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Transport of spin qubits with donor chains under realistic experimental conditions
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The ability to transport quantum information across some distance can facilitate the design and operation of a
quantum processor. One-dimensional spin chains provide a compact platform to realize scalable spin transport for
a solid-state quantum computer. Here, we model odd-sized donor chains in silicon under a range of experimental
nonidealities, including variability of donor position within the chain. We show that the tolerance against donor
placement inaccuracies is greatly improved by operating the spin chain in a mode where the electrons are confined
at the Si-SiO2 interface. We then estimate the required time scales and exchange couplings, and the level of noise
that can be tolerated to achieve high-fidelity transport. We also propose a protocol to calibrate and initialize the
chain, thereby providing a complete guideline for realizing a functional donor chain and utilizing it for spin
transport.
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Among the leading physical platforms for the practical
implementation of quantum computers, donor spins in silicon
[1] provide extremely long coherence times [2,3] combined
with the compatibility with industry-standard fabrication tech-
niques. The last five years have witnessed several experimental
milestones in the quest to build a prototype of a donor-
based silicon quantum computer. The essential operations
of reading out and controlling the spin state of both the
electron and nuclear spins of a single implanted 31P donor
were demonstrated in a gated nanostructure [4–6]. The spin
coherence times of the donor electron and nuclear spin qubits
in functional nanostructures reached 0.5 and 30 s, respectively,
with state-of-the-art material purification and advanced filter-
ing techniques [7]. The scale up of these devices has remained a
challenge, although important advancements have been made.
Exchange-coupled donor pairs in silicon have been observed
[8,9] and a two-qubit logic gate has been demonstrated with
quantum dots in a similar nanostructure [10]. Fabrication based
on scanning tunneling microscope (STM) lithography allows
for donor incorporation with near-atomic precision [11].

Beyond the one- and two-qubit logic gates, which can be
achieved using short-range interactions and global control
fields, the construction of a large-scale quantum computer
can greatly benefit from the ability to transport the qubit
states across large distances. Even in dense architectures
such as the surface code, it is known that long-distance
links can help achieving exceptionally high fault-tolerant
thresholds [12]. Moreover, they can simplify the layout of
a quantum processor by allowing extra space between the
physical qubits to accommodate control electronics and other
components.

Several proposals outline how the spin-carrying electron
itself can be transported, whether by shuttling its confinement
potential [13] or by adiabatic passage [14,15]. Other schemes
involve spin-to-spin coupling between electrons such that
transport is essentially achieved via a SWAP operation.
This may come from direct exchange coupling, magnetic
dipolar interaction [16,17], electric dipoles [18], or a coupling
mediated via an intermediate quantum dot [19], a ferromagnet
[20], or a resonant cavity [18,21,22].

One-dimensional spin chains have been proposed as a
compact medium to couple distant spin qubits [23–27]. If
the number of spins in the chain is odd and the spin-spin
interactions within the chain are very strong, the chain
effectively behaves like a spatially extended spin- 1

2 qubit
[28,29]. Therefore, the chain can serve as an intermediary
qubit, providing a link between two qubits that are exchange
coupled to either end of the chain, as shown in Fig. 1. The
spin state of the source can thus be transported first to the
chain and then to the target qubit through sequential SWAP
operations [24,30], which require precisely timed control of
the source-chain and chain-target exchange couplings. An
alternative transport protocol was recently described by Oh
et al. [31], where the chain qubit is used to mediate an adiabatic
state transfer from source to target. The adiabatic nature of the
protocol allows the transport to be extremely robust against
timing jitter and other experimental imperfections.

Recent works have also investigated the use of an even-sized
chain to couple two distant qubits [25,26]. The ground state of
such a chain is a spin-zero singlet state, and therefore cannot
be thought of as an extended qubit that couples to source and
target. However, this spin-zero even-number chain can mediate
a second-order coupling between two qubits exchange coupled
to either end of the chain. In this scenario, one effectively
finds a single superexchange coupling, linking directly the
source and target qubits. This can be used for SWAP operations
between source and target, with the caveat of their sensitivity
to timing and other imperfections. The adiabatic transport
protocol cannot be implemented on even-number chains since
it requires the use of an intermediary qubit.

Earlier theoretical work on spin chains [24–27] has given
general guidelines on design rules and operation schemes for
their use in quantum information processing. However, the
practical implementation of a spin chain requires a system-
specific appraisal of its physical properties and parameters, and
a careful analysis of the manufacturability, error rate, and speed
of operation under realistic experimental conditions. Here,
we analyze the suitability of donor chains for the transport
of spin qubits in silicon. We consider exclusively odd-sized
chains in order to enable the adiabatic transport protocol [31]
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FIG. 1. Schematic of a spin chain (gray) where the spins at the
edges (Sc(1) and Sc(N)) are exchange coupled to source and target
qubits (Ss and St ). When �c � hγeB0, the chain forms an extended
qubit, allowing spin transport from the source to the target. The
magnitude of the effective coupling between the chain and source
qubits, Js , approaches Js-c(1)/

√
N for large N [24].

which, as we will show, is highly robust to experimental
errors.

The paper is organized as follows. In Sec. I, we outline the
requirements for a donor chain to form the desired extended
qubit and address the precision with which the donors need to
be positioned. In Sec. II, we detail a protocol to calibrate the
chain for transport. Finally, in Sec. III, we assess the fidelity
of the adiabatic transport protocol [31] in the presence of
magnetic and electrical noise, and with limited tunability of
exchange couplings. Our results therefore provide a complete
guideline for realizing a functional donor chain and utilizing
it for spin transport.

I. CONSTRUCTION OF A DONOR CHAIN

We begin our analysis by considering a chain solely made
up of electrons, and will only include the donor nuclei later
in Sec. I B. The spin Hamiltonian for an odd number N of
electrons with nearest-neighbor exchange couplings Jc(i) in an
externally applied static magnetic field B0 is

Hce
= hγeB0

N∑
i=1

σz,c(i)

2
+

N−1∑
i=1

Jc(i)
σ c(i)

2
· σ c(i+1)

2
, (1)

where γe ≈ 28 GHz/T is the gyromagnetic ratio of the
electron. σ c(i) is the vector Pauli operator for the ith electron
spin in the chain and σz,c(i) is the Pauli z operator for the ith
spin, with z defined as the direction of the external field B0. For
example, for a chain with N = 3, σz,c(2) = I2 ⊗ σz ⊗ I2, where
σz is the Pauli z matrix, and I2 is the 2 × 2 identity matrix.

The energy spectrum of an odd-number chain consists of
a low-energy doublet of states, separated from the nearest
excited states by a gap �c (see Fig. 1), that depends on the
intrachain exchange interaction strengths Jc(i). The chain can
be treated as an effective two-level system, i.e., a spin- 1

2 qubit,
under the condition [24]

�c � hγeB0, (2)

where hγeB0 is the Zeeman splitting of the ground doublet.
Therefore, we label the two lowest-energy states of the chain

as |↑c〉 and |↓c〉. Assuming Jc(i) = Jc ∀ i, �c is given by [29]

�c ≈ Jcπ
2

2N
. (3)

Notice that �c is inversely proportional to the number of
spins in the chain. If the intrachain exchange couplings are
not all equal, �c needs to be calculated from the numerical
diagonalization of Eq. (1). One typically finds that, with
inhomogeneous Jc(i), �c is mostly limited by the weaker
couplings within the chain. Regardless of the details of the
intrachain couplings, the chain will function as an extended
qubit provided the condition in Eq. (2) is satisfied. The key
point in practice is that the chain serves as an effective spin- 1

2
as long as Jc(i) � hγeB0 ∀ i.

Two factors influence the choice of external magnetic field
B0. In donor systems, B0 serves the purpose of disentangling
the electron and the nuclear spins, which are coupled by the
hyperfine interaction A. In the example of 31P in silicon, the
hyperfine coupling is A/h ≈ 117 MHz [32]. The eigenstates
of the 31P spin Hamiltonian are approximate tensor products of
the electron and nuclear states [33] provided hγeB0 � A, thus
requiring a minimum B0 ∼ 0.1 T. Furthermore, the readout
of a single donor spin based upon spin-to-charge conversion
[4] requires that the Zeeman energy hγeB0 far exceed the
thermal energy kBT , where kB is the Boltzmann constant and
T is the temperature. As T is typically ∼100 mK, a minimum
B0 ∼ 1 T is thus required for high-contrast qubit readout. This
value of B0 sets a challenging requirement for the minimum
Jc(i) in the chain according to Eq. (2). For the example
of a seven-electron chain, the minimum Jc(i)/h must be
>400 GHz to satisfy �c > 10hγeB0.

A. Accuracy of donor placement and chain operation mode

The exchange interactions between donor electrons are ex-
tremely sensitive to the position of the donor atoms [34]. There-
fore, donor placement accuracy and/or exchange coupling
tunability is of paramount importance for quantum devices that
exploit the exchange interaction for their functionality. Broadly
speaking, there are two methods to controllably incorporate
donors within a silicon crystal. The STM method allows
near-atomic precision in the placement of the donors [11], but
is not entirely deterministic in the number of donors that end up
being incorporated at each location, potentially leading to large
uncertainty in the actual exchange couplings. Additionally, the
low thermal budget in the STM method complicates the growth
a high-quality insulating oxide close to the plane that contains
the donor, and has so far hindered the ability to electrostatically
control STM-incorporated donors through metal gates on
the top.

