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Highlights: 

 Missing link in crustacean ecdysone hydroxylation identified 

 Metamorphic expression implicates un-annotated CYP450s in ecdysteroidogenesis 

 CYPome of a spiny lobster enables annotation of known CYP450s based on insects 

  



Abstract 

Cytochrome P450s (CYP450s) are a rapidly evolving family of enzymes, making it difficult to 

identify bona fide orthologs with notable lineage-specific exceptions. In ecdysozoans, a small 

number of the most conserved orthologs include enzymes which metabolize ecdysteroids. 

Ecdysone pathway components were recently shown in a decapod crustacean but with a notable 

absence of shade, which is important for converting ecdysone to its active form, 20-

hydroxyecdysone (20HE), suggesting that another CYP450 performs a similar function in 

crustaceans. A CYPome temporal expression analysis throughout metamorphosis performed 

in this research highlights several un-annotated CYP450s displaying differential expression 

and provides information into expression patterns of annotated CYP450s. Using the expression 

patterns in the Eastern spiny lobster Sagmariasus verreauxi, followed by 3D modelling and 

finally activity assays in vitro, we were able to conclude that a group of CYP450s, conserved 

across decapod crustaceans, function as the insect shade. To emphasize the fact that these genes 

share the function with shade but are phylogenetically distinct, we name this enzyme system 

Shed.  
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1. Introduction 

1.1 Cytochrome P450 versatility 

Cytochrome P450s (CYP450s) form an ancient family of enzymes with versatile roles [1]. In 

ecdysozoa, CYP450s are known to be involved in the metabolism of key compounds that 

regulate development, growth and reproduction [2-4]. CYP450s are also involved in 

detoxification; this may range from promiscuous enzymes, which can metabolize multiple 

substrates [5], to those specialized in metabolizing one or a few substrates [6, 7]. It is perhaps 

for these reasons that CYP450s form one of the most versatile enzyme families, where their 

rapid evolution enables the organism to cope with a changing environment on the one hand, 

yet on the other hand, it makes it hard to clearly define orthologs. An example for the high 

evolutionary rate of this family is evident from the observation that insect CYP450s alone range 

in number from 36 to 180 [8].  

1.2 Conserved arthropod CYP450 orthologs: the Halloween genes 

A small number of CYP450s are known to participate in the biosynthesis of the active form of 

the molt hormone, 20-hydroxyecdysone (20HE; (2β,3β,5β,22R)-2,3,14,20,22,25-

hexahydroxycholest-7-en-6-one), one key factor which generates the active juvenile hormone 

(JH). In addition, several other CYP450s have been partially annotated based on phylogeny 

and their role deduced in one or more species [8]. In a sense, the CYP450 complement (also 

referred to as CYPome) of a species is a unique signature defined by its interaction with the 

environment and the mechanism by which it regulates development and reproduction.  

A high evolutionary change rate might, in part, be associated with the need to cope with various 

toxins in the changing environment but, from a mechanistic point of view, it is also associated 

with the fact that the CYP450s tend to form clusters in the genome. Some duplicated gene 

clusters can be maintained over very long timescales. The head to tail pair of the close paralogs 



CYP306A1 and CYP18A1 is conserved as a cluster in all insects studied so far (except in 

Anopheles gambiae that has lost the CYP18A1 gene), and is even found in the crustacean 

Daphnia pulex, thus dating this cluster to well over 500 MY [8]. Stable duplication events like 

this increase the evolutionary change rate, since chromosome rearrangement events might lead 

to exponential duplications [8]. While versatile and rapidly changing, all the protostome CYP 

genes identified to date can be assigned to one of four clans: CYP2, CYP3, CYP4 and the 

mitochondrial CYP clan [9]. While clan nomenclature is inferred by phylogeny [10], members 

of each clan can have various roles. The CYP4 clan in insects for instance, includes members 

associated with pheromone synthesis and breakdown [11], as well as cuticle hardening [12]. 

From a substrate perspective, several stages in the synthesis of a bio-active compound can 

involve CYP450s from different clans; such is the case of the CYP450s which synthesize 

20HE. 

