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Abstract. A new fully variational approach is studied for elliptic grid generation (EGG). It is
based on a general algorithm developed in a companion paper [A. L. Codd, T. A. Manteuffel, and
S. F. McCormick, SIAM J. Numer. Anal., 41 (2003), pp. 2197–2209] that involves using Newton’s
method to linearize an appropriate equivalent first-order system, first-order system least squares
(FOSLS) to formulate and discretize the Newton step, and algebraic multigrid (AMG) to solve the
resulting matrix equation. The approach is coupled with nested iteration to provide an accurate initial
guess for finer levels using coarse-level computation. The present paper verifies the assumptions of
the companion work and confirms the overall efficiency of the scheme with numerical experiments.
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1. Introduction. A companion paper [10] develops an algorithm using Newton’s
method, first-order system least squares (FOSLS), and algebraic multigrid (AMG)
for efficient solution of general nonlinear elliptic equations. The equations are first
converted to an appropriate first-order system, and an approximate solution to the
coarsest-grid problem is then computed (by any suitable method such as Newton
iteration coupled perhaps with direct solvers, damping, or continuation). The ap-
proximation is then interpolated to the next finer level, where it is used as an initial
guess for one Newton linearization of the nonlinear problem, with a few AMG cycles
applied to the resulting matrix equation. This algorithm repeats itself until the finest
grid is processed, again by one Newton/AMG step. At each Newton step, FOSLS
is applied to the linearized system, and the resulting matrix equation is solved using
just a few V-cycles of AMG.

In the present paper, we apply this algorithm to elliptic grid generation (EGG)
equations. Grid generation is usually based on a map between a relatively simple
computational region and a possibly complicated physical region. It can be used
numerically to create a mesh for a discretization method to solve a given system of
equations posed on the physical domain. Alternatively, it can be used to transform
equations posed on the physical region into ones posed on the computational region,
where the transformed equations are then solved. If the Jacobian of the transformation
is positive throughout the computational region, the equation type is unchanged [12].
Actually, the relative minimum value of the Jacobian is important in practice because
relatively small values signal small angles between the grid lines and large errors in
approximating the equations [20].
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MULTILEVEL FOSLS FOR ELLIPTIC GRID GENERATION 2211

Our interest is in EGG using the Winslow generator [12], which allows us to
specify the boundary maps completely. Moreover, by choosing the two-dimensional
computational region to be convex, we can ensure that the Jacobian of the map is
positive, which in turn ensures that the map is one-to-one and onto and therefore does
not fold [8]. The Winslow generator tends to create smooth grids, with good aspect
ratios. The map also tends to control variations in gridline spacing and nonorthogo-
nality of the gridline intersections in the physical space. See Thompson, Warsi, and
Mastin [20] and Knupp and Steinberg [12] for background on grid generation in gen-
eral and EGG in particular. Several discretization methods for the EGG equations
together with their associated errors are discussed in [20]. In [12], the EGG equations
are derived, and several existing methods are described for solving them.

A brief description of the first-order EGG system is given in section 2. The
assumptions needed to apply the theory in [10] are verified in section 3. Section 4
discusses scaling of the functional terms used for the computations as well as numerical
results for two representative problems. The last section includes some final remarks.

2. Equations. We use standard notation for the associated spaces. Restricting
ourselves to two dimensions, we consider a generic open domain Ω ∈ R2, with Lipschitz
boundary Γ ∈ C3,1. (The superscript 1 indicates Lipschitz continuity of the functions
and their derivatives.) Suppose that m ≥ 0 and n ≥ 1 are given integers. Let (·, ·)0,Ω
denote the inner product on L2(Ω)n, ‖ · ‖0,Ω its induced norm, and Hm(Ω)n the
standard Sobolev space with norm ‖ · ‖m,Ω and seminorms | · |i,Ω (0 ≤ i ≤ m). (The
superscript n is omitted when dependence is clear by context.) For δ ∈ (0, 1), let
Hm+δ(Ω) (cf. [6]) denote the Sobolev space associated with the norm defined by

‖u‖2
m+δ,Ω ≡ ‖u‖2

m,Ω +
∑

|α|=m

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|2
|x− y|2(1+δ)

dxdy.

(This definition allows the use of the “real interpolation” method [1, 6].) Also, let

H
1
2 (Γ) denote the trace Sobolev space associated with the norm

‖u‖ 1
2 ,Γ

≡ inf{‖v‖1,Ω : v ∈ H1(Ω), trace v = u on Γ}.

We start by mapping a known convex computational region, Ω ∈ R2 with bound-
ary Γ ∈ C3,1, to a given physical region, Ωx ∈ R2 with boundary Γx ∈ C3,1. We
define map ξ : Ω̄x → Ω̄ and its inverse x : Ω̄ → Ω̄x. The coordinates in Ωx are
denoted by the vector of unknowns x = (x y)t, and those in Ω by ξ = (ξ η)t.

For the EGG smoothness or Winslow generator, we choose ξ to be harmonic:

∆ξ = 0
ξ = v(x)

in Ωx,
on Γx,

(2.1)

where v ∈ H
7
2 (Γx) is a given homeomorphism (continuous and one-to-one) from

the boundary of the physical region onto the boundary of the computational region.
(H

7
2 (Γx) is consistent with our boundary smoothness assumption, Γ ∈ C3,1.) With

Ωx bounded, the weak form of Laplace system (2.1) has one and only one solution ξ∗ in
H4(Ωx)

