not able to adapt situation reasoning to new types of

context information gathered from newly available sensors.

2.2 Context sources

In this section, we review the representative sensor modelling methods in the previous

work, followed by the prevalent sensors used for context sensing in off-the-shelf mobile

devices and the general sensing architecture.
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Figure 2.4: Sensor context model.

2.2.1 Sensor modelling

Sensor modelling for autonomic context management system

Hu et al. [52] propose an autonomic context management system that supports (i) dynamic

discovery and self-configuration of sensors, and (ii) mapping between context information

required by an application and sensor observations (the mapping may include necessary

preprocessing of sensor readings to achieve the level of abstraction required by the context

information). To facilitate the mapping between context information and sensor observa-

tions, they proposed a sensor context model (Figure 2.4) that is able to capture both static

features and dynamically changing information for a sensor. In Figure 2.4, the sensor con-

text model example describes only a subset of the dynamic context information required to

model sensors, including ownership, location, communication connectivity and remaining

power. The modelling of the sensors facilitates the dynamic incorporation of the information

they provide when they are discovered and registered to the context management system.

To support opportunistic discovery of the sensor models, they advocate the use of the IEEE

1451 standard that allows the sensors to introduce themselves to external systems that they

can communicate with. Central to the standard is the TEDS (Transducer Electronic Data

Sheet) data that describes the sensor specifications and the TEDS template that specifies the

meaning of the TEDS data. The TEDS template also instructs how to decode and extract

the TEDS data from the binary encoding. As the TEDS template only describes limited sen-

sor information, they propose a hybrid method to discover and incorporate new sensors.
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Figure 2.5: An example of sensor model in smart environment.

First, the TEDS data is extracted and decoded with the TEDS template when a sensor is

discovered through physical communication interfaces. After that, the TEDS specification

is mapped to the SensorML description that describes how to incorporate the sensor into

the context management system; then the information provided by the sensor can be pop-

ulated into the system, as shown in Figure 2.4. The mapping process is done through an

ontology knowledge base that shows relationships between sensor types that can, after pre-

processing, produce the same context facts.

Sensor modelling in smart environments

Chen et al. [20] propose to model sensor for unsupervised activity recognition in smart envi-

ronments. As shown in Figure 2.5, the information describes a sensor is explicitly modelled,

so that each sensor is linked to certain physical or semantic entity such as object, location.

For instance, a contact sensor is attached to the oven in the kitchen. Through explicitly

encoding these information into the sensor model, it is possible to get the object and the lo-

cation when the sensor is activated, and this implies that the a user is carrying out an activity

in the location with the object.
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Table 2.1: Sensors and their applications.

Sensor Related work Application
Accelerometer, Gyroscope [8, 101, 91, 9, 46, 113,

103, 60, 59, 88, 58, 57,
171, 33, 112]

place characterisation, motion detection
and analysis, transportation mode, gesture
recognition, activity recognition, context
management system

Microphone [8, 26, 90, 109, 100, 93,
118, 89, 157, 61, 43,
40, 71, 103, 148, 58, 57,
91]

place characterisation, sound detection and
classification, conversation group cluster-
ing, emotion and stress sensing, speak-
ing counting, sleeping monitoring, tooth
brushing monitoring, activity recognition,
context management system

GPS [7, 73, 84, 103, 59, 148,
171, 33, 91, 112]

Localisation, significant place identifica-
tion, activity recognition, speed detection

Bluetooth [36, 112, 107, 164] social context detection
WiFi [68, 68, 171, 84, 103,

148]
Localisation, activity recognition

Light sensor [8, 169, 60, 59] place characterisation, illumination sens-
ing

Camera [8, 26, 33, 117] place characterisation
Barometer [127, 155] transportation mode, door event

2.2.2 Sensors in mobile devices

The prevalence of smart phones has offered an unprecedented opportunity for mobile sens-

ing as multiple sensors in smart phones can provide various context information. For ex-

ample, Miluzzo et al. [101] present the CenceMe application based on off-the-shelf mobile

phones. The application leverages the on-board accelerometers, microphone, GPS and Blue-

tooth to infer users‘ activity and social interactions. In this subsection, we review the kinds

of context sources in mobile devices that can be used for context sensing, and the general

context sensing architecture of state-of-the-art context sensing applications. Our discussion

focuses on accelerometer, gyroscope, microphone, GPS, Bluetooth and WiFi access points.

The related works are categorized according to the sensors they used, and the corresponding

applications are also described, as listed in Table 2.1

2.2.3 Discussion

In this section, we review the sensor modelling methods and the applications of the sensors

in mobile devices. From this literature we can conclude that most of the previous works fo-
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Figure 2.6: General architecture of mobile context sensing system.

cus on on-board sensors of mobile devices such as GPS, microphone and accelerometer [76].

The architecture of the systems always includes sensing, learning and prediction, as shown

in Figure 2.6, in which the context sources are tightly coupled with context information in

the sensing system. Some researchers assume a collaborative manner [11, 93, 79, 100, 109]

of obtaining context information from other users. However, the data-flow is predefined

and the systems know the semantic meaning of the data sources. As we can envisage, em-

bedded context sources will become prevalent in ubiquitous environments and the existing

techniques (i.e. sensing and learning) will become impractical when confronted with dy-

namically available sensors.

2.3 Sensor-based activity recognition

Human activity is one of the most important high level contexts in the area of context-aware

computing, due to the fact that many context-aware applications take actions based on hu-

man activities. The following review of sensor-based activity recognition is divided into

data-driven methods, knowledge-driven methods and a hybrid approach.
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Figure 2.7: Pipeline of conventional human activity recognition.

2.3.1 Data-driven methods

With data-driven approaches to activity recognition, the activities are modelled completely

from the available data, and the traditional processes can be characterised by (1) Data ac-

quisition, (2) Preprocessing, (3) Segmentation, (4) Feature extraction, and (5) Model training

and classification. Therefore, the degree of fitting that the created models have with the

data is influenced by various factors, such as placement of sensors, training data, feature

selection and classifiers.

Feature selection

Raw data generated from sensors are usually pre-processed into feature vectors before it is

fed into recognition models. Since large number of features would result in redundancy and

jeopardise the accuracy and energy-efficiency of the model, it is wise to select a subset of the

features that have the most discriminative power. Another rationale behind the feature se-

lection is that a small set of the representative features can be computationally inexpensive,

and hence can greatly reduce the training and testing overhead. This is very important for

mobile devices that are constrained by the limited battery power. The previous works pro-

posed various methods for feature selection in the wearable activity recognition area. For

instance, Chen et al. [22] propose an online LDA (Linear Discriminant Analysis) that is able

to add or delete an instance dynamically. LDA is a dimensionality reduction method that is

able to preserve the differences between classes when projecting the original feature space
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to a lower dimensional one. Huynh et al. [55] propose cluster precision which selects the

features that can most precisely cluster the training instances. Könönen et al. [70] leverage

the Sequential Floating Forward Selection (SFFS) to select (discard) the feature that makes

the biggest (smallest) contribution to the classification accuracy.

Supervised learning

Supervised learning methods require the training data to be labelled. A lot of previous re-

search employ the conventional machine learning methods for human activity learning and

classifying. Training a recognition model is equivalent to learning the correlations between

the feature vectors and activity classes, and the correlations can be interpreted as different

parameters in different classifiers, such as the branch nodes in Decision Tree, support vec-

tors in Support Vector Machine (SVM), transition and emission matrix in Hidden Markov

Model (HMM), etc. Based on the way that the parameters are learned, the models can be

generally classified into generative models and discriminative models.

• Generative models: generative models assume the observable sensor data is generated

from a distribution with some hidden parameter, and explicitly modelling the joint dis-

tribution over the sensor observations and the activity classes. The parameters of the

models are learned by maximising the likelihood of the training data. To simplify the

modelling and inference process, assumptions are usually made to simplify the rela-

tions among the variables. However, large amounts of labelled data is required to train

the model, and unseen dependency under the available training data can negatively

affect the performance of the model. Commonly used generative models for human

activity recognition include Naive Bayesian [10, 115, 102, 138, 143], Hidden Markov

Model [120, 80, 161, 81, 153], and Dynamic Bayesian Network [114]

• Discriminative Models: contrary to generative models, discriminative models directly

model the conditional probability distribution of latent activity classes over the sen-

sor observations. One of the advantage of discriminative models is that all sorts of

rich overlapping features can be incorporated without violating any independence as-

sumptions [141]. Therefore, discriminative classifiers perform well even with a small

amount of training data. Examples of discriminative models for activity recognition in-
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clude Decision tree [86, 10, 30, 31, 98], Support Vector Machine (SVM) [70, 22, 4, 53, 72],

Conditional Random Field (CRF) [144, 69, 104, 162], Decision table [120, 10], k-nearest

neighbors (KNN) [120, 14, 70, 4], Artificial Neural Network (ANN) [66, 4, 67].

• Hybrid models: Hybrids of generative and discriminative models usually perform bet-

ter than any single one of them, since they take advantage of the discriminative model

to maximize the margin between different classes while utilizing the generative model

to smooth the outliers. For example, in [82] the testing data is first fed into Adaboost

to obtain for each data sample a posterior probability for each activity class, which in

turn are regarded as feature vectors and fed into multiple HMMs. The data sample is

then classified as the class corresponding to the HMM that has the maximum likeli-

hood. Fahad et al. [32] propose the hybrid recognition by transforming the instances

into the representations of distance minimisation and probability estimation with re-

spect to different activity classes. Then they input those representations as features for

the SVM training. Other hybrid methods include hybrid of Decision tree and HMM

[96, 94].

• Others: Many approaches other than the traditional machine learning methods have

been proposed for activity recognition recently. For example, Gu et al. [38] propose an

emerging patterns based approach to sequential, interleaved and concurrent activity

recognition. The underlying idea is to mine contrast patterns for each class that occur

frequently in one class and rarely in other classes, such patterns are expected to have

high discriminative power. Ghasemzadeh et al. [34] use a motion transcripts match-

ing approach for collaborative action recognition. The idea behind this method is the

similarity matching between action templates generated in the training phase and the

candidate samples in the testing phase. Other works also incorporate complex models

such as Skip-chain CRF [44], coupled HMM or Factorial CRF [146] to recognize inter-

leaved or concurrent activities. However, these are out of scope for our discussion.

As the supervised machine learning method AdaBoost is used in our approach presented in

the later chapters, we briefly introduce it here. The core of AdaBoost is to train an ensemble

of weak classifiers and combine them to form a more robust and accurate classifier. Each

weak classifier makes decisions based on a single feature and needs only be slightly better

than random guessing. The final classifier is a linear combination of the weak classifiers,

22



CHAPTER 2: CRITICAL LITERATURE SURVEY

with each classifier being weighted by the error it makes during the training process; more

weight is given to the classifier that makes fewer errors.

As depicted in Algorithm 1, the AdaBoost learning algorithm takes as input the instances,

the initial instance weights and maximum iterations. The training of AdaBoost follows an

iterative process. In each iteration, each weak learner is fitted to the training dataset, and the

one with the minimum weighted error is chosen (step 2). After that, the instance weights

are updated, so that more weights are given to the misclassified instances (step 4). During

the next iteration, the weak classifiers will focus more on those problematic instances. The

output of the training process is an ensemble of weak learners (step 6). Notice that in step 2,

it trains a weak learner for each dimension of the feature space, but only selects the one with

minimum weighted error. In our approach, we will adopt decision stump (i.e. one-level

decision tree) as the weak learner, and then training weak learner hk
t (x) for dimension k is

equivalent to finding the threshold θk in that dimension to minimise the weighted error such

that hk
t (xi) = hk

t (x
k
i ) = 1 if xk

i > θk and hk
t (xi) = −1 otherwise, where xk

i is the value of kth

dimension of instance xi.

Algorithm 1 AdaBoost.
Input:

Instances (x1, y1), · · · , (xn, yn) where xi ∈ ℜk a is k-dimension feature vector, yi ∈
{+1,−1} ;
Initial weight of n instances D0(i) = 1/n for i = 1, · · · , n;
Weak learners h(x) ∈ {+1,−1};
Max iterations T;

Output:
Ensemble of weak learners;

1: for t = 1 to T do
2: Find weak learner ht(x) that minimizes the weighted error: ht(x) =

argminhk
t (x)

∑
n
i=1 Dt(i)I[hk

t (xi) 6= yi]

ǫt = ∑
n
i=1 Dt(i)I[ht(xi) 6= yi] ;

3: Compute the weight for the weak learner ht(x): αt =
1
2 ln(1−ǫt

ǫt
);

4: Update the weight of instances: Dt+1(i) =
Dt(i)exp(−αyiht(xi))

∑i Dt(i)exp(−αyiht(xi))
for i = 1, · · · , n;

5: end for
6: return H(x) = sign(∑T

t=1 αtht(x));

AdaBoost is a discriminative classifier, and it performs classification by giving the definitive

decision. This approach has a potential problem that even if the classifier is uncertain with

the class of the instance, it chooses the class against which the instance has the maximum

evidence as the prediction. We argue that the posterior probability of an instance is much
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more helpful, since it reflects the confidence in that prediction. This is important to the later

stages such as the stage of learning to adapt. To this end, we calculate the posterior probability

for instances using the method from [82].

P(yi|xi) =











eψm(x)

eψm(x)+1
if yi = +1

e−ψm(x)

e−ψm(x)+1
if yi = −1

(2.3.1)

where ψ is a constant and m(x) = ∑
T
t=1 αtht(x)

∑
T
t=1 αt

. P(yi|xi) is thus regarded as the posterior

distribution of instance xi. Notice that the binary AdaBoost can be easily extended to multi-

class classifiers by training a set of weak learners for each activity class i to separate itself

from others:

Hi(x) =
T

∑
t=1

αi
th

i
t(x) (2.3.2)

Accordingly, the prediction is made by argmaxi(Hi(x)) for an instance x.

Semi-supervised learning

The aforementioned supervised learning methods suffer from several drawbacks. Firstly,

the labelling of training data for activity modelling is time-consuming and sometimes error-

prone, considering huge amount of data from sensors in realistic scenarios. Further, the

supervised methods lack scalability and adaptability, because the models learned from la-

belled data are static, hence they cannot adapt to the evolving behaviours of the users, nor

can they be scaled to other users who perform the activities differently.

To overcome the shortcomings of supervised learning, many researchers turn to the direc-

tion of semi-supervised techniques, in which the models are created with small amount of

labelled data, and the unlabelled instances classified with high confidence are added into the

training data to refine the models. For example, Guan [41] explore several semi-supervised

learning methods for activity recognition with labelled and unlabelled data. In Co-training,

two classifiers are created on two sufficient and redundant sets of attributes. In the iterative

learning process, each classifier adds the instances that it classifies with high confidence to

the other’s training set, and the classifiers are retrained with the augmented training data.
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In En-Co-training, different types of classifiers are trained on the same training data, and

during the iterative learning process, the unlabelled instance which all the classifiers agree

with the predicted label are used to augment the training data and retrain the classifiers.

In [131], the authors propose a graph-based label propagation semi-supervised learning.

The graph defines the similarity between the labelled and unlabelled data, and the labels of

the labelled data are transferred to the unlabelled data based on the similarities, the basic

idea is that similar instances are more likely to have the same activity labels. In [132], the

authors present a positive-and-unlabelled semi-supervised approach. The labelled data is

regarded as positive class, while the unlabelled data is regarded as negative data to train

the initial SVM. During the learning phase, the SVM is used to classify the unlabelled data

and select the instances that are properly positive and add them into positive class. This

process is repeated until converges. Mahdaviani et al. [97] propose a virtual evidence boost-

ing semi-supervised CRF training method for human activity recognition. In addition to the

conditional pseudo-likelihood of labelled, the objective function also takes into account the

unlabelled conditional entropy.

One disadvantage of semi-supervised learning is that the confident instances are not in-

formative enough [133, 21], especially for discriminative classifiers which perform classi-

fications based on the boundaries between different classes, as the confident samples are

usually far away from the boundaries, and contribute little to the boundaries adjustment.

Another problem with semi-supervised approach is that even though many feature vectors

have comparable likelihood in a step after classification, it only considers the top-rated class

as the label and ignores the others.

Active learning

Active learning is another way of reducing the labelling effort for human activity recogni-

tion. However, unlike traditional semi-supervised learning methods that choose the most

confident instances along with the predicted activity classes for retraining, active learning

usually chooses the most informative instances along with the ground truth for retraining.

The basic idea is that the most informative instances usually reside near the classification

boundary, and the classifier is uncertain about the predicted activity classes. Therefore,

choosing those instances for retraining can quickly converge the classifier [133].
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There are many existing works using active learning methods to alleviate the training data

collection and the labelling effort in the activity recognition pipeline. For example, in [50],

the authors first cluster the unlabelled data into clusters with the dynamic k-means clus-

tering algorithm, then they propose a method of finding the most informative instances by

combining the entropy measurement and the similarities between the instances and differ-

ent clusters. The authors in [121] propose an online activity recognition system that incre-

mentally and actively queries the user for the labels of the activity instances. They use the

Growing Neural Gas (GNG) algorithm to select the most informative instances. GNG creates

a graph to approximate the distribution of the data, with each node in the graph correspond-

ing a region in the dataset. The basic idea is to query the user for the label of each node, so

as to reduce the labelling effort. In [24], the authors explore multiple informativeness mea-

surements in active learning for human activity recognition. They include least confident,

minimum margin, maximum entropy. Other works that also simply leverage active learning

for activity recognition include [87, 133].

Transfer learning

In semi-supervised and active learning, the activity classes of the labelled data and the unla-

belled are in the same domain, while in transfer learning, the labelled data in one domain is

used to recognize the activities in another domain, so that the data acquisition in the target

domain is not required.

The most paramount works are as follows. Zheng et al. [165] propose to use the knowledge

from websites to measure the similarities between the activities in the source domain and

those in the target domain. Then the data in the source domain is labelled with the activities

in the target domain along with the similarities, and this data is used to train the SVM activ-

ity model. The loss function of each instance is further weighted with the similarity so that

the dissimilar instance contributes less to the model training. In [142], the authors recog-

nise the activities in the target home setting with activity data in the source home setting.

The knowledge transferring is implemented through the meta-feature space of the sensors

(e.g. microwave sensor in the source domain and stove sensor in the target domain have

the common meta-feature "kitchen heating"). By transforming the sensor readings into the

meta-feature space, they are able to recognize activities in the target environment with only the
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labelled data from the source environment. The authors in [51] propose to perform knowl-

edge transferring both in the feature space and in the label space. In the feature space, the

instances in target domain are labelled with the labels of the source domain based on the

similarity of the sensor readings distribution between them. In the label space, the inter-

mediate labels of the instances in the source domain are mapped to the labels in the target

domain by considering the semantic difference between them and the temporal consistency.

One of the shortcomings of transfer learning is the fact that it usually sacrifices the recogni-

tion performance for minimising labelling effort.

Zero-shot learning

In contrast to transfer learning that recognise activities in the target domain with activity

data of the source domain, zero-shot learning recognises new activity classes that have never

been observed before. In zero-shot learning, a hidden attribute layer is abstracted from the

sensor data, and domain knowledge is leveraged to recognized the new activity classes with

data from the hidden attribute layer instead of the raw sensor data.

For example, Cheng et al. [24] first map the raw sensor data into semantic attributes such

as upper arm back, upper arm down, and then define the activity-attribute matrix that shows

the presence of each semantic attribute in different activity classes (including the unseen

activities). In the testing phase, they first use a trained SVM to classify the sensor readings

into semantic attributes, and then recognize the unseen activities by referring to the activity-

attribute. In [23], they extend the previous work by incorporating the sequence nature of

the activity data with Conditional Random Fields (CRF). Specifically, potential functions

are defined between the variables (i.e. activity-attribute, attribute-feature vector, attribute-

attribute), and the weights of the potential functions are learned by minimising the loss

function on the training data. In [106], the authors propose to recognize new activities with

minimum labelled data. As the training data for new activities is limited, they propose to

combine feature-based learning with attribute-based learning to overcome the problem of

low recall in recognising new activities. Feature-based learning is the traditional method

using the features extracted from sensor data for activity recognition, while attribute-based

learning is to detect the semantic attributes from the sensor readings and use them for rec-
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ognizing activities.

Zero-shot learning suffers from the drawback that it is a non-trivial work to define the

activity-attribute matrix, especially when the target activity classes are diverse. In addition,

classifying the sensor data into different semantic attributes requires additional annotated

data for classifiers training.

Unsupervised learning

Without any labelled data, unsupervised learning method is to uncover latent activity pat-

terns from the data. There are many previous studies trying do discover frequent activity

patterns from the unlabelled data. For example, Rashidi et al. [119] propose a technique to

discover frequent patterns and model them as multiple HMMs. They used the variant edit

distance method to measure the similarity among patterns, which is able to deal with discon-

tinuities. The frequency of patterns are measured based on the description length principle.

Cook et al. [27] also incorporate this method to discover and label frequent activities from

the partially-labelled dataset in order to improve recognition accuracy.

As recognising physical activities such as sitting and standing is primitive, it is more reason-

able to cluster daily routines such as working and commuting which can reflect the personal

lifestyle. In [54], the author performs Latent Dirichlet Allocation (LDA) on accelerometer

readings to cluster daily routines such as commuting, office and lunch. While Sun et al.