The conserved arthropod CYP450 orthologs are those involved in 20HE biosynthesis and 

degradation as well as juvenile hormone biosynthesis. The primary source of ecdysteroid 

biosynthesis is the Y-organ in crustaceans, which is analogous to the insect prothoracic gland 

[13]. The synthesis of 20HE is negatively regulated in crustaceans by the molt inhibiting 

hormone (MIH), which acts through an as yet unidentified receptor on the YO membrane to 

block its function. MIH is produced predominantly in the X-organ, then transported to the sinus 

gland where it is stored until secretion [14]. This neuroendocrine complex, known as the X-

organ-sinus gland complex (XO-SG), resides in the crustacean eyestalk. While in crustaceans 

20HE is negatively regulated by MIH derived from the XO-SG, in insects 20HE synthesis is 

positively regulated by neurosecretory cells in the brain which produce the prothoracicotropic 

hormone (PTTH) [15]. In the biosynthesis pathway of 20HE, five CYP450s were discovered 

to be conserved in insects. They were named the Halloween genes due to the embryonic lethal 

effect of null mutations, resulting in disfigured flies, probably due to low titer of ecdysteroids 



and inability to properly form a cuticle. Spook (CYP307A1) (and the diptera lineage specific 

paralogs spookier (CYP307A2) [16] and spookiest (CYP307B1) [17]) are expressed in the 

insect prothoracic gland in a stage-specific manner, regulating the first steps in 20HE synthesis 

[18, 19]. The phantom gene (CYP306A1) is also expressed predominantly in the insect 

prothoracic gland and the enzyme follows spook in the biosynthesis of 20HE [20]. These stages 

are followed by enzymatic reactions catalyzed by disembodied (CYP302A1), shadow 

(CYP315A1) [21] and shade (CYP314A1); the latter enzyme catalyzes the final step in the 

20HE biosynthetic pathway in the target cells [6]. Degradation of 20HE is facilitated by 

CYP18A1 [22], which clusters with its paralog CYP306A1 in most insects studied as well as 

in D. pulex [23]. While spook, phantom and CYP18A1 are part of clan 2, the other three 

enzymes are part of the mitochondrial clan. A recent study has also identified orthologs of five 

out of the six genes (with the notable exception of shade) in the decapod cherry shrimp 

Neocaridina denticulata [24]. 

1.3 Metamorphosis in spiny lobsters 

Metamorphosis in spiny lobsters is a dual phase process where an oceanic transparent, alien-

like larva (phyllosoma) metamorphose into a nektonic miniature transparent version of the 

lobster (puerulus), manifesting massive restructuring of anatomy and physiology in a single 

step [35]. The puerulus swims towards the shore where it completes metamorphosis into the 

benthic juvenile form [38]. Our research to date shows that the phyllosoma-puerulus 

metamorphic transition in the Eastern spiny lobster S. verreauxi is accompanied by vast 

transcriptomic changes exceeding 25% of the transcriptome [35]. The lengthy transition, the 

large-sized larvae and their transparency enable clear molt staging by gut retraction. The 

availability of transcriptomic data for both the larval metamorphic transition at high resolution 

[35], alongside tissues of juveniles and adults from this species [44-49] enables thorough 

examination of expression patterns and correlation with spatial-temporal expression.   



In this research we characterized the differential expression of CYP450s across the 

phyllosoma-puerulus transition in the Eastern spiny lobster S. verreauxi. We identified 43 

putative CYP450s with clear phylogenetic annotation for eight of them. Expression throughout 

metamorphosis varied significantly for 11 out of the 43 CYP450s, with four predominant 

expression patterns. Inferred from expression pattern, 3D modelling, in vitro assay and cross-

species analysis, we predict that a clan 4 CYP450, conserved in crustaceans, is the putative 

ecdysone to 20HE hydroxylase. By using ultra-high pressure liquid chromatography-

quadrupole time of flight-mass spectrometry (UHPLC-QToF-MS), one enzyme from this 

group was shown to produce hydroxyecdysone (HE) in vitro. We thus conclude that this is the 

Shade ortholog in crustaceans and thus named it ‘Shed’. 