2 (see [11]) and, by Weyl’s lemma [22], ξ∗ ∈ C∞
loc(Ωx) ≡ {ξ ∈ C∞(K) ∀ K ⊂

Ωx}.
Map ξ∗ is posed on Ωx, and thus computing an approximation to it would nom-

inally involve specifying a grid on the physical region. But specifying such a grid is
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2212 CODD, MANTEUFFEL, MCCORMICK, AND RUGE

the aim of EGG in the first place, and so this formulation is not useful. We there-
fore choose instead to solve the inverse of problem (2.1), which takes a regular grid
in Ω and maps it onto a grid in Ωx, thus achieving our objective. To this end, we
assume Ωx and Ω to be simply connected and bounded, and Ω̄ to be convex, so that
Γ and Γx are simple closed curves. Map ξ∗ is continuous and harmonic, and v is a
homeomorphism of Γx onto Γ, so Rado’s theorem (cf. [16]) implies the existence of a
unique inverse map x∗ from Ω onto Ωx. An outline of the proof is provided in [14].
It then follows that domain map ξ∗ is a diffeomorphism [8, 12], and the associated
Jacobian J∗

x ≡ ξ∗xν
∗
y − ξ∗yν

∗
x is continuous and uniformly positive and bounded on Ωx.

(J0 ≤ |J∗
x(x, y)| ≤ J1 for some constants J0, J1 ∈ R+ and all (x, y) ∈ Ωx.) The choice

of the space for x∗ follows from the assumptions for ξ∗, Γx, and v and is discussed
further in section 3.

The inverse map satisfies the following equations (positive Jacobian throughout
Ωx ensures that the solution of (2.1) is an invertible map):

(x2
η + y2

η)xξξ − (xξxη + yξyη)(xξη + xηξ) + (x2
ξ + y2

ξ )xηη = 0 in Ω,

(x2
η + y2

η)yξξ − (xξxη + yξyη)(yξη + yηξ) + (x2
ξ + y2

ξ )yηη = 0 in Ω,

x = w1(ξ, η) on Γ,
y = w2(ξ, η) on Γ,

(2.2)

where function w = (w1(ξ,η)
w2(ξ,η)

) is the inverse of function v = (v1(x,y)
v2(x,y)

) (i.e., x =

w(v(x))). See [12] for more detail. The inverse map x∗ exists and solves (2.2).
We assume that the Fréchet derivative of the operator in (2.2) at x∗ is one-to-one
on H2+δ

0 (Ω)2 (subscript 0 denoting homogeneous Dirichlet conditions on Γ). This is
easily verified when x∗ deviates from a constant map by a sufficiently small amount.

To apply our method, we begin by converting (2.2) to a first-order system. We
could write these equations in a simple way using the standard notation of a 2 × 2
matrix for the Jacobian matrix, but this is not convenient for the linearized equations
treated in section 3. Our notation is therefore based primarily on writing the Jacobian
matrix as a 4× 1 vector:

J =


xξ
xη
yξ
yη

 =


J11

J21

J12

J22

 .

On the other hand, at times it is useful to refer to the matrix form of the unknowns.
We therefore define the block-structured matrix J and its classical adjoint Ĵ as follows:

J =


J11 J21 0 0
J12 J22 0 0
0 0 J11 J21

0 0 J12 J22

 and Ĵ =


J22 −J21 0 0
−J12 J11 0 0
0 0 J22 −J21

0 0 −J12 J11

 .

Note that the Jacobian of the inverse transformation is given by

J ≡ xξyη − xηyξ = J11J22 − J21J12 =
√
detJ.

Also, J = 1
Jx

and ‖J‖∞,Ω = ‖ 1
Jx

‖∞,Ωx =
1

‖Jx‖∞,Ωx
> 0.
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MULTILEVEL FOSLS FOR ELLIPTIC GRID GENERATION 2213

In keeping with the vector notation, denote grad, div, and curl, respectively, by

∇ =


∂ξ 0
∂η 0
0 ∂ξ
0 ∂η

 , ∇· =
(
∂ξ ∂η 0 0
0 0 ∂ξ ∂η

)
, ∇× =

(−∂η ∂ξ 0 0
0 0 −∂η ∂ξ

)
.

The same calculus notation is used in both Ωx and Ω (e.g., ∇, ∇·, and ∇×). Differ-
entiation in Ωx is with respect to x and y, and differentiation in Ω is with respect to
ξ and η. Let the boundary unit normal vector be denoted by

n =


n1 0
n2 0
0 n1

0 n2

 .(2.3)

As in previous applications of the FOSLS methodology (cf. [7]), the natural first-
order system is often augmented with a curl equation to ensure that the system is
elliptic in the H1 product norm. The augmented system also allows for the possibility
of solving for the unknowns in two separate stages: we can solve for J alone in the
first stage, then fix J and solve for x alone in the second stage, as the following
development shows. The curl-augmented system we consider here is

J−∇x = 0 in Ω,

(ĴĴ
t∇) · J = 0 in Ω,
∇× J = 0 in Ω,

x = w on Γ,
n× J = n×∇w on Γ.

(2.4)

To be very clear about our notation, note that derivatives apply only to terms on their

right. Thus, for (ĴĴ
t∇)· in the second equation of (2.4), the matrix multiplication is

applied first, keeping the order of each entry in the resulting matrix consistent with
the multiplication. To perform the dot product, the matrix is transposed without
altering the order of the terms in each component. For example, if we write

ĴĴ
t
=


α −β 0 0
−β γ 0 0
0 0 α −β
0 0 −β γ

 ,

then

(ĴĴ
t∇) · J =

(
α∂J11

∂ξ − β ∂J11

∂η − β ∂J21

∂ξ + γ ∂J21

∂η

α∂J12

∂ξ − β ∂J12

∂η − β ∂J22

∂ξ + γ ∂J22

∂η

)
.

We consider a two-stage algorithm, but focus only on the following first stage:

(ĴĴ
t∇) · J = 0 in Ω,
∇× J = 0 in Ω,
n× J = n×∇w on Γ.