Alternatively, donor atoms can be introduced using the
industry-standard ion implantation technique, augmented with
methods that allow the counting of each individual ion that
enters the substrate [35]. Counted single-ion implantation
thus overcomes the uncertainty in donor number, but comes
at the price of larger inaccuracy in the final location of
each implanted donor [36]. However, recent work has shown
impressive placement accuracy with a technique where the
ions are first cooled and counted inside an ion trap and then
accurately focused onto the silicon chip [37]. For a spin chain,
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FIG. 2. (a), (b) Schematics of electron orbital wave functions in
a three-donor chain operated in the (a) bulklike and (b) interface
modes. The electrons and 31P nuclei are represented in red and black,
respectively. (c) Targeted interdonor separation μd to obtain at least
90% yield, as a function of donor placement error σd . Chains are
simulated for the bulklike and interface modes for N = 3, 5, and 7,
with B0 = 1 T. The donors in the chain are assumed to be placed
along the [100] crystallographic axis. Pulling electrons to the Si-SiO2

interface with a chain gate increases the robustness of the chain to
donor placement inaccuracies.

variability in Jc(i) can diminish �c past the point where the
chain no longer forms a well-defined two-level system. To
determine the required positioning accuracy, we must first
calculate the exchange interaction between two donors as a
function of their separation.

A key point we wish to raise here is that, provided one
has the ability to place an electrostatic gate above the donors,
the spin chain can be operated in two distinct modes which
have significantly different exchange couplings as a function
of interdonor separation. The first mode is in the absence of
an electric field, where the chain electrons are confined to
their respective donor nuclei, as they are in bulk silicon. We
will refer to this operating regime as the “bulklike mode,” as
illustrated in Fig. 2(a). The second mode of operation is where
a metallic gate located above the chain donors is used to pull
the electrons to the Si-SiO2 interface [38]. For a range of
donor depths, 5–20 nm, this “chain gate” can create a vertical
electric field sufficient to ionize the donors, while the electrons

are still laterally confined by the Coulomb potential of their
respective nuclei [39]. We will refer to this operating regime as
the “interface mode,” as illustrated in Fig. 2(b). The calculation
of the exchange coupling as a function of interdonor separation
for the two operating modes is given in Appendix A.

On that basis, we proceed to calculate the likelihood that a
donor chain fails to satisfy the criterion in Eq. (2), typically
because enough of the exchange couplings in the chain Jc(i)

have become too weak. We perform a Monte Carlo analysis
considering chains with N = 3, 5, and 7, with targeted
interdonor separation μd . For simplicity, we restrict our
analysis to donors placed along the [100] crystallographic axis,
where the exchange coupling follows a smooth exponential
decay with donor separation [40]. An error is introduced in the
donor positions along the direction of the chain, following a
normal distribution with standard deviation σd . For each chain
simulated, we numerically solve the N -electron Hamiltonian
Hce

to determine the energy separation �c, which determines
whether or not the chain functions as an extended qubit. We
define the “yield” as the proportion of chains that satisfy the
condition �c > 10hγeB0 after performing 10 000 simulations.

Figure 2 shows the 90% yield contours for both the bulklike
and interface modes as a function of μd and σd when B0 = 1 T,
for N = 3, 5, and 7. Some clear trends can be identified.
The values of μd at σd = 0 nm for the six curves in the
plot are different. Comparing chains operated in the same
mode, we see that the initial μd decreases with increasing
N , as �c is inversely proportional to N [Eq. (3)]. The allowed
separation for the interface mode is also much greater than
that of the bulklike mode. This is due to the greater lateral
spread of the orbital wave function of the interface electron
compared to the donor-bound electron [38,39], which leads
to a significant enhancement in the exchange couplings Jc(i)

(refer to Fig. 10 in Appendix A). As σd increases, μd needs to
be reduced to ensure that all the intrachain exchange couplings
are sufficiently large to satisfy the condition in Eq. (2). The
slope is steeper for chains with a greater number of donors as,
for a given σd , there is a greater chance of two adjacent donors
having too weak an exchange coupling.

Figure 2 can be used to determine the chain length
achievable given the donor positioning uncertainty for the
fabrication process used. For example, with σd = 2 nm, a chain
with three donors operated in the bulklike mode is limited
to μd ≈ 6.5 nm, yielding a chain length of only 13 nm. In
contrast, much longer chains can be realized when operated in
the interface mode. The same uncertainty of 2 nm allows for
chains with 3, 5, and 7 donors to have total lengths of ∼45,
∼85, and ∼115 nm, respectively. We note that the fabrication
overhead to implement an interface-mode chain is minimal
since it only requires one global gate above the entire chain.
An equivalent interface-mode spin chain could be obtained
by fabricating a line of electrostatically defined quantum dots
[10,41], but it would come at the cost of fabricating at least
one or two individual gates per dot.

In the above calculations, we only considered uncertainty
in donor placement along the crystallographic [100] axis. A
more general treatment with positioning errors in all directions
would be desirable, but is computationally impractical. In
the bulklike mode, misalignments of the donor position away
from the [100] axis can severely modify Jc(i). This is due to
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interference between the six (k±x,k±y,k±z) valley components
of the donor electron wave functions in silicon [34]. On the
other hand, the electron wave functions in the interface mode
are composed of only the k+z and k−z valleys [42], thus
removing the valley interference for donors confined to the
plane perpendicular to the [001] direction. However, valley
interference can still modulate the exchange coupling in the
presence of step edges at the Si-SiO2 interface. Moreover,
when the donors are implanted at different depths, the lateral
size of the interface electron wave functions would vary within
the chain, leading to a variability of Jc(i) [39].

Overall, we consider the interface mode to be the preferred
mode operation for a spin chain, due to its superior robustness
against donor placement inaccuracy, and the ability to build
much longer chains with the same donor number as compared
to the bulklike mode.

B. Source and target donor qubits

We now include the source and target donor qubits, with
their electron spins exchange coupled to either end of the
chain by Js-c(1) and Jt-c(N), respectively. Provided Js-c(1) and
Jt-c(N) � Jc, the effective exchange coupling between the
source (or target) and chain qubits is given by Js ≈ Js-c(1)/

√
N

(or Jt ≈ Jt-c(N)/
√

N ) [24]. Given realistic values of Jc/h of
order 100 GHz, the maximum value of Js/h and Jt/h would
be ∼10 GHz. The source, chain, and target electron qubits can
then be mapped on to the following Hamiltonian:

Hs-c-t = εs

σz,s

2
+ εc

σz,c

2
+ εt

σz,t

2
+ Js

σ s

2
· σ c

2
+ Jt

σ c

2
· σ t

2
,

(4)

where σ i is the Pauli operator with z component σz,i . εi is the
energy splitting between the qubit states, where the subscript
i denotes the source, chain, or target.

We assume that the source and target donors are operated
in the bulklike mode, where the electron and nuclear spins are
coupled by the hyperfine interaction A, and that hγeB0 � A

to ensure that the electron-nuclear eigenstates of source and
target qubits are disentangled. In this regime, the hyperfine
interaction simply modifies the electron qubit splitting by an
amount dependent on the nuclear spin state. The latter is known
to remain unchanged for several minutes [6] unless forcibly
modified by the application of radio-frequency excitations.
The source- and target-qubit splittings εs and εt are equal to
hγeB0 + A/2 or hγeB0 − A/2 when the nucleus is in the |⇑〉
state or |⇓〉 state, respectively. In the analysis below, we set
εs = εt , which can be realized by preparing the nuclear spins
of the source and target donors in the same state, and tuning
their hyperfine couplings with local electrostatic gates [43]
until they acquire identical values.

We address the effect of the nuclear spins on a chain
operated in the bulklike mode in Appendix B. For a chain in
the interface mode, however, the hyperfine coupling between
the electron and nuclear spins is zero since the electron wave
functions do not overlap with those of the nuclei. Therefore,
the energy separation εc between the |↑c〉 and |↓c〉 chain-qubit
states is simply equal to hγeB0.

We define the energy detuning between the source and chain
qubits as �Bz = |εs − εc|. In the case of an interface-mode

chain, �Bz = A/2 regardless of the source-qubit nuclear
state. We use the notation �Bz to highlight that this detuning
coincides with the energy difference between the |↑s↓c〉 and
|↓s↑c〉 source-chain states, and has the same physical origin
as the energy difference between the |↑↓〉,|↓↑〉 states in a
singlet-triplet qubit. Here, however, �Bz does not depend on
the polarization of a large bath of nuclear spins, as would be the
case in a double quantum dot system, but simply arises from
the fact that one qubit (the source or target) is coupled to a
single nuclear spin, while the other (the chain) is not. Indeed,
recent experiments have shown the potential of this type of
donor-dot hybrid systems to realize singlet-triplet qubits with
robust values of �Bz [44,45].