[136] extend this work and perform clustering with Hierarchical Dirichlet Process (HDP),

in which the parameters such as topic number do not have to be specified. They generate

words with Dirichlet Process Gaussian Mixture Models (DPGMM) and cluster topic pro-

portions resulted from HDP, which shows superior performance compared to the previous

works. The idea underlying LDA and HDP is to explore the whole dataset and cluster the

frequently co-occurring (discrete) or closest (continuous) data points into the same topic. It

is also based on the observation that the same human routine tends to have the same data

distribution (e.g. office routine mostly comprises sitting and has less variation in accelerom-

eter readings), which result in similar topic proportions. In [128], Seiter et al. introduce a

topic modelling approach to discover daily routines from sensor data. Unlike traditional

topic modelling methods, they incorporate semantic similarity between words during the

28



CHAPTER 2: CRITICAL LITERATURE SURVEY

1,...,d D 

1,..., di N 

! " iz
d

iw

# $

1,...,z T 

Figure 2.8: Graphical model of LDA

clustering process.

However, small amount of labelled data is required in the unsupervised methods for ground

truth provisioning, otherwise the frequent patterns or daily routines discovered by afore-

mentioned unsupervised approaches do not have semantic meaning and cannot self-interpret.

For example, dataset in [119, 27] is mostly comprised of sensor data from binary motion sen-

sors, as a result, the method actually creates a map between activity patterns and location.

While in [54, 136], the data distributions resulted from accelerometer are meaningless if we

do not have predefined routines.

We will be using LDA in our approach as a hybrid with traditional classifiers to create a

generic activity model described in the next chapter, we therefore briefly describe LDA here.

LDA is a hierarchical Bayesian model, being primarily used for text mining. In LDA, the

document is modelled as a multinomial distribution over the latent topics, while the latent

topic is modelled as a multinomial distribution over the words. LDA explores the docu-

ments and clusters the frequently co-occurring words into the same latent topic.

The graphical representation of LDA is depicted in Figure 2.8, where T is the pre-specified

number of topics, and Nd is the number of words in document d. To generate a word, the

topic distribution of the corresponding document is sampled from a prior Dirichlet distribu-

tion parametrised by α, θd ∼ Dir(α). And then the topic assignment zi of the word is drawn

from a multinomial distribution zi ∼ Multi(θd), and the word is generated by sampling

wi ∼ multi(φzi
). Notice that φzi

specifies the word distribution of topic zi, which is drawn

from a prior Dirichlet distribution parametrized by β. Therefore, the likelihood of the words

in the corpus is:
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L(α, β) =
D

∏
d=1

∫ ∫

p(φ|β)p(θ|α)
Nd

∏
i=1

T

∑
z=1

p(wd
i |z, φ)p(z|θ)dθdφ (2.3.3)

Building the topic model is equivalent to finding the topic-word assignments that can max-

imise the likelihood. The assignment can be estimated via the collapsed Gibbs sampling,

which iteratively samples the topic for each word while fixing the topic assignment of all

the others, and then uses the topic assignments to estimate parameters (such as document-

topic distribution and topic-word distribution):

P(zd
i = k|z−i, w) ∝ (α + nd,−i

k )p(wd
i |wk,−i) (2.3.4)

where z−i is the topic assignments in the previous iteration excluding the current word wd
i ,

and nd,−i
k is the number of all the other words that are assigned to topic k in document d.

wk,−i is the set of words across all the documents which are currently assigned to topic

k, excluding wd
i . The likelihood term p(wd

i |wk,−i) can be computed by finding the proper

conjugate prior and marginalizing out the parameters φ. Since the topic-word distribution

is assumed to have a Dirichlet prior (parametrized by β) and the word is drawn from a

multinomial distribution, the predictive likelihood of wd
i given dataset wk,−i can be obtained

by fraction counting [164]:

p(wd
i |wk,−i) =

β + n−i
kw

∑v(β + n−i
kv )

(2.3.5)

where n−i
kw denotes the number of the other words in topic k that have the same symbol

as wd
i , while ∑v n−i

kv is the total number of words in topic k excluding wd
i . Eq.(2.3.5) is the

likelihood of word wd
i being generated by topic k given the current word distribution in

topic k. Therefore, the clustering is done by assigning the word to the topic in which it has

the maximum likelihood.

Discussion

Data-driven methods are able to achieve high recognition accuracy, as they can learn com-

plex patterns in the data with advanced machine learning approaches. However, they all

have their own drawbacks that make them inapplicable for our goal. In supervised meth-

ods, large amount of annotated data is required. In semi-supervised and active learning

methods, recognition accuracy is sacrificed for alleviating labelling effort. In other methods,
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such as transfer learning and zero-short learning methods, human knowledge is required

to interpret the semantic meaning of sensor data. More importantly, all the aforementioned

methods assume pre-defined data sources for activity recognition and are not applicable in

our scenario.

2.3.2 Knowledge-driven methods

The knowledge-driven approach leverages domain knowledge for activity modelling and

inferring. The underlying observation is that human daily activities contain rich in common-

sense knowledge that interlinks activities and surroundings. The knowledge-driven ap-

proach is more compelling than the data-driven for several reasons. First, activities in re-

alistic scenarios (i.e, cooking, preparing a drink) may comprise amounts of same physical

actions, and the order that the subjects perform the activities may not be consistent all the

time. These characteristics of the activities pose a challenge to recognise them solely based

on physical signals from sensors such as accelerometers and gyroscopes. However, those

activities can be differentiated by taking into account a diversity of the surrounding context.

Since most activities usually take place at different time, location and with different object

interactions, thus this additional context can be used to better characterise the activities. For

example, the activity “brush teeth” usually happens in the bathroom in the morning and

at night, and the objects involved are usually toothpaste and toothbrush. Moreover, the

knowledge used for activity recognition can be explicitly specified or mined from external

information sources, thus avoiding the processes of manual labelling, feature extraction and

learning in the data-driven approaches to activity recognition. Previous works also demon-

strate that, with carefully defined domain knowledge, it is possible to achieve the equivalent

recognition performance to the HMM [125]. In what follows, we discuss two knowledge-

driven approaches, one is to mine the knowledge from external information sources (e.g.

web) and the other is to explicitly specify the knowledge (e.g. ontology). Their advantages

and disadvantages are also discussed.
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Mining-based approach

The basic idea behind this approach is that the activity models can be created by mining

knowledge from the existing external sources such as websites, which provide the instruc-

tions on performing the activities and the objects that are required. Hence, through infor-

mation retrieval methods, activities are modelled by establishing the relationship between

the activities and the required objects in a probabilistic manner. Then given the objects used

at a specific time point, which are usually captured through sensors, the probabilities of

the activity classes that current activity belongs to are calculated and the one that has the

maximum probability is chosen to label the current activity.

Perkowitz et al. [116] propose a method to create an activity model by mining the web. By

tagging each word in the sentences with its part of speech, they are able to extract the objects

used in the activities. Then they automatically calculate the probabilities of the objects usage

in the activities using Google conditional probabilities APIs. As the objects involved in an

activity cannot be exhaustively mined from the web, Tapia et al. [139] propose a way to

deal with unseen objects. They create a hierarchical ontology of synonymous words for

functionally similar objects. By performing shrinkage over the ontology of objects, they

calculate the probabilities for the unseen objects in a probabilistic way. Instead of relying

on object probabilities for activity recognition, Gu et al. [37] mine the activity descriptive

texts from the websites, they then use natural language processing method to extract the

objects used in the activities from the texts and information retrieval methods to calculate

the weights of each object with respect to different activities. Finally, they construct contrast

patterns for each activity based on the object terms and their relevance weights they mined

from the web, so as to maximize the discriminative power of fingerprints for each activity

class.

Ontology-based approach

Rather than mining objects usage information from the external resources, an ontology-

based approach is to explicitly specify the activity models with a description-based method.

In [20], the authors model sensors and activities as classes in ontology separately, with each

class described by a number of properties. For example, each sensor class has the state prop-
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erty, indicating the state of the object to which the sensor is attached. The activation of the

sensor can be interpreted as the object-interaction. Each activity class has the properties such

as hasLocation and useArtifact, denoting the location in which the activity is performed and

objects involved in the activity. The aggregation of sensor activations at a specific time point

can be used to establish a situation, which is then reasoned against already established activ-

ity models. In this light, the sensor ontologies model the situation at a specific time point that

interrelates the context information and sensor observations. Activity ontologies interlink

the activities and contextual information through object properties, and activity recognition

is equivalent to reasoning on a dynamically constructed situation against activity ontologies.

The activity ontologies are organized in a hierarchical structure, where subclass inherits all

the properties of superclass. As more sensor observations are aggregated at runtime, the rec-

ognized activity can be narrowed down from the class hierarchy, as thus, the ontology-based

approach is able to recognise both coarse-grained and fine-grained activities.

Riboni et al. [124] even propose to combine ontological reasoning with statistical reasoning.

The environment is modelled using ontology, then using domain knowledge, they perform

ontological reasoning to infer the possible activities in each location. At run-time, they use

statistical reasoning to obtain for each data sample a posterior for each activity class, the

possible activities are then filtered out by the previous inferred knowledge from the ontol-

ogy.

The obvious problem with the ontology-based approach is that the temporal reasoning is

not supported. Moreover, it is vulnerable to information uncertainty, due to the fact that

all the object properties must be satisfied in order to infer specific activities. Helaoui et al.

[45] propose probabilistic ontological approach to recognize multilevel human activities. In

particular, they leverage the log-linear description logics (DLs) to integrate DLs with proba-

bilistic log-linear models [108]. They add weighted axioms into the ontology as long as they

are consistent with the axioms already in the ontology. There may be several ontologies

with different set of axioms that are consistent with each other, only the one that have the

maximum a-posterior (MAP) is chosen for reasoning activity. In order to take temporal in-

formation into account, they strictly define the order of actions in each activity. This method

is robust with data uncertainty in that the axioms are assigned with different weights, the

larger the weight the stronger the rule holds.
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Discussion

Both of the mining-based and the ontology-based approaches have their own disadvan-

tages. For example, activity models established from the object probabilities mined from the

external information sources are general models that do not allow to achieve high recogni-

tion performance as people perform activities quite differently. For ontology-based method,

even though data uncertainty and temporal reasoning are solved by the probabilistic on-

tological framework, defining the ontology and specifying the weights of the axioms are

non-trivial tasks. Although it is possible to learn the weights from the data, advantage of

non-manual-labelling of knowledge-driven approach is affected. Moreover, the explicitly

specified order of actions in the ontology disregards the fact that activities can be performed

differently by various users, even the same person may perform the same activity in vari-

ous manners at different time. The goal of our research is not to propose solutions to solve

aforementioned problems. On the contrary, we will leverage the domain knowledge as a

starting point, and incrementally refine the activity recognition model with opportunistic

sensors and increasingly available data.

2.3.3 Hybrid methods

There are some works combining the knowledge-driven methods with data-driven methods

for activity recognition. One of the key advantage of the hybrid method is that it is able to

achieve high accuracy with limited labelled or even no labelled data. For example, Wang

et al. [147] consider actions taken in the activities in addition to the object usage. They use

domain knowledge to create a Dynamic Bayesian Network (DBN), and the DBN is able to

infer the possible actions given the activity and object. Then, the possible actions are used

to label the accelerometer data and those labelled data are used to train boosting classifiers.

Notice that the training of the classifiers also takes into account the probability of the action

as virtual evidence. Therefore, the inference of the DBN and the training of the boosting

classifier works in a joint manner. In [154], the authors also present a Dynamic Bayesian

Network that incorporates RFID and vision data to jointly infer the most possible activity

sequence and object labels. To do that, they use domain knowledge to specify the param-

eters of DBN, such as the object-activity probabilities, activity transition probabilities and
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object transition probabilities. Then, they use the EM method to estimate the vision-object

probabilities. Specifically, the E-step estimates the distribution of the object labels given the

observations and current parameters, the M-step updates the parameters with the results

from the E-step.

2.3.4 Other concerns

There are also many previous works addressing other aspects in human activity recognition.

They include robustness, segmentation, personalisation and additional features for activity

recognition.

Robustness

Maekawa et al. [95] address the issue of scalability in activity recognition. They employ

the information of the end user to find other users whose sensor data may be similar to

those of the end user, and model the activities of the end user in an unsupervised way

with the data from other similar users. While in [77], the authors leverage the similarity

(physical similarity, lifestyle similarity and sensor-data similarity) between different subjects

to populate and enlarge training data. Kapitanova et al. [62] address the issue of fault-

tolerance. They train multiple models with each model excluding a certain set of sensors.

Through observing the performance achieved by different models, it is possible to locate the

failed sensors.

Segmentation

Continuous activity recognition usually incurs the problem of data segmentation. Data col-

lected in a small window may not be sufficient to recognize activity, while a large window

may result in situation that data from different activity classes collide into the same win-

dow. Gu et al. [39] propose Max-Gain which is based on the observation that different

feature items weight differently for different activities. This post-segmentation method re-

quires correct recognition of adjacent activities, so that the weight of feature items against
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the activities can be determined. Okeyo et al. [111] propose window shrinking and ex-

panding methods based on whether sensor events in the current window are enough to

describe the most specific activity or additional sensor events are needed to be recruited.

This approach has the danger of errors accumulating. Krishnan et al. [72] propose a proba-

bilistic approach to dynamically determine the window size, which, however, requires large

amount of training data.

Personalisation

Existing methods usually incorporate sensor data from multiple users to build robust ac-

tivity models, termed as a general model. Since people perform activities differently due to

their physical characteristic, age and gender, the general model may best fit a certain specific

user. Actually, as demonstrated in [150], a personalised activity model greatly outperforms

a general one. Several previous works propose methods to personalise activity models. For

instance, [28] trains general and user-specific classifiers and uses a meta-classifier to deter-

mine which classifier is more likely to predict the class correctly. Samples are added into

the training dataset if their classification confidences surpass a threshold. In [163], the au-

thors first classify the samples with a Decision tree, and then perform clustering method to

re-organise the samples. The parameters (thresholds in branch nodes) are re-estimated with

the re-organised samples. While in [123], the personalisation is performed in two phases. In

the training phase, the weight of each classifier is measured by its consistency with a set of

classifiers in terms of recognition performance. In the testing phase, the probability that a

classifier is chosen for prediction is proportional to its weight.

Additional features

Most of the existing activity recognition systems usually employ physical signals or object

usage as features, there are also many works considering additional context information to

improve the recognition performance. For example, Lara et al. [78] incorporate vital signs

into the feature vector. They use an arbitrary function to fit the sensor data, then the pa-

rameters of the best fitted function are regarded as features. Due to the delay of vital signs,

they also consider the trend and magnitude of the change of vital signs. While Maekawa et
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al. [96] try to recognize ADLs (activity of daily living) by employing many kinds of sensors

including cameras, microphones and accelerometers. The underlying observation is that

images of activity relevant objects and the sound emitted when a user performs an ADL

can help to better recognize activities. In [65], the authors present an activity recognition

system without the accelerometer. Instead, they use the energy harvesting power signal

when the energy is harvested to power the device. The rational of this method is that dif-

ferent activities produce distinguishable energy, and hence have the unique fingerprints in

the harvested energy signals. Wang et al. [149] use Wi-Fi signals for activity tracking and

recognition. The basic idea activities in different places of the house leave their signatures in

the Wi-Fi signals. In [135], Suarez et al. demonstrate that by splitting the accelerometer data

into low and high frequency component with a low pass filter, they are able to improve the

recognition accuracy significantly.

2.3.5 Activity recognition in specific domains

Most of the previous works recognise physical activities (e.g. standing, sitting) or activities

in daily lives (e.g. kitchen activities, activities in smart environment). With the prevalence

of various sensors and mobile devices, recently many researchers study the recognition of

activity in a specific domain. They are not only recognising the target activities, but also

monitoring if the activities are performed in a normal way. The most paramount works are

as follows:

• Tooth Brushing: In [71], Korpela et al. present a method to evaluate the tooth brushing

performing with audio gathered from a smartphone. They first classify different tooth

brushing activities with HMMs, and then they use the output (e.g. duration of each

tooth brushing activity) of the HMMs to build regression models for the tooth brushing

performance scores estimation.

• Locomotion mode: Hemminki et al. [46] present a technique for accurate and fine-

grained locomotion mode detection with accelerometer data. They first estimate the

gravity component of accelerometer data for calculating the gravity eliminated verti-

cal and horizontal acceleration. Then extract multiple features from the acceleration

data for building hierarchical classifiers. In [127], the authors propose to use barome-
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ter for the detection of transportation mode (e.g. walking, vehicle). The basic idea is

that different transportation modes make the pressure change differently.

• Eating: In [168], the authors present a system for nutrition monitoring with a smart

table cloth. The table cloth is equipped with a weight sensitive tablet and a fine grained

pressure textile matrix, so that they are able to spot different actions based on the

pressure change when the users are eating on the table cloth. Thomaz et al. [140]

implement an approach for detecting eating moments with a 3-axis accelerometer on a

smartphone. Other works use different sensing modalities such as neck-attached [159]

or ear worn microphones [5] to detect eating related sound for dietary monitoring.

• Smoking: Nguyen et al. [105] present an activity recognition for recognising smoking

activity. They try to address the problem of activity recognition in open world where

an unlabelled instance can belong to any of the possible activities instead of one of

the predefined activities. They propose Multi-class Positive and Unlabelled Learning

to reduce the false positive in recognizing smoking in open world. Therefore, they

merge the unlabelled instances into the negative set so that the negative set can form

a representative set of negative instances, and learning with the positive and negative

set can result a correct decision boundary. Kawamoto et al. [63] monitor changes in

respiratory rate during sleep with wrist-worn accelerometer, and use the data for the

detection of multiple physical conditions such as smoking cessation.

• Sleeping: Hao et al. [43] present iSleep - an individual’s sleep monitoring system using

off-the-shelf smartphone. They develop a lightweight Decision-tree-based algorithm

to classify the microphone data of the smartphone into multiple sleep related events

such as body movement, couch and snore, and use the classification results for eval-

uating sleep quality. In [40], the authors move a step ahead and detect sleep stages

with sensors on smartphone. The basic idea is that different sleep stages are accom-

panied by different body movements and acoustic signals features. They use linear

Conditional Random Field to integrate these feature and make further inference.

• Swimming: Bächlin et al. [9] present a swimming monitoring system called SwimMaster

that monitors swimming performance and technique with acceleration sensors at the

wrist and at the back.

• Activities in hospital: Bardram et al. [12] propose to detect the progress of the work

inside an operating room with embedded sensors and body-worn sensors. In [56],
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Inoue et al. recognize nursing activities such as blood pressure measurement with mobile

devices recording the acceleration data. By considering the prior probability of the

activities happening in a specific time slot, they are able to outperform conventional

classifiers with large margin.

• Activity recognition meets social network: While previous works recognize human activ-

ities with sensor data, there are some approaches trying to recognise activities with

social network data. Zhu et al. [170] recognise activities based on the tweets from so-

cial media. They crowd-label the tweets and process them into a feature vector with

natural language processing methods, so that they can be fed into conventional clas-

sifiers for training and testing. In [29], Du et al. propose to predict the attendance

of social activity published on the website. They consider multiple features such as

content, spatial and temporal context of the social event as features and use matrix

factorisation for attendance prediction. Zheng et al. [167] mine location features and

activity-activity correlations from the web and perform matrix factorisation for activity

and location recommendation.

2.3.6 Discussion

Most of the aforementioned activity recognition techniques are inapplicable in our scenario,

since most of them use static models with predefined data sources, and are not able to adapt

with dynamically available sensors that may be potentially beneficial to the recognition ac-

curacy. Even though the knowledge-based method can be used to deal with the unseen

contexts provided by the sensors, the parameters specified by the method is general knowl-

edge and cannot achieve satisfactory performance due to the fact that they usually sacrifice

the recognition performance for the alleviation of labelling efforts. On the other hand, some

researchers personalise the activity model to a specific user for achieving high accuracy.

However, they do not consider the dynamically available sensors that are common in real-

istic scenarios. The lack of related work and the importance of addressing sensor dynamics

have motivated us to propose methods for incorporating the sensors dynamically for activ-

ity recognition.
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2.4 Activity model retraining and adaptation

In this thesis, we first create a generic activity model with limited labelled data, and then

perform activity model adaptation with the additional information provided by dynami-

cally available sensors. Therefore, our work is related to traditional semi-supervised activity

recognition methods that select the instances classified with high confidence to retrain and

adapt the activity model. The most profound semi-supervised activity recognition methods

have been reviewed in the previous sections. The shortcoming of these methods is that the

high-confidence instances are not informative [133, 21] and do not help to converge the activ-

ity model. Moreover, those methods do not consider information provided by dynamically

available sensors.

Personalisation of an activity model also leverages the labelled and unlabelled data to adapt

the model. The related works are also reviewed in the previous sections. The main problem

with those methods is that labelled data of a specific user is required for the activity model

to be adapted to his/her activity, and annotating activity data is time-consuming, expensive

and error-prone. In other words, the activity models in those works are not able to adapt

automatically.

2.5 Sensor dynamics in activity recognition

The state of the art activity recognition models usually rely on a static model, where only

pre-defined data sources are considered while opportunistically available contexts that may

potentially refine the systems are ignored. Previous works show that more contextual in-

formation can further improve the activity recognition accuracy. For example, in [162], the

authors demonstrate that additional features such as vision features can help to improve

the recognition accuracy for human activities, especially for static activities (e.g. sitting).

Maekawa et al. [96] show in their work that, contextual information, such as the objects

that the subjects interact with and the sound during the interaction, captured by camera

and microphone can help to improve activity recognition performance. Riboni et al. [124]

find that location context can help to solve the ambiguities of the recognition results that

are based solely on wearable sensors. They build an ontology and reason for each location

40



CHAPTER 2: CRITICAL LITERATURE SURVEY

which activities could possibly happen. At runtime, location context is incorporated to filter

out impossible activity candidates provided by statistical reasoning results based on wear-

able sensors. In [8], the authors perform localization by considering surrounding context

such as sound, color, light and Wi-Fi AP. The basic idea is that those contexts in a place can

be indications of the type of place, and then from knowing the place we can infer what the

users are possibly engaged in (e.g., eating in a restaurant). Extensive works prove that extra

information such as vital signs [78], readings from thermal sensor [49] and barometer [127]

are also important for activity recognition accuracy.