(2.5)
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2214 CODD, MANTEUFFEL, MCCORMICK, AND RUGE

Note that x can be recovered from the solution of (2.5) by a second stage that mini-
mizes ‖∇x−J‖2

0,Ω+‖x−w‖2
1
2 ,Γ

over x with the computed J held fixed. The homoge-

neous part of the first term in this functional is precisely the H1(Ω)4 seminorm of x,
so minimizing this functional leads to a simple system of decoupled Poisson equations.
The remainder of our analysis therefore focuses on (2.5).

To obtain homogeneous boundary conditions, we rewrite the equations in terms
of the perturbation D of a smooth extension of w into Ω. To this end, suppose that
some function w ∈ H4(Ω)2 is given so that its trace agrees with w on Γ. Defining
E ≡ ∇w ∈ H3(Ω)4, we thus have

n×E = n×∇w on Γ.(2.6)

(In practice, we do not really need an extension of w, but rather just an extension of
its gradient: any E ∈ H3(Ω)4 that satisfies (2.6) will do. However, if this extension is
not necessarily a gradient, then E must be included in the curl term in (2.7) below.)

In the notation of the companion paper [10], we have

P(D) ≡
(
((Ê+ D̂)(Ê+ D̂)t∇) · (E+D)

∇×D

)
= 0,(2.7)

with boundary conditions

n×D = 0.(2.8)

System (2.7)–(2.8) corresponds to the inverse Laplace problem with Dirichlet bound-
ary conditions. Existence of a solutionD∗ that yields a positive Jacobian is guaranteed
by Rado’s theorem. We show in section 3 that D∗ ∈ H3(Ω)4. One implication of this

smoothness property is that (Ê + D̂
∗
)(Ê + D̂

∗
)t is a uniformly positive definite and

bounded matrix on Ω.
From the companion paper [10], we define

H1+δ ≡ {D ∈ H1+δ(Ω)4 : n×D = 0 on Γ}.
Restricting D to H1+δ(Ω)4 ensures that ((Ê+ D̂)(Ê+ D̂)t∇) · (E+D) ∈ L2(Ω)2, as
the results of the next section show.

The first Fréchet derivative of (2.7) in direction K is

P′(D)[K] =
(
((D̂+ Ê)(D̂+ Ê)t∇) ·K+B ·K

∇×K

)
,(2.9)

where

B ·K ≡ (K̂(D̂+ Ê)t∇) · (D+E) + ((D̂+ Ê)K̂
t∇) · (D+E),

and the second Fréchet derivative in directions K and M is

P′′(D)[K,M] =

(
(M̂(D̂+ Ê)t∇) ·K+ ((D̂+ Ê)M̂

t∇) ·K
0

)

+

(
(K̂(D̂+ Ê)t∇) ·M+ ((D̂+ Ê)K̂

t∇) ·M
0

)
(2.10)

+

(
(K̂M̂

t∇) · (D+E) + (M̂K̂
t∇) · (D+E)

0

)
.
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MULTILEVEL FOSLS FOR ELLIPTIC GRID GENERATION 2215

3. The assumptions and their verification. Consider the assumptions made
in our companion paper [10]. The first is existence of a solution in H2+δ. From [16],
we know that a unique inverse map exists and that it provides a solution D∗ to (2.7).
Recall that ξ∗ ∈ H4(Ωx)

2. In Lemma 3.4 below, we show that D∗ ∈ H3. This
establishes our first assumption for the EGG equations for any δ ∈ (0, 1).

The remaining assumptions we need to establish are, for ε = 0 or δ, that P[D] ∈
Hε(Ω)4 for every D ∈ Br (Lemma 3.5), that ‖P′(D)[ · ]‖ε,Ω is H1+ε(Ω)4 equivalent
(Lemma 3.6), and that the second Fréchet derivative of P(D) is bounded for all
D ∈ Br (Lemma 3.7). (The discretization assumptions are standard.) But first we
need three results that follow directly from a corollary to the Sobolev imbedding
theorem [11], which (tailored to our needs) states that the product of a function in
Hm1(Ω) and a function inHm2(Ω) is inHm(Ω), provided that eitherm1+m2−m ≥ 1,
m1 > m, and m2 > m or m1 +m2 −m > 1, m1 ≥ m, and m2 ≥ m.

Assume that r > 0 is so small that matrix (Ê + D̂)(Ê + D̂)t is positive definite
and bounded uniformly on Ω and over D ∈ Br ≡ {D ∈ H1+δ : ‖D∗ −D‖1+δ,Ω < r}.
This assumption is possible because it is true at D = D∗ and because the matrix
is continuous as a function defined on Br. Assume that a, b, c ∈ H1+δ(Ω). For
convenience, we let ∂ denote either ∂x or ∂y. In the proof of Lemma 3.4, we also use
∂2 to denote any of the four second partial derivatives, and ∂3 for any combination
of third partial derivatives. Note that (∂a)2 could mean axay, for example.

Lemma 3.1. There exists a constant C, depending only on Ω and δ, such that

‖ab∂c‖ε,Ω ≤ C‖a‖1+δ,Ω‖b‖1+δ,Ω‖c‖1+ε,Ω.

Proof. Using the corollary to the Sobolev imbedding theorem [11] with m1 =
1 + δ, m2 = ε, and m = ε twice yields

‖ab∂c‖ε,Ω ≤ C‖a‖1+δ,Ω‖b∂c‖ε,Ω
≤ C‖a‖1+δ,Ω‖b‖1+δ,Ω‖∂c‖ε,Ω
≤ C‖a‖1+δ,Ω‖b‖1+δ,Ω‖c‖1+ε,Ω.

Lemma 3.2. There exists a constant C, depending only on Ω and δ, such that

‖ab∂c‖ε,Ω ≤ C‖a‖1+δ,Ω‖b‖1+ε,Ω‖c‖1+δ,Ω.