II. CALIBRATION OF THE SYSTEM

Spin transport across the chain requires control over the
exchange couplings Js and Jt , as will be described in Sec. III.
This control may come from tuning the tunnel barriers between
the donor electrons directly [46], or detuning their respective
electrochemical potentials [47], with gate electrodes. It is,
however, extremely unlikely, even with atomically precise
donor placement, that the magnitude of exchange couplings
will match the values targeted during fabrication. Therefore, it
will be necessary to first calibrate Js and Jt to the voltages of
the respective gate electrodes designed to tune them (exchange
gates). For spin transport, the key quantities to record are the
minimum and maximum values of the exchange couplings
that can be achieved. In addition, it is also important to
measure εi for each qubit, as it can vary due to magnetic field
inhomogeneities and dc Stark shifts of the electron g factor
[48] and donor hyperfine interaction [43,49].

Before providing a calibration protocol, we first introduce
the way in which a spin chain might be incorporated into a
quantum processor architecture, such as the one presented in
Ref. [50]. A source donor at the edge of the quantum processor
is tunnel coupled to a single-electron transistor (SET) for
initialization and readout of its electron and nuclear spins
[4,6,51], as illustrated in Fig. 3. This donor is then exchange
coupled to a donor chain, which is in turn coupled to a target
donor. The target donor is linked to the remaining entities of
the processor. Due to layout constraints, it may not be possible
to fabricate an SET for every donor qubit in the processor for
initialization and readout. We have thus developed a protocol
to calibrate and initialize the qubits, regardless of their distance
from the edge of the processor.

SET

Source Chain

JsSpin 
Readout

J’

Target

Jt

FIG. 3. Schematic of the system used for transport. A source
donor is exchange coupled to a donor chain, which is in turn coupled
to a target donor. The target donor is then linked to the remainder
of the quantum processor. A single-electron transistor (SET) tunnel
coupled to the source donor serves to initialize and measure the state
of the source electron spin qubit.
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Our calibration protocol relies on the assumption that any
qubit or a pair of qubits can be effectively isolated from the
remainder of the processor. For example, when the source
donor is being calibrated, one must ensure that the chain
does not alter its dynamics. Similarly, when Js is being
calibrated, the target should not alter the dynamics of the
source-chain system. This isolation may be achieved in two
steps. We present these steps using the example of isolating
the source donor. First, Js should be minimized by pulsing its
exchange-gate appropriately. However, it would be unrealistic
to assume that Js = 0. The source qubit, therefore, is not
completely separated from the dynamics of the chain. The
second step utilizes Jt to minimize the effect of a nonzero
Js . Maximizing Jt , i.e., strongly coupling the chain and target
qubits, has the effect of isolating the dynamics of the source
qubit. This is because the eigenstates of the system will
then approximately be the tensor products of the uncoupled
source-qubit states with the singlet-triplet states of the chain
and target, similar to the case where Js = 0. The required ratio
of Jt to Js for this isolation will be quantified in Sec. III B 3. We
assume that the above steps are sufficient to isolate any qubit
(or pair of qubits) in the processor that is being calibrated.

We begin by determining εs of the isolated source donor.
The spin state of the source electron is measured and initialized
using spin-dependent tunneling to the SET [4]. εs can then be
extracted using the electron spin resonance (ESR) technique
outlined in Ref. [5].

The next step is to calibrate Js with its exchange-gate
(Js-gate) voltage. For this, the chain is first isolated from
the target, by minimizing Jt and maximizing J ′ (Fig. 3).
Then, the ESR spectrum of the source qubit is measured
while varying the Js-gate voltages. The exchange coupling
Js modifies the source resonance frequencies and provides a
unique “fingerprint” that can be compared to the theoretically
calculated ESR spectrum described below, resulting in an
accurate map of Js as a function of Js-gate voltage.

Figure 4(a) shows the ESR spectrum of the source electron
as a function of Js , calculated by solving for the eigenstates of
the Hamiltonian

Hs-c(interface) = hγeB0

(
σz,s

2
+ σz,c

2

)
− hγnB0

nucσz,s

2

+A
σ s

2
·

nucσ s

2
+ Js

σ s

2
· σ c

2
, (5)

where nucσ s is the Pauli operator for the source nucleus with
z component nucσz,s , and γn ≈ 17.2 MHz/T is the nuclear
gyromagnetic ratio for the 31P donor. To obtain a model ESR
spectrum that would match the experiment described, for each
value of Js , we weigh all possible transitions between the
eigenstates of Hs-c(interface) with the product of the transition
probability and spin readout contrast of the source qubit
[52]. This corresponds to the readout signal available in
the experiment, which is the spin of the source electron.
The resonance frequencies obtained in the experiment at a
particular voltage on the Js gate corresponds to a horizontal
slice in the plot.

We now briefly describe the physics in Fig. 4(a). For
Js � A/2, the ESR spectrum is that of the isolated source
donor, where the two hyperfine-split peaks [5] correspond to

10-2

10-1

100

101

102(a)

(b)

10-2

10-1

100

101

102

 

Frequency

FIG. 4. ESR spectra of a donor electron coupled to a chain
qubit, operated in the interface mode. The spectra are shown for
the cases where measurement of only (a) the donor electron or (b)
the chain qubit is possible. (a) and (b) are used to calibrate Js and Jt ,
respectively.

the two possible frequencies of εs/h = γeB0 ± A/2h. As Js

is increased with its exchange gate, each of the peaks split
into two branches corresponding to the two possible states of
the chain qubit |↑c〉 and |↓c〉. This splitting is equal to Js/h,
allowing its magnitude to be directly obtained in the low-Js

(<A/2) regime. As Js is increased further (>�Bz = A/2),
the eigenstates of the coupled source and chain qubits evolve
towards the spin-singlet |S〉 and the triplet states |T0〉, |T+〉,
and |T−〉. The branches that involve the |S〉-like state fade
away as their transition probabilities tend to zero. In contrast,
the branches that involve the |T0〉-like state tend towards a
frequency that is the average of the isolated source- and
chain-qubit frequencies, i.e., (εs + εc)/2h. This is equal to
γeB0 ± A/4h as shown at the top of Fig. 4(a), depending on
the spin of the source nucleus.

While the low (<A/2) values of Js can be extracted directly
from the ESR spectrum, a different technique is required
to estimate them when Js > A/2. In this regime, Js can be
measured using a SWAP-style experiment, as detailed in the
sequence below.

(i) Initialize the source-chain system in antiparallel states
while Js is minimized. For this, the chain qubit needs to be read
out using a conditional rotation (CROT) on the source qubit
[52]: with the source initialized in the |↓〉 state and Js pulsed
to � A/2, an ESR π pulse is applied at the frequency where
the source qubit flips only if the chain is in the |↓〉 state. If the
source has not flipped, then the chain has been determined to
be in the |↑〉 state. The source qubit should then be initialized
in the opposite state to the chain qubit.

(ii) Measure the frequency of exchange oscillations. With
the system initialized in antiparallel states, Js is pulsed high
(>A/2) for a time τ , and then minimized thereafter. The source
qubit is then read out to see if it has flipped. This is repeated
several times to obtain a flip probability. The flip probability
can be plotted as a function of τ , and will display exchange
oscillations at frequency Js .
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The chain-qubit splitting εc is calibrated by measuring its
ESR spectrum, using the fact that its spin state can be read
out via CROT of the source qubit in the Js � A/2 regime.
Similarly, access to the spin state of the chain qubit allows
the calibration of Jt to its associated exchange gate with the
same method used to calibrate Js . Figure 4(b) shows the ESR
spectrum of the chain qubit as a function of Jt . This spectrum
is obtained by solving the Hamiltonian in Eq. (5), but where
the source is replaced by the target and the readout contrast
is based on the chain qubit instead. In the low-Jt regime, the
ESR spectrum is that of the isolated chain qubit, whereas the
spectra of Figs. 4(a) and 4(b) converge in the high-Js or -Jt

regime.
The above techniques can thus be used recursively to (i)

initialize and read out any qubit, (ii) measure εi of each qubit,
and (iii) calibrate the exchange interaction to its associated gate
for any pair of qubits in the processor. As we shall explain
below, a particularly important parameter for the operation
of the chain is the maximum exchange coupling achievable
between chain and qubits Jmax.

Note that our analysis in this section focused on a donor
chain operated in the interface mode. For completeness, we
also present the calibration protocol and ESR spectra for the
case where the chain is operated in the bulklike mode in
Appendix C.

III. SPIN TRANSPORT

In this section, we analyze the transport of a source qubit to
the target qubit via the chain. For our analysis, we define the
transport fidelity as

F = |〈�f |�r〉|2, (6)

where |�r〉 is the required final state of the source-chain-target
system and |�f 〉 is the actual final state of the system after
transport.

An intuitive method for transporting the source qubit to the
target is via sequential SWAP operations [24], where the spin
state is first transferred to the chain and then to the target. A
SWAP operation is achieved by pulsing the exchange coupling
J (i.e., Js or Jt ) to a value much larger than �Bz (Ref. [52]), for
a time TSWAP, such that

∫ TSWAP

0 [J (t)/h]dt = 0.5. For example,
TSWAP needs to be 50 ps for J (t)/h = 10 GHz. Defining J̄

as the mean exchange coupling during a SWAP operation, the
transport fidelity is given by

FSWAP ≈ sin4 (πTSWAPJ̄ /h). (7)

While the SWAP operation is fast, FSWAP is sensitive to noise
in J and timing imperfections. Equation (7) shows that an
accuracy of J̄ TSWAP to within 2% is required to obtain FSWAP >

99%. In the example where J (t)/h = 10 GHz and TSWAP =
50 ps, this translates to a requirement of pulses with picosecond
precision. To circumvent this timing constraint, an adiabatic
transport protocol robust to pulsing errors was proposed in
Ref. [31].