  



2. Materials and Methods 

2.1 Bioinformatics analysis 

The transcriptome of whole individuals sampled from five developmental stages throughout 

metamorphosis of S. verreauxi (in duplicates, including six phyllosoma and 4 puerulus) [35], 

was converted to amino acids (aa) of the most probable open reading frame (ORF) using 

OrfPredictor (proteomics.ysu.edu/tools/OrfPredictor.html). Where ORF was predicted to be 

partial, iterative tBLASTn searches using CLC Genomics Workbench (Qiagen, version 8.0.3), 

against the transcriptome of both developmental stages [35] and juvenile and mature tissues 

[44, 48], were performed in order to identify flanking regions. The predicted ORFs were 

searched for CYP450 domains using PFAM database in CLC Genomics Workbench. Mapping 

and quantification were previously performed using CLC Genomics Workbench and Partek 

Genomics Suit [35], and a fold-change ≥ 2 between the five sub-stages with P value ≤ 0.05 

[with FDR; as previously calculated [35]] was considered as differential expression.  

Multiple sequence alignments followed by phylogenetic trees constructed using Neighbor 

Joining (NJ) method (bootstrap = 1000) were performed using the CLC Genomics Workbench. 

The aligned sequences were tested using Maximum Likelihood and Maximum Parsimony (100 

bootstraps for each) in MEGA 6.0 (Supplementary File S2). 

Three dimensional modelling was performed using I-TASSER 

(http://zhanglab.ccmb.med.umich.edu/I-TASSER) followed by rendering in CLC Genomics 

Workbench. Only models with C-score >0.75 were considered. 

2.2 Cell Culture and Transient Transfection of Cells 

Transient transfection and cell culture protocols were undertaken according to Aizen et al. [46]. 

Briefly, COS-7 cells were grown in DMEM supplemented with 10% fetal bovine serum, 2 mM 



L-glutamine, 100 U/mL penicillin, 100 mg/mL streptomycin and 100 U/mL nystatin (Life 

Technologies). Cells were grown at 37°C, with 5% CO2 until 80% confluent, followed by 

transfection with either an empty pCDNA3.1+ vector (Promega), or a pCDNA3.1+ vector 

expressing Sv-Unigene1882 (Genscript), using TransIT®-LT1 Transfection Reagent (Mirus), 

according to the manufacturer's instructions. The cells were cultured for 8 h, then split into 

various groups in triplicates with or without the addition of 20 µg/mL ecdysone (Sigma).  

2.3 Collection and isolation of samples for UHPLC-QtoF-MS analysis 

Following 2 h of incubation with or without 20µg/mL ecdysone, COS-7 cells and culture 

medium were administered with an equivalent volume of methanol, vortexed thoroughly and 

then centrifuged at 16,000 xg for 10 min at 4°C. The supernatant was collected (cells removed) 

and subjected to freeze-drying, and the lyophilized samples stored at -80°C until subsequent 

analysis. Three biological replicates from two sample groups were used for LC-MS analysis. 

2.4 Liquid chromatography-mass spectrometry analysis 

Freeze-dried samples were resuspended to 15% of the original volume by adding 30 µL 

methanol and then 120 µL of MilliQ (Millipore) water to produce a 20:80 methanol:water 

solution. The extract solution was stored at -80°C until subsequent LC-MS analysis. Prior to 

LC-MS analysis, samples were thawed and kept at 4°C. The chromatographic separation of 

compounds and extracts was performed using Ultra High Performance Liquid Chromatography 

(UHPLC) on an Agilent 1290 series system (Agilent Technologies, USA). The UHPLC was 

coupled to an Agilent 6520 high-resolution accurate mass (HRAM) QToF mass spectrometer 

equipped with a multimode source (Agilent) and controlled using MassHunter acquisition 

software, (B. 02.01 SP3; Agilent). Separation was achieved using a 150 × 2.1 mm, 2.6 µm 

Kinetex Biphenyl column (Phenomenex, Australia). The chromatographic analysis was 

performed using 0.1% (v/v) aqueous formic acid (mobile phase A) and acetonitrile + 0.1 % 