Proof. Using the corollary to the Sobolev imbedding theorem [11] first with
m1 = 1 + δ, m2 = ε, and m = ε, then with m1 = 1 + ε, m2 = δ, and m = ε yields

‖ab∂c‖ε,Ω ≤ C‖a‖1+δ,Ω‖b∂c‖ε,Ω
≤ C‖a‖1+δ,Ω‖b‖1+ε,Ω‖∂c‖δ,Ω
≤ C‖a‖1+δ,Ω‖b‖1+ε,Ω‖c‖1+δ,Ω.

Lemma 3.3. Assume that a, b ∈ H2+δ(Ω) and k ∈ H1+δ(Ω). Then there exists a
constant C, depending only on Ω and δ, such that

‖ak∂b‖1,Ω ≤ C‖a‖1+δ,Ω‖b‖2+δ,Ω‖k‖1,Ω.
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2216 CODD, MANTEUFFEL, MCCORMICK, AND RUGE

Proof.

‖ak∂b‖1,Ω ≤ C‖a‖1+δ,Ω‖k∂b‖1,Ω

≤ C‖a‖1+δ,Ω‖∂b‖1+δ,Ω‖k‖1,Ω

≤ C‖a‖1+δ,Ω‖b‖2+δ,Ω‖k‖1,Ω,

where we have used the corollary to the Sobolev imbedding theorem from [11] with
m1 = 1 + δ, m2 = 1, and m = 1 twice.

Lemma 3.4. The solution D∗ of (2.7) is in H3(Ω)4.
Proof. We have

J∗ ≡ E+D∗ =


J∗

11

J∗
21

J∗
12

J∗
22

 =


x∗
ξ

x∗
η

y∗ξ
y∗η

 =
1

J∗
x


η∗y
−ξ∗y
−η∗x
ξ∗x

 ,

where E ∈ H3(Ωx)
4 and ξ∗ ∈ H4(Ωx)

2. We now show that J∗ ∈ H3(Ω)4, from which
follows the result that D∗ ∈ H3(Ω)4.

Since ξ∗ ∈ H4(Ωx)
2, then ξ∗x, ξ

∗
y , η

∗
x, η

∗
y ∈ H3(Ωx). From the corollary to the

Sobolev imbedding theorem (with m1 = 3, m2 = 3, and m = 3), we must have
J∗
x = ξ∗xη

∗
y − ξ∗yη

∗
x ∈ H3(Ωx). Recall from section 2 that J∗ is continuous and

uniformly positive and bounded: J0 ≤ |J∗
x(x, y)| ≤ J1 for some constants J0, J1 ∈ R+

and all (x, y) ∈ Ωx.
Dropping the superscript ∗ for convenience, consider J11. (The other entries are

treated similarly.) Using the corollary to the Sobolev imbedding theorem [11] with
m1 = 3, m2 = 3, and m = 3, we get

‖J11‖3,Ω =

∥∥∥∥ 1Jx
ηy

∥∥∥∥
3,Ωx

≤ C

∥∥∥∥ 1Jx

∥∥∥∥
3,Ωx

‖ηy‖3,Ωx
.

Therefore, we need only show that 1
Jx

∈ H3. But∥∥∥∥ 1Jx

∥∥∥∥2

3,Ωx

=
∑
i≤3

∥∥∥∥∂i 1Jx

∥∥∥∥2

0,Ωx

.

We consider each order separately. By Theorem 3.2 in [21], for any a ∈ C0(Ωx) and
b ∈ L2(Ωx), we have

‖ab‖0,Ωx ≤ ‖a‖∞,Ωx‖b‖0,Ωx .(3.1)

For the zeroth-order term, using (3.1) yields∥∥∥∥ 1Jx

∥∥∥∥
0,Ωx

≤
∥∥∥∥ 1Jx

∥∥∥∥
∞,Ωx

‖1‖0,Ωx ≤ 1

J0
‖1‖0,Ωx .

For the first-order term, we use (3.1) to get∥∥∥∥∂ 1

Jx

∥∥∥∥
0,Ωx

=

∥∥∥∥−1J2
x

∂Jx

∥∥∥∥
0,Ωx

≤ 1

J2
0

‖∂Jx‖0,Ωx
≤ 1

J2
0

‖Jx‖1,Ωx
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For the second-order term, we use the triangle inequality, (3.1), and the corollary
to the Sobolev imbedding theorem with m1 = m2 = 1 and m = 0 to get∥∥∥∥∂2 1

Jx

∥∥∥∥
0,Ωx

=

∥∥∥∥ 2J3
x

(∂Jx)
2 +

−1
J2
x

∂2Jx

∥∥∥∥
0,Ωx

≤
∥∥∥∥ 2J3

x

(∂Jx)
2

∥∥∥∥
0,Ωx

+

∥∥∥∥ 1J2
x

∂2Jx

∥∥∥∥
0,Ωx

≤ 2

J3
0

∥∥(∂Jx)
2
∥∥

0,Ωx
+

1

J2
0

∥∥∂2Jx

∥∥
0,Ωx

≤ C

(
2

J3
0

‖∂Jx‖2
1,Ωx

+
1

J2
0

‖Jx‖2,Ωx

)
≤ C

(
2

J3
0

‖Jx‖2
2,Ωx

+
1

J2
0

‖Jx‖2,Ωx

)
.