An adiabatic process is one in which the instantaneous
eigenstates of the system are modified at a rate much slower
than the energy separations between them. The Hamiltonian
Hs-c-t in Eq. (4) is block diagonal, as explained in Ref. [31].
We analyze the adiabatic transport process by starting with
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FIG. 5. (a) Pulsing scheme for the adiabatic spin transport
protocol. (b) Sketch of the time evolution of the eigenenergies (y
axis not to scale). The approximate eigenstates are labeled at the start
and end of the protocol. The |↑〉 and |↓〉 states are transported via
the two labeled adiabatic passages. They belong to two independent
blocks of the Hamiltonian as grouped by the shaded boxes.

Js = 0 and Jt = Jmax at t = 0. At this point, the eigenstates
are the uncoupled source spin state and the chain-target singlet
and triplet states, as labeled on the left side of Fig. 5(b). The
source holds the qubit state to be transported, |ψs〉, and the
chain and target qubits must be initialized in the singlet state
|Sct 〉 (see Sec. III A). The system is thus in a superposition
of the |↑sSct 〉 and |↓sSct 〉 eigenstates, which belong to two
independent three-state blocks in the Hamiltonian. These
blocks are grouped by the shaded boxes in Fig. 5(b). Note
here that we have omitted the |↑sT+ct 〉 and |↓sT−ct 〉 states in
the figure as they are in separate blocks of Hs-c-t and do not
play a role in transport.

Once initialized, the transport protocol is completed by
ramping Js towards Jmax and Jt towards 0 over a time TAP,
as shown in Fig. 5(a). The evolution of the eigenenergies as
a function of time is shown in Fig. 5(b), revealing that the
|↑s〉 and |↓s〉 components follow two independent adiabatic
passages. The two passages are identical if �Bz = 0. At the
end of the protocol, the eigenstates are essentially reflections
of the t = 0 states. The source qubit is transported to the target,
and the prepared singlet is reflected on to the source and chain
qubits.

Prior to estimating the fidelity of the adiabatic protocol
(Sec. III B), we will outline a method to initialize the target
and chain for transport.

A. Singlet initialization for adiabatic transport

Recall from Sec. I that the required magnetic field is ∼1 T
and the maximum value of Js/h and Jt/h is ∼10 GHz.
Therefore, the ground state of the chain-target system when
Jt is at its maximum is the |T−ct 〉 state, rather than the singlet
|Sct 〉 state. This rules out several well-established techniques to
initialize two qubits in the singlet state that require it to be their
ground state [30]. Below, we show that we can nevertheless
initialize a singlet state by making use of the presence of a
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FIG. 6. (a) Protocol for initializing the chain and target qubits into
the near-singlet |ϕSct

〉 state of chain and target qubits. (b) Initialization
error as a function of the product of TSP and Jmax, for three values of
�Bz/Jmax. The fidelities are approximately given by Eq. (8).

finite �Bz. The idea is similar to the way in which the |↑↓〉 or
|↓↑〉 states are initialized in singlet-triplet qubits [30].

We begin with the chain and target qubits in the ground
|T−ct 〉 state with minimal Js and Jt , using the techniques
described in Sec. II. For ease of explanation, we assume that
the nuclei of the source and target donors are both initialized
in the |⇓〉 state. ESR is then used to excite the two qubits
to |ψi〉 as labeled in Fig. 6(a). |ψi〉 is the lower-energy
state of the two antiparallel eigenstates in the low-J regime,
and is equal to |↓̃c↑t 〉 = cos(θ2)|↓c↑t 〉 + sin(θ2)|↑c ↓t 〉, where
tan(2θ2) = Jmin/�Bz. Jt is then increased adiabatically to
Jmax(��Bz) over a time scale TSP such that the initialized
state |ψi〉 evolves to |ψf 〉, as shown in Fig. 6(a).

Observe that the prepared state |ψf 〉 is not exactly equal
to the singlet state. �Bz modifies the eigenstate of the
chain-target system from the exact singlet to a “near-singlet”
state |ϕSct

〉 = cos(θ1)|Sct 〉 − sin(θ1)|T0ct 〉, where tan(2θ1) =
�Bz/Jmax. The effect of the discrepancy between the |ϕSct

〉
state and the ideal initial state |Sct 〉 on the adiabatic transport
protocol will be addressed later in Sec. III B 2. Here, we only
focus on the fidelity with which this initialization protocol
prepares the |ϕSct

〉 state.
The fidelity FSP is calculated as a function of TSP, the

time over which Jt is ramped. FSP is defined as the squared
projection of the final chain-target state onto the required |ϕSct

〉
state. Figure 6(b) plots the error 1 − FSP as a function of the
product JmaxTSP/h for �Bz/Jmax = 10−1, 10−2, and 10−3. For
simplicity, we assume Jmin = 0. Recall that the adiabaticity of
an adiabatic protocol is enhanced when the minimum energy
separation between the eigenstates and/or the duration of the
protocol is increased. Therefore, the fidelity improves as TSP

is increased, as long as dephasing can be neglected. This is
illustrated in Fig. 6(b) by considering a fixed Jmax and �Bz.
In addition, the fidelity improves by increasing �Bz since it
determines the minimum energy separation between the two
eigenstates in this Bloch sphere during the adiabatic protocol.
This is also observed in the figure by considering a fixed Jmax

and TSP. The expression below, derived in Appendix E, is an

approximation for FSP in the adiabatic regime:

1 − FSP ≈ 1

4(JmaxTSP/�)2

(
Jmax

�Bz

)4

. (8)

Figure 6(b) shows that high initialization fidelities are
achievable with this protocol. For example, an initialization
error of <10−4 can be obtained for �Bz/h = 100 MHz,
Jmax/h = 10 GHz, and TSP > 10 μs. However, we note that
the required TSP are several orders of magnitude larger than the
time scales for the transport protocol, as will be discussed in
the next section. Nonetheless, the initialization protocol need
only be performed once since the prepared state can be reused.
This is due to the fact that the transport protocol reflects the
|ϕSct

〉 state on to the source and chain qubits, as illustrated in
Fig. 5(b).

B. Adiabatic transport under realistic experimental conditions

We will now investigate the influence of the following
experimental parameters on the adiabatic transport protocol:
(i) errors in TAP and/or Jmax; (ii) �Bz between the chain and
source/target qubits; (iii) limited tunability of the exchange
couplings; (iv) noise in the qubit energy splittings εi ; (v) noise
in the exchange couplings Js and Jt . We define the transport
fidelity FAP for transporting a source state |ψs〉 according
to Eq. (6). Here, the required final state of the system is
|�r〉 = |ϕSct

〉 ⊗ |ψs〉.

1. Errors in Jmax and TAP

Jmax and TAP are the fundamental transport parameters as
they determine the degree of adiabaticity of the protocol [31].
To illustrate this, it is instructive to first consider the case where
�Bz = 0. In this case, the minimum energy separations �E(±)

between each adiabatic passage and the nearest eigenstate in
their blocks are equal to Jmax/2 [see Fig. 5(b)]. To maintain
adiabaticity, we require the transport time TAP � h/�E(±),
and hence the transport fidelity FAP is dependent on the product
JmaxTAP/h.

Figure 7 shows the transport error 1 − FAP as a func-
tion of JmaxTAP/h, obtained from numerical simulations of
transporting the |ψs〉 = (|↑〉 + |↓〉)/√2 state. We note that
fidelities calculated here are independent of the choice of
|ψs〉. The resonances indicate points where perfect adiabatic
transport is achieved [31]. However, we focus on the envelope

100 101 102 10310-10

10-8

10-6

10-4

10-2

100

 Numerical simulation
 Equation 9

FIG. 7. Error of the transport protocol as a function of JmaxTAP/h,
assuming �Bz = 0 and Jmin = 0. The envelope of the transport error
in the adiabatic regime is given by Eq. (9) (dashed line). The protocol
is highly robust to errors in Jmax and TAP.
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to provide a conservative estimate of fidelities. For large
JmaxTAP/h, Ref. [31] showed that the envelope of the error
is proportional to 1/(JmaxTAP)2. This envelope can also be
obtained analytically (Appendix E), and is given by

1 − FAP ≈ 3

3 + (2JmaxTAP/�)2
. (9)

The above equation is also plotted in Fig. 7 as the dashed
black line. This highlights that the adiabatic protocol is robust
to errors in Jmax and TAP, and low transport errors of ∼10−4,
10−6, and 10−8 can be achieved for JmaxTAP/h ≈ 101, 102, and
103, respectively [31]. Therefore, depending on the targeted
fidelity, transport times TAP ∼ 10–100 ns are required when
Jmax/h ∼ 1–10 GHz.

Note that the time scales required for TAP are significantly
shorter than those required for the singlet initialization protocol
time TSP. This is because the transport time is limited by Jmax,
while TSP is limited by �Bz � Jmax.