Even though the aforementioned extra data sources are important for the activity recogni-

tion accuracy, they are explicitly embedded in the activity recognition system when creating

the activity models. Therefore, these approaches are not able to incorporate the informa-

tion provided by dynamically available sensors. In addition, all the aforementioned extra

data sources are specific to the post-deployment environment. Therefore, considering all

the contextual information at the beginning of activity modelling is infeasible, due to the

problem of data sparsity and the changes in the environment during post-deployment. An-

other motivation for our work is that sensors deployed for activity sensing are often broken

and updated [92], so it is extremely important that the activity monitoring system can auto-

matically evolve with the changing environment. Our work is inspired by [52], where the

authors propose an autonomic context management system which is able to populate dy-

namically discovered contextual information sources for autonomic context provisioning.

However, there are several challenges that need to be addressed in order to achieve an ac-

tivity recognition framework that is able to incorporate dynamically available sensors. They

include creating a generic activity model that serves as the starting point for activity model

adaptation (challenge 1 in Section 1.2); adapting activity model with general knowledge

or informative instances (challenges 2,3,4); identifying the most discriminative information

provided by the dynamically available sensors (challenge 5); exploiting temporal informa-

tion of human activities in developing the activity recognition framework (challenge 6); and

processing sensor readings into proper contexts for recognising activity given the sensor

heterogeneity (challenge 7).

There exist some works that leverage external knowledge to create activity models in an

unsupervised manner. Even though those works are not focusing on incorporating the dy-

namically available sensors for activity recognition, the knowledge-driven methods can be
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used to specify the parameters of the contexts provided by new sensors. For example, Gu et

al. [37] interpret the relations between the activities and context (e.g. object usage) by mining

the external web pages with natural language processing and statistical methods. Tapia et

al. [139] compute the conditional probability of an unseen object given the activities by lin-

early combining the conditional probabilities of existing similar objects. The similarities are

measured through WordNet. In [147], the authors perform activity recognition based on the

object usage and human actions. With no labels for the action data, they use common sense

knowledge to build an activity model by jointly training Dynamic Bayesian Network and

Virtual AdaBoost. They leverage common sense and Dynamic Bayesian Network (DBN) to

derive the most likely sequence for the accelerometer data. The sequence together with the

accelerometer data is then fed to VirtualBoost to learn the action model, which in turn is

combined with DBN to recognize activity. In some other works such as [142], the authors

leverage domain knowledge to transfer activity models from one domain to the others, so

that the contextual information in other domains (e.g. different smart houses) can be used

for activity recognition. These approaches use domain knowledge or external knowledge

to interpret the relations between the contextual information and activities, so they are ac-

tually creating general models for activity recognition. As people perform activities quite

differently [152, 168], those general models cannot obtain accurate recognition results in re-

alistic environments. Moreover, they are not applicable in the situation that we have no prior

knowledge about dynamically discovered data sources (e.g. continuous sensor readings of

accelerometers).

Other researchers perform activity recognition with dynamic sensor selection or information

fusion. For example, in [60], the authors generate multiple processing plans for the context

to be monitored. The system dynamically updates the processing plans when sensors are

newly registered or de-registered. The logical processing plans represent a set of process-

ing modules (i.e. feature extraction, classification modules) to derive the context while the

physical processing plans associate the logical processing plans with different sensors and

computing sources. Specifically, their system tries to achieve a desired classification accu-

racy while prolonging the system lifetime by minimising the number of activated sensors.

In another work, Zappi et al. [161] introduce a scheme to dynamically select the sensor set

for activity recognition in order to achieve the trade-off between accuracy and power. In

[35], the authors propose an energy-efficient activity recognition based on prediction. They

use the current and historical context to predict possible future activities, and only a subset
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of the sensors are activated to distinguish those activities that are likely to happen. While

Yan et al. [158] dynamically adjust the sampling rate and classification features in real time

to balance the trade off between accuracy and energy consumption. The idea behind is that,

to obtain the same accuracy, distinct activities require different sampling rates and features.

Since those work mainly focus on the aspect of energy-efficiency, they train each activity

with all the available sensors, so that when the sensors are registered at runtime, the sys-

tem already has the knowledge of how to post-process the sensor data, hence this limits the

scalability of the system. For example, in [35] the authors have to calculate the recognition

losses of all the possible combinations of sensors at the training time, so that they are able to

select the optimal set of sensors that save the most energy and meet the recognition accuracy

requirement for any predicted activities.
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Creating Generic Activity Model with

Minimum Labelled Data

3.1 Motivation

The primary goal of this thesis is to develop activity recognition frameworks that are able to

incorporate sensor data from dynamically available sensors for low- and high-level activity

recognition. For low-level activities, we propose to create a generic model for recognising

low-level physical activities (e.g. walking, running) with currently available sensors, so that

the created activity model can be further adapted with newly coming sensors. The underly-

ing reason is twofold. First, the sensor readings (e.g. accelerometer, gyroscope) triggered by

low-level human activities are not semantically interpretable, so the machine learning meth-

ods are more suitable to create the generic activity model by mapping the sensor data into

target activity classes. Second, the generic activity model should be learned with activity

data of various users so that it can deal with variants of activity patterns. However, annotat-

ing huge amount of activity data to create a generic model is expensive, time-consuming and

error-prone. Therefore, we aim to create a generic activity model with minimum labelled

data while maintaining a satisfactory accuracy. Notice that, there is a tradeoff between the

amount of labelled data and the activity recognition accuracy, so the concept of minimum

annotation in this chapter is that for obtaining the same recognition accuracy we require less

labelled data (or with the same amount of labelled data, we can achieve higher recognition

accuracy) compared with the baseline methods.
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There exist some works that employ unsupervised methods [166, 95] to create an activity

model for a specific user with labelled data of other users that present similar physical char-

acteristics. However, the activity data of others needs to be annotated. Moreover, there

is no significant difference between selecting users based on their physical similarity and

random selection, since the physical characteristics and the activity patterns may not have

correlation [123].

The general activity model created in this chapter addresses challenge 1 listed in Section

1.2. In addition, the creation of the generic model leverages the temporal information of the

activity data and hence addresses challenge 6 in Section 1.2. The key contributions in this

chapter are summarised as follows:

• We demonstrate with public datasets that people perform activities differently. The

demonstration is illustrated with pairwise training and testing that trains the activity

model with one user’s activity data and tests it on another user.

• We combine LDA with conventional classifiers to create the generic activity model.

LDA is known to be effective in collaborative learning, as it is able to leverage the

partially labelled data from multiple users to overcome the problem of data sparsity.

Since LDA cannot be applied directly to the activity data, we combine it with tradi-

tional classifiers to perform collaborative learning.

• We exploit the temporal information in the human activities during the topic assign-

ment process of LDA. The topic assignment of one instance takes into account the topic

assignments of the temporally neighbouring instances.

3.2 Latent Dirichlet Allocation

We describe the motivation of using LDA for creating a generic activity model and analyse

why it cannot be applied directly to activity data. LDA models the likelihood of the words

in the documents by introducing a latent layer of topics. In LDA, each document is assumed

to be a multinomial distribution over the topics, and each topic is modelled as a multinomial

distribution over the vocabulary. By maximising the likelihood, the words are assigned to

proper topics. LDA is detailed in Section 2.3.1.
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LDA is a Bayesian framework, and it has demonstrated its effectiveness in unsupervised

and collaborative learning, such as activity discovery [25], mobile context discovery [164],

frequent human routines discovery [136, 107] and collaborative learning [166]. The primary

motivations of using LDA in our work is to collaboratively leverage limited labelled data

from multiple users to overcome the problem of data sparsity and learn a generic activity

model. As we can see from Eq.(2.3.4), document-topic distribution may be different across

the documents, while the estimation of topic-word distribution makes use of the words

across the documents and the resulted parameters are globally shared. This characteristic

makes it reasonable to leverage LDA to create a generic activity model, as each user may

have different proportions of activity data, while the estimation of the parameters for each

activity class utilizes the corresponding data from all the users, and the resulted parame-

ters are globally shared among the users. Therefore, the latent topics are mapped to human

activities, while the words are viewed as feature vectors extracted from sensor data. The ac-

tivity data of each user forms an individual document and the data of all the users comprises

the corpus.

However, LDA cannot be directly applied to activity data. Since the instances are multi-

dimensional feature vectors extracted from continuous sensor data, it is rare that two in-

stances are exactly the same even if they belong to the same activity class. Therefore, it is

infeasible to assume each activity class is multinomially distributed over the feature vectors.

A potential solution is to assume the Gaussian distribution over the instances that belong

to the same activity class [107]. However, as instances from on-body sensors usually consist

of high-dimensional features, the estimation of a large number of parameters would cause

the problem of overfitting [136]. For example, given 561-dimensional instances, we need to

estimate a 561-dimensional mean vector and a 561× 561-dimensional covariance matrix for

each Gaussian component. In the next section, we introduce our method using conventional

classifiers to estimate the predictive likelihood in Eq.(2.3.5).
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3.3 Conventional classifiers for posterior probability estima-

tion

Since LDA cannot be applied to the activity data directly, we propose to combine it with

conventional classifiers, AdaBoost, Decision Tree, RandomForest. AdaBoost is detailed in

Section 2.3.1, so we briefly introduce some of its notions along with those of Decision Tree

and RandomForest. We also describe how to estimate their posterior probabilities that are

important to the hybrid approach.

3.3.1 AdaBoost

AdaBoost is a performance boosting classifier. The essence of AdaBoost is to train an ensem-

ble of weak classifiers and combine them to form a more robust and accurate classifier. Each

weak classifier makes decisions based on a single feature and needs only be slightly better

than random guessing. The final classifier is a linear combination of the weak classifiers,

with each classifier weighted by the error it makes during the training process; more weight

is given to the classifier that makes less false predictions. AdaBoost is also able to select the

most discriminative features to perform classification, thus avoids the problem of feature

redundancy.

Suppose the learning process trains an ensemble of weak classifiers for each activity class k:

Hk(xi) =
T

∑
t=1

αk
t hk

t (xi) (3.3.1)

where the T is the total number of weak classifiers for class k, while hk
t (xi) ∈ {+1,−1} is the

tth weak classifier and αk
t is the corresponding weight. Hk(x) can be viewed as computing

a score for feature vector xi against class k, and the classification is performed by returning

the activity class that has the maximum score:

yi = argmaxk(Hk(xi)) (3.3.2)
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The posterior probability of AdaBoost can be approximated using softmax function [82]:

P(yi = k|xi) =
eHk(xi)

∑k eHk(xi)
(3.3.3)

P(yi = k|xi) is thus regarded as the posterior probability that instance xi belongs to activity

class k.

3.3.2 Decision tree

A Decision tree is a flowchart-like structure where each leaf represents a target activity class,

and each inner node represents a classification on a specific feature and the branches follow-

ing that node represent the outcome of the classification; all the instances that satisfy the

condition on a branch go through that branch to the next node for the further classification.

Training the Decision tree is to find the feature to split the training data so that the difference

in the information entropy before and after the split is maximum. The information entropy

of a training data is defined as follows:

H = −∑
k

|{xi|yi = k}|

|T|
log2

|{xi|yi = k}|

|T|
(3.3.4)

where T is the set of training data, and {xi|yi = k} is the set of instances that belong to activ-

ity class k. Let vals(j) be the set of all possible values of the jth feature, then the information

gain of splitting the data on jth feature can be defined as follows:

IG(T, j) = H(T)− ∑
v∈vals(j)

|{xi ∈ T|xi,j = v}|

|T|
H({xi ∈ T|xi,j = v}) (3.3.5)

where {xi ∈ T|xi,j = v} is one of the sub-datasets resulting from the splitting, the jth feature

of all the instances in the sub-dataset take on the value v.

The training process iterates the splitting until all the instances at the leaf nodes belong to

the same class. In prediction, an instance is classified by walking down from the root to the

leaf node and is assigned the label of the training instances at that leaf node. In practise,

a pruning technique is usually employed when the tree reaches the maximum depth to
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avoid overfitting. Therefore, an instance is assigned the majority of the class label at the

leaf node it resides, and the posterior probability of an instance with respect to a class k can

be approximated with the fraction of the class labels at the leaf node [75]:

P(yi = k|xi, lea f node = j) =
|{xi|yi = k, lea f node = j}|

∑k |{xi|yi = k, lea f node = j}|
(3.3.6)

Decision tree is one of the most widely used classifiers [129], and one advantage of Decision

tree is that it is able to generate decision rules that are understandable and interpretable.

3.3.3 Random forest

Random forest is an ensemble learning method that trains multiple Decision trees at the

learning phase and outputs the class that is the majority predictions of those individual

Decision trees. Random forest aims to overcome the problem of overfitting in Decision tree.

An individual Decision tree may be sensitive to the noisy training data, the average of the

multiple uncorrelated Decision trees is not. Therefore, the training of Random forest usually

employs the bagging algorithm to de-correlate the ensemble of Decision trees. Algorithm 2

presents the bagging process of Random forest training.

Algorithm 2 Random forest.
Input:

Set of training data: T = {(x1, y1), · · · , (xn, yn)}
Max iterations: B;
Number of sampled instance in each iteration: m;

Output:
Ensemble of Decision trees

1: for b = 1 to B do
2: Sample m instances from T; call these Tb.
3: Train a Decision tree fb on Tb.
4: end for
5: return f = mode( f1(x), f2(x), · · · , fB(x));

Another bagging method is feature bagging that randomly selects a subset of the features

for training a Decision tree in each iterations. The rational of feature bagging is that in the

original bagging algorithm, if one or a few features have strong discriminative power, they

will be selected for constructing the Decision tree multiple times, causing the ensemble of

trees to be correlated.
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The posterior probability of an instance given by Random forest is the average over the

posterior probabilities given by the ensemble of Decision trees.

P(yi = k|xi) =
1
B ∑

b

Pb(yi = k|xi) (3.3.7)

where Pb(yi = k|xi) is the posterior probability given the bth Decision tree as described in

previous subsection.

3.3.4 Virtual evidence

We address scalability of aforementioned classifiers by introducing the concept of “virtual

evidence". Take training data T = {(x1, y1, p1), ((x2, y2, p2)), · · · , (xn, yn, pn)} for example,

each instance (xi, yi, pi) in the dataset is associated with a confidence value pi, denoting the

probability of the instance xi belonging to the corresponding activity class yi. In our case, the

confidence value is the classified confidence (posterior probability) for each instance. The

advantage of embedding the soft assignment in the training process has been demonstrated

in the previous works [54, 122, 147, 165]. Training the classifiers is equivalent to minimis-

ing the loss function on the training dataset, and the loss function is usually the summed

error made by each instance. By multiplying the error of each instance by the correspond-

ing confidence value [165, 122], the less confident instance contributes less to the objective

function.

It is easy to incorporate the virtual evidence into the AdaBoost training, as it explicitly cal-

culates the training error in the learning process. For Decision tree and Random forest, we

incorporate the confidence value into the calculation of the information gain:

H = −∑
k

∑{pi|xi ∈ T, yi = k}

∑{pi|xi ∈ T}
log2

∑{pi|xi ∈ T, yi = k}

∑{pi|xi ∈ T}
(3.3.8)

IG(T, j) = H(T)− ∑
v∈vals(j)

∑{pi|xi ∈ T, xi,j = v}

∑{pi|xi ∈ T}
H({xi ∈ T|xi,j = v}) (3.3.9)
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3.4 Creating generic model

In the previous section, we described how to approximate the posterior probability of a clas-

sified instance using conventional classifiers. In this section, we present the hybrid of LDA

and traditional classifiers for generic activity learning. In particular, we demonstrate the fea-

sibility of approximating the predictive likelihood in Eq.(2.3.5) with the posterior probability

of the conventional classifiers.

In LDA, due to the underlying assumption of multinomial distribution and the conjugate

prior distribution, the likelihood of a word wd
i in a topic k p(wd

i |wk,−i) is proportional to

the fraction of the word with the same symbol in the topic, and it can be estimated from

the words currently assigned to topic k. Similarly, the probability that a multi-dimensional

instance belongs to an activity class can also be estimated through the instances that are

currently assigned to that class:

p(xi|xk) = p(xi|yi = k) =
p(yi = k|xi)p(xi)

p(yi = k)
∝ p(yi = k|xi) (3.4.1)

where xk are the instances that are currently assigned to activity class k, p(xi) is a constant

for different activity classes and p(yi = k) is assumed to be equal for different k by class

balancing when training the traditional classifiers. In this way, the predictive likelihood in

Eq.(2.3.5) can be approximated with the posterior probability of the classifiers as introduced

in Section.3.3. In particular, as in Eq.(2.3.5) the instance is assigned to a topic in which it has

the maximum fraction, while an activity instance should be assigned to the latent activity

against which it has the maximum posterior probability. From another different point of

view, training the conventional classifiers is to minimise the training error and minimise the

posterior probabilities of the ground truth labels, and this is equivalent to maximising the

likelihood of the instances in Eq.2.3.3.

We also exploit the temporal information when sampling the latent activity for the instances,

as temporarily adjacent instances tend to have the same activity label. Therefore, we need

to consider the topic assignments of neighbouring instances when sampling the topic for

current instance, formulated as follows:

P(xi|xk) ∝
P(yi = k|xi)∏j∈N(i)\i P(yj = k|xj)

Z
(3.4.2)

where N(i) indicates the neighbouring instances of xi and Z is the normalization function.
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By combing Eq.(2.3.4) and Eq.(3.4.2), the topic sampling for an instance can be formulated

as:

P(xd
i = k|z−i, x) ∝ (α + nd,−i

k )P(xi|xk) (3.4.3)

Algorithm 3 Hybrid generic activity learning.
Input:

Labelled dataset from the different users L
Unlabelled dataset U
Convergence criteria σ

Output:
generic activity model

1: Create initial model: train traditional classifiers (i.e. AdaBoost, Decision tree, Random
forest) with labelled data

2: Classify the unlabelled data with the classifiers and obtain for each instance a posterior
probability for each activity class, P(yi = k|xi), k = 1 · · ·K. (K is the number of activity
classes)

3: while not converged do
4: //e step:
5: Sample the topic(latent activity) for each instance with Eq.(3.4.3)
6: //m step:
7: Retrain the classifiers with labelled data and currently soft topic assignments of the

instances given by previous step.
8: Classify the unlabelled instances using retrained classifiers, and obtain the posterior

probabilities for each instance
9: end while

10: return the trained classifiers;

The algorithm of creating a generic activity model from labelled and unlabelled data is pre-

sented in Algorithm 3, which follows an iterative Expectation-Maximization process. At E

step, we sample the topic for each instance (line 5), and obtain the predictive likelihood that

it belongs to each topic. At M step, these predictive likelihoods are viewed as “virtual ev-

idences" and used to train the classifiers (line 7). The reason of using “virtual evidence" is

that it is robust to noise and misassignments of the topics [54]. Initially, when we are un-

certain about the latent topic of an instance, the contribution it makes to the training error

is further weighted by the “virtual evidence". As the iterative process proceeds, the model

is able to confidently estimate the labels corresponding to the instances, then the “virtual

evidence" approximates the real assignment and the EM process (line 7) results in a more

accurate classifier [110].
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3.5 Evaluation

3.5.1 Datasets

In order to evaluate the proposed methods, we experiment with datasets that contain activ-

ity data from multiple users. The Smartphone activity dataset [130], UCI HAR dataset [6]

and Heterogeneity Dataset for Human Activity Recognition (HHAR) [134] meet the require-

ment.

Smartphone Activity Dataset (SAD) [130]: Activity data is collected from accelerometer, gy-

roscope and magnetometer on an Android device worn in different body position (arm,

belt, waist and pocket), when the 10 subjects perform 7 activities. We compute time domain

features such as mean, standard deviation, median, zero crossing rate, variance, root mean

square for each axis of the sensors with a 2-second sliding window and 50% overlapped.

Since magnetometer is demonstrated to be less discriminative in their work [130], we only

focus on features from accelerometer and gyroscope.

UCI HAR dataset [6]: The dataset is collected with accelerometer and gyroscope from a

Samsung Galaxy SII smartphone worn by 30 volunteers within an age bracket of 19-48 years.

The smartphone is fixed at the waist when the subjects perform 6 activities. They compute

561 features based on the sliding window of 2.56 second and 50% overlapped. The sensor

data was collected at the 50Hz and manually labelled.

Heterogeneity Dataset for Human Activity Recognition (HHAR) [134]: The activity data

is collected from on-board accelerometer and gyroscopes on 8 smartphones and 2 smart-

watches worn by 9 subjects performing six activities. We choose a smartphone data for

each type of smartphone and segment the data with a 2-second sliding window and 50%

overlapping.

The summaries of the datasets are presented in Table.5.2. Notice that in SAD, data is col-

lected from 5 body positions, resulting in 5 separate datasets (i.e. SAD-ARM, SAD-BELT,

SAD-POCKET, SAD-WRIST, SAD-) with each of them having the same activity classes and

instances. In HHAR, the data is split into different sensors and different devices (i.e. acc-

nexus4, acc-s3, acc-s3mini, acc-samsungold, gyro-nexus4, gyro-s3, gyro-s3mini), for exam-
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Table 3.1: Dataset description.