(v/v) formic acid (mobile phase B) at a flow rate of 0.20 mL/min. The column was pre-

equilibrated for 15 min with 99.9% A and 0.1% B. After injection, the composition of mobile 

phase remained unchanged for 2 min. The composition was changed from 0.1% B to 25% B 

over a period of 6 min to 80% B by 25 min. Over the subsequent 15 min, the % of B changed 

from 80% B to 90% B, and in 1 min % B increased to 99.95% B and then held at 99.9% B for 

2 min. subsequently, the mobile phase composition returned to the starting composition of 

0.1% B over a period of 1 min and then re-equilibrated for 2 min prior to the next sample 

injection. The injection volume was 20 µL. 

Mass spectrometry data were acquired in positive and negative ionization mode. A dual 

nebulizer electrospray source was used for continuous introduction of reference ions. In MS 

mode the instrument was set to scan from m/z 100 to 1700 for all samples at a scan rate of 3 

cycles/sec. This mass range enabled the inclusion of two reference compounds, a lock mass 

solution including purine (C5H4N4 at m/z 121.050873, 10 µmol/L) and hexakis (1H, 1H, 3H-

tetrafluropentoxy)-phosphazene (C18H18O6N3P3F24 at m/z 922.009798, 2 µmol/L). Multimode 

(i.e. simultaneous Electrospray Ionisation [ESI] and Atmospheric Pressure Chemical 

Ionization [APCI]) was employed to ionize compounds optimally following their 

chromatographic separation. 

2.5 Data processing and compound identification 

Data processing was performed using Agilent MassHunter Qualitative software (Version 

B.05.00). The Molecular Feature Extractor (MFE) algorithm within MassHunter Qualitative 

analysis software was used to extract chemically qualified molecular features from the LC-

QToF-MS data files. Data processing details are as those provided in Bose et al. [50]. 

In this study compound identification was performed by interrogating the in-house database 

using the m/z values of the mined compounds from accurate mass LC-MS through MFE and 



Molecular Formula Generation. The search parameters implemented were as follows: mass 

tolerance (accurate mass) ≤ 5 ppm, maximum number of peaks to search when peaks are not 

specified graphically = 5, charge carriers (positive ions) = H+, K+, Na+, negative ions = H loss 

and HCOO− and neutral loss = −H2O. The scoring algorithm for database searches uses not 

only accurate mass, but also isotope abundance and spacing. The mass position of the M+1 and 

M+2 isotopes were calculated based on the number and types of elements contributing to them, 

and the mass spacing from the M to the M+1 and M+2 isotopes were able to be measured with 

low- to sub-ppm accuracy and provide confidence for compound identification. 

 

 

3. Results and Discussion 

3.1 Spiny lobster CYPome characterization: expression pattern and annotation 

We identified 43 putative CYP450s (11 partial, ranging in size from 311 to 441 aa and 32 

complete, ranging in size from 485 to 562 aa) in the Eastern spiny lobster S. verreauxi 

transcriptome, assembled from RNA extracted from whole individuals sampled across 

metamorphosis [35] as well as from various tissues of juvenile and adult individuals [44, 48]. 

Phylogenetic analysis enabled the annotation of four out of the five Halloween CYP450s [not 

including shade (CYP314A1)], as well as CYP18A1, all predicted to be conserved in 20HE 

metabolism (Fig. 1).  

In light of the absence of CYP314A1 (shade) in crustaceans and the overall lack of 

phylogenetic annotation for the majority of the CYP450s, we aimed to shortlist potential 

CYP450s candidates that play a role in molt and metamorphosis regulation. Taking advantage 

of the available libraries for different well-defined metamorphic stages [35], as well as juvenile 



and adult tissues [44, 48], we assessed the CYP450s expression pattern during metamorphosis 

in S. verreauxi.  