For the third-order term, we use the triangle inequality, (3.1), and the Corollary
to the Sobolev imbedding theorem once with m1 = 1, m2 =

3
4 , and m = 0, once with

m1 = m2 = 1 and m = 0, and once with m1 = m2 = 1 and m = 3
4 to get∥∥∥∥∂3 1

Jx

∥∥∥∥
0,Ωx

=

∥∥∥∥−6J4
x

(∂Jx)
3 +

6

J3
x

∂Jx∂
2Jx +

−1
J2
x

∂3Jx

∥∥∥∥
0,Ωx

≤
∥∥∥∥ 6J4

x

(∂Jx)
3

∥∥∥∥
0,Ωx

+

∥∥∥∥ 6J3
x

∂Jx∂
2Jx

∥∥∥∥
0,Ωx

+

∥∥∥∥ 1J2
x

∂3Jx

∥∥∥∥
0,Ωx

≤ 6

J4
0

∥∥(∂Jx)
3
∥∥

0,Ωx
+

6

J3
0

∥∥∂Jx∂
2Jx

∥∥
0,Ωx

+
1

J2
0

∥∥∂3Jx

∥∥
0,Ωx

≤ C

(
6

J4
0

‖∂Jx‖3
1,Ωx

+
6

J3
0

‖∂Jx‖1,Ωx

∥∥∂2Jx

∥∥
1,Ωx

+
1

J2
0

‖Jx‖3,Ωx

)
≤ C

(
6

J4
0

‖Jx‖3
2,Ωx

+
6

J3
0

‖Jx‖2,Ωx
‖Jx‖3,Ωx

+
1

J2
0

‖Jx‖3,Ωx

)
.

The result follows from these bounds.
Lemma 3.5. P[D] ∈ Hε(Ω)p for every D ∈ Br: there exists a constant C,

depending only on D∗, E, r, Ω, and δ, such that

‖P(D)‖ε,Ω ≤ C ∀ D ∈ Br.(3.2)

Proof. The products in (2.7) are of the form treated in Lemma 3.1. In fact, there
exists a constant C, depending only on Ω and δ, such that

‖P(D)‖ε,Ω ≤ C(‖D+E‖2
1+δ,Ω‖D+E‖1+ε,Ω + ‖D‖1+ε,Ω),(3.3)

and so (3.2) follows because D ∈ Br.
Next we establish uniform coercivity and continuity of P′ in a neighborhood of

D∗. This result needs the assumption that P′(D∗)[ · ] is one-to-one on H1+δ, which
is a consequence of an analogous assumption on the original EGG equations.

Lemma 3.6 (ellipticity property). ‖P′(D)[ · ]‖ε,Ω is H1+ε(Ω)4 equivalent: there
exist constants cc and cb, depending only on D∗,E, r,Ω, and δ, such that

1

cc
‖K‖1+ε,Ω ≤ ‖P′(D)[K]‖ε,Ω ≤ cb‖K‖1+ε,Ω ∀ K ∈ H1+ε.(3.4)
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2218 CODD, MANTEUFFEL, MCCORMICK, AND RUGE

Proof. The products in (2.9) are of the form treated in Lemmas 3.1 and 3.2. In
fact, there exists a constant C, depending only on Ω and δ, such that

‖P′(D)[K]‖ε,Ω ≤ C(‖D+E‖2
1+δ,Ω‖K‖1+ε,Ω + ‖K‖1+ε,Ω).(3.5)

Proof of the lower bound follows from Theorem 10.5 of [2], as we now show.
We first need to prove Hm+1 boundedness and coercivity for P′(D∗)[K]: there exist
constants c1 and c3, depending only on D

∗,E,m, and Ω, such that

1

c1
‖K‖m+1,Ω ≤ ‖P′(D∗)[K]‖m,Ω ≤ c3‖K‖m+1,Ω ∀ K ∈ Hm+1,(3.6)

for any m ∈ [0, 1]. The upper bound is simply an application of the corollary to
the Sobolev imbedding theorem similar to Lemmas 3.1 and 3.2. Consider the lower
bound. It would be a simple matter to just assume D∗ ∈ H3+δ and then, because the
coefficients would be sufficiently smooth, apply the theory of [2] (herafter referred to
as ADN2 theory) for both m = 0 and m = 1. Instead, we just have D∗ ∈ H2+δ, so
while the higher-order coefficients are in C1, the lower-order coefficients are only in
C0. This means that we need more care.

First consider m = 0. What follows for this case is a straightforward application
of ADN2 theory to the entire system because all of the coefficients are sufficiently
smooth. Recall that Ω is a bounded open subset of R2 with C3,1 boundary Γ. We
write the system as

LK = f in Ω,
BK = g on Γ,

(3.7)

where L ≡ P′(D∗) and B = n×. (Recall that n is the outward unit normal on Γ
(2.3).) For convenience, we write the coefficients using J∗ = D∗ + E and drop the ∗

from the components. Note that L = L1 + L2 and lij = l′ij + l′′ij , where

L1 = (l′ij(ξ, ∂)) =


α∂ξ − β∂η −β∂ξ + γ∂η 0 0

0 0 α∂ξ − β∂η −β∂ξ + γ∂η
−∂η ∂ξ 0 0
0 0 −∂η ∂ξ

 ,

L2 = (l′′ij(ξ, ∂))

=


2J11J21,η − J21(J11,η + J21,ξ) 2J11J22,η − J21(J12,η + J22,ξ) 0 0
2J21J11,ξ − J11(J11,η + J21,ξ) 2J21J12,ξ − J11(J12,η + J22,ξ) 0 0
2J12J21,η − J22(J11,η + J21,ξ) 2J12J22,η − J22(J12,η + J22,ξ) 0 0
2J22J11,ξ − J12(J11,η + J21,ξ) 2J22J12,ξ − J12(J12,η + J22,ξ) 0 0


t

,

α = J2
21 + J2

22, β = J11J21 + J12J22, γ = J2
11 + J2

12.

Note that

B = (bij(ξ, ∂)) =

(−n2 n1 0 0
0 0 −n2 n1

)
.(3.8)

In ADN2 theory, three types of integer weights are used to determine the leading
order terms for boundary value problem (3.7). Weight si ≤ 0 refers to the ith equation,
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MULTILEVEL FOSLS FOR ELLIPTIC GRID GENERATION 2219

weight tj ≥ 0 to the jth dependent variable, and weight rk to the kth boundary
condition. These weights are chosen as small as possible but so that

deg lij(ξ, ∂) ≤ si + tj , deg bkj(ξ, ∂) ≤ rk + tj , i, j = 1, 2, 3, 4, k = 1, 2,

where deg refers to the order of the derivatives. Our weights are

si = 0, tj = 1, rk = −1, i, j = 1, 2, 3, 4, k = 1, 2.