Datasets Users Activities (Instances)
SAD 10 walking (8950), standing (8950), jogging (8950), sit-

ting (8950), biking (8950), upstairs (8950), downstairs
(8900)

UCI 30 walking (1722), upstairs (1544), downstairs (1406), sit-
ting (1777), standing (1906), lying (1944)

HHAR 9 Biking (17650), Sitting (19169), Standing (17751),
Walking (20385), Stair up (16905), Stair down (15199)

ple, acc-nexus4 stands for the dataset collected from the accelerometer on device nexus4.

3.5.2 Pre-analysis

To validate the motivation of creating a generic activity model, we examine the differences

in performing activities among the users by training the activity model with data from one

person and testing it on another. We record the f1-score ( f 1 − score =
2∗precision∗recall
precision+recall ) and

present the cumulative distribution function and histogram of the f1-score for each dataset in

Figure 3.1 and Figure 3.2 respectively. Figure 3.2 shows that in most cases, the activity model

achieves a low f1-score (0.2-0.8), if it is trained on one person and used to test the data from

another. It can be seen from Figure 3.1 that 97% of the tests obtain the f1-score under 80%.

This experiment demonstrates that, people perform the activities quite differently, and the

model trained on an individual person cannot be scaled to other people who have different

activity patterns. To deal with the problem, we need to create a generic model.

3.5.3 Comparison

In this section, we compare the proposed method that creates the generic activity model

with the following methods:

• Semi-supervised method: traditional classifiers that are trained with the initial labelled

data, and used to classify the unlabelled instances, then the instances classified with

high confidences are selected to retrain the classifiers. For example, the hybrid of LDA

and AdaBoost is compared with semi-supervised AdaBoost.
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Figure 3.3: Comparing the hybrid of LDA and AdaBoost with baselines.

• Supervised method: traditional classifiers that are only trained with the initial labelled

data. For example, the hybrid of LDA and AdaBoost is compared with supervised

AdaBoost.

Since the amount of unlabelled data selected for retraining in a semi-supervised method is

a free parameter, we vary the parameter and choose the best result of the semi-supervised

method for comparison, which means we always compare our method with the best fine-

tuned semi-supervised methods. We perform leave-one(user)-out validation and present the

average f1-score along with the standard deviation across all the subjects for each dataset.

To study the effect of the amount of initial labelled data, we vary the percentage of labelled

data from 1% to 9%. Notice that those percentages of labelled data are randomly sampled

to avoid bias.

The comparison results are presented in Figure 3.3, Figure 3.4 and Figure 3.5, where the x-

axis stands for the dataset (1. SAD-ARM, 2. SAD-BELT, 3. SAD-POCKET, 4. SAD-WRIST,

5. UCI, 6. acc-nexus4, 7. acc-s3, 8. acc-s3mini, 9. acc-samsungold, 10. gyro-nexus, 11. gyro-

s3, 12. gyro-s3mini). We first discuss the results for the labelled percentage set to 1%. The

figures show that the proposed method is able to create a robust generic model, even if the

labelled data is limited. Specifically, the hybrid of LDA and Adaboost is able to achieve an

average f1-score 11.4% (max: 21.1%, min: 6.0%) and 8.7% (max: 17.4%, min: 2.8%) higher

than the corresponding Supervised and Semi-supervised baselines, respectively. The average
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Figure 3.4: Comparing the hybrid of LDA and Decision tree with baselines.
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Figure 3.5: Comparing the hybrid of LDA and Random forest with baselines.
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Figure 3.6: The posterior distribution of an instance when the iterative process converges.

f1-score improvement of LDA+Decision tree over the two baselines are 11.3% (max: 15.8%,

min: 3.4%) and 10.2% (max: 16.1%, min: 0.8%), and the average f1-score improvement of

LDA+Random forest over the two baselines are 8.9% (max: 15.4%, min: 2.5%) and 5.4%

(max: 11.6%, min: -2.5%).

The underlying reason for the advantage of our method can be found in Figure 3.6 (the x-

axis represents different activity classes), which shows the posterior distribution of a typical

unlabelled walking instance before and after the iterative process both in our method and

Semi-supervised. When the instance is originally classified by Supervised, the posterior distri-

bution is rather “flat", which means it is quite uncertain about the true label of the instance.

This is because the classifier is trained with limited labelled data from various users, and

hence contains much uncertainty when it makes predictions. However, after the iterative

EM steps of sampling and retraining, the confidence (0.98) of the instance being activity

walking approximates to 1 and retraining AdaBoost with this virtual evidence is equivalent

to retraining with the true label. As for Semi-supervised, the maximum posterior probability

(0.306) is still not significant when compared with others, and then retraining with these low

confident instances results in less accurate AdaBoost.

From the figures we can also find that the standard deviation of the f1-score across different

datasets can be as high as 11%. Inspecting the classification report in detail, we find that

certain activities of some users are totally misclassified. The underlying reason is that some

people perform certain activities significantly differently from the others. As we perform

leave-one-out validation, those activity patterns of the testing subjects are never presented

in the training dataset and are frequently mis-recognised during the testing phase, and this

problem is exacerbated when we assume that neighbouring instances are related. The rea-

son can also be interpreted as the training data does not experience enough variants of the
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(d) SAD-WRIST

activity patterns to create a generic model. The extreme example can be found when we

use LDA+Random forest to classify the dataset acc-s3 (Figure 3.5). Our method experiences

performance decrement of 2.5%.

To validate our assumption, we increase the percentage of labelled data from 1% to 9%.

We only present the result of LDA+Random forest, as the other hybrid methods have the

similar trend. The results are presented in Figure 3.7a-Figure 3.7l. One can observe from the

experiment on some datasets (e.g. Figure 3.7g) that the standard deviation indeed decreases

when we increase the amount of labelled data, demonstrating that including more labelled

data enable the activity model to be able to deal with more variants of the activity patterns.

As for some other datasets, the f1-score difference among the subjects is still large even

though we increase the labelled data to 9%. The reason is that the activity data from the

other subjects (except the one used for validation) is not diverse enough to create a generic

activity model, and adding the activity data of the user used for validation is able to boost

the recognition performance [152].
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(f) acc-nexus4
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(g) acc-s3
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(h) acc-s3mini
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(i) acc-samsungold
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(j) gyro-nexus4
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Figure 3.7: f1-score with 1%-9% labelled data across datasets.

3.6 Summary

In this chapter, we collaboratively create a generic activity model with partially labelled data

by combining LDA and conventional classifiers. Since the sensor data is not semantically

interpretable, we employ a machine learning method to create the generic activity model

that maps the sensor readings to target activity classes. To alleviate the data annotation

effort, we leverage LDA to collaboratively create the generic model with partially labelled

data of various users. We combine traditional classifiers with LDA as it cannot be applied

to activity data directly. The proposed generic activity modelling in this chapter addresses

challenge 1 in Section 1.2, and the topic assignment in Section 3.4 addresses challenge 6 in

Section 1.2.

The generic activity model is created with currently available sensor data, and it serves as the

starting point for further activity model adaptation when new sensors become available. In

later chapters, we consider activity adaptation and refinement by incorporating dynamically

available data sources.
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CHAPTER 4

Physical Activity Recognition with

Dynamically Available Sensors

4.1 Motivation

The previous chapter describes how to create a generic model for activity recognition with

limited labelled data. In this chapter, we move a step ahead and deal with the problem of au-

tomatically incorporating the dynamically available sensors for physical activity recognition

and activity model adaptation. Previous works have demonstrated that extra contextual in-

formation can improve the activity recognition accuracy. As described in Section 2.5, this

contextual information include location of the user [124], vision feature from the on-body

camera [162], objects (e.g. cup) in the environment [96], etc. The underlying reason is that

this contextual information is correlated with a particular activity class, and it can better

differentiate the activity class from others. Other contextual information include sound, en-

vironment color, light and Wi-Fi [8].

Most of the existing works only consider currently available information for creating ac-

tivity models, and ignore information provided by the dynamically available sensors. The

benefit of the additional contextual information motivates us to develop an activity recog-

nition framework that is able to incorporate the information provided by the dynamically

available sensors. Another motivation lies in the fact sensors for activity recognition are

constantly broken and need to be replaced [92], so a robust activity recognition framework
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should be able to deal with sensor dynamics in the changing environment. However, sev-

eral challenges need to be addressed in developing such an activity recognition framework:

1) how to deal with the change in the feature space and the problem of feature redundancy

caused by the dynamically available sensors (challenge 5 in Section 1.2), 2) how to select the

most informative instances for activity model adaptation (challenges 2, 4 in Section 1.2), 3)

how to exploit the temporal information for smoothing activity predictions (challenge 6 in

Section 1.2).

There are some works [139, 147] that use knowledge-driven method to specify the parame-

ters of the sensor data with respect to the target activity classes in an unsupervised manner.

The parameters are usually specified with common sense or information from a third party

knowledge base (e.g. website). Their works are not focusing on the integration of dynam-

ically available sensors for activity recognition, but the knowledge-driven methods can be

used to specify the parameters of the dynamically available sensor data and incorporate

the sensor automatically. However, the knowledge-driven methods require the sensor read-

ings to be human readable (e.g. door sensor monitors door open event), so it cannot be ap-

plied to those sensor readings that are not semantically interpretable. Moreover, knowledge-

driven methods usually sacrifice the recognition accuracy for avoiding annotating data, as

the knowledge from these methods is not personalised to the activity data of a specific user.

There exists some research [60, 161, 35, 158] on dynamically selecting sensors at the runtime

to achieve the trade-off between energy-efficiency and activity recognition accuracy. Even

though they propose methods to deal with sensor dynamics automatically, the parameters

of all possible combinations of sensors with respect to the target activity classes are pre-

trained at the training time. Therefore, they are not able to dynamically select the untrained

sensors.

In this chapter, we propose methods that address the challenges in physical activity recogni-

tion with dynamically available sensors. The key contributions are summarised as follows:

• We propose an activity recognition framework that can automatically incorporate dis-

criminative information provided by dynamically available sensors, so as to improve

activity recognition performance.

• We propose a method that selects the profitable and informative instances (containing

information from dynamically available sensors) to retrain and adapt activity mod-
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Figure 4.1: Top level framework.

els without human intervention. We also propose a novel way of combining basic

classifier (i.e., AdaBoost) with graphical models (i.e. Hidden Markov model and Con-

ditional Random Field) in order to exploit the temporal information to improve the

recognition accuracy.

• We demonstrate our methods with three publicly available datasets and analyse their

effectiveness through comprehensive experimental and comparison studies. We also

investigate the conditions under which the opportunistically available information is

beneficial to recognition performance.

4.2 Framework

The workflow of our framework can be divided into three phases: modelling, learning to

adapt and online prediction. In the modelling phase, an initial activity model is created with

currently available sensor data. As new data sources become dynamically available, we per-

form adaptation of the activity model by considering the dynamic data sources in the learn-

ing to adapt phase. In the prediction phase, the initial model is combined with the graphical

models to exploit the temporal information to further improve the recognition performance.

It should be noted that prediction is not the final stage. Instead, we keep looping between

learning to adapt and prediction as long as new sensor data is available.

• Modelling. We choose AdaBoost as our basic classifier, as it is lightweight enough for

64



CHAPTER 4: PHYSICAL ACTIVITY RECOGNITION WITH DYNAMICALLY AVAILABLE

SENSORS

on-body devices and has been demonstrated to be robust for classification tasks [64].

The rationale for choosing AdaBoost also lies in the fact that it is flexible in the dimen-

sion of the feature space, and is able to automatically select the most discriminative

features in the training process. The characteristics of AdaBoost makes it extremely

suitable for our framework since we need to dynamically incorporate context into our

framework, which would change the feature space. Also, we only consider the dis-

criminative context which is beneficial to the recognition performance.

• Learning to adapt. When new data sources (e.g. accelerometer, gyroscope) are dynami-

cally available, the information they provide may be beneficial to improving the recog-

nition accuracy. The goal of this stage is to perform adaptation for the activity models,

so as to incorporate the information provided by the new data source (if it is discrim-

inative enough). To achieve this, we perform belief propagation on the predictions

given by AdaBoost and select instances for retraining. The selected instances, which

contain newly discovered context, are fed into AdaBoost to retrain and adapt the clas-

sifier. Belief propagation is to exploit the temporal information to rectify the posterior

distribution for the instances, based on which we propose a method to select the infor-

mative instances without human intervention.

• Prediction. AdaBoost makes prediction individually and assumes no dependency be-

tween the posterior probability of neighbouring instances. We combine AdaBoost with

graphical models to provide sequence predictions, as those models make temporal as-

sumptions between adjacent predictions and are able to smooth out the outliers. We

found that the posterior probability distribution of each instance and learned weak

learners of AdaBoost make it extremely feasible to combine AdaBoost with graphical

models.

4.3 Methodology

4.3.1 Basic modelling

AdaBoost is selected as our basic classifier as it is flexible in the dimensionality of the feature

space, and it is able to automatically select the most discriminative features in the training
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process. As AdaBoost incrementally builds weak classifiers on the training dataset, it is more

flexible in the dimensional changes of the feature space. When discriminative context is de-

tected during the learning to adapt phase, all AdaBoost has to do is training a weak learner

on the context and add it to the ensemble along with its weight, without the necessity to

change the feature space and retrain the whole model. Also, in each iteration, AdaBoost

only chooses the weak learner with minimum training error. In this light, it presents an ef-

fective and tractable way to automatically select the features with maximum discriminative

power [82]. Therefore, it is not necessary to evaluate the discrimination of the new context

manually.

AdaBoost learns an ensemble of weak classifiers for each activity class k:

Hk(xi) =
T

∑
t=1

αk
t hk

t (xi) (4.3.1)

and the posterior probability of class k given instance xi is:

P(yi = k|xi) =
eHk(xi)

∑k eHk(xi)
(4.3.2)

AdaBoost is detailed in Section 2.3.1.

4.3.2 Belief propagation

As new sensors are dynamically discovered, we need to select instances that contain the

new sensor data to adapt AdaBoost. The aim in this stage is to leverage belief propagation

to smooth the outliers and rectify the results produced by AdaBoost, so as to select the most

profitable and informative instances to learn the new context and adapt the activity model.

Due to the temporal characteristic of human behaviours, the current activity is more likely

to be continued in the next time slot. Therefore, there are strong correlations among the

sequential predictions of the instances. Apparently, AdaBoost makes no use of the temporal

information, since it assumes no dependencies among the instances, and performs classifica-

tions based solely on the local features. As a result, sensor noises or temporary interruption

66



CHAPTER 4: PHYSICAL ACTIVITY RECOGNITION WITH DYNAMICALLY AVAILABLE

SENSORS

 

 

  

ykyk-1

xkxk-1

' ( )kk f
u y

#

'f

' ( )kf k
u y

#

( )f ky$

Figure 4.2: Belief propagation between hidden variables

of the activities would certainly result in misclassifications.

Belief propagation is mainly performed for inference in graphical models, and in the form

of message passing between the nodes. The messages passed among the nodes are actually

exerting influence from one variable to the others. In this light, the belief propagation is to

send messages to the connected node and tell it what it should believe [160], and the hidden

state of a node depends not only on local observations, but also the product of all incoming

messages from locally connected nodes. Upon convergence, the marginal distribution of the

variable nodes can be approximated with:

p(yk |X) =
φ f (yk)∏ f ′∈N(k)\ f µ f ′→k(yk)

∑y′k
φ f (y

′
k)∏ f ′∈N(k)\ f µ f ′→k(y

′
k)

(4.3.3)

where φ f (yk) is the local evidence, and µ f ′→k(yk) is the message from neighbouring factor

nodes of node k, as shown in Figure 4.2.

In our scenario, the belief propagation is performed among the observation nodes and hid-

den nodes. The observation node at time t is the feature vector collected from the sensor

data while the hidden node is the latent activity. Since the latent activity is unknown, the

latent variable yk is represented in the form of a multinomial distribution over all the ac-

tivities. The multinomial distribution is iteratively updated by incorporating the messages

from not only local observations, but also adjacent nodes.

In our framework, we only consider pairwise connections (Figure 4.3) between the hidden

nodes when performing belief propagation. Therefore, the messages that a node receives are

the posterior probabilities of its neighbouring nodes based on their own local observations,

as shown in (4.3.4)

p(yk|X) =
p(yk |xk)∏i∈N(k)\i:yi=yk

p(yi|xi)

∑y′k
p(y′k |xk)∏i∈N(k)\i:yi=y′k

p(yi |xi)
(4.3.4)
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Figure 4.3: Belief propagation in our scenario. The solid lines show the messages received by
node k from neighbouring four nodes.

Therefore, belief propagation is performed with an inference step and followed by several

iterative update steps. In the inference step, for each observation, AdaBoost generates a

posterior probability distribution over the hidden activities using Eq.(2.3.1). In the propaga-

tion step, those initial estimations of posterior probabilities are propagated to neighbouring

nodes. Those recipient nodes k then combine the received probability distribution over yi

together with its local evidence given by AdaBoost and convert them into a distribution

over yk, using Eq.(4.3.4). The iterative process can be repeated until convergence. In our

experiments, we found that running belief propagation for only one iteration is sufficient to

converge the posterior distribution.

The belief propagation is slightly modified in our implementation. As the instances clas-

sified with high confidence usually tend to be the correct classification, we do not update

the posterior distribution for those high-confidence instances during the iterative process of

belief propagation, so that their beliefs can be propagated to the uncertain instances.

To demonstrate the effectiveness of belief propagation in smoothing the outliers, we perform

physical activity recognition on smart phone sensor data from [130]. The mobile phone is

fixed on the belt of the subject performing the activities, inertial data from accelerometer

and gyroscope are collected, which is known to be effective for physical activity recognition.

The setup parameters such as sliding window length and features are given in the experi-

ment section. We firstly present the results produced by AdaBoost and then those given by

running belief propagation, as shown in Figure 4.4 and Figure 4.5 respectively.

The x-axis represents time sequence, while the y-axis represents the posterior probability of

the instances. The classifier chooses the activity class that has the maximum confidence

in the posterior distribution as the prediction (we highlight those instances with circle).

We only plot the classifications of Standing, since it is the activity where the most mis-

recognitions happen. From Figure 4.4 we can see that, most of the time activity Standing
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Figure 4.4: Activity recognition results given by AdaBoost

 0

 0.2

 0.4

 0.6

 0.8

 1

C
o
n
f
i
d
e
n
c
e

Time

Standing
Walking

Upstairs
Sitting

Running
Downstairs

Figure 4.5: After running belief propagation on the results given by AdaBoost

is classified as Sitting, due to the similar patterns of those two activities when the data is

collected from the belt. However, after belief propagation, most of the misclassifications are

rectified, as presented in Figure 4.5. The underlying reason is that, when the instance is mis-

predicted, the maximum confidence in the posterior distribution is quite low (50%), and the

prediction is uncertain. However, when the activity is correctly predicted, the correspond-

ing confidence would reach a rather high level (usually more than 90%). As a result, when

running the belief propagation, the nodes with high confidence are able to propagate their

belief to neighbouring nodes, so as to clarify the uncertainty. While the nodes with “flat"

posterior distribution have little impact on adjacent nodes, because they propagate nearly

the same information for each hidden activity.
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4.3.3 Instances selection

In this subsection, we introduce the method to select the instances for classifier retraining

and adaptation. The instances contain dynamically discovered context, and AdaBoost is

able to automatically incorporate the new context if it is discriminative enough. In this way,

AdaBoost can be self-adapted or -refined. We perform instances selection after the belief

propagation for the sake of selecting the informative and profitable instances to quickly

converge the classifier without human intervention.

Measurements

First of all, we introduce the measurements that can evaluate the profitability of an instance,

so that based on those quantitative criteria, the instances can be selected to adapt the model.

The first metric we consider is the “drift" in the posterior distribution before and after the be-

lief propagation. Belief propagation is able to smooth out the outliers by exploiting the tem-

poral information. Those instances that experience huge “drift" in their posterior distribu-

tions are much more valuable, since they are not modelled by the initial activity model and

have a greater chance of residing near the classification boundaries. The Jensen-Shannon

divergence can be used to measure the “drift", as it has been proved to be efficient to mea-

sure the distance between two distributions in previous work [136]. Supposing pi and qi are

the posterior distributions of instance i before and after belief propagation, respectively, and

then the JS-divergence is:

JS(pi , qi) =
1
2

DKL(pi||m) +
1
2

DKL(qi||m) (4.3.5)

where m = 1
2(pi + qi) and DKL(pi ||m) = ∑j pijlog

pij

mj
is the Kullback-Leibler divergence

between two distributions. Therefore, we derive the first measurement as:

scorei1 =
JS(pi , qi)− JSmin(p, q)

JSmax(p, q)− JSmin(p, q)
(4.3.6)

We normalize the JS-divergence, so that the measurement based on the posterior distribution

“drift" is always ranged in [0,1], in this way it is able to cater for characteristics of different

activity data sets.
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As for the second measurement of profitability, we consider the number of consecutive

neighbouring instances that have the same predicted results.

Ni = min(N
f orward

i , Nbackward
i )

scorei2 =
Ni − min(N)

max(N) − min(N)

(4.3.7)

where N
f orward

i and Nbackward
i are the number of consecutive neighbouring observations that

have the same predictions along the two directions of time series, from the current obser-

vation i. It is normalized due to the same reason as scorei1. This measurement shows the

extent to which the neighbouring nodes have the consensus predictions, and the higher the

number, the more likely that the prediction is correct. Obviously, scorei2 is proposed based

on the temporal characteristic of human behaviour. One extreme condition is that the obser-

vation happens to be in the middle of an ongoing activity, and the scorei2 tends to be large

and it is more confident about the prediction.