The putative CYP450s listed as Unigene47567, CL1826.Contig4, CL1826.Contig5, 

Unigene880 and CL2278.Contig2 all shared the same expression pattern. They were all 

expressed significantly higher in the intermolt phyllosoma stage compared with all later stages 

(Fig. 2). Unigene47567 and nine additional putative CYP450s from S. verreauxi clustered with 

insect CYP6A20 and CYP6G2 (Fig. 1). Unigene47567 was not expressed in any tissue 

examined post-metamorphosis, suggesting it is either a stage-specific CYP450 or specific to a 

tissue that was not examined in post-metamorphic samples. BLASTP of Unigene47567 against 

NCBI nr database gave high similarity [321 aa identical (60%) and 418 aa similar (77%) out 

of 537 aa] with the tiger shrimp Penaeus monodon thromboxane A synthase (GenBank 

Accession number AFJ11398) which regulates vasoconstriction and promotes thrombosis in 

vertebrates. Given the different mechanisms in place for this role in crustaceans, and given the 

stage-specific expression, it might be that the breakdown of prostaglandin E2 is relevant for 

the transition from phyllosoma to puerulus. CL1826.Contig4 and CL1826.Contig5 clustered 

with Unigene1882 discussed above and shared similar homology with spiny lobster CYP2L1 

and crab CYP379A1. CL2278.Contig2 clustered tightly with crab CYP4C39, shrimp 

CYP4C15 and prawn CYPV20 (Fig. 1). Out of the three, CYP4C15 was found to be molt-stage 

specific in a crayfish and was thus hypothesized to be involved in 20HE metabolism [51]. 

CL5738.Contig3 and Unigene59184 shared similar expression patterns that included 

significantly lower expression in the post-molt puerulus and H-phase puerulus, compared with 

previous stages (Fig. 2). CL5738.Contig3 clustered with high bootstrap values together with 

nine other putative lobster CYP450s, as well as two insect CYP6A20s and two additional insect 

CYP6G2s (Fig. 1). In Drosophila CYP6G2 was found to be expressed in the corpora allata 

and was thus hypothesized to be involved in JH metabolism [36], while CYP6A20 was linked 



with male aggressive behaviour [52, 53]. Interestingly, when considering the expression in the 

lobster tissues, CL5738.Contig3, as well as the two additional contigs CL5738.Contig1 and 

CL5738.Contig2, all show high expression in the brain, eyestalk, antennal gland and 

androgenic gland (Supplementary file 1), suggesting a correlation with CYP6A20 role. 

Unigene59184 clustered with Unigene1882 and perhaps is also involved in 

ecdysteroidogenesis as discussed above. 

A single CYP450 transcript (Unigene44506) was found to be expressed predominantly in the 

early post-molt puerulus stage (Fig. 2). Since it tightly clustered with the crayfish CYP4 (Fig. 

1), which was isolated from the Y-organ (GeneBank Accession number AAL56662), and based 

on its expression pattern, it is likely an ortholog of the insect CYP4G1. In insects, CYP4G1 

has been ambiguously characterized as present in the prothoracic gland with a role in 20HE 

metabolism [54], as well as an oenocyte-specific P450 required for the regulation of 

triacylglycerol composition in the Drosophila starving larvae [55] and an insect-specific P450 

oxidative decarbonylase for cuticular hydrocarbon biosynthesis [12]. This ambiguity might be 

due to promiscuity of CYP4G1, perhaps enabling versatile roles required for transitional 

developmental phases. In the post-molt puerulus, a transitional phase with unique physiology, 

all three functions would be expected to be present specifically in this phase. It is therefore 

assumed that the Drosophila starving larval phase is the equivalent to the puerulus non-feeding 

phase.  

Our previous analysis of expression pattern showed that Sv-CYP15A1 [ortholog of the insect 

CYP15A1, which degrades the active form of the juvenile hormone in crustaceans, MF [25, 

31], into its crustacean inactive, yet insect active form – JH III [7]], is not expressed during the 

phyllosoma-puerulus transition and ramps up in expression prior to the puerulus-juvenile 

transition [35]. In the current study, we show that this expression pattern is shared with three 

additional CYP450s (Fig. 2). One of the three, Unigene44916 was annotated as Sv-CYP307 