The leading order part of L consists of the elements lij for which deg lij(ξ, ∂) =
si + tj = 1. Therefore, L1 is the leading order (in this case, first-order) part. The
leading order part of B consists of elements bkj for which deg bkj(ξ, ∂) = rk + tj = 0.
Therefore, the leading order (in this case, zeroth-order) part of B is B itself.

We must show that L1 satisfies two ADN2 conditions: the supplementary con-
dition on its determinant and uniform ellipticity. (L1 will then automatically be
elliptic.) ADN2 also requires that the system of equations and boundary conditions
be well posed. This means that L1 and B, when combined, must satisfy the comple-
menting boundary condition. Let L denote the determinant of L1:

L(ξ, ∂) = det(l′ij) = −(α∂2
ξ − 2β∂ξ∂η + γ∂2

η)
2.

Since J > 0 (see section 2), then

β2 − αγ = (xξxη + yξyη)
2 − (x2

η + y2
η)(x

2
ξ + y2

ξ )

= −(xξyη − yξxη)
2 = −J2 < 0.

(3.9)

Let d = (d e)t and p = (p q)t be any two linearly independent vectors. To aid
clarity of the following discussion, we first define some quantities:

A = αdp− β(pe+ dq) + γeq,

B =
√DC −A2 = J |pe− dq|,

C = αd2 − 2βde+ γe2,
D = αp2 − 2βpq + γq2.

Note that B > 0 since J > 0 and linear independence of p and d implies |pe−dq| > 0.
The supplementary condition on L requires the equation

L (ξ,d+ τp) = −{C + 2τA+ τ2D}2 = 0(3.10)

to have exactly two roots in τ with positive imaginary part. Polynomial (3.10) has
two double roots (ι =

√−1),

τ =
−A± ιB

D ,

which form two complex conjugate pairs. Thus, (3.10) does indeed have exactly two
roots with positive imaginary part (one such double root).

To satisfy uniform ellipticity, we need to show that

1

C
‖d‖4 ≤ |L (ξ,d)| ≤ C‖d‖4,(3.11)

with ‖d‖ = √
d2 + e2, for all vectors d �= 0 and points ξ in Ω.
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2220 CODD, MANTEUFFEL, MCCORMICK, AND RUGE

To prove the left bound in (3.11), let ρ = |β|√
αγ < 1 (see (3.9)). Then

|L (ξ,d)| = (αd2 − 2βde+ γe2)2

≥ (αd2 − 2|β||d||e|+ γe2)2

= (αd2 − 2ρ
√
αγ|d||e|+ γe2)2

= ((1− ρ)(αd2 + γe2) + ρ(
√
αd−√

γe)2)2

≥ ((1− ρ)(αd2 + γe2))2

≥ min((1− ρ)2α2, (1− ρ)2γ2)(d2 + e2)2

= min((1− ρ)2α2, (1− ρ)2γ2)‖d‖4.

To prove the right bound in (3.11), note that Hölder’s inequality implies that

|L (ξ,d)| ≤ (αd2 + 2|β||d||e|+ γe2)2

≤ (αd2 + |β|(d2 + e2) + γe2)2

≤ max((α+ |β|)2, (γ + |β|)2)(d2 + e2)2

= max((α+ |β|)2, (γ + |β|)2)‖d‖4.

We then establish (3.11) by choosing

C = max

{
1

(1− ρ)2α2
,

1

(1− ρ)2γ2
, (α+ |β|)2, (γ + |β|)2

}
.

This shows that operator L satisfies the two conditions of ADN2. We now prove
that the problem is well posed by showing that L1 and B satisfy the complementing
boundary condition. This condition involves comparing two polynomials. We consider
a point on the boundary with normal d = (d e)t and tangent p = (p q)t vectors.
The first polynomial is formed from the roots of (3.10) with positive imaginary parts:

M+(ξ,d, τ) =

[
τ +

A− ιB
D

]2
.(3.12)

The second polynomial is formed from the leading order elements of L and B:

2∑
k=1

ak(BL)km,(3.13)

where

(BL)km =

4∑
j=1

bkj(ξ,d+ τp)ljm(ξ,d+ τp),

and ljm(ξ,d+ τp) are the elements of the (classical) adjoint (l′ij l
jm = δmi L, i, j,m =

1, 2, 3, 4) of l′ij(ξ,d+ τp) and bkj is defined in (3.8).
The polynomials for (3.13) are

(
2∑

k=1

ak(BL)km

)
= D

[
τ +

A+ ιB
D

] [
τ +

A− ιB
D

]
a1(pe− qd)
a2(pe− qd)
a1(A+ τD)
a2(A+ τD)


t

.(3.14)

Comparing polynomials (3.12) and (3.14) and noting that B > 0, we have that (3.12)
is not a factor of (3.14). Thus, the complementing boundary condition is satisfied.
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MULTILEVEL FOSLS FOR ELLIPTIC GRID GENERATION 2221

Theorem 10.5 from [2] implies that, for lij ∈ Cm(Ω), bkj ∈ Cm+1(Γ), there exists
a constant c1 that depends only on D∗,E, r,Ω, and δ such that, if Kj ∈ H1(Ω),
1 ≤ j ≤ 4, solves (3.7) and is unique, then Kj ∈ Hm+1(Ω) and

‖Kj‖m+1,Ω ≤ c1
4

[
4∑

i=1

‖fi‖m,Ω +

2∑
i=1

‖gi‖m+ 1
2 ,Γ

]
,

where fi and gi are the components of f and g, respectively, in (3.7). The coefficients
of L are at least in H1+δ(Ω) and C0(Ω). For the boundary conditions, we have
B = n× and Γ ∈ C3,1, and thus we get bkj ∈ C2(Γ). The boundary conditions are
homogeneous, and so we can drop the boundary term in the inequality. We therefore
have

‖K‖1,Ω ≤ c1‖L(D∗)[K]‖0,Ω ∀ K ∈ H1(Ω)
4.(3.15)

Now considerm = 1. We cannot simply apply ADN2 to the whole system because
the coefficients are not sufficiently smooth. Instead, we split the operator according
to L = L1 + L2 and restrict our ADN2 result to reduced system

L1K = f in Ω,
BK = g on Γ.