Finally, we consider the confidence of the instances after the belief propagation. The poste-

rior distribution itself provides the information about the confidence of an instance. Adding

the instances with the highest confidence is equivalent to locating the class center, which

in turn also helps to adapt the model to some extent, even though those instances are less

informative. Therefore, the third measurement is formulated as scorei3 = max(p(yi |xi))

(Eq.(4.3.4)).

To decide which instance is more profitable, we need to take into account all the aforemen-

tioned metrics. Therefore, we determine the final score for the profitability of an instance

based on the corresponding scores for each of the metrics. The combined score is defined as

follows:

scorei = α1scorei1 + α2scorei2 + α3scorei3

s.t.
3

∑
i=1

αi = 1
(4.3.8)

where the weights αi is manually given. In our method, we evenly distribute the importance
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to the three metrics by setting α1 = α2 = α3. However, by giving different weights, the

model may present different characteristics. For example, by increasing α3 we give more

weight to the high-confidence instances, and then the model adapts conservatively and the

convergence is quite slow. By contrast, when we put more weight to scorei1, the model only

takes those instances whose posterior distribution changes dramatically before and after

belief propagation, and then the adaptation is performed aggressively. There is a danger

that noisy data may be added and the model is jeopardised.

Retraining

Upon selecting the instances for model adaptation, AdaBoost can automatically determine

the discriminative power of the new context (if there is any) in the instance, and dynamically

incorporate them for classification if they are discriminative enough. In this way, the model

is adapted to new coming data.

One issue should be addressed when selecting the instances is that the amount of retrain-

ing data among different activity classes should be balanced during the adaptation process.

During the experiments we found that for an activity class with a small training dataset, the

iterative process of training weak learners is unexpectedly terminated earlier. As a result,

the trained ensemble of classifiers for that class overfits the small amount of data. That is the

reason that AdaBoost focuses more on training activity classes with unevenly large propor-

tions of annotated data [64]. Therefore, in this paper, we accumulate for each activity class

the same amount of data before retraining.

4.3.4 Sequential prediction

When the adapted AdaBoost is deployed for online prediction, we combine it with graphical

models to further smooth outliers. Even though the basic idea behind this stage and belief

propagation are both to exploit the temporal information among the activity data, belief

propagation is deployed for offline data analysis, sufficient data should be accumulated and

analysed for model adaptation (second stage in Figure 4.1), while graphical models cater for

online lightweight predictions (third stage in Figure 4.1). Furthermore, belief propagation
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Figure 4.6: Graphical model of HMM and CRF

requires the posterior distribution to evaluate the profitability of the instances.

In this section, we introduce the methods of combining AdaBoost with Conditional Random

Field, referred to as BoostCRF. It should be noted that, hybrid classifiers are not new topics,

in [82, 96, 162] the authors used the posterior probabilities from discriminative classifiers as

new input features to train HMM or CRF. However, the modelling of discriminative classi-

fiers is dissociated from the modelling of structured classifiers. Therefore, the two classifiers

are trained independently, using the output of one classifier as input for another. More-

over, they train HMM for each activity class separately, and during the inference phase for

all the instances in a sequence, they produce the same label that has maximum likelihood.

Therefore, they do not model the transitions among different classes.

In a Hidden Markov model, the variables include hidden states and observations. As shown

in Figure 4.6a, it models the joint distribution of those variables and naively assumes that

hidden state yk at each time step k only depends on hidden state at previous time step,

yk−1, while observation xk at time k only depends on the hidden state at the same time

slice, as shown in Figure 4.6a. Therefore, HMM can be mathematically described by three

parameters: the initial state y1, transition distribution p(yk|yk−1), and emission probability

p(xk |yk), then the joint distribution of the variables can be formulated as follows:

p(x, y) = p(y1)p(x1|y1)
K

∏
k=2

p(yk|yk−1)p(xk |yk) (4.3.9)

Now we show how to combine AdaBoost with HMM. At each time slice, we can obtain

the posterior probabilities p(yk|xk) for the observation using Eq.(2.3.1). Then the emission
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probability can be obtained according to Bayes’ rule:

p(xk|yk) =
p(yk|xk)p(xk)

p(yk)
∝ p(yk|xk) (4.3.10)

where prior knowledge p(yk) is identical for different activities because we balance the train-

ing data over all the activity classes. For a variable xk that is observed at time k, p(xk) is a

constant when calculating its evidence against different classes. Therefore, the emission

probability is proportional to the posterior probability given by AdaBoost, and the joint dis-

tribution can be re-formulated as follows:

p(x, y) ∝ p(y1)p(y1|x1)
K

∏
k=2

p(yk |yk−1)p(yk |xk) (4.3.11)

As for transition probability, we manually set the self-transition probabilities to be large to

temporally smooth out the activities, and encourage them to continue unless observable

evidence strongly suggests a different activity [147], denoted as follows:

p(yk |yk−1) =











1 − ǫ yk = yk−1

ǫ otherwise
(4.3.12)

We experimentally set ǫ to be 0.1, as it is demonstrated to be effective enough to achieve

reasonable accuracy. Inferring the hidden states is equivalent to finding the sequences that

maximize the joint probability depicted in Eq.(4.3.11), which can be performed by the Viterbi

algorithm.

It should be noted that, it is infeasible to apply HMM directly on feature vectors from sensor

data. Since feature vectors from activity data usually consist of a large number of dimen-

sions. When we model the feature vectors as the Gaussian distribution, a large number of

parameters in the covariance matrix would result in the problem of overfitting [136]. More-

over, changes in the feature space resulting from the incorporation of new contexts would

require the whole model to be retrained. We use a sliding window with a constant number

of observations, and perform the Viterbi algorithm on this sequence within the window. The

window is shifted along the time axis as new instances come in. In this way, we can provide

real-time prediction.
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BoostCRF

Rather than modelling the joint distribution of the variables, Conditional Random Field

(CRF) models the conditional distribution of the hidden variables over the observations.

The relationships between the connected nodes are now described with potential functions

that map them to positive numbers. One advantage of the CRF over HMM is that, it does

not assume the dependencies among variables, and it is much more flexible to define the

potential function.

Due to the flexible definition of the potential functions, CRF has various structures. We

only consider linear-chain CRF (Figure 4.6b). Therefore, we need to define local potential

functions between observation and hidden node at each time step, and pairwise potential

functions between consecutive hidden nodes. The conditional distribution can be formu-

lated as:

p(y|x) =
1

Z(x)
exp

(

K

∑
k=1

λT f (yk, yk−1, xk)

)

=
1

Z(x)
exp

(

K

∑
k=1

(

λT
s fs(yk, yk−1) + λT

j f j(yk, xk)
)

) (4.3.13)

where f j(yk, xk) and fs(yk, yk−1) are the local and pairwise potential functions at time k.

λs and λj are the corresponding weights. Z(x) is the normalization factor, formulated as

∑y exp
(

∑
K
k=1 λk fk(yk, yk−1, xk)

)

.

Inspired by [83], we map the weak learners trained in AdaBoost to the local potential func-

tions in CRF, while the weights of the potential functions are mapped to the weights of the

weak learners. This is reasonable since more weights are given to the potential functions

that can better explain the data, whereas weak learners with less error rate have a larger

weight. Using Eq.(2.3.2), the weighted sum of local potential functions against activity class

i is:

λT
j f j(yk, xk) =

T

∑
t=1

αi
th

i
t(xk) (4.3.14)

However, mapping the weight of a pairwise potential function is non-trivial. To deal with

this, we define a pairwise potential function that characterises the temporal transition be-

75



CHAPTER 4: PHYSICAL ACTIVITY RECOGNITION WITH DYNAMICALLY AVAILABLE

SENSORS

tween activities:

fij(yk, yk−1) =











1 yk = i, yk−1 = j

0 otherwise
(4.3.15)

where potential function fij characterises the transition from activity j to activity i. Assume

that there is a weak learner hi(yk = i, yk−1 = j) in AdaBoost that can be mapped to the

potential function fij. Obviously, the error rate of the weak learner can be estimated from

the training dataset by frequency counting:

ǫij = 1 −
expected number of transitions from j to i

expected number of transitions out of j
(4.3.16)

then according to Algorithm 1, the weight of the weak learner can be approximated as:

αij =
1
2

ln(
1 − ǫij

ǫij
) (4.3.17)

The weight of weak learner hi(yk = i, yk−1 = j), αij, is mapped to the weight of the pairwise

potential function fij in CRF. Once we have the parameters, the inference process can be

carried by loopy belief propagation to find the most likely assignment of the latent activities.

Notice that, we have T local potential functions, but only 1 pairwise potential function,

thus the temporal evidence weighs less when compared with local evidence. Therefore, we

multiply the pairwise potential functions with a constant (average number of weak learners

of the activity classes), so that the inferred results do not overfit the local evidences.

4.4 Experiment

In this section, we validate our methods introduced in the previous sections. We firstly

describe the datasets, and then specify the method to evaluate our approaches.

4.4.1 Datasets

• Smartphone dataset (SD) [130]: Activity data is collected from accelerometer, gyro-

scope and magnetometer on an Android device worn in different body positions (arm,

belt, wrist and pocket), when the subject performs standing, walking, upstairs, sitting,
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Table 4.1: Dataset description.

Datasets Users Sensors Activities (Instances)
SD 1 accelerometer, gyroscope,

magnetometer, linear ac-
celeration sensor

walking (2521), sitting
(2391), standing (2392),
running (2311), upstairs
(1744), downstairs (1487)

SAD 10 accelerometer, gyroscope,
magnetometer, linear ac-
celeration sensor

walking (1790), standing
(1790), jogging (1790), sit-
ting (1790), biking (1790),
upstairs (1790), downstairs
(1780)

UCI 30 accelerometer, gyroscope walking (1722), upstairs
(1544), downstairs (1406),
sitting (1777), standing
(1906), lying (1944)

running and downstairs. The sample rate is set to be 50Hz. We compute time domain

features such as mean, standard deviation, median, zero crossing rate, variance, root

mean square for each axis of the sensors with a 2 sec sliding window and 50% overlap.

• Sensors activity dataset (SAD) [130]: Sensor data is collected when the 10 volunteers

perform standing, walking, upstairs, sitting, downstairs, jogging and biking. The ac-

tivity data is collected from four different body positions (i.e. arm, belt, wrist and

pocket), but we only use the data collected from arm, as experiments on the other

dataset present the same trends. The data preprocessing methods (e.g. segmentation,

feature extraction) is the same as the previous dataset.

• UCI HAR dataset [6]: The dataset is collected with accelerometer and gyroscope from

a Samsung Galaxy SII smartphone worn by 30 volunteers. The smartphone was fixed

on the waist when the subjects perform six activities (walking, walking_upstairs, walk-

ing_downstairs, sitting, standing, laying). The 561 features were computed based the

sliding window of 2.56 sec and 50% overlap. In our experiment, we only consider time

domain features, as it is computationally expensive to compute the frequency domain

features on the mobile phone during online prediction. Therefore, we have 80 features

from the gyroscope and 120 features from the accelerometer.
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4.4.2 Set up

To validate the proposed framework, each of the datasets is divided into three portions, in

accordance with the three stages in Figure 4.1. Specifically, for all the datasets, we train

the activity model with the first part of the dataset that contains only gyroscope data at

the first stage. At the second stage, the activity model is used to classify the second part

of the dataset which contains both accelerometer and gyroscope data, and after offline data

analysis we select the profitable instances to retrain the activity model, and features from the

accelerometer are automatically incorporated into AdaBoost if they are discriminative. In

the final stage, we classify the third part of the dataset with the adapted model and compare

the results with ground truth.

The first dataset is personalised, we evenly partition the dataset into three parts and perform

6-fold cross validation. While the SAD and UCI datasets involve multiple volunteers, so we

perform leave-one-user-out cross validation.

In what follows, we will validate the effectiveness of our framework in terms of several as-

pects, especially the ability to incorporate new context, the importance of belief propagation

and instances selection, the benefit of combining AdaBoost with graphical models. Finally,

we investigate the conditions under which our methods provide a marginal improvement

or even jeopardise the initial model.

4.4.3 Incorporating new context

In this section, we validate our method by building an activity model with gyroscope data,

and dynamically incorporating accelerometer data to refine the model. 300 weak learners

are trained for each activity and the score threshold is set to be 0.7 to select instances for

retraining, as it is low enough to select sufficient training data and high enough to exclude

the noisy instances. We do not perform the iterative process to select the instances and

retrain the model, as we found that additional iterations do not provide significant accuracy

improvement according to our experiments. On the other hand, repeatedly retraining the

model is expensive. For all the experiments, we compare the recognition performance in

terms of f1-score (f1-score=2∗precision∗recall
precision+recall ).

78



CHAPTER 4: PHYSICAL ACTIVITY RECOGNITION WITH DYNAMICALLY AVAILABLE

SENSORS

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

SD
-AR

M

SD
-BELT

SD
-PO

C
KET

SD
-W

R
IST

SAD
U
C
I

f1
-s

c
o

re

original
adapted

Figure 4.7: F1-score improvement by dynamically and automatically incorporating accelerome-
ter data.

In Figure 4.7, we can see that, our method (adapted) can improve the recognition accuracy to

some extent across the datasets, especially for the dataset that the user fixes the smartphone

on the belt. Because it is difficult to distinguish standing and sitting with gyroscope when

the device is put on the belt. However, as belief propagation is able to correct most of the

uncertainties, and then the retraining instances would help to refine the initial model. Fur-

thermore, the f1-score improvement in SD-POCKET setting is marginal. When debugging

the learning process, we found that only one weak learner is trained to classify the activity

Sitting, that means the weak learner overfits the retraining dataset and is unable to clas-

sify Sitting during the prediction stage if the activity presents variance. However, when

we lower the score threshold and collect more instances for retraining, the f1-score achieves

0.94.

In order to confirm the usefulness of extra features, we count the proportion of weak learn-

ers that are trained on the new features during the retraining process. Since AdaBoost is

able to automatically select the weak learner that has the minimum weight error rate in each

iteration, the more that the weak learners are trained on the new features, the more dis-

criminative the new features are. As is presented in Figure 4.8, for most of the dataset the

proportions of weak learners trained on new features are more than 50%. From the figure we

can see that dataset SD-BELT and SD-POCKET have the proportions of 62% and 38% respec-

tively. The underlying reason is that, for the dataset SD-BELT the accelerometer features can

better distinguish standing and sitting, and then during the retraining process, more weak

learners are trained on the accelerometer data. While in SD-POCKET dataset, the retraining

process terminates unexpectedly early for the activity Sitting, and fewer weak learners are
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Figure 4.8: Proportion of weak learners trained on new features during the retraining process
across the datasets.

trained on the retraining dataset and hence the new features cannot be sufficiently leveraged

for performance improvement.

4.4.4 Role of belief propagation

In this subsection, we will examine the role that belief propagation plays in our framework.

For comparison, we introduce the following baselines:

• noBelief : setting without belief propagation on the intermediate predictions of Ad-

aBoost and select the instances classified with high confidence for retraining. Notice

that the instances for retraining contain the dynamically available features (i.e. ac-

celerometer data).

• noExtra: setting without belief propagation and not considering the dynamically avail-

able sensors. This is exactly the traditional semi-supervised learning that selects the

most confident instances to adapt the activity model.

The configurations for these two methods are the same as ours except that the confidence

threshold is set to be 0.7 to select instances for retraining. The result is presented in Fig-

ure 4.9, from which we can see that for most of the datasets, noBelief and noExtra provide

marginal f1-score improvement. In some case, noExtra even experiences performance loss.

The reasons are two-fold. On the one hand, high-confidence instances are usually less in-
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Figure 4.9: Comparison with noBelief and noExtra in terms of f1-score.

formative and make less contribution to the f1-score improvement. On the other hand, it is

difficult to set a universal confidence threshold for all datasets. For example, in the dataset

SAD, the activity Sitting is frequently classified with a confidence lower than 0.7 (the con-

fidence threshold). Due to the enforcement of retraining data balance, insufficient data of

sitting results in a small amount of retraining dataset and hence, less contribution in f1-score

improvement. While in the dataset SD-WRIST, a confidence threshold of 0.7 introduces the

noisy instances and has a negative impact on the recognition performance.

An exception is found in the dataset SD-POCKET, in which the noBelief achieves the f1-

score as high as 0.93, as gyroscope performs better than accelerometer in pocket position,

confirmed by [130]. Therefore, initial model with gyroscope is able to correctly recognize

most of the activities with high confidence, and provides true labels for the retraining with

the combination of accelerometer and gyroscope data, hence the resulting model can then

significantly improve the recognition performance. As discussed in the previous subsection,

our method is able to obtain 0.94 in f1-score when we lower the score threshold.

It should be noted that for most of the datasets (except UCI), traditional semi-supervised

method (noExtra) does not provide performance improvement. However, it does not nec-

essarily mean the contradiction between our experiments and previous work [133]. In our

cases, the recognition performance is limited by the discriminative power of the features

rather than the amount of training data, as we create the initial model with sufficient train-

ing data, especially for the later two datasets which include activity data from multiple

users. The dataset SD-POCKET supports our conclusion. Both noExtra and noBelief take the

exactly the same data for retraining, but only noBelief results in model refinement, due to
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Figure 4.10: Combining adapted AdaBoost with HMM and CRF.

the fact that it incorporates acceleration features.

To conclude, by incorporating newly discovered features, our method outperforms tradi-

tional methods that simply consider the most confident instance, and belief propagation

followed by the instances selection scheme achieves significant improvement in terms of the

recognition performance.

4.4.5 Role of graphical models

In this subsection, we evaluate the recognition performance by combining AdaBoost with

CRF, which is to smooth the accidental predictions given by AdaBoost.

The results are shown in Figure 4.10, from which we can see that by temporarily smoothing

the outliers, the f1-score can be improved by 7.9% and 8.2% with BoostHMM and BoostCRF

respectively. The figure also shows that BoostCRF performs slightly better than BoostHMM,

which has been confirmed by previous work [144]. The reason is that, BoostHMM makes

strong assumptions among the variables while BoostCRF have more flexible structures and

relationships between connected nodes. Actually, when we look at the results provided by

BoostHMM, instances of some continuous activities are still sporadically classified as other

classes.

For the datasets SAD and UCI, BoostCRF seems to present no advantage over BoostHMM.

This is because we only perform one iteration during the inference process for BoostCRF. It
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Figure 4.11: F1-score corresponding to the number of iterations during inference process for
BoostCRF.

seems that one iteration is not enough to converge the model, because more iterations can

still improve the f1-score, as shown in Figure 4.11. It should be noted that, the authors in [6]

use Support Vector Machines (SVMs) to classify the activity with the same dataset, UCI, and

obtain the average accuracy of 89.0%. By comparison, we are able to achieve the f1-score

of 94.0% with BoostCRF. However, we only use the 80 gyroscope features while they build

their model on the all of the 561 features.

4.4.6 Investigation of the usefulness of extra context

In this subsection, we investigate the conditions under which the extra context cannot help

with the accuracy improvement. To this end, we make the following assumptions and per-

form experiments with the datasets to validate those hypotheses.

• When the extra context provides less discriminative information compared with exist-

ing features.

• When the initial model is not accurate enough to perform adaptation.

The basic idea is that extra context, which cannot better characterise the activity classes or

are less discriminative than the features upon which the initial model is built, are automat-

ically ignored during the retraining process. Secondly, if the initial model is not accurate

enough, misclassified instances would be selected for retraining and jeopardise the model.
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Figure 4.12: Performance(f1-score) improvement by incorporating magnetometer features, we
do not experiment on dataset UCI as it does not provide magnetometer data.
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Figure 4.13: Percentage of weak learners that are trained on magnetometer features during the
adaptation process.

To validate the first assumption, for dataset SD and SAD, we build the initial model with

accelerometer and gyroscope data. During the learning and adaptation stage, the instances

contain accelerometer, gyroscope and magnetometer data. Magnetometer feature is demon-

strated to be less discriminative [130]. The results are illustrated in Figure 4.12, from which

we can see the f1-score improvement is insignificant, less than 1% on average. Figure 4.13

provides a more insightful reason, which shows that only a small portion of weak learn-

ers are trained on dynamically available features, since they are less discriminative and not

beneficial to the accuracy improvement.

In order to validate the second assumption, we limit the size of initial training dataset, so that

the initial model would overfit the dataset and result in an inaccurate classifier. We use 5%

of the training data to build the initial model, and present the results in Figure 4.14. From the
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Figure 4.14: Performance(f1-score) decrement with an inaccurate initial model.

figure one can see that, the adapted model would be negatively affected if the initial model is

not accurate enough. The underlying reason is that wrongly predicted instances are added

to retrain the model. One potential solution to this problem is to be more conservative and

increase the weight α3 in Eq.(4.3.8). However, it is out of the scope for this thesis and is left

for future work.

4.5 Summary

In this chapter, we develop a framework that automatically incorporates dynamically avail-

able sensors for low-level activity recognition. In the framework, the most informative in-

stances are selected to adapt and refine the initially created activity model. AdaBoost can

automatically select the most discriminative features during the adaptation process. We also

leverage the temporal information of human behaviour to boost the performance, both in

the off-line data analysis and online predictions. Experimental results show that the recog-

nition performance can be significantly improved with dynamically available sensor data.

The proposed method is able to select the valuable instances to adapt and refine the model

without human intervention, and its combination with the graphical models is able to fur-

ther improve the recognition accuracy.