2. Effect of �Bz

The ratio between �Bz and Jmax also has an important effect
on the adiabaticity of the protocol. The energy separations
�E(±) as a function of �Bz are given by

�E(±)

Jmax
=

1 +
√

9 ± 8�Bz

Jmax
+ 16

(
�Bz

Jmax

)2

8
± �Bz

2Jmax
. (10)

A nonzero �Bz decreases �E(−) in Eq. (10), and can therefore
reduce the adiabaticity of the |↓s〉 passage. Figure 8(a) plots

FIG. 8. The transport error due to (a) �Bz normalized to Jmax,
and (b) limited tunability (Jmin/Jmax) of exchange couplings. These
are obtained from numerical simulations of the adiabatic protocol for
JmaxTAP/h ≈ 101, 102, and 103. The cutoff value of �Bz/Jmax such
that �Bz does not affect the transport fidelity is given in Eq. (11).
The dashed line in (b) is the error due to “spin leakage” as described
by Eq. (12).

the error for transporting a |ψs〉 = |↓〉 state, as a function
of �Bz/Jmax, for JmaxTAP/h ≈ 101, 102, and 103. The plot
shows that for �Bz � Jmax, the fidelities are limited only
by JmaxTAP/h, and are given by Eq. (9). As �Bz increases
past a certain point, the reduction of �E(−) causes the |↓s〉
passage to lose adiabaticity. From Fig. 8(a) we can extract the
cutoff value for �Bz/Jmax, such that �Bz does not reduce the
transport fidelity, by fitting to the following expression:(

�Bz

Jmax

)
cutoff

≈
√

JmaxTAP/h

13
(11)

Equation (11) shows that, for JmaxTAP/h ≈ 101, �Bz can
be as large as Jmax/4 without affecting the fidelity. In the
example of �Bz/h = 100 MHz, Jmax/h only needs to be as
large as ≈400 MHz. Even higher values of �Bz/Jmax can be
tolerated if JmaxTAP/h is increased.

In addition to the adiabaticity, �Bz has another effect on
the transported state. It breaks the symmetry of the |↑〉 and
|↓〉 adiabatic passages since �E(+) �= �E(−) in Eq. (10).
The transported state thus acquires a constant phase �φ

with respect to the initial source state. The phase �φ can
be calibrated and corrected for because it is a function of
�Bz, Jmax (which are determined during the calibration stage),
and TAP.

3. Limited tunability of exchange couplings

So far, we have assumed that the exchange coupling can
be controlled up to the point of being entirely switched off,
Jmin = 0. A more realistic assumption would allow for a
limited dynamic range in the tunability of J , such that some
residual exchange coupling remains at all times. For Jmin > 0,
the eigenstates of the system at t = 0 are not the simple tensor
products of the source-qubit state with the coupled states of the
chain and target qubits. The transport fidelity then depends on
how the system is initialized. If we assume that the system can
be initialized such that the source qubit holds the state to be
transported |ψs〉 and the chain and target are in the near-singlet
state |ϕSct

〉, the initialized state is not an eigenstate. The source
qubit will then undergo partial exchange oscillations (“spin
leakage”) with the chain and target, resulting in an error.

To estimate the effect of this spin leakage, we perform
simulations where we wait for a time h/Jmax after the
transport protocol, which yields the worst-case fidelity. For
simplicity, we assume �Bz = 0. Figure 8(b) plots the error of
transporting the |ψs〉 = |↑〉 state as a function of Jmin/Jmax,
for JmaxTAP/h ≈ 101, 102, and 103. The fidelities calculated
here are independent of the choice of |ψs〉. We observe that the
error traces in Fig. 8(b) are first limited by Eq. (9) (JmaxTAP/h)
and then by spin leakage for large Jmin/Jmax. An analytical
expression for the error due to spin leakage is derived in
Appendix E. This is plotted as the dashed black line in Fig. 8(b)
and is given by

1 − FAP ≈ 3
4 × (Jmin/Jmax)2. (12)

The quadratic dependence in Eq. (12) allows for low
transport errors to be achieved with fairly limited tunability.
One and two orders of magnitude of control over the exchange
interaction result in errors of 10−2 and ∼10−4, respectively.
Note that the exchange coupling that needs to be tuned in this
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system is that between a single donor electron operated in the
bulklike mode (source or target) and an electron at the edge
of the chain operated in the interface mode. Estimation of the
control on this exchange interaction is left for future work.
A recent experiment has demonstrated limited tuning of the
exchange coupling in a similar configuration, but the donor in
that instance was located almost directly beneath the interface
dot [44].

On another note, the spin-leakage error is essentially an
estimate of the degree of isolation of the source qubit from the
rest of the system. Figure 8(b) illustrates that good isolation
can be achieved even with limited tunability of exchange
couplings. Recall the technique described in Sec. II to isolate
the source qubit during calibration, where Jt is maximized
with respect to Js . With two orders of magnitude of tunability
of exchange couplings, i.e., Jt/Js ∼ 100, the source qubit can
be treated as being isolated with a fidelity of ∼99.99%.

4. Noise on the qubit energy splittings εi

Magnetic and electric noise, arising both within the device
and from the external control fields, results in fluctuations in εs ,
εc, and εt . This can lower the fidelity of the transport protocol
in two ways. First, the qubit being transported will be subject
to dephasing, where an error in �φ is accumulated. Second,
higher-frequency noise can cause fast temporal variations in
the instantaneous eigenstates, which can in turn make the
transport passages lose adiabaticity.

To estimate the effect of this noise, we simulate the adiabatic
transport protocol with independent white Gaussian noise of
power spectral density Sδεi

added to εs , εt , and εc in Eq. (4).
For each value of Sδεi

, we perform 1000 simulations and
compute the mean fidelity FAP for transporting the |ψs〉 =
(|↑〉 + |↓〉)/√2 state, for JmaxTAP/h ≈ 101, 102, and 103,
with �Bz/h = 100 MHz. We plot these errors as a function
of (Sδεi

/h2) × TAP, as the solid lines in Fig. 9(a). We express
the noise added as (Sδεi

/h2) to yield units of Hz2/Hz, which
is consistent with the quantities discussed in this paper.

We observe that, in the low-noise regime, the fidelities are
limited by the value of JmaxTAP/h. As the level of noise
increases, the fidelities are independent of Jmax and instead
only depend on the magnitude of the noise and the time that
the noise has to act on the system.

The total error is a combination of errors due to dephasing
and loss of adiabaticity. To capture the error due to the loss of
adiabaticity alone, we perform a separate simulation to obtain
the average error eA(δεi) of transporting the |ψs〉 = |↑〉 and |↓〉
states, which are immune to dephasing. eA(δεi) is computed
for JmaxTAP/h ≈ 103 and is plotted as the dashed purple line
in Fig. 9(a). We observe that this matches the solid orange line
when (Sδεi

/h2) × TAP < 10−10. Beyond this value, dephasing
also contributes to the total error, separating these two lines,
as shown by the inset.

The error due to dephasing of a single qubit eφ(δεi) in the
presence of white noise is given by [53]

eφ(δεi) = 1 − e−TAP/T2

2
= 1 − e−2π2Sδεi

TAP/h2

2
, (13)

where T2 is the qubit dephasing time. We plot eφ(δεi)
as the dashed gray line in Fig. 9(a). Assuming the two
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FIG. 9. Calculations of error due to noise added to (a) εs , εc,
and εt and (b) Js and Jt . The errors are plotted as a function of the
product of the power spectral density of the white noise added (Sδεi

and SδJ ) and TAP. We assume �Bz/h = 100 MHz. The solid lines
are obtained from numerical simulations of the adiabatic protocol for
JmaxTAP/h ≈ 101, 102, and 103. The dashed purple lines correspond
to the error due to the loss of adiabaticity for JmaxTAP/h ≈ 103. The
dashed magenta lines are fits of the total error due to the noise given
by Eqs. (14) and (15). The dashed gray line in panel (a) shows the
error due to dephasing.

sources of error to be independent, the total error is given
by eφ(δεi) + eA(δεi) − eφ(δεi)eA(δεi). This matches the solid
orange line remarkably well (result not plotted). In the regime
where the transport is limited by noise, we fit the error to an
exponential function. This yields the fit e(δεi) [plotted as the
dashed magenta line in Fig. 9(a)], given by

e(δεi) ≈ 0.83(1 − e−34×Sδεi
TAP/h2

). (14)

Comparing these results to the experiment requires knowl-
edge of the frequency dependence of the power spectral density
of the noise. A recent experiment reports the noise spectrum for
a donor electron spin qubit in isotopically enriched 28Si to be
of the form 9 × 1011/ω2.5 + 6 (rad/s)2/Hz. The frequency-
dependent component is attributed to fluctuations in the
external magnetic field B0 [7], which would be homogeneous
over the typical transport length scales (∼100 nm). This
effect of this noise component can therefore be refocused
with dynamical decoupling [54]. On the contrary, white
noise cannot be refocused. With the reported noise floor of
6 (rad/s)2/Hz, such that (Sδεi

/h2) ≈ 0.15 Hz2/Hz, Eq. (14)
predicts errors of ∼10−7 with TAP ≈ 100 ns.
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5. Noise in the qubit-chain couplings Js and Jt

Electrical noise in a gated nanostructure can modify the
exchange interactions Js and Jt . For �Bz = 0, noise in Js

and Jt modifies the |↑〉 and |↓〉 adiabatic passages equally,
such that the phase error of the transported state is zero.
However, �Bz/h ∼ 100 MHz is always finite for an interface-
mode chain, breaking the symmetry of the passages and
allowing this noise to potentially feed in to the phase of
the transported qubit. Additionally, high-frequency noise can
potentially reduce the adiabaticity of transport by rapidly
modifying the instantaneous eigenstates.