Operator L1 satisfies the ADN2 conditions (as illustrated for case m = 0), and thus

‖K‖2,Ω ≤ c1‖L1(D
∗)[K]‖1,Ω ∀ K ∈ H2.(3.16)

The coefficients of L1 are in H2+δ(Ω) and C1(Ω). For the boundary conditions, we
have B = n× and Γ ∈ C3,1, and thus we get bkj ∈ C2(Γ). The boundary conditions
are homogeneous, and so we can drop the boundary term in the inequality.

We use Lemma 3.3 to obtain

‖L2(D
∗)[K]‖1,Ω ≤ c2‖K‖1,Ω ∀ K ∈ H2.(3.17)

Note that c2 depends continuously on supD∈Br
‖D∗ + E‖2+δ,Ω, and thus it depends

on D∗,E, r, Ω, and δ.
Combining (3.16) and (3.17) yields

‖K‖2,Ω ≤ C(‖P′(D∗)[K]‖1,Ω + ‖K‖1,Ω) ∀ K ∈ H2.(3.18)

This is a G̊ardings inequality (cf. [13, 19]), which allows us now to prove that

1

cc
‖K‖2,Ω ≤ ‖P′(D∗)[K]‖1,Ω ∀ K ∈ H2.(3.19)

To this end, assume that (3.19) is not true. Then there exists a sequenceKj ∈ H2

such that

‖Kj‖2,Ω = 1(3.20)

and

‖P′(D∗)[Kj ]‖1,Ω =
1

j
, j = 1, 2 . . . .(3.21)
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2222 CODD, MANTEUFFEL, MCCORMICK, AND RUGE

Now, because H2(Ω) is compactly imbedded in H1(Ω) (cf. the Rellich selection the-

orem [5]), then (3.20) implies that there exists a limit K̂ ∈ H2 of a subsequence

Kjk → K̂ in the H1(Ω) norm. Combining this with (3.18) and (3.21), we know that
Kjk must also be a Cauchy sequence in the H2(Ω) norm with some limit K̄. However,
from the upper bound in (3.4), we have

limjk→∞ ‖P′(D∗)[Kjk ]−P′(D∗)[K̄]‖1,Ω = limjk→∞ ‖P′(D∗)[Kjk − K̄]‖1,Ω

≤ limjk→∞ ‖Kjk − K̄‖2,Ω = 0.

From (3.21), we thus obtain

‖P′(D∗)[K̄]‖1,Ω ≤ lim
jk→∞

{‖P′(D∗)[Kjk ]−P′(D∗)[K̄]‖1,Ω + ‖P′(D∗)[Kjk ]‖1,Ω} = 0.

However, P′(D∗)[ · ] is one-to-one. Hence, P′(D∗)[K̄] = 0 implies that K̄ = 0, which
in turn implies that ‖K̄‖1,Ω = 0, contradicting (3.20). Thus, (3.4) and the lemma are
established for m = 1. We have thus established (3.6) for both m = 0 and m = 1.

For the general case ofm ∈ [0, 1], bound (3.6) follows from the results in [17, 3, 18]
and the following proof of elliptic regularity of the formal adjoint problem.

Consider boundary value problem (3.7), for K ∈ Hm+1 and LK ∈ Vm = {D ∈
Hm(Ω)4}. From [2], we know that LK = f is onto. This system has normal boundary
conditions, and hence, the formal adjoint problem has normal boundary conditions of
the same type [17]. We thus consider

L∗M = f1 in Ω,
B∗M = 0 on Γ,

for M ∈ (Vm)
∗ = {M ∈ H−m(Ω)4 : B∗M = 0 on Γ} and L∗M ∈ (Hm+1)

∗. The
system is both Petrovskii elliptic, because s1 = s2 = s3 = s4 = 0, and homogeneous
elliptic, because t1 = t2 = t3 = t4; cf. [17]. Thus, the adjoint system is elliptic [17]
and has a similar ellipticity result in the dual space: for all M ∈ (Vm)

∗ we have

‖M‖−m,Ω = sup
V �=0∈Vm

(M,V)

‖V‖m,Ω

= sup
K �=0∈Hm+1

(M,LK)

‖LK‖m,Ω

≤ c1 sup
K �=0∈Hm+1

(L∗M,K)

‖K‖m+1,Ω

= c1‖L∗M‖−(m+1),Ω

and

‖M‖−m,Ω = sup
V �=0∈Vm

(M,V)

‖V‖m,Ω

= sup
K �=0∈Hm+1

(M,LK)

‖LK‖m,Ω

≥ 1

c3
sup

K �=0∈Hm+1

(L∗M,K)

‖K‖m+1,Ω

=
1

c3
‖L∗M‖−(m+1),Ω.
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The result for all m ∈ [0, 1] now follows from interpolation [15], use of local maps,
and a partition of unity. (If we had assumed D∗ ∈ C∞(Ω)4 and Γ ∈ C∞, then the
ellipticity result would hold for all real m; we only need this result for m ∈ [0, 1], and
so we are able to reduce the continuity requirements of [15], as we have.)