The framework proposed in this chapter addresses challenge 2 described in Section 1.2; the

instance selection method proposed in Section 4.3.3 addresses challenge 4 described in Sec-

tion 1.2; the combination with HMM and CRF addresses challenge 6 in 1.2; the basic classifier

85



CHAPTER 4: PHYSICAL ACTIVITY RECOGNITION WITH DYNAMICALLY AVAILABLE

SENSORS

in the framework, AdaBoost, is flexible with the dimensionality of the instances and selects

the most discriminative features in the training and adaptation process, hence it addresses

challenge 5 in Section 1.2

Sensors used for recognising primitive physical activities are limited to on-body sensors

such as accelerometers and gyroscopes. As a result, we know how to process the sen-

sor readings into proper features (e.g. time domain features, frequency domain features)

when they are dynamically available. However, recognising high-level daily activities (e.g.

kitchen activities) require different types of environment-instrumented sensors and on-body

sensors. The motivations and methods for incorporating dynamically available sensors for

high-level activity recognition are described in the next chapter.
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CHAPTER 5

High-level Activity Recognition and

Adaptation with Dynamically Available

Contexts

5.1 Introduction

The previous chapter describes the methods that automatically incorporate dynamically

available on-body sensors (e.g. accelerometer, gyroscope) for low-level activity recognition

and activity model adaptations. Since the sensor readings from those sensors are not se-

mantically interpretable, conventional machine learning methods are required to learn the

mapping from the sensor readings to the activity classes. While for high-level activity recog-

nition, a variety of knowledge can be leveraged to specify the interrelations between the

activities and contexts. Examples include knowledge from the website [116, 156, 37], knowl-

edge from the existing data [165, 142, 139] and knowledge manually specified by domain

experts [147, 154]. This knowledge can be used for unsupervised activity modelling and

recognition [19, 125], activity transfer learning [51], unseen activity class learning [23] and

unseen object parameter learning [139].

However, there are still some challenges that need to be addressed for high-level activity

recognition with dynamically available contexts. They include 1) how to process readings

of dynamically available sensors into proper contexts for activity model adaptation (chal-
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lenge 7), 2) what kinds of algorithms should be used to incorporate dynamically available

sensors and perform activity model adaptation (challenges 2, 3 in Section 1.2), 3) how to

exploit temporal information for high-level activity recognition and activity model adapta-

tion (challenge 6 in Section 1.2). Sensors that can be used for human activity classification

usually have different modalities, so data produced by the same type of sensors may need

to be interpreted differently when used for different purposes. As for the activity model

adaptation, even though domain knowledge can be used to integrate dynamically available

sensors by specifying the parameters of contexts with respect to the target activities, this

domain knowledge cannot obtain optimal results as people perform activities differently

[168, 152].

In this chapter, we propose methods to approach the aforementioned challenges, and the

key contributions are summarised as follows:

• We propose a high-level activity recognition framework that is able to integrate dy-

namically available sensors upon their discovery, and to adapt the activity models to

take advantage of these additional contexts produced by newly available sensors.

• We propose sensor and activity models to facilitate sensor readings pre-processing of

dynamically discovered sensors, and the incorporation of the contexts that the sensors

provide into the activity models.

• We develop a knowledge-driven method for incorporating dynamically available con-

texts without supervision. The parameters of the contexts with respect to different

activity classes are estimated using descriptive texts of the activities from external

sources (e.g. website) and natural language processing methods.

• We propose a data-driven method for incorporating dynamically available contexts

with the learning-to-rank machine learning method and temporal regularization. The

data-driven method is a personalised method as it performs machine learning with the

activity data of a specific user.

• We validate the proposed data-driven method using one of the most complex human

activity recognition datasets, OPPORTUNITY, and demonstrate the advantage of the

proposed data-driven method over traditional personalised activity recognition meth-

ods.
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• We validate the proposed knowledge-driven method using both the OPPORTUNITY

dataset and a simulation dataset.

5.2 Context modelling

Various types of sensors can be used for activity recognition, they include body-worn sen-

sors, object sensors and ambient sensors [126], etc. Incorporating the dynamically available

sensors into the recognition framework may potentially benefit the recognition task. If a run-

time discovery of such a sensor happens then raw sensor data provided by the sensor may

need to be pre-processed into the context information required by the recognition frame-

work. For example, for a binary sensor that is used for object interaction monitoring, the

output value of the sensor directly indicates whether the user is interacting with the object

or not. While for inertial sensors (e.g. accelerometer, gyroscope) that are used for the same

purpose, the continuous sensor values may need to be pre-processed into a proper feature

vector and a clustering method used to indicate the interaction. Due to the heterogeneity

of the sensors, we propose to model the context of sensors so that after the sensor dynamic

discovery we can find out from the model how the sensor readings can be processed and

incorporated into the activity recognition framework.

The sensor context models capture the necessary information about the sensors. There are

many approaches to context modelling. We adopt the fact-based approach from [47] to model

the sensors. It is able to model the type of sensors and also metadata that is necessary to

integrate the sensors into activity recognition. Notice that Hu et al. [52] proposed to model

sensors for autonomic mapping between the abstract context required by applications and

sensors providing raw sensor data (in order to be able to replace one type of sensor by a

different sensor that can produce the same abstract context), while we model sensors so that

the dynamically available sensors can be automatically integrated for activity recognition

and activity model adaptation by processing the modelled context information.

Figure.5.1 illustrates the necessary context information that is required to model a sensor

for our purpose. The model includes the sensor type (e.g. on-body sensor, ambient sensor),

sensor reading type (e.g. continuous, discrete), a model for pre-processing sensor readings
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Figure 5.1: Sensor modelling.
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into abstract context, location (e.g. kitchen), attached to (e.g. cup). The IEEE 1451 standard

describes standard sensor interfaces through which sensors can be queried upon discovery

and can present information about themselves. Based on this query a discovered sensor can

be matched to its sensor context model. The context information in this model provides

the guideline to pre-process the sensor readings into high-level context (e.g. interaction

with objects) for activity recognition. For example, given a sensor that produces a binary

output, an ambient sensor (e.g. motion sensor) may indicate the location context while an

object sensor implies object usage. The pre-processing of sensor readings into the abstract

context requires a pre-processing model that is different for different kinds of sensors. The

pre-processing of sensor readings used in our approach is described in Section 5.6.

It is also necessary to model abstract context used for recognition of a particular human ac-

tivity, so that the information provided by the dynamically available sensors can be used

(after pre-processing sensor readings into the abstract context) for dynamic integration for

this activity recognition. The context information model used for activity recognition can

be viewed as the pattern of the activity - and activity recognition is performed to match

this information with the context information derived from the sensor readings. Another

motivation for activity modelling is that we can leverage domain knowledge for activity

recognition and avoid the requirement of data labelling. The basic idea is that the contex-

tual information used to describe high-level activities is human readable, and hence com-

mon sense can be used to correlate the contexts and activities as the starting point [1] (e.g.

’cooking’⇒’kitchen’ AND (’walking’ or ’standing’)).

Figure.5.2. shows an example of activity modelling. Each fact type interrelating the ac-

tivity and context is associated with a probability. The probability specifies the possibility

of observing the context given the activity, and it can be manually specified with domain

knowledge [142, 147] or mined from external sources [37, 139].

The result of such an adaptation is illustrated in the grey part with dash lines in Figure.5.2.

When a new sensor is discovered, the sensor data it provides is pre-processed into high-level

context information (i.e., the context abstraction used in the activity model). The high-level

context information is then populated into the activity model and adaptation of activity

recognition is performed. The details are explained in Section 5.5.3. For example, when a

sensor is dynamically discovered and queried, we analyse the corresponding sensor context
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model, and we learn that it is an accelerometer attached to a cup and it produces continuous

readings. Therefore, it is a sensor used for object usage monitoring, and the sensor readings

need to be pre-processed (e.g. by clustering) to indicate whether the context cup is observed

or not. The context provided by this sensor is populated into all the activities (e.g. Make tea,

Make coffee) that relate to the context cup. The corresponding activity models are adapted by

incorporating the new context and its parameters.

5.3 Problem definition

In this section, we introduce the concepts and definitions used in this chapter and then

formally define activity recognition as a classification problem.

Let L = {(xi, yi)}i=1,··· ,|L| denotes the set of labelled activity instances with xi being the ith

feature vector and yi ∈ {1, 2, · · · , C} being the corresponding activity class. C indicates

the total number of activity classes. A feature vector xi is the aggregation of contextual

information using a sliding window, and it is formally defined as a N−dimension binary

vector xi = {x1
i , · · · , xN

i } with x
j
i ∈ {0, 1} indicating whether jth context is observed in the

sliding window or not [144]. The problem is: how to recognize the set of testing instances

x ∈ {0, 1}1×(N+d), given the set of training data L, where d is the number of dynamically

available contexts. In the later sections, we describe how to learn context weights for activi-

ties, followed by the activity recognition adaptation to the newly available context.

Let P ∈ R
C×N be the probability matrix with Pkj defining the probability of jth context given

kth activity. Matrix P can be mined from the knowledge database [116], learned from the

labelled data [38] or even manually defined.

5.4 Knowledge-driven method

In this section, we describe how to leverage an external knowledge base to create activity

models and perform the activity model adaptation with dynamically available sensors in an

unsupervised manner. High-level activities are usually characterised by different kinds of
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contexts, (e.g. "making sandwich" can be described by location context "kitchen", and object

contexts "knife" and "bread"). Moreover, there exists some descriptive texts that specify

the instructions of how to perform high-level activities. Therefore, contexts characterising

the activities can be extracted from the texts using natural language processing methods,

and then we can calculate the parameters of the contexts with respect to different activities.

Finally, with the parameters we are able to create activity models and perform activity model

adaptation using the Bayesian framework. In this light, dynamically available sensors are

incorporated into the activity recognition framework automatically. In what follows, we first

describe the mining process of the probability matrix P from third party sources, followed

by the activity modelling, prediction and activity model adaptation based on the probability

matrix.

5.4.1 Knowledge base

In this section, we describe how to mine the knowledge (i.e. context-activity conditional

probabilities) from the websites, www.wikihow.com and www.ehow.com [116, 156]. Both

of these two websites describe how to perform daily activities and involved contexts. The

basic idea of this knowledge-driven method is that the probability of observing a context

in an activity is related to the probability of the textual representation of the context ap-

pearing in the textual description of the activity. We first crawl the websites and get the

descriptive documents for each target activity class, and then identify the contexts involved

in each activity using the natural language processing method. Finally, we calculate the

context-activity conditional probability of each context with respect to different activities.

The mining process can be described by the following steps:

• Search the two aforementioned websites for the target activities. As illustrated in Fig-

ure 5.3, the website lists multiple superlinks that redirect to the webpages that describe

how to perform the activities step by step. We automatically crawl all the pages for

each target activities. As we search for the target activities in the same website, the

webpages that describe the activities have the same html schema. This makes it feasi-

ble to automatically crawl the textual descriptions.

• When we get the textual descriptions for the target activities, natural language process-
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Figure 5.3: Search for activity description.

“Here is what you'll need to make a mocha coffee drink using brewed coffee” -> ['Here', 'is', 'what', 

‘you', "'ll", 'need', 'to', 'make', 'a', 'mocha', 'coffee', 'drink', 'using', 'brewed', 'coffee'] 

Figure 5.4: Example of tokenization

ing methods are used to extract the interesting contexts from the text. The processing

of the texts from the webpage goes through the following pipeline: tokenisation, part-

of-speech (POS) tagging, lowercase, stemming, WordNet filtering. We first tokenise

the sentences in the texts into a list of single words (shown in Figure 5.4) so that they

can be further processed by later phases.

At the second step, we tag the tokenised words with part-of-speech tags as shown in

Figure 5.5. Since the contexts involved in the activities are nouns, we only select those

words tagged with "NOUN" for further analysis.

We then change the capital letter into lowercase and stem the morphological variants

of a word that have the similar meanings to their stemmed or root forms (e.g. standing-

stand, bottles-bottle). The rationale behind these two steps is that words that have dif-

ferent meaning or variants should have the unique representation in our case. Finally,

since the contexts involved in the activities are objects or substances in the physical

[('Here', u'ADV'), ('is', u'VERB'), ('what', u'PRON'), ('you', u'PRON'), ("'ll", u'VERB'), ('need', u'VERB'), ('to', 

u'PRT'), ('make', u'VERB'), ('a', u'DET'),('mocha', u'NOUN'), ('coffee', u'NOUN'), ('drink', u'NOUN'), 

('using', u'VERB'), ('brewed', u'VERB'), ('coffee', u'NOUN')] 

Figure 5.5: Example of POS tagging
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Figure 5.6: Example of hypernyms path

space, we used the knowledge base WordNet for filtering. In WordNet, each word has

its hypernyms, and the relations between the word and its hypernyms follow the "is-a"

relationship (e.g. coffee is-a [beverage, tree, seed, brown]). For each word, we walk

through its hypernyms paths, and the word is categorised as an object or a substance if

the word "object" or "substance" reside in any of its hypernyms paths. Figure 5.6 shows

that "coffee" is classified as an object as there are multiple hypernyms paths walking

through "substance".

• After the processing phases, we get thousands of contextual terms, some of them are

not discriminative and not useful for the activity recognition task. In this step, we pro-

pose to find the top-k most important contexts for each activity class. Specifically, we

calculate the term frequency-inverse document frequency (tf-idf) of each context term

with respect to the activity classes as the measurement of the discriminative power,

and choose the contexts for each activity class based on this measurement.

t f − id fc,y =
nc,y

∑c nc,y
· log

|{d}|

|{d : c ∈ d}|
(5.4.1)

where nc,y is the number of occurrences of context c in activity class y. |{d}| is the total

number of collected texts describing different activity classes, and |{d : c ∈ d}| is the

number of texts where context c appears. The first term nc,y

∑c nc,y
denotes the frequency of

the context in a specific activity class. If the context appears frequently in an activity
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Table 5.1: Examples of context-activity conditional probability

1 make coffee 2 make tea 3 make pasta 4 make oatmeal
coffee 0.93 tea 0.89 pasta 0.85 bowl 0.69
water 0.69 water 0.87 water 0.66 mix 0.62
cup 0.68 cup 0.69 salt 0.61 oatmeal 0.55

sugar 0.45 sugar 0.50 oil 0.58 sugar 0.49
pot 0.36 leaf 0.43 sauce 0.58 oat 0.48

class y, then the whole term is larger, meaning that probability of observing the context

is higher in this activity class. The second term log log |{d}|
|{d:c∈d}|

is the inverse document

frequency for the context c. This is used to punish the context that is universal and

appears in almost all documents, as it provides little discriminative power.

• Finally, we calculate the context-activity probability of those selected contexts with

respect to different activity classes based on the processed descriptive texts. Specif-

ically, we calculate the context-activity probability with the Naive Bayesian method.

Let P(c|y) be the context-activity probability (i.e. probability of context c occurring in

documents that describe activity y), let nk(c) be the number of texts that describe ac-

tivity class y = k in which context c is observed; and let Nk be the total number of texts

of that activity class. Then we can estimate the parameters of the context likelihood as,

P(c|y = k) =
nk(c)

Nk
(5.4.2)

the relative frequency of documents of activity class y = k that contain context c. In

practice, we use a small superparameter α for smoothing1.

P(c|y = k) =
nk(c) + α

Nk + |{c}|α
(5.4.3)

where |{c}| is the total number of contexts. Table 5.1 shows examples of some activity

classes and the related contexts with high probabilities.

5.4.2 Activity modelling

We use the Bayesian framework to formulate the activity model, and enforce the Markov

smoother on the neighbouring activity instances to encourage the same activity to be con-

1https://en.wikipedia.org/wiki/Additive_smoothing
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tinued to avoid accidental misclassifications. Therefore, we model the joint distribution of

the observed activity feature vector sequence x and the latent activity sequence y.

P(x, y) = p(y1)p(x1|y1)
I

∏
i=2

p(yi|yi−1)p(xi |yi) (5.4.4)

By assuming the independences among the different contexts, we can have:

p(xi|yi) =
N

∏
n=1

p(xi,n|yi) (5.4.5)

where N is the total number of contexts that are currently available. In practice, we found

that Bernoulli Naive Bayes performs better than others such as Gaussian and Multinomial

Naive Byes. Therefore, the decision rule is:

p(xi,n|yi) = p(cn|yi)xi,n + (1 − p(cn|yi))(1 − xi,n) (5.4.6)

where xi,n is a binary value, indicating the presence of the nth context in the ith instance

as described in Section 5.3, and p(cn|yi) is the conditional probability of nth context given

activity class yi, as described in Section 5.4.1. If context cn is present, then xi,n = 1 and the re-

quired probability is p(cn|yi). Otherwise, the required probability is 1− p(cn|yi). Therefore,

Bernoulli Naive Bayes also considers the non-occurrences of the contexts.

In Section 5.4.1, we described how to leverage the external source to create the knowledge

base that specifies those conditional probabilities, so that when we dynamically discover

new contexts we can use those probabilities in the knowledge base for activity recognition.

Suppose that there are d contexts dynamically available, then the emission probability needs

to be updated to incorporate the new contexts with the probabilities from the knowledge

base:

p(xi|yi) =
N

∏
n=1

p(xi,n|yi)
N+d

∏
n=N+1

p(xi,n|yi) (5.4.7)

Activity prediction is equivalent to finding the latent activity sequence that is able to maxi-

mize the joint distribution, and this is can be solved with the Viterbi dynamic programming.
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5.4.3 Activity prediction

Now that we have the emission probabilities (e.g. context-activity probabilities) from the

knowledge base, we still need the transition probabilities among the activity classes so that

we can infer the latent activity sequence on the sequence of the context observations. We

manually set the transition probabilities with domain knowledge, similar as in previous

work [154, 147]. The basic idea is that a human usually carries out activities for a certain

amount of time, and current activity is more likely to be continued in the next time slice.

Therefore, the self-transition probabilities are much higher than the probabilities of transit-

ing one activity class to a different one. We experimentally set the self-transition probabili-

ties to be 0.9 for each activity class, as we proved in [151] that this setting is able to achieve

sufficient high accuracy:

p(yi |yi−1) =











0.9 yi = yi−1

1−0.9
C otherwise

(5.4.8)

where C is the number of activity classes as specified in Section 5.3.

Given a sequence of context observation x = x1, x2, · · · , xm, the latent activity classes can

be estimated by finding the corresponding latent activities of those observations, so as to

maximize the joint distribution p(x1, x2, · · · , xm, y1, y2, · · · , ym). To solve the problem, we

define the forwarding variable,

αj(i) = max
y1,y2,··· ,yi−1

p(x1, x2, · · · , xt, y1, y2, · · · , yi = j) (5.4.9)

s.t. 1 ≦ i ≦ m (5.4.10)

j ∈ {1, 2, · · · , C} (5.4.11)

to be the highest possibility of the ith observation being activity j, with respect to the pre-

vious i − 1 latent activity classes. Maximising the joint distribution is equivalent to solving
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max
j

αj(m). By inducing iterative relationship between the forwarding variables:

αj(1) = p(y1 = j)p(x1 |y1 = j) (5.4.12)

αj(i + 1) = (max
k

αk(i)p(yi+1 = j|yi = k))p(xi+1 |yi+1 = j) (5.4.13)

in each iteration, we choose the activity class that maximises the forwarding variable as the

prediction:

yi+1 = argmax
j

αj(i + 1) (5.4.14)

5.5 Data-driven method

The previous section describes how to mine knowledge from external sources for activity

modelling and prediction. One of the advantages of this method is that training data is not

required for the parameters learning, and the activity model can be modelled and adapted

with dynamically available contexts without supervision. However, activity learning and

adaptation with common sense general knowledge is usually not able to achieve high accu-

racy, due to the fact that people perform activities differently. Therefore, the activity model

needs to be personalised to a specific user for high recognition performance achievement.

The personalisation process takes the activity data of a specific user as input, and employs

the data-driven machine learning method for learning the parameters of the activity mod-

els. The basic idea of machine learning is to find the parameters that minimise the empirical

error given the training data, so it is also expected to minimise the testing error given the

assumption that the user activities remain consistent during a short period of time.

To do this, we extend the activity model in Figure 5.2 and context-activity conditional prob-

ability is further associated with a weight, shown in Figure 5.2. The rationale of introducing

the weight is twofold. The first one, as described previously, is that the weight can be used

for personalising the activity model and obtaining optimal recognition accuracy (i.e. show

how important is a particular context for an activity recognition of a particular person).

Second, since margins between activity classes may change due to additional context infor-

mation provided by newly discovered sensors, learning the weights from the context data

will provide activity recognition adaptation to adjust the classification margins. For exam-
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Figure 5.7: An example of the probability and weight matrices, and the recognition process of a
feature vector.

ple, by mining knowledge from websites [37], we know the probabilities of sugar are almost

the same in activities Make tea and Make coffee. However, a specific individual may use sugar

heavily in Make tea and infrequently in Make coffee. Therefore, the weight of sugar in Make

tea needs to be increased for this person activity recognition to indicate the important role it

plays in the activity. In the later sections, based on the sensor and activity context models,

we formulate a machine learning problem and propose methods to learn the weight matrix.

5.5.1 Activity recognition

In the modified activity model (Figure.5.2), each context probability is further associated

with a weight. The activity recognition is, for a given a feature vector xi, to calculate a

score for each activity class and choose the class that has the maximum score as the pre-

diction. To calculate the score for an activity, we first transform the feature vector xi into

the log-probability vector of the observed contexts with the Hadamard product logPyi
◦ xi

where (logPyi
◦ xi)j = logPyi ,j ∗ x

j
i , and then linearly combine it with the weight vector
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Wyi
· (logPyi

◦ xi)
T, where W ∈ R

C×N is the weight matrix (Figure.5.7) with Wkj being the

weight associated with Pkj. These two processes are illustrated as two steps in Figure.5.7.