We estimate the transport fidelity as a function of
(SδJ /h2) × TAP, where SδJ is the power spectral density of
white noise added to Js and Jt . For each value of SδJ , we
perform a Monte Carlo analysis of 1000 simulations to quan-
tify the fidelity FAP of transporting the |ψs〉 = (|↓〉 + |↑〉)/√2
state with �Bz/h = 100 MHz. These errors are plotted as the
solid lines in Fig. 9(b), for JmaxTAP/h ≈ 101, 102, and 103.
The trend observed is the same as that of Fig. 9(a). Note that
solid orange line is hidden by the dashed purple line.

To quantify the loss of adiabaticity, we obtain the average
error eA(δJ ) of transporting the |ψs〉 = |↑〉 and |ψs〉 =
|↓〉 states, as they are immune to dephasing. eA(δJ ) for
JmaxTAP/h ≈ 103 is plotted as the dashed purple line in
Fig. 9(b). It aligns almost exactly with the solid orange line for
(SδJ /h2) × TAP < 10−2, indicating that the loss of adiabaticity
is the main source of error for noise in Js and Jt . In the regime
where the transport is limited by noise, we fit the error to an
exponential function. This yields the fit e(δJ ) [plotted as the
dashed magenta line in Fig. 9(b)], given by

e(δJ ) ≈ 0.83(1 − e−11SδJ TAP/h2
). (15)

Experimental values for noise on the exchange coupling
between donors are not currently available. In any case, our
analysis shows that it is favorable to perform the transport
protocol in shorter times TAP and larger Jmax.

Overall, we find that high-fidelity spin-qubit transport
across donor chains may be achieved with the adiabatic
protocol. This protocol is inherently robust to errors in the
precise magnitudes of exchange couplings and the transport
time (Fig. 7). The inclusion of �Bz in the system is utilized
to initialize the system for transport. For �Bz/h ∼ 100 MHz,
we find that a minimum Jmax/h of 400 MHz is sufficient to
ensure that the fidelity is unaffected by �Bz [Fig. 8(a)]. In the
case of limited tunability of the exchange coupling, we have
found that two orders of magnitude of control is sufficient
for fidelities exceeding 99.99% [Fig. 8(b)]. The magnitude
of magnetic noise as measured in a recent experiment in
isotopically purified silicon still allows for errors ∼10−7 to
be achieved [Fig. 9(a)]. As for the noise in the exchange
couplings, although we have calculated the transport fidelities
as a function of the noise power spectral density, we do not
have compatible experimental measurements for comparison.

IV. SUMMARY AND OUTLOOK

We have provided a comprehensive analysis of the oper-
ation of an odd-number donor spin chain for the purpose of
transporting a spin-qubit state across a quantum processor.

A key realization is that, while the donor placement accuracy
necessary to operate a spin chain in the bulklike mode imposes
extremely tight constraints on donor placement, a much more
reliable fabrication pathway can be found by adopting the
interface-mode operation. In that mode, the donor placement
accuracy achievable with ion implantation process can allow
the fabrication of functional spin chains with high yield.
Moreover, because of the wider extent of the electron wave
function at the interface, the qubit state can be moved across
distance of order 100 nm using a modest number of donors.
Because of the absence of hyperfine coupling between donor
nuclear spins and their respective electrons while confined at
the Si-SiO2 interface, the system has an inbuilt difference in
energy splitting between the source/target qubits and the chain
that links them. We have shown how to use this property to
initialize the system in a state useful for adiabatic transport of
a qubit spin state.

Our analysis of the realistic noise sources that could
be present in a spin-chain device, based upon the existing
knowledge of such noise sources in donor spin-qubit devices,
indicates that spin transport with high fidelity is in principle
possible. Therefore, future work can focus on the design and
development of large-scale quantum computer architectures
where highly coherent donor spin qubits are linked by spin
chains. In that context, the method discussed in Sec. III B 3
to isolate individual qubits from their neighbors may become
more broadly significant because controlling and removing
unwanted interactions between physical qubits is vital to the
high-fidelity operation of a quantum computer. For example, a
combination of single donors and donor chains could be used
to isolate information-carrying spins when they are required
to be idle. The adiabatic protocol can then be used within the
same system to transport these spins to appropriate locations,
where they interact with other qubits to perform quantum logic
operations.
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APPENDIX A: EXCHANGE COUPLING
CALCULATION WITH NEMO-3D

In Sec. I of the paper, we estimated the required dopant
placement accuracy to successfully realize a donor chain.
Part of this calculation involved a numerical estimate of the
exchange coupling J as a function of donor separation. For
this, we consider two donors A and B placed in a three-
dimensional space r. We first calculate the single-electron
wave functions ΨA(r) and ΨB(r) independently for the two
donors using NEMO-3D, an atomistic tight-binding simulation
package [55,56]. To estimate J between the two electrons, we
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FIG. 10. Tight-binding calculation of the exchange coupling as
a function of donor separation, for the bulklike (blue) and interface
(green) modes of operation modes. Insets: schematics of the electron
orbital wave functions for the two operation modes, with the electrons
and 31P nuclei represented in red and black, respectively.

use the Heitler-London formula [57–59]

J = 2

1 − |S0|4 {|S0|2J0 − K0}, (A1a)

S0 =
∫

r
Ψ ∗

A(r)ΨB(r)dr, (A1b)

J0 =
∫

r1

∫
r2

Ψ ∗
A(r1)ΨA(r1)

q2

4πεSi|r1 − r2|
×Ψ ∗

B (r2)ΨB(r2)dr2dr1, (A1c)

K0 =
∫

r1

∫
r2

Ψ ∗
A(r1)ΨB(r1)

q2

4πεSi|r1 − r2|
×Ψ ∗

B (r2)ΨA(r2)dr2dr1, (A1d)

where J0 and K0 are commonly referred to as the Coulomb
and the exchange integrals, respectively. q is the charge of
the electron, and εSi is the absolute permittivity of silicon.
Note that the wave functions ΨA(r) and ΨB(r) in this method
are computed independently of each other. This is reasonable
provided the separation between the donors is several times
the Bohr radii.

Figure 10 plots J as a function of donor separation R,
assuming the donors to be placed along the [100] plane at a
depth 7.1 nm below a Si-SiO2 interface. Here, we focus on the
regime where 10 GHz < J/h < 1 THz, and consider the two
operating modes: (i) the bulklike mode where the electrons are
bound to their respective donors, and (ii) the interface mode
where the electrons are pulled towards the Si-SiO2 interface
with a vertical electric field Ez = 30 MV/m. As the donor
electrons are pulled to the interface in the interface mode,
their wave functions expand in the lateral direction (illustrated

in the insets of Fig. 10), causing J to be enhanced by many
orders of magnitude. The interface-mode therefore allows the
donors to be separated further apart, while maintaining large
exchange couplings within the chain. The dependence of J on
donor separation R in Fig. 10 can be fitted to an exponential
function given by

J = Jλe
−R/Rλ . (A2)

In the bulklike mode, Jλ/h = 119.12 THz and Rλ = 1.17 nm.
In the interface mode, Jλ/h = 2.34 PHz and Rλ = 2.64 nm.

APPENDIX B: DONOR CHAIN OPERATED
IN THE BULKLIKE MODE

The nuclear spins of the chain donors do not influence the
qubit transport when the chain is operated in the interface
mode. However, they have an important effect for a chain
operated in the bulklike mode since they affect the qubit energy
splitting εc in Eq. (4). Here, we describe the dependence of εc

on the state of the chain nuclei.
The Hamiltonian for a chain consisting of N donors,

including nuclear spins, is given by

Hc = Hce
−

N∑
i=1

hγnB0

nucσz,c(i)

2
+

N∑
i=1

Ac(i)
σ c(i)

2
·

nucσ c(i)

2
,

(B1)

where Hce
is given by Eq. (1), nucσ c(i) is the Pauli operator

for the ith chain nucleus with z component nucσz,c(i). Ac(i) is
the hyperfine coupling between the electron and nuclear spins
of the ith chain donor. Recall that for a large magnetic field,
e.g., B0 = 1 T, the electron and nuclear spin states can be
treated separately. The N electrons form the extended qubit
described in Sec. I, provided Eq. (2) is satisfied. For each state
of the chain qubit, there are therefore 2N eigenstates for the
nuclei. The resulting ESR spectrum of the chain consists of 2N

resonances, where the chain-qubit state is flipped conditional
on the state of the nuclear system.

For example, we plot the ESR spectrum for the example of
a three-donor spin chain operated in the bulklike mode with
B0 = 1 T in Fig. 11(a). The eight ESR transitions reveal the
hyperfine shifts in the chain-qubit resonance frequency from
γeB0 = 28 GHz. The frequency shift, which we denote as �νc,
is a function of the nuclear state and the individual hyperfine
couplings.