(the Halloween gene known as spook, which is upstream at the ‘black box’ stages of generating 

the active molt hormone 20HE [19, 56]; Fig. 1). This suggests spook might be the rate limiting 

factor in the reaction. The second CYP450 (Unigene1882) clustered tightly with three 

additional CYP450s (Unigene880, CL1826.Contig4 and CL1826.Contig5; Fig. 1). It is 

interesting to note that while bootstrap values are low (45), this cluster is placed next to the 

CYP307A1 cluster. This phylogenetic link and the shared expression pattern suggest 

Unigene1882 is involved in ecdysteroidogenesis. BLASTP against the NCBI nr database 

showed a high similarity between Unigene1882 [275 aa identical (69%) and 330 aa similar 

(88%) out of 396 aa] and the spiny lobster Panulirus argus hepatopancreas-expressed CYP2L1 

[57]. Moderate similarity was observed between Unigene1882 [154 aa identical (39%) and 231 

aa similar (58%) out of 394 aa] and crab CYP379A1, known to be molt stage specific and 

regulated by ecdysteroids and xenobiotics in the crab Carcinus maenas [58]. The third CYP450 

(CL308.Contig3) clustered tightly with yet another two CYP450s (CL308.Contig2 and 

Unigene44506) and all three together formed a cluster with CYP4C15 or CYP4 from other 

crustaceans (Fig. 1). CYP4C15 was previously hypothesized to be involved in 

ecdysteroidogenesis in crustaceans based on changes in expression through the molt cycle [4, 

51]. Other CYP4C15 from insects did not cluster with the crustacean CYP4C15, pointing to 

the high evolutionary change rate of CYP450s in this group. Given that shade was not identified 

in our database suggests that perhaps CYP4C15 is converging in terms of function and assumes 

the role of ecdysone hydroxylation into the active 20HE form in S. verreauxi. 

3.2 Elucidation of the shade-like (‘shed’) group of genes that mediate ecdysone hydroxylation 

in crustaceans 

Intriguingly, Unigene59184, CL1826.Contig4, CL1826.Contig5, Unigene880 and 

Unigene1882 clustered tightly together positioned between CYP307A1 (spook, which we 

found to be expressed primarily in the H-phase puerulus) cluster and CYP18A1 (which 



degrades 20HE) cluster. Notwithstanding, all five show differential expressions which would 

potentially implicate them in ecdysteroidogenesis/metamorphosis. 

All three-dimensional predictions of cytochrome P450s performed in this study (both from the 

spiny lobster and Drosophila) resulted with strictly cytochrome P450 proteins predicted as the 

list of 10 PDB hits that are structurally closest to the target, with the highest score of a ligand 

binding site resulting with the ‘Heme B’. Three-dimensional predictions of Unigene1882, 

Unigene880, CL1826.Contig4 and Unigene59184 were all reliable based on the high model 

accuracy (C-score = 1.13 to 1.31; Estimated TM-score = 0.87±0.07 to 0.90±0.06; Estimated 

RMSD = 4.4±2.9Å to 4.6±3.0Å). When aligned, all gave high similarities to the Drosophila 

shade isoform C (Dm_CYP314A1; GenBank Accession number AAF49727; Fig. 3; C-

score=1.05; Estimated TM-score = 0.86±0.07; Estimated RMSD = 4.8±3.1Å).  

To test whether the CYP450 encoded by Unigene1882 functions as shade (due to its clustering 

with Spook and sharing the same expression pattern), an activity assay in transfected COS-7 

cells was applied. The Unigene1882 transcript was expressed in COS-7 cells and the medium 

was supplemented with ecdysone. Following expression, metabolites were extracted and 

analysed by UHPLC-QToF-MS in order to identify ecdysone and its derivatives upon addition 

of Unigene1882. Only cells transfected with Unigene1882 (in triplicates) showed hydroxylated 

ecdysone derivatives when tested using metabolomics analysis (Fig. 4).  