After that, the activity that has the maximum score is chosen as the prediction:

prediction = argmaxyi
Wyi

· (logPyi
◦ xi)

T (5.5.1)

In this chapter, the weight matrix W needs to be learned from the dataset. There are numer-

ous ways of obtaining matrix P described in the previous section, and we calculate P based

on the available labelled data by frequency counting. Notice that the weight matrix cannot

be learned using publicly available machine learning toolkits, as the input vector (i.e. the

log probabilities of the observed contexts) extracted from a feature vector varies when cal-

culating evidence against a different activity class. As illustrated in Figure.5.7, by coupling

the feature vector with the probability matrix, we can obtain distinct input vectors (e.g. each

row in matrix logP ◦ xi) for different activity classes. Also, matrix P specifies the generic re-

lations between activities and contexts, and remains unchanged during the learning process,

while matrix W maximizes the boundaries among activity classes. In this light, our method

can be seen as a hybrid of the generic and discriminative model. Performing parameters

learning based solely on the feature vectors xi is a conventional machine learning method

(we compare those methods with ours in the experiment section). In the next section, we

describe how to use the learning-to-rank method to approach the context weight learning

problem.

5.5.2 Activity learning

In this section, we draw the idea from learning-to-rank [17] to learn the weight matrix W.

The learning-to-rank algorithm is commonly used in conventional recommender systems

to recommend interesting items (e.g. products, friendships, point-of-interests) to the users.

Specifically, it learns the interest of each user and the functionality of each item [85]. An item

is recommended to a user if the item’s functionality matches the user’s interests. Normally,

the interest and functionality are represented as latent features, and the degree of match can

be measured by the inner-product of these two latent features, the higher the inner product,

the more the item is preferred by the user. In the pairwise learning-to-ranking problem, the
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recommender system learns the latent features by ranking the preferred item higher than

the less-preferred item.

Similarly in our case, the parameters (e.g. W) of each activity class can be seen as the func-

tionality of the class, while the feature vector can be regarded as the interest of the activity

instance. We compute a score against each activity class for each instance during the learn-

ing process, and the scores can be regarded as the rankings of activity classes given the

particular instance. The learning process is to find the matrix W, so that for all the training

instances, the correct activity classes are ranked higher than the others.

r(yi , xi) > r(y, xi)

s.t. (xi, yi) ∈ L, y ∈ {1, · · · , C}, y 6= yi

r(yi , xi) = Wyi
· (logPyi

◦ xi)
T + byi

r(y, xi) = Wy · (logPy ◦ xi)
T + by

(5.5.2)

where by is the displacement variable we introduce for the case that an activity class is barely

described by any contexts. Solving the above inequality is equivalent to maximizing the

value of the Area Under the ROC Curve (AUC) which is commonly used in classification

problems. Generally the larger the value of AUC is, the more the correct activity class ranks

higher than the others. Given all the instances in the labelled training set L, the AUC value

can be calculated as follows,

AUC =
∑(xi ,yi)∈L ∑y 6=yi

I(r(yi, xi)− r(y, xi))

|L|(|C| − 1)
(5.5.3)

where I(.) is an indicator function that is equal to 1 if r(yi, xi) > r(y, xi) and 0 otherwise.

Learning the parameters W, b (b is the vector of by, y ∈ {1, · · · , C}) is equivalent to max-

imising the AUC value. It is a common practice to introduce a differentiable function to

approximate function I(.) when performing the optimisation. Many approaches [18] use

the sigmoid function in the form of σ(x) = 1
1+e−x , to approximate the function I(.). As the

result, the final object optimisation function can be derived, usually represented as a log

form as follows,

max ∑
(xi,yi)∈L

∑
y 6=yi

log(σ(r(yi , xi)− r(y, xi)))− regularization (5.5.4)
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where the regularization is introduced to address the problem of overfitting during the learn-

ing process, which is detailed later in this section.

Regularization

Employing the learning-to-rank algorithm facilitates the addition of different kinds of con-

straints. For example, adding the l2-norm of the parameters W into the object function

Eq.(5.5.4) can avoid the problem of overfitting. Moreover, the regularization term can be

leveraged to perform collaborative learning (e.g. neighbouring instances are more likely to

belong to the same activity class). Human activities present strong temporal relationships

and the current activity is more likely to be carried out in the next time slice [147]. Therefore,

when performing optimisation for an instance, we consider not only the local evidences (i.e.

context observations), but also evidences from temporally adjacent instances. In this way,

neighbouring instances are encouraged to have the same activity labels to smooth out the

outliers. Adding these constraints into the object function, Eq.(5.5.4) can be reformulated as

follows,

max ∑
(xi ,yi)∈L

∑
y 6=yi

log(σ(r(yi , xi)− r(y, xi)))

−
β1

2 ∑
(xi,yi)∈L

∑
j∈N(i)

(r(yi , xi)− r(yi, xj))
2

−
β2

2

C

∑
i=1

(||Wi ||
2 + ||bi||

2)

(5.5.5)

where j ∈ N(i) indicates that instance (xj, yj) is temporally adjacent to instance (xi, yi), and

β1, β2 control the tradeoff between the training error and regularization.

Parameter learning

In this chapter, we employ the widely used stochastic gradient descent (SGD) to learn the

parameters W, b by maximising the object function Eq.(5.5.5). In the learning process, the pa-

rameters are initially randomised and then iteratively updated based on the initial labelled

data. Specifically, we iteratively choose a random labelled instance, calculate the deriva-

tive of the object function and update the corresponding parameters by walking along the
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ascending gradient direction,

W = W + η ∗
∂Obj(W, b)

∂W

b = b + η ∗
∂Obj(W, b)

∂b

(5.5.6)

where Obj(.) denotes the object function parameterised by W and η is the learning rate.

Given an instance (xi, yi), the detailed gradients of the corresponding parameters can be

derived as follows,

∂Obj(W, b)

∂Wyi

= (1 − σ(r(yi , xi)− r(y, xi))) ∗ (logPyi
◦ xi)

− β1 ∑
j∈N(i)

(r(yi , xi)− r(yi, xj)) ∗ (logPyi
◦ (xi − xj))

− β2Wyi

∂Obj(W, b)

∂byi

= (1 − σ(r(yi , xi)− r(y, xi)))− β2byi

(s.t. y 6= yi)

(5.5.7)

For the other Wy, by that y 6= yi:

∂Obj(W, b)

∂Wy
= −(logPy ◦ xi) ∗ σ(r(yi , xi)− r(y, xi))− β2Wy

∂Obj(W, b)

∂by
= −σ(r(yi , xi)− r(y, xi))− β2by

(5.5.8)

The iterative learning process terminates when either one of the following two conditions is

satisfied: (1) the l2-norm of the derivative of the object function is smaller than a threshold

(e.g. 1e-4), and (2) the maximum number of iterative steps is reached. The pseudocode

of the SGD learning process is presented in Algorithm 4. Figure.5.8 presents an example

of the update of the weight matrix. Notice that the update of the parameters (W, b) only

happens during the learning process, and the learning process happens in the initial activity

learning and the activity model adaptation described later in the section. For illustrative

purpose, we do not consider regularization items. Suppose the ground truth label of the

feature vector xi is Make tea. However, xi is misclassified, as Make coffee achieves the highest

score with current parameters, W. During the learning process, we compute the derivative

of the object function with Eq.(5.5.7) and Eq.(5.5.8) (step 2), and update the weight matrix
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with Eq.(5.5.6) (step 3). Computing the scores for the activities with the updated parameters,

we find that the score for the ground true activity is increased, while the scores for the others

are decreased.

Algorithm 4 Pseudocode of the SGD learning process.
Input:

Initial labelled data: L = (xi, yi)i=1,··· ,|L|
Probability matrix: P
Convergence criteria: σ
The number of instances selected for learning in each iteration: n

Output: Parameters: W, b
1: Randomize W, b
2: while not converged or maximum steps not reached do
3: Randomly sample n instances
4: for each instance do
5: update W, b with Eq.(5.5.7) and Eq.(5.5.8)
6: end for
7: end while
8: return W, b

5.5.3 Activity recognition adaptation

When new sensors that provide new context are discovered, we need to perform adaptation

of the activity model, so that the activity model can leverage the new context to potentially

improve the recognition performance.

Adaptation data selection

Suppose that there are d contexts dynamically available, the feature vectors are now ex-

panded to N + d dimensions and the learning problem is now to learn the corresponding

parameters Wy,[N+1:N+d] s.t. y ∈ {1, 2, · · · , C} from data. Learning the parameters requires

the instances that contain the new context and their corresponding activity classes. Many

previous works [131] utilise semi-supervised approaches to select high-confidence instances

for model retraining. However, the high-confidence instances are less informative and have

little contribution to the parameters learning. For example, in high-confidence instances,

an activity class is ranked higher than the others, and (1 − σ(r(yi , xi)− r(y, xi))) is close to

0. Therefore, there is barely any gradient descend on these instances and training on them
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Figure 5.9: Distribution over the scores of different activities

does not minimize the training errors. Moreover, the recognition performance of the activity

model retrained with the semi-supervised approach usually depends on the original model,

and the accumulated error may seriously affect the recognition performance.

In this section, we employ the method proposed in Section 4.3.3 for selecting the most in-

formative instances without supervision, so that the activity model adaptation can be per-

formed automatically. Specifically, for each instance we calculate a score that takes into

account multiple factors (e.g. posterior probability, the number of neighbouring instances

that have the same predicted class label). Then we select the instances with high score and

their predicted classes for activity model adaptation. However, different activity classes may

have different distributions over the scores (e.g. Figure 5.9). Therefore, to maintain class bal-

ance, we set different thresholds for different classes, so that for each class all the instances

having the score higher than the threshold of that classes are selected as adaptation data.

The threshold can be set to certain percentile (e.g. 30, 50) of the distribution over the score

for each class, so that class balance can be guaranteed.

Activity model adaptation

With the adaptation data, we perform learning to rank to obtain more accurate activity mod-

els by weighting each context. Let Q = {(xj, yj)}j=1,··· ,|Q| be the adaptation dataset, where

(xj, yj) is the jth instance in the adaptation dataset that contains dynamically available d

contexts: xj = {x1
j , · · · , xN

j , · · · , xN+d
j } with xk

j ∈ {0, 1}. As a result, the object function in
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Eq.(5.5.5) can be reformulated as follows,

max ∑
(xi,yi)∈L

∑
y 6=yi

log(σ(r̂(yi, xi)− r̂(y, xi)))

+ ∑
(xj,yj)∈Q

∑
y 6=yj

log(σ(r(yj , xj)− r(y, xj)))

−
β1

2 ∑
(xi,yi)∈L∪Q

∑
j∈N(i)

(r(yi , xi)− r(yi, xj))
2

−−
β2

2

C

∑
i=1

(||Wi||
2 + ||bi||

2)

(5.5.9)

where

r̂(yi, xi) = Wyi,[0:N] · (logPyi ,[0:N] ◦ xi)
T + byi

, (xi, yi) ∈ L (5.5.10)

The object function can also be maximised with SGD in the same way as in the previous

section, we do not detail the process here. During the learning process, the parameters (i.e.

W, b) will be iteratively adjusted to discriminate one activity from another, and a certain ac-

tivity class will allocate a large weight to the context that is important to the activity and

a small weight to the less discriminative context. In this light the activity model adapta-

tion process is able to automatically determine the useful context. Notice that even though

we only query a small set of the activity instances for retraining, we can still leverage the

unlabelled instance for temporal regularization (3rd term in Eq.5.5.9).

Activity prediction: Predicting the activity class given the context observations is equivalent

to solving Eq.(5.5.1). However, we include the temporal regularization into the equation and

the classification of each instance also considers the classification results of neighbouring

ones,

prediction = argmaxyi

(

r(yi, xi)−
β1

2 ∑
j∈N(i)

(r(yi , xi)− r(yi, xj))
2) (5.5.11)

where β1 controls the tradeoff between temporal regularization and local evidence.

108



CHAPTER 5: HIGH-LEVEL ACTIVITY RECOGNITION AND ADAPTATION WITH

DYNAMICALLY AVAILABLE CONTEXTS

5.6 Experiment

5.6.1 Public dataset

We validate the proposed methods using the OPPORTUNITY dataset [126]. The dataset

contains activity data from 4 subjects when they perform Activities of Daily Living (ADLs)

in a home setting. In total, 72 sensors, including 21 ambient sensors, and 14 object sensors,

are deployed to monitor the activities with the sampling rate of 30/second. The activities of

the user in the scenario are annotated on different levels, including locomotion (e.g. stand-

ing), gesture (e.g. opening), high-level activities (e.g. Coffee time). For object and ambient

sensors, even though there are several sensors of the same type, they are used for moni-

toring different contexts. Therefore, there is 1-to-1 correspondence between contexts and

sensor readings for those object and ambient sensors. For the other wearable sensors used

to recognize low-level locomotions (e.g. standing), we treat them as a group and use their

readings to recognise the low-level locomotive contexts (e.g. standing) and use recognition

results as inputs for high-level activity recognition (e.g. Coffee time). The reason is that

wearable sensors produce different readings when they are fixed in different body positions

with different orientation. As a result, the sensor readings they produce do not have se-

mantic meanings (in contrast to low-level activities), so it is impossible to apply domain

knowledge on these readings.

Each of the four subjects (Subjects 1, 2, 3 and 4 are represented as S1, S2, S3 and S4) performs

the ADLs for 5 runs. In each run, the subjects are instructed to perform the activities with

a high-level script and are encouraged to perform the activities in an usual way with all

the variations they are used to. In our demonstration of the effectiveness of the proposed

method for recognising high-level complex activities we use data for 3 subjects, not 4. We do

not include the data of the 4th subject as rotational noises have been artificially added and

therefore the sensor data does not represent the activity data captured in realistic scenarios

[16]. We use a sliding window of 5 seconds with 50% overlap to segment the streaming

data, and the data description is presented in Table.5.2. The window length of 5 seconds is

a tradeoff between delay and recognition performance, and examining the influence of the

window length is out of scope for this thesis.
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Table 5.2: Dataset description.

Datasets Activities (Instances)
S1 Cleanup (283), Coffee_time (376),

Early_morning (283), Relaxing (100),
Sandwich_time (576), null (380)

S2 Cleanup (274), Coffee_time (273),
Early_morning (216), Relaxing (120),
Sandwich_time (749), null (290)

S3 Cleanup (205), Coffee_time (279),
Early_morning (369), Relaxing (167),
Sandwich_time (507), null (229)

Table 5.3: Simulation activity classes.

1 Make coffee 7 Brush teeth 13 Clean table
2 Make tea 8 Wash clothes 14 Play PC games
3 Make pasta 9 Make orange juice 15 Watch TV
4 Make oatmeal 10 Watch DVD 16 Put on make-up
5 Fry eggs 11 Take pills 17 Use toilet
6 Make phone call 12 Read books

5.6.2 Simulation dataset

We also manually generate sensor data for the validation of the knowledge-driven method.

We generate sensor data for commonly performed daily activities that are listed in Table 5.3.

The generation of the sensor data is based on the context-activity probability matrix P. We

assume that there is 1-to-1 correspondence between the sensors and context the same as in

previous works [154, 147, 116, 95, 37]. Algorithm 5 describes the generation process.

The prior distribution of the activity classes is proportional to the number of descriptive

texts that we can crawl from the websites for each activity class. In Algorithm 5, we first

generate the class label Datai,−1 for ith instance, and then generate context presences for

that instance. Specifically, for each context j, the presence of that context in activity class

Datai,−1 is drew from the Bernoulli distribution Bernoulli(PDatai,−1 ,j). We use the Bernoulli

distribution for generating the context presence as it has been demonstrated in previous

work [99] that the real sensor event distribution is Bernoulli distribution parameterised with

the firing probability. Due to the assumption of the 1-to-1 correspondence between sensors

and contexts, drawing the context presences is equivalent to generating the sensor firings

(i.e. sensor events).
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Algorithm 5 Simulation data generation process.
Input:

prior: activity classes prior distribution
P: context-activity conditional probability matrix, Pkj stands for the probability of ob-
serving jth context in kth activity class
N: the total number of generated activity instances

Output:
Data: the generated sensor data, where Datai represents the ith instance, Datai,−1 is the
corresponding class label and Datai,j ∈ 0, 1 indicates the presence of jth context in ith

instance.
1: for i = 1 to N do
2: Draw the activity class from Dirichlet Distribution parameterized with prior:

Datai,−1 ∼ Dirichlet(prior)
3: for each context j do
4: Draw the presence of the context from Bernoulli distribution parameterized with

PDatai,−1,j: Datai,j ∼ Bernoulli(PDatai,−1 ,j)
5: end for
6: end for
7: return Data

5.6.3 Validation of knowledge-driven method

In this subsection, we describe the validation of the knowledge-driven method for activity

recognition and adaptation. Specifically, we demonstrate the possibility of incorporating

dynamically discovered contexts for activity recognition. We first introduce the validation

method, followed by an illustrative example, and finally the experimental results.

Validation method

For the OPPORTUNITY dataset, we do not recognise gesture contexts, as they are highly

correlated with object contexts [147], and they are difficult to recognise based solely on the

wearable sensors [16]. Therefore, each instance consists of 27 features, including locomotion,

object and ambient contexts. For the binary sensors, the produced values are used directly

as features (i.e., pre-processing of sensor readings into context is not needed). For object and

ambient sensors that produce continuous values and these values require pre-processing to

achieve context information that can be used for activity recognition, we use K-means to

cluster the standard deviation of the sensor values into 2 components, indicating whether

the sensors are triggered or not. Therefore, even though those sensors produce continuous
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Figure 5.10: Original activity model of make coffee and make tea

readings, they are treated as binary sensors in a logical sense. The different preprocessing

methods are the results of sensor heterogeneity and motivate the sensor modelling.

For the simulation dataset, we use the tf-idf for selecting the 10 most significant contexts for

each activity class as described in Section 5.4.1, and that results in 149 contexts for all the

activities (some activities share common contexts).

To validate the feasibility of incorporating new contexts for activity recognition, for the OP-

PORTUNITY dataset, we create two activity models. The first activity model contains X

contexts (X is a parameter and it is varied in our experiment), while the second model also

contains dynamically available contexts in addition to the original X contexts. The X con-

texts are randomly sampled and this process is repeated 50 times to avoid biases. The aver-

age recognition performance of these two activity models is compared in this experiments,

and the second model is supposed to have better performance as it contains additional con-

texts. The same validation method is applied to the simulation data, except that we generate

separate datasets for the two activity models. Notice that activity modelling and prediction

are introduced in Section 5.4.2 and Section 5.4.3, respectively.

Example

The following example illustrates the process of incorporating dynamically available context

for activity recognition and adaptation. Suppose we have the activity class make coffee and

make tea, characterized by contexts cup, water, and sugar with different probabilities as shown

in Figure 5.10.

For the feature vector (shown in Figure 5.11) where all the current available contexts cup,
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Figure 5.11: An example of feature vector with context water, cup and sugar

Figure 5.12: Activity models with additional context leaf

Figure 5.13: An example of feature vector with additional context leaf present

Figure 5.14: An example of feature vector with additional context leaf not present
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water and sugar are present, it is always recognized as make tea since make tea has high pos-

terior probability calculated with the parameters and the feature vector. As make coffee is

also characterized by those three contexts with similar probabilities, misclassification occurs

when the user is actually carrying out the activity make coffee.

Suppose now we dynamically discover a sensor and it provides the context leaf that is used

to characterize activity make tea, then the activity model can be adapted with the parameters

mined from the website as shown in Figure 5.12. The context leaf provides additional infor-

mation that is discriminative enough to differentiate make coffee from make tea. For example,

feature vector where the context leaf is present is classified as make tea (shown in Figure 5.13),

while feature vector where the context leaf is not present is classified as make coffee (shown

in Figure 5.14).

Experiment results

The experiment results are presented in Figure 5.15. Notice that in the simulation data, we

create one dataset for the original activity model that only contains certain percentage of the

contexts, and a second dataset for the adaptation activity model that contains new contexts

in addition to the original ones. The percentage of the contexts in the first dataset is varied

from 10% to 90% (shown in Figure 5.15a∼ Figure 5.15i). Also, the percentage of contexts that

are dynamically available is also varied from 10% till all the remaining contexts are added.

As for the OPPORTUNITY dataset, the number of contexts in the original activity model is

set to 24, so the number of dynamically available contexts is 3.
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Figure 5.15: Experiment results on simulation data and OPPORTUNITY

From the figures, we can see that we are able to improve the recognition performance by

incorporating new contexts dynamically using the knowledge from the websites without

supervision. The amount of accuracy improvement is proportional to the number of dy-

namically available contexts, as more contexts provide more information for the activity

models. Also, we are able to achieve high accuracy (97%) using all contexts as shown in the

figures, and we believe the reasons are two-fold. First, the accuracy depends on the types

of activity classes we are to classify. As most of the activities listed in the previous table

are characterised by distinguished contexts, their distinct activity patterns make them easy

to recognise. Second, in the experiment we used the context-activity probability matrix to

generate the simulation data and then used the probabilities to create the Bernoulli Naive

Bayesian activity model. Therefore, the dataset contains a certain amount of biases.