We can provide an expression for this shift by first
determining the eigenstates of the nuclei. The chain nuclei
are mutually coupled by an electron-mediated superexchange
coupling Jn, which is a function of the individual hyperfine
couplings Ac(i) and the electronic exchange couplings Jc(i) [1].
For a three-donor chain with Jc(i)/h = 1 THz and Ac(i)/h =
100 MHz, we numerically calculate that Jn/h between the first
and third nuclei is ∼100 kHz. However, in realistic devices,
local electric fields and strain can introduce a Stark shift of
order a few MHz in the individual hyperfine couplings Ac(i)/h

[43,49], which in turn detune the nuclei from each other by an
amount that typically exceeds the magnitude of their mutual
couplings. We account for this by introducing variations in the
hyperfine couplings of order 1 MHz in Eq. (B1). The ∼MHz
detuning dominates over the weak coupling Jn/h, such that
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FIG. 11. (a) Electron spin resonance (ESR) frequencies for a
three-donor chain operated in the bulklike mode, with B0 = 1 T and
Jc/h = 1 THz. (b) ESR spectrum of a donor coupled to the edge of
an N = 3 donor chain. (c) ESR spectrum of an N = 3 chain qubit
coupled to a single donor, i.e., assuming that the chain, not the donor,
is being measured.

the nuclear eigenstates are almost exactly the tensor products
of their individual |⇑〉 and |⇓〉 states. We can thus calculate
�νc to first order using the equation

�νc =
N∑

i=1

U (i)Ac(i)Cc(i)/h, (B2)

where U (i) equals 1 or −1 when the ith nuclear spin is |⇑〉
or |⇓〉, respectively. 2Cc(i) = 〈↑c|σzc(i)|↑c〉 = −〈↓c |σzc(i)|↓c〉
represents the “effective contribution” of the ith chain electron
to the chain spin- 1

2 ground states. With this result, we can map
the effect of the nuclei for a chain operated in the bulklike
mode onto a shift in εc by an amount h�νc.

APPENDIX C: CALIBRATION OF THE DONOR
CHAIN IN THE BULKLIKE MODE

In Sec. II, we assumed that the chain is operated in
the interface mode while calibrating the exchange couplings
and the individual qubit energy splittings. This was because
experimentally realizing a chain operated in the bulklike mode
is extremely challenging compared to realizing one operated
in the interface mode. Here, for completeness, we outline the
calibration protocols when the chain is operated in the bulklike
mode.

The architecture including the SET, source donor, donor
chain, and target donors is identical to that described in Sec. II
of the main text. The difference between the interface and
bulklike modes first appears when measuring the exchange
coupling Js between the source and chain qubits. The

ESR spectrum of the source electron will not only show
contributions from the state of the chain qubit, but also from
the state of the chain nuclei. Figure 11(b) shows the ESR
spectrum for a source donor coupled to a three-donor chain, as
a function of the exchange coupling Js-c(1) between the source
and the first element of the chain. This spectrum is calculated
by numerically solving for the eigenstates of the following
Hamiltonian:

Hs-c(bulk) = Hc + hγeB0
σz,s

2
− hγnB0

nucσz,s

2

+As

σ s

2
·

nucσ s

2
+ Js-c(1)

σ s

2
· σ c(1)

2
. (C1)

Note that Js ∝ Js-c(1) as described in Sec. I. For each value
of Js-c(1), we find all allowed transitions between eigenstates
of Hs-c(bulk) and weigh them with the product of the transition
probability and the spin readout contrast of the source qubit,
as done for the interface mode.

Experimentally, to observe all transition frequencies in
the ESR spectrum, the chain qubit and nuclei need to be
randomized. The NMR frequencies of an N -donor chain are
bound between 0 and γnB0 + A/2h, as will be explained
in Appendix D. This makes it possible to randomize the
nuclei with nonadiabatic sweeps over the NMR frequencies.
Similarly, nonadiabatic sweeps over the ESR frequencies in
Fig. 11(a) can be used to randomize the chain qubit.

Figure 11(b) shows that in the low-Js-c(1) regime, the ESR
spectrum of the source electron consists of two transition
frequencies corresponding to the two states of its nuclear
spin. As Js-c(1) is increased slightly, these split into a pair
of branches due to the coupling to the chain qubit, which
can be in either the |↑c〉 or |↓c〉 state. The branches are
split by Js/h, allowing Js to be calibrated from the ESR
spectrum. For large Js-c(1) (�A), the branches involving the
|T0〉-like state tend towards the average of the uncoupled
source and chain-qubit frequencies (εs + εc)/2h. This results
in 2 × 2N possible frequencies since there are N nuclei in the
chain. For Js � A, Js can be calibrated using the SWAP-style
experiments outlined in Sec. II. Once Js has been calibrated,
εc (and therefore �Bz) can be determined by performing ESR
on the isolated chain qubit, as explained in Sec. II.

Figure 11(c) then shows the ESR spectrum of the chain
qubit coupled to a target donor, for the purpose of calibrating
Jt . In the low-Jt regime, the chain qubit has eight possible
transition frequencies corresponding to those in Fig. 11(a).
Highlighted in bright blue are the branches corresponding to
a particular nuclear configuration (|⇓⇓⇑〉) of the chain. This
was done to simplify the understanding of the spectrum, as
well as to show that Jt can be obtained even if the chain nuclei
are not randomized.

APPENDIX D: NMR FREQUENCIES OF A DONOR
CHAIN IN THE BULKLIKE MODE

Recall from Appendix B that the nuclear eigenstates of a
realistic donor chain in bulklike mode would be tensor products
of |⇑〉 and |⇓〉 states of the chain nuclei. The NMR frequency
νni for flipping the ith chain nucleus to first order is given by

νni = | − γnB0 ± Cc(i)A/h|, (D1)
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where Cc(i) is as defined in Eq. (B2). The sign is + or − when
the chain-qubit state is |↑c〉 or |↓c〉, respectively.

Cc(i) takes its maximum value of 0.5 when N = 1. Hence,
the maximum value of νni is (γnB0 + A/2h) for any N . Thus,
randomized nonadiabatic NMR frequency sweeps from DC
to past this maximum value would be sufficient to randomize
the nuclei for a donor chain of any size. Practically, the sweep
involves applying a frequency-modulated excitation where the
rate of change of frequency is faster than, but comparable to,
the expected Rabi frequency of a nuclear spin [60].

APPENDIX E: FIDELITY CALCULATIONS

In Secs. III A and III B, we quantified the fidelities of
the singlet initialization protocol and the adiabatic transport
protocol, respectively. Here, we outline the derivations used to
obtain Eqs. (8), (9), and (12).

1. Singlet initialization fidelity

The singlet initialization protocol involves initializing the
chain-target system in the |↓̃c↑t 〉 state, as defined in Sec. III A,
and ramping the exchange coupling between the chain and
target qubits. The |↑c ↑t 〉 and |↓c ↓t 〉 states are not coupled to
either the |↑c ↓t 〉 or |↓c ↑t 〉 states. Therefore, the dynamics of
the protocol can be represented in the S-T0 Bloch sphere, as
illustrated in Fig. 6(a). The truncated Hamiltonian in the basis
{|T0ct 〉,|Sct 〉} is given by

HSP(t) = J (t)
σz

2
+ �Bz

σx

2
, (E1)

where J (t) is the exchange coupling between the chain and
target, and is linearly ramped from 0 to Jmax. The aim is to have
the system in the |ϕSct

〉 eigenstate at the end of the protocol, as
defined in Sec. III A. Therefore, to quantify the fidelity of the
protocol, we translate the Hamiltonian into the adiabatic frame.
The translated Hamiltonian HA

SP(t) is obtained by applying the
following operation:

HA
SP(t) = AHSPA

−1 − i�A
d

dt
(A−1), (E2)

where the row vectors of A are the time-varying eigenvectors
of HSP(t),

HA
SP(t) =

√
J (t)2 + (�Bz)2 σz

2
− �

dχSP

dt

σy

2
, (E3)

where tan(χSP) = �Bz/J (t). To gain insight into the energy
terms in HA

SP, it is instructive to compare the system in the
adiabatic frame onto a spin in a magnetic field (Fig. 12). In this
picture, the field in the z direction is the energy separation of the
eigenstates of HSP. The field in the y direction is proportional
to the rate of change of the angle of the eigenstate in the
Bloch sphere of HSP (the laboratory frame). The eigenvectors
of HA

SP(t) are given by

|�1SP (t)〉 =
(

cos(αSP)
−i sin(αSP)

)
, (E4a)

|�2SP (t)〉 =
(

sin(αSP)
i cos(αSP)

)
, (E4b)

(a)

Φ1SP
(0)

Φ1SP
( SP )

(b)

FIG. 12. Bloch sphere in the adiabatic frame at the (a) start and
(b) end of the singlet initialization protocol. The red dot represents the
instantaneous state. The initial state of the system is oriented along
the z axis. In the adiabatic limit, the “circle of precession” (dashed
red circle) around the eigenstate |�1SP (t)〉 (blue arrow) follows the
evolution of |�1SP (t)〉 and does not change in diameter.

where tan(2αSP) = �
dχSP

dt
/
√

J (t)2 + �B2
z . The fidelity is de-

termined by the closeness of the state at the end of the protocol
to the +z axis in the adiabatic frame, which is equivalent to
the eigenstate of HSP.