LC-MS analysis of an authentic reference standard for ecdysone extracted ion chromatogram 

(EIC) showed that the retention time is 17.92 min (Fig. 4A) and the accurate monoisotopic 

mass was m/z 477.3082 (M+H-H2O)+ (Fig. 4Aʹ); ecdysone actual m/z in the database was m/z 

464.3027 [M]. Positive ionisation mode LC-MS chromatograms for extracts of COS-7 cells 

supplemented with ecdysone showed that ecdysone eluted at 17.95 min (Fig. 4B), as confirmed 

by mass spectra with m/z 477.3087 (M+H-H2O)+ (Fig. 4Bʹ). Matching of the retention times 



for ecdysone (17.90 min for standard and 17.95 min for CYP-Shed transfected COS-7 cells 

extracted medium) and the respective mass spectra further strengthened the identification 

through the database search. Interestingly, upon addition of ecdysone to the medium of the 

COS-7 cells, we identified another compound produced in the sample extracted from the 

culture medium. The compound peak eluting at 10.95 min (Fig. 4C) was elucidated on the basis 

of its accurate mass, through an in-house database search, as HE; its monoisotopic mass was 

m/z 503.2944 [M+Na]+ (Fig. 4Cʹ) and that of HE in the database was 480.2987 [M]. This 

observation indicates that cells transfected with CYP_Shed catalyze the formation of HE from 

ecdysone in a single hydroxylation reaction. It has been reported that the C-20 hydroxylation 

of ecdysone to 20HE is an activation reaction, and this conversion occurs mainly by the fat 

body in Manduca sp. larval-pupal during their development [59]. It is possible that a signal 

produced during this conversion may trigger and coordinate the metamorphosis processes [60]. 

Given that CYP_Shed is up-regulated between the puerulus and juvenile stages of the lobster, 

it might explain in part the mechanism of 20HE surge required to complete metamorphosis. 

We therefore conclude that the clade that includes Unigene1882 is the crustacean ortholog of 

the insect shade (sharing function with little phylogenetic relation) and we have thus named it 

S. verreauxi Shed1 (Sv-Shed1). Accordingly, due to their high sequence and predicted structure 

similarity with Sv-Shed1, Unigene880, CL1826.Contig4, CL1826.Contig5 and Unigene59184 

were named Sv-Shed2, Sv-Shed3A, Sv-Shed3B and Sv-Shed4, respectively. 

This finding sheds light for the first time on the missing link in evolution of arthropods, 

bridging the gap between ancient malacostracan crustacean species and more advanced 

arthropods such as insects. We show here, for the first time, that very remotely-related 

CYP450s defined as different clans (mitochondrial in the case of insects’ shade and clan 4 in 

the case of the crustaceans’ shed) could serve similar functions, further emphasizing the 

versatility of this gene family. 
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Figures and Figure captions 

Figure 1 
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Figure 2: S. verreauxi CYP450-encoding transcripts expression throughout 

metamorphosis. Reads per kilobase per million reads in the library (RPKM; Y-Axis) are given 

for all S. verreauxi CYP450-encoding transcripts in 5 distinct stages at the transition from 

phyllosoma to puerulus. Transcripts discussed in the manuscript are denoted by name.  
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Figure 3 

Figure 3: S. verreauxi CYP450-encoding transcript Unigene880 predicted 3D structure 

(left), alongside the closely similar D. melanogaster Dm_CYP314A1 predicted 3D 

structure (right) and their structure alignment (middle). The heme group is presented as a 

space-filled model. 

  



Figure 4 

 

Figure 4: Identification of ecdysone and its metabolite by UHPLC-QToF-MS upon 

addition of CYP enzyme. (A) Extracted ion chromatogram (EIC) for ecdysone in the standard 
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(ecdysone-treated COS-7 cells). (Aʹ) Mass spectrum for ecdysone in the standard m/z 477.3082 

(M+H-H2O)+. (B) Extracted ion chromatogram for ecdysone (+CYP_shed). (Bʹ) Mass 

spectrum for ecdysone (+CYP_shed) m/z 477.3087 (M+H-H2O)+ (C) Extracted ion 

chromatogram (EIC) for the metabolite HE (+CYP_shed). (Cʹ) Mass spectrum for HE 

(+CYP_shed) m/z 503.2944 (M+Na)+. 

 