We can also observe that experiments on OPPORTUNITY shows a little recognition per-

formance improvement (1%∼ 3%). This is because OPPORTUNITY is a realistic activity

dataset that contains a lot of activity patterns variants. Therefore, it is difficult to recognise

the activities, and the extreme example can be seen on the first subject that only experiences

1% f1-score improvement. In addition, we only dynamically incorporate 3 contexts, some

of which may not be discriminative enough to improve the recognition performance signif-

icantly. To validate this assumption, we vary the parameter X from 24 to 15, and present

the result in Figure 5.16. From the figures we can observe that, with lower X we experience

larger recognition performance gain, as decreasing X means that we incorporate more con-

texts dynamically. However, the recognition performance of the activity model suffers as we

lower X. This is expected as less discriminative information is available for the original ac-
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Figure 5.16: Vary X from 24 to 15 in experiments with OPPORTUNITY

tivity model. The marginal f1-score improvement on dataset OPPORTUNITY demonstrates

that the general knowledge cannot be personalised to a specific user for achieving high ac-

curacy, and this inspires us to use data-driven method so that the activity model can be

adapted to a specific user with his/her own activity data.

5.6.4 Validation of data-driven method

Validation method

In this section, we use the OPPORTUNITY dataset for validating the data-driven method

described in Section 5.5. The preprocessing of the dataset is the same as that described in

Section 5.6.3. Notice that, we do not demonstrate the data-driven method with the simula-

tion data. The reason is that we aim to demonstrate that the data-driven method is able to

personalise and adapt the activity model to a specific user for achieving high accuracy. How-

ever, the simulation data is generated using general knowledge, and it does not represent

activity data of specific real users.
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We perform leave-one (run)-out cross validation (LORO-CV) on each dataset. Specifically,

one run of the data is left out for validation, and 50% of the left runs are used as the initial

training data to create the initial activity model. Classification is performed on the other 50%

of the remaining runs and a certain percentage of those data is selected as the adaptation

dataset. Notice that in Section 5.5.3, we introduce an adaptation data selection method that

computes a score for each classified instance and selects the instances scored higher than a

threshold for the adaptation. The threshold is set to certain percentile (e.g. 30 percentile)

of the distribution over the scores of each class. Finally, the model is validated on the left

out run. Notice that the rationale of choosing the LORO-CV rather than commonly used

10-fold-CV is threefold. First, the temporal information preserved in LORO-CV can be used

for regularization both in the training and testing process. Second, the testing process in

LORO-CV classifies the testing instances sequentially, this is more similar to the real-time

activity recognition. Finally, in 10-fold-CV, the data in training set and testing are correlated

to some extent as the data streaming is segmented with a 50% overlapped sliding window.

Therefore, 10-fold-CV does not reflect the real performance of classifier [42].

To emulate the impact of incorporating new sensors (and the context that can be derived

from their readings) we first use a subset of the original OPPORTUNITY dataset, and the

remaining portion of the dataset is used to emulate sensor readings from newly discov-

ered sensors. In other words, we perform leave-n (contexts)-out cross validation, where the

instances in the initial training data contain information of (27 − n) contexts, while the in-

stances in the selected adaptation dataset contain information about all the 27 contexts. This

cross validation process can be seen as: we recognise the activity with X (i.e. 27 − n) con-

texts, and then the same activities are recognised with potentially better accuracy with X +Y

(i.e. 27) contexts, where Y (i.e. n) new contexts are provided by newly incorporated sensors.

This kind of cross validation is commonly used in zero-shot learning [23]. The description

of the cross validation is presented in Table.5.4.

All the recognition results are presented in the form of f1-score (f1-score=2*precision*recall
precision+recall ).
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Table 5.4: Cross validation description.

Dataset Composition Description
initial
training
set

50% of the remaining
runs

the 50% data is randomly sam-
pled, each instance contains in-
formation about (X) contexts, X
is varied from 24 to 15.

adaptation
dataset

classified instances
scored higher than
the threshold (e.g.
30 percentile of the
distribution over
the scores of each
class), each instance
contains information
of the 27 contexts

validation
dataset

one run

Impact of adaptation

We study the f1-score gain after incorporating dynamically available context in this exper-

iment. The threshold for selecting the adaptation is set to 30 percentile of the scores of the

classified instances, and the number of contexts in the initial dataset, X, is varied from 24 to

15. For a given X, we randomly sample X contexts and repeat this process for 200 times to

avoid biases. As a result, each point in Figure.5.17 represents a round of training, adaptation

and validation. The X-axis of each data point is the f1-score before the model adaptation,

and Y-axis is the f1-score after the adaptation. Therefore, any data points on the right side

of the line f (x) = x indicate that there is f1-score improvement after the adaptation in these

rounds of experiments, larger distance from the line means greater improvement.

Figure.5.17 shows that incorporating dynamically available context to adapt activity model

is able to increase the recognition performance. Generally, the f1-scores of setting X = 24

are more stable, while f1-scores of setting with smaller X become more scattered. The un-

derlying reason is that the f1-score improvement depends on the discriminative power of

the dynamically available contexts. Therefore, integrating more contextual sources dynam-

ically will provide diversified discriminative information, and results in a more diversified

f1-score gain. Basically, the more contexts are incorporated, the higher improvement of

recognition performance is expected. To validate, Figure.5.18 presents the CDF (cumula-

tive distribution function) of the f1-score gain across the datasets. It can be seen from the
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Figure 5.17: F1-score before and after adaptation across the datasets

figure that incorporating more contexts for adaptation can obtain more f1-gain in general

than fewer contexts . Take S3 for example, to achieve f1-score gain more than 20%, the prob-

ability is 60% if we incorporate 12 contexts (X = 15). By contrast, the probability is 40% and

20% if we incorporate 9 (X = 18) and 6 contexts (X = 21) respectively.

Impact of adaptation data

In this subsection, we examine the impact that the size of adaptation data has on the recog-

nition performance. Figure.5.19 shows the impact of the amount of adaptation data on the

f1-score across the datasets in different scenarios (i.e. number of leave-out contexts). The

x-axis represents the number of contexts in the initial train set and the y-axis stands for

the f1-score after adaptation. For each X ∈ {15, 18, 21, 24}, the threshold for selecting the

adaptation data is varied from 30 percentile to 90 percentile of the scores of the classified

instances. Higher threshold means less adaptation for retraining.

From the figures, we can draw the following conclusions. Firstly, activity models with fewer
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Figure 5.18: CDF of the f1-score across the datasets.
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Figure 5.19: The impact of the amount of adaptation data on the recognition performance (mea-
sured with f1-score).
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contexts initially are more sensitive to the amount of adaptation data, as shown in the stan-

dard deviation of the results. According to Vapnik’s theory [145], the testing error of a clas-

sifier is upper bound by the testing error plus a term that is proportional to the complexity

of the classifier and inversely proportional to the amount of training samples. Incorporat-

ing more contexts means that the activity models need to estimate more parameters, and

hence increases the complexity. Therefore, the amount of adaptation data becomes critical

to the testing error, and increasing the amount of adaptation set will lower the testing error

dramatically.

Secondly, activity models with more contexts initially perform better than those with fewer

contexts. This is because activity models trained with an initial train set that contains more

contexts are able to yield higher recognition performance, and they can predict the instances

with higher accuracy and select the correctly predicted instances for adaptation.

Finally, there is no significant difference in the recognition performance when we vary the

threshold from 30 percentile to 70 percentile. However, the f1-scores drop sharply when we

set the the threshold to 90 percentile. The reason is that we do not have sufficient adaptation

data with high threshold. Therefore, training the parameters with insufficient data results

in overfitting and suboptimal activity models.

Influence of regularization weight

In this subsection we study impact of the temporal regularization. The temporal regular-

ization term β1 in Eq.(5.5.9) controls the tradeoff between the local contextual information

and the information from neighbouring instances. It is involved in both of the learning and

prediction processes. Figure.5.20 illustrates the f1-score as a function of the temporal reg-

ularization weight which is varied from 0 to 0.4. As shown in Table 5.5, the threshold for

selecting adaptation data is 30 percentile of the scores, and the number of initial contexts is

set to 24. We do not present the results of other settings (i.e. X ∈ {15, 18, 21}, threshold =

50,70,90 percentile) here as they present the similar trend. From the figure we can see that by

putting more weight on the pairwise evidence from neighbouring instances, we are able to

smooth out the accidentally mis-classified instances and improve the overall f1-score. After

a certain threshold (e.g. 0.2), the recognition performance becomes stable. This figure also
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Figure 5.20: The f1-score as a function of the temporal regularization weight.

shows that it is easy to specify the regularization weight-setting: the weight of any values

larger than 0.2 can obtain the optimal result.

Table 5.5: Parameters setting description.

Parameters Value
Threshold for selecting the adaptation
data

30 percentile of scores of the classified
instances

Number of contexts in the initial train
set

X=24

Comparison with conventional methods

In this subsection, we compare the proposed method with the conventional machine learn-

ing methods. All the other settings (e.g. training set, validation set, method of cross-

validation) are the same except that the learning process is performed based on the input

feature vector xi described in Section 5.3. During the adaptation process, the instances in the

initial training set xi = {x1
i , · · · , xN

i } are extended to xi = {x1
i , · · · , xN

i , 0N+1, · · · , 0N+d} to

guarantee a common classifier is trained.

The baselines introduced for the purpose of comparison include: SVM (support vector ma-

chine), RF (Random Forest) and LR (logistic regression). The parameters for those classifiers
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are obtained through the grid search cross validation, as shown in Table 5.6. The threshold

for selecting the adaptation data is set to 30 percentile and the comparison results across the

datasets are presented in Figure.5.21.

Table 5.6: Parameters for baselines.

Classifier Parameters
SVM kernel=RBF, γ = 0.01, C = 10e4
RF n_estimators = 100
LR C = 10e4

Figure.5.21 shows that the proposed method outperforms all the baselines with a signifi-

cant margin. We also vary the number of contexts in the initial dataset from 24 to 15 for each

dataset. On average, our method is 16.5% (max: 17.4%, min: 14.4%), 17.2% (max: 21.0%, min:

12.7% ) and 16.1% (max: 20.8%, min: 8.34%) higher than the second best baseline on dataset

S1, S2 and S3 respectively, in terms of f1-score. These experiments demonstrate the advan-

tage of our method in performing adaptive activity learning, and we believe the underly-

ing reasons are twofold. Firstly, embedding the temporal regularization into the learning

and prediction processes enables the proposed method to effectively leverage the temporal

characteristic of human activities for obtaining desired predictive outcomes. Secondly, the

weighted model in our method learns a weight for each context probability. Therefore, it en-

codes domain knowledge into the activity model and is equivalent to feature transformation

to some extent.

Comparison with hybrid classifiers

It seems unfair to compare our method with the conventional machine learning methods,

as they make prediction for each instance independently and do not consider the temporal

Table 5.7: Comparison with hybrid classifiers.

Classifiers
S1 S2 S3

Number of contexts in the initial train set
X=15 X=18 X=21 X=24 X=15 X=18 X=21 X=24 X=15 X=18 X=21 X=24

SVM+HMM 0.62 0.662 0.697 0.735 0.635 0.685 0.759 0.814 0.675 0.728 0.775 0.858
RF+HMM 0.621 0.658 0.689 0.722 0.637 0.686 0.752 0.803 0.68 0.725 0.765 0.846
LR+HMM 0.631 0.674 0.71 0.752 0.631 0.683 0.751 0.805 0.672 0.723 0.769 0.85
SVM+CRF 0.626 0.668 0.703 0.742 0.64 0.691 0.764 0.82 0.685 0.737 0.783 0.866
RF+CRF 0.627 0.665 0.697 0.732 0.64 0.691 0.76 0.812 0.692 0.737 0.778 0.857
LR+CRF 0.633 0.675 0.711 0.753 0.634 0.688 0.757 0.812 0.679 0.731 0.778 0.86
Ours 0.796 0.839 0.866 0.877 0.815 0.892 0.923 0.928 0.884 0.911 0.923 0.93
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Figure 5.21: The impact of the amount of adaptation data on the recognition performance (mea-
sured with f1-score).

information of neighbouring instances. Actually, the previous work [16, 151] proposes to

combine typical classifiers with graphical models (e.g. HMM, CRF) to smooth out the out-

liers. As those graphical models make assumptions about the dependency among the latent

activity classes of the instances, and the classification of one instance also considers the pre-

dictive outcomes of neighbouring ones, we perform a comparison between our method and

those hybrid classifiers.

The threshold for selecting adaptation data is 30 percentile of the scores, and the number

of initial contexts is varied from 24 to 15. Table.5.7 presents the comparison results. From

the table we can see that our method still outperforms the best baseline in terms of f1-score.

Specifically, when compared with the best HMM-hybrid conventional classifier, the average

f1-score advantage is 15.29% (S1), 16.55% (S2) and 15.22% (S3) respectively. The average

advantage is 15.16% (S1), 16.04% (S2) and 14.28% (S3) when compared with the best CRF-

hybrid classifier. As has been confirmed in previous work [144], CRF performs slightly bet-

ter than HMM. Notice that even though we only query limited amount of the labelled data

in the adaptation phase, we are still able to leverage the neighbouring unlabelled instances

for temporal regularization (Eq.(5.5.9)).
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5.7 Summary

In this chapter, we address the problem of adaptive high-level activity recognition with dy-

namically available sensors. The existing research shows that additional contextual informa-

tion can potentially improve the recognition accuracy, and sensor addition or replacement is

very common in activity recognition systems. Therefore, it is extremely important that the

activity recognition framework is able to evolve to use dynamically available contexts.

Due to the sensor heterogeneity, we propose to model context of sensors and activities, so

when the sensors are available dynamically, the raw sensor data can be pre-processed prop-

erly for the recognition task. Based on these models, we propose the knowledge-driven

and data-driven method for activity modelling and activity model adaptation with new

contexts. In the knowledge-driven method, we mine external resources (e.g. websites) to

specify the parameters in the activity models. While in the data-driven method, we use the

predicted instances to learn the parameters of new contexts in the activity models. With the

knowledge-driven method, we can perform activity model adaptation with new contexts

in an unsupervised manner. However, the knowledge mined from the websites is general

across users and cannot achieve high accuracy, due to the fact that people perform activity

differently. On the contrary, the data-driven method can personalise the activity model to a

specific user with his/her own data.

In the data-driven method, we propose the learning-to-rank approach for activity learning

and adaptation. One advantage of the learning-to-rank approach is that we can add various

regularization terms to exploit the characteristics of the data. In our work, we add tempo-

ral regularization into the learning and testing phases to capture the consistency of human

behaviours.

Our experiments based on public and simulation datasets show that we are able to improve

the recognition performance by adaptation of the activity model with dynamically avail-

able context. The improvements vary and depend on several factors such as the amount of

adaptation data, the weight of the temporal regularization and the number of contexts in

the initial train set. To validate the advantages of the proposed method in adaptive learning,

we compared it with the conventional machine learning algorithms, and the experiments

demonstrate that our methods for activity learning and activity model adaptation outper-
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form the baselines with a large margin.

In this chapter, the proposed framework for high-level activity recognition and activity mod-

els adaptation addresses challenge 2; the proposed knowledge-driven method addresses

challenge 3; the personalised learning-to-rank machine learning method and temporal reg-

ularization in the proposed data-driven method addresses challenge 5 and 6, respectively;

the proposed sensor models address challenge 7.
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Conclusions and Future Work

We conclude the thesis with a summary of the key contributions and a discussion of future

work.

6.1 Summary of contributions

In this thesis, we have addressed the challenges in developing frameworks for mobile ac-

tivity recognition with dynamically available sensor data. Those challenges were described

in Section 1.2 as 1) how to learn a generic activity model as the starting point that caters for

people performing activity differently, 2) how to perform an activity model adaptation to

incorporate the information provided by the new sensors, 3) how to leverage the existing

knowledge base for activity modelling and activity model adaptation, 4) how to select the

most informative instances for retraining the activity model without supervision, 5) how to

make sure that the newly incorporated information does not negatively impact the recogni-

tion performance of the activity model, 6) how to exploit the temporal information in human

behaviour to improve the recognition accuracy. This thesis addressed these challenges in the

presented research on mobile activity recognition with dynamically available sensor data.

In summary, this thesis made the following key contributions.

• It researched and developed a generic activity modelling method with limited labelled

activity data,
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• It researched and developed a framework for low-level physical activity recognition

with dynamically available sensors and semi-supervised learning; the components of

the framework include basic classifier, instance selection and smoothing.

• It designed and developed a framework for high-level activity recognition with dy-

namically discovered contexts. The key components of the framework include sensor

and activity models, knowledge-driven and data-driven methods for activity learning

and activity model adaptation.

In Chapter 2, we surveyed the related work in the area of context modelling, context man-

agement, sensor modelling and sensors in mobile devices, activity recognition, activity model

adaptation and sensor dynamics for activity recognition. We also discussed their shortcom-

ings and identified the open exploration issues that motivated our research on develop-

ing activity recognition frameworks with dynamically available sensor data. In response to

those issues, Chapter 3, 4 and 5 proposed solutions for addressing the challenges in incor-

porating dynamically available contexts for activity recognition.

Chapter 3 presented a generic activity modelling method with minimum labelled data. This

method learned the activity model with data from various users, so that the model was

generic to be scaled to different users. It also mitigated the data labelling effort as it required

minimum labelled data from each user. We leveraged LDA to model the activity data since

it was effective in collaborative learning and powerful in dealing with data sparsity. How-

ever, LDA cannot be applied to the activity data directly, and therefore we created a hybrid

approach with conventional classifiers. In the hybrid model, the initial labelled data was

used to train the classifiers, then the hybrid model sampled the class assignment for the ac-

tivity data. After that, the output of the hybrid model was fed back to retrain the classifiers.

This joint training process resulted in generic activity models that can cope with variants of

activity patterns of different users. We also examined the factors (e.g. labelling percentage)

that had impact on the recognition performance of the generic activity model.

Chapter 4 presented a framework for physical activity recognition with dynamically avail-

able sensors. It used AdaBoost as the basic classifier as it is flexible with feature dimen-

sionality and can select the discriminative features automatically. We proposed a method

that selected the most informative instances considering several factors. The instances were

used to retrain AdaBoost and the information of the newly available sensors was incorpo-
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rated into the framework through the retraining process. Further, the temporal characteris-

tic of activity data was leveraged by a novel combination of graphical models with the basic

classifier AdaBoost. Finally, we investigated the conditions under which the information

provided by dynamically available sensors did not benefit the recognition performance of

the activity recognition framework.

Chapter 5 presented a framework for high-level activity recognition with dynamically avail-

able contexts. Sensor and activity models were proposed in the framework. The sensor mod-

els provided the guideline to pre-process the sensor readings into high-level context (e.g. in-

teraction with objects) for activity recognition that can deal with sensor heterogeneity. The

activity models explained the relations between the activities and contexts with parameters.

Based on the sensor and activity models, a knowledge-driven method was proposed to in-

corporate the contexts provided by the new sensors. Since the activities were semantically

explainable by the contexts, the knowledge-driven method leveraged the external knowl-

edge base to specify the parameters of the new contexts with respect to different activities in

an unsupervised manner. However, the knowledge-driven method was unable to achieve

high accuracy since the parameters it specified were general knowledge and people have

their own ways to perform activities. To overcome the shortcomings of knowledge-driven

method, a data-driven method was proposed. The data-driven method personalised the

activity models to a specific user with his/her own activity data using the learning-to-rank

method and temporal regularization. The parameters of the new contexts were learned dur-

ing the retraining process with the most informative instances, and a thresholding method

was proposed to guarantee the class balance. Extensive experiments had been carried out

for validating the proposed framework and the factors that can impact the recognition per-

formance were also investigated.

6.2 Future work

In this section, we discuss how this research can be further extended.
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Activity model adaptation with more sensor modalities

In the current framework for activity recognition and activity model adaptation, the sens-

ing devices are confined to inertial sensors such as accelerometers and gyroscopes for on-

body sensors. As for environment-instrumented sensors, the sensing devices in our current

framework include inertial sensors, object sensors and ambient sensors that produce binary

readings. Even though those sensors are effective in recognising daily activities with high

accuracy, we can envision that an increasingly large number of new sensing devices will

be available for monitoring daily activities. For example, microphones [96, 8] and cameras

[96, 162] that capture audio and vision features are able to differentiate different activities.

Existing works also demonstrate the feasibility of using various sensor signals such as Wi-Fi

signal [149], thermal [49] and barometer [127] readings for identifying activities.

However, incorporating those sensors for activity recognition and activity model adapta-

tion is a non-trivial task. Due to the variety of sensor modalities, the sensor readings need

to be processed differently. For example, for Wi-Fi signals, the signal strengths of the ac-

cess points can be used directly for activity recognition [149]. While for audio signals, it

is more reasonable to extract the frequent domain features [96]. Therefore, the contextual

information of different types of sensors needs to be modelled, so that when the sensors are

dynamically available, the sensor readings can be processed into proper representations for

activity recognition and activity model adaptation. In the future, we will demonstrate the

effectiveness of the proposed frameworks given the sensor diversity.

Activity model adaptation in the long run

In this thesis, we propose to select the most informative instances for activity model adap-

tation with dynamically available sensors. We select the classified instances based on the

scores considering many factors without data annotation, so that the activity model can be

adapted automatically in an unsupervised manner. However, it is possible that the mis-

classified instances can be selected for the activity model adaptation, and the accumulated

misclassified instances can possibly jeopardise the activity models in the long run [37].

One possible solution to this potential hazard is to introduce data annotation while min-
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imising human interruption. The existing works [24, 121] on the activity model retraining

and personalisation employ active learning methods to ask the labels of the most informa-

tive instances. However, they do not evaluate the methods with activity data in the long

term to demonstrate the robustness of their activity recognition systems. One of our future

goals is to achieve the trade-off between activity recognition accuracy and human interven-

tion, so that the activity models can, in the long term, maintain satisfactory accuracies when

performing adaptation with dynamically available sensors, while minimising the human

labelling interruption.
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