We now generalize the result for D ∈ Br. Using a Taylor expansion, the triangle
inequality, Lemmas 3.5 and 3.7, and (3.6), we have (for ε = 0 or δ)

‖P′(D)[K]‖ε,Ω = ‖P′(D∗)[K] +P′′(D̃)[K,D∗ −D]‖ε,Ω
≥ ‖P′(D∗)[K]‖ε,Ω − ‖P′′(D̃)[K,D∗ −D]‖ε,Ω
≥ c1‖K‖1+ε,Ω − c4‖D̃+E‖1+δ,Ω‖K‖1+ε,Ω‖D∗ −D‖1+δ,Ω

≥ ‖K‖1+ε,Ω(c1 − c4r(‖D∗‖1+δ,Ω + ‖E‖1+δ,Ω + r))
≥ 1

cc
‖K‖1+ε,Ω

(3.22)

for sufficiently small r. The lemma now follows.
Lemma 3.7. The second Fréchet derivative of P(D) is bounded for all D ∈ Br:

for every D ∈ Br there exists a constant c2, depending only on D∗, E, r, Ω, and δ,
such that

‖P′′(D)[K,K]‖ε,Ω ≤ c2‖K‖1+δ,Ω‖K‖1+ε,Ω ∀ K ∈ H1+ε(Ω).(3.23)

Here, P′′(D)[K,K] denotes the second Fréchet derivative of P(Dn) with respect to
Dn in directions K and K.

Proof. The products in (2.10) are of the form treated in Lemmas 3.1 and 3.2. In
fact, there exists a constant C, depending only on Ω and δ, such that

‖P′′(D)[K,K]‖ε,Ω ≤ C‖D+E‖1+δ,Ω‖K‖1+δ,Ω‖K‖1+ε,Ω ∀ K ∈ H1+δ(Ω).

The lemma now follows.

4. Numerical results. Here we validate our algorithm with numerical tests.
Define Hh as the space of continuous piecewise bilinear functions corresponding to
a uniform grid. Note that Hh ⊂ H1+δ(Ω) for any δ < 1

2 . The functional to be
minimized is

G(xn+1,Jn+1;xn,Jn,w)
= ε‖Jn+1 −∇xn+1‖2

0,Ω

+ (1− ε)
∥∥∥ 1
Jn

[
(ĴnĴ

t
n∇)·Jn+1+(Ĵn+1Ĵ

t
n∇)·Jn+(ĴnĴtn+1∇)·Jn−2(ĴnĴtn∇)·Jn

]∥∥∥2

0,Ω

+ (1− ε)‖∇ × Jn+1‖2
0,Ω + ε‖xn+1 −w‖2

1
2 ,Γ

+ (1− ε)‖n× Jn+1 − n×∇w‖2
1
2 ,Γ

.

(4.1)
There are three aspects of (4.1) worth noting. The first is that we are solving for

xn+1,Jn+1 and not Dn+1 as we did for the theory. While it was more convenient in
the theory to incorporate the boundary conditions into the equations, here we enforce
them, so that the last two terms in (4.1) vanish. A second aspect is the interstage
scale factor ε. In [10], we discussed the two-stage algorithm, where, in the first stage,
we set ε = 0 and solve for Jn+1 and, in the second, we set ε = 1 and solve for xn+1.
The second stage amounts to a simple system of decoupled Poisson equations. For
ε ∈ (0, 1), minimizing (4.1) amounts to a single-stage algorithm. In section 4.1, we
compare performance of the first stage of the two-stage algorithm with the single-
stage algorithm for the pinched square (Figure 4.1, below). For the single stage, we
set ε = 1

2 and multiply the entire functional by 2 for fair comparison. Results for both
algorithms are similar, and thus the remaining tests are for the single-stage algorithm.
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The third aspect of (4.1) to notice is the presence of the equation scale factor 1
Jn

in
the second functional term. The EGG equations are derived from the well-understood
Laplace equations, so we exploit this correspondence now to guide the choice of scales.
First note that the augmented first stage of the first-order system [7] associated with
the Laplace equations (2.1) that define ξ is (ignoring boundary conditions and with
Ψ = ∇ξ) (∇ ·Ψ

∇×Ψ

)
=

(
0
0

)
.

Transforming this system to that for the gradient J of the inverse map (without
cancelling terms) yields

1

J2
Ĵ

(
1
J [(ĴĴ

t∇) · J]
∇× J

)
=

(
0
0

)
.(4.2)

The key in scaling this new system is to understand the relative balance between its
two equations. Thus, 1

J2 Ĵ can be dropped in deference to the relative scale reflected
in the 1

J term in the first equation of (4.2). To mimic the Laplace scaling for the EGG
system, we thus choose to scale the second term in (4.1) by 1

J . This expresses the
scaling we use in the numerical experiments. To improve performance in practice, we
use 1

J just to scale the norm; it is not involved in the linearization process. (Presence of
the scale factor 1

J in this way does not affect the theoretical results, so it was omitted in
the analysis to simplify the calculations.) The scaling effect is demonstrated in section
4.3, where we study the convergence factors for increasingly distorted maps for the
pinched square using both unscaled and scaled functionals. In both sections 4.1 and
4.2, we measure actual errors as well as functional values and validate the equivalence
of the square root of the functional and theH1 errors as proved theoretically in section
3.

In section 4.2, we first test the performance of AMG on the one-sided pinched
square with grid size h = 1

64 . We compare the performance of V(q,s)-cycles with
q+ s ≤ 3, where q is the number of relaxation steps before coarse grid correction and
s is the number after. We use V(1,1)-cycles for the rest of our tests because these
initial results suggest that it is one of the most efficient of these choices. We then test
dependence of the linear solver on grid size. We study how the convergence factor for
linear solves suffers with increasingly large perturbations from