The dynamics of the system in the adiabatic frame HA
SP is

shown in Fig. 12. Figure 12(a) shows the initial state of the
system, which is oriented along z, as we start in an eigenstate
of HSP. However, the field along y is nonzero at this point,
such that the eigenstate |�1SP (t)〉 is at an angle αSP(0) from the
z axis. If we consider the protocol to be in the adiabatic limit,
then the precession frequency of the initial state around the
eigenstate |�1SP (t)〉 is much faster than dαSP(t)/dt . Hence, we
can picture the precession trajectory of the state to be a circle
around |�1SP (t)〉 (dashed red circle in Fig. 12). In the adiabatic
limit, the center of this “circle of precession” follows |�1SP (t)〉,
and therefore the projection of the instantaneous state onto
|�1SP (t)〉 remains constant.

From Equation (E4), we see that αSP tends towards zero
at t = TSP, as also illustrated in Fig. 12(b). At the end of the
protocol, the circle of precession is centered close to the z

axis, with its diameter set by αSP(0). Therefore, the squared
projection of the eigenstate at t = 0 on to the z axis is an
estimate of the fidelity of the protocol, and is given by

1 − FSP ≈ sin2[αSP(0)] = 1

2

(
1 −

√
K

1 + K

)
, (E5)

where K = (�Bz/Jmax)4 × (JmaxTSP/�)2. In the limit where
K � 1, this can be simplified to

1 − FSP ≈ 1

4(JmaxTSP/�)2

(
Jmax

�Bz

)4

. (E6)

2. Adiabatic transport fidelity

a. Adiabaticity errors: JmaxTAP

Here, we outline the method we use to quantify the fidelity
of the adiabatic transport protocol. Our strategy will be to
truncate the Hamiltonian of the system to the relevant 3 × 3
block. We then map this onto a 2 × 2 Hamiltonian and translate
it into the adiabatic frame to estimate the fidelity.

We start with the basic Hamiltonian Hs-c-t for the source-
chain-target system defined in Eq. (4). As described by Oh
et al., Hs-c-t is block diagonal, consisting of four blocks. Only
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two blocks play a role in adiabatic transport, as described in
Sec. III B, where one transports the |↓s〉 component and the
other transports the |↑s〉 component of the source qubit. When
�Bz = 0, these two blocks are identical apart from the Zeeman
energy. The Zeeman energy can be ignored, as it is simply
an identity offset to the diagonal elements of either block.
Either adiabatic transport block is defined by the following
Hamiltonian:

HAP−3(t) = 1

4

⎛
⎝Jt − Js 2Js 0

2Js −Js − Jt 2Jt

0 2Jt Js − Jt

⎞
⎠. (E7)

The basis states of HAP−3 are given by {|↓s ↑c↑t 〉,
|↑s ↓c↑t 〉,|↑s ↑c↓t 〉} for the spin-up block and {|↑s ↓c↓t 〉,
|↓s ↑c↓t 〉,|↓s ↓c↑t 〉} for the spin-down block. Arbitrarily, we
analyze the fidelity for transporting the |↑s〉 source state. The
eigenvectors of HAP−3 are given by [31]

|�0(t)〉 = 1√
3

⎛
⎝1

1
1

⎞
⎠, (E8a)

|�±(t)〉 = 1√
N±

⎛
⎝ sin(ζ )

−cos(ζ ) ± √
q

cos(ζ ) − sin(ζ ) ∓ √
q

⎞
⎠, (E8b)

where tan(ζ ) = [Js(t)/Jt (t)], q = 1 − sin(ζ )cos(ζ ), and
N± = ∓2[2cos(ζ ) − sin(ζ )]

√
q + 4q. For adiabatic transport,

the system is initialized in the |↑sSct 〉 state, which is |�−(0)〉.
Recall that the eigenenergies of the |↑〉-transport and

|↓〉-transport blocks are plotted in Fig. 5. We see that in
each block, two states anticross whereas the energy of one
state is constant, suggesting that HAP−3(t) can be truncated to
a 2 × 2 Hamiltonian. For this, we write HAP−3 in the basis
of the eigenstates at t = TAP/2, which can be obtained by
substituting Js = Jt into Eq. (E8). The new basis states are
given by

|�′
0〉 = 1√

3

⎛
⎝1

1
1

⎞
⎠, |�′

+〉 = 1√
2

⎛
⎝ 1

0
−1

⎞
⎠,

|�′
−〉 = 1√

6

⎛
⎝ 1

−2
1

⎞
⎠. (E9)

The Hamiltonian HAP−3 in this basis {|�′
0〉,|�

′
+〉,|�′

−〉} is

H
′
AP−3(t) = 1

4

⎛
⎝Jt + Js 0 0

0 0
√

3(Jt − Js)
0

√
3(Jt − Js) −2Js − 2Jt

⎞
⎠.

(E10)

As expected, H
′
AP−3(t) is block diagonal. The initialized state

of the system is |↑sSct 〉 = (1/2)|�′
+〉 − (

√
3/2)|�′

−〉. As the
initial population of the |�′

0〉 is zero, we truncate H
′
AP−3(t)

to the lower 2 × 2 block, spanned only by |�′
+〉 and |�′

−〉.
Adding (Js + Jt )I2, we obtain

H
′
AP−2(t) = 1

4

(
Jt + Js

√
3(Jt − Js)√

3(Jt − Js) −(Jt + Js)

)
. (E11)

Recall that Js + Jt = Jmax and Jt − Js = Jmax(1 −
2t/TAP). We thus complete our mapping onto a spin in a
magnetic field, obtaining

H
′
AP−2(t) = ε

σz

2
+ �AP(t)

σx

2
, (E12)

where ε = Jmax/2 and �AP(t) = (
√

3Jmax/2)(1 − 2t/TAP).
Note that the initialized state |↑sSct 〉 is the lower-energy
eigenstate of H

′
AP−2(0).

With the mapping complete, we then move to calculating
the fidelity of the adiabatic protocol. For this, we translate
H

′
AP−2(t) into the adiabatic frame, by invoking the same

operation used in Eq. (E2). The Hamiltonian in the adiabatic
frame HA

AP−2(t) can be simplified as

HA
AP−2(t) =

√
ε2 + �AP(t)2

σz

2
− �

dχAP

dt

σy

2
, (E13)

where tan(χAP) = �AP(t)/ε. The eigenvectors of HA
AP−2(t) are

given by

|�1AP (t)〉 =
(

cos(αAP)
−i sin(αAP)

)
, (E14a)

|�2AP (t)〉 =
(

sin(αAP)
i cos(αAP)

)
, (E14b)

where tan(2αAP) = �
dχAP

dt
/
√

ε2 + �AP(t)2. We employ the
same technique used in Appendix E 1 to estimate the fidelity of
the protocol. We consider the dynamics in the adiabatic frame
and assume the adiabatic limit, where the projection of the
instantaneous state onto the eigenstate remains constant. The
diameter of the “circle of precession,” again, is determined
by the initial eigenstates in the adiabatic frame, which is at
an angle αAP(0) from the z axis. The eigenstate at the end of
the protocol is oriented at an angle αAP(TAP) from the z axis.
From Eq. (E14), we see that αAP(TAP) = αAP(0). Therefore, at
the end of the protocol, the circle of precession is at exactly
the same position as at t = 0. Recall that the fidelity of the
adiabatic protocol is the projection squared of the final state
onto the z axis. The circle of precession touches the z axis,
and hence we obtain resonances in the transport fidelities as
a function of TAP in Fig. 7. To obtain the worst case fidelity,
however, we use the opposite point on the circle, which has
the maximum angular deviation from the z axis. This yields
an expression for the envelope of transport errors given by

1 − FAP ≈ sin2[2αAP(0)] = 3

3 + (2JmaxTAP/�)2
. (E15)

Note that this expression perfectly aligns with the numerical
simulations in the adiabatic regime (JmaxTAP/h � 1) in Fig. 7.

b. Exchange tunability errors: Jmin/Jmax

Here, we derive an expression for the transport fidelity
limited by spin leakage, as defined in Sec. III B 3. We set
�Bz = 0 for simplicity, such that the |↑〉 and |↓〉 adiabatic
passages are equivalent. In Sec. III B 3, in the example of
transporting the |↑s〉 state, we have considered the system to
be initialized in the |↑sSct 〉 state. At t = TAP, the system is
transported to the |Ssc ↑t 〉 state, which is not an eigenstate if
Jmin �= 0. To quantify the error due to the resulting precession,
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we express |Ssc ↑t 〉 as a superposition of the eigenstates of
HAP−3, given by

|Ssc ↑t 〉 = c+|�+(TAP)〉 + c−|�−(TAP)〉, (E16)

where c2
± = [∓(2 cos (ζ0) − sin (ζ0)) + 2

√
q]/4

√
q with

tan(ζ0) = Jmin/Jmax. For Jmin/Jmax < 1, c− > c+. The
precession frequency is ∼Jmax/h. The maximum error
is when the state rotates by an angle π around the
eigenstate, such that the state of the system becomes

c+|�+(TAP)〉 − c−|�−(TAP)〉. This worst case leads to
a fidelity given by FAP = |c∗

+c+ − c∗
−c−|2, which is the

projection onto the |Ssc ↑t 〉 state. This can be simplified to

1 − FAP = 3

4

(Jmin/Jmax)2

(Jmin/Jmax)2 − (Jmin/Jmax) + 1
. (E17)

In the limit Jmin/Jmax � 1, the transport error takes the form

1 − FAP ≈ 3

4
(Jmin/Jmax)2. (E18)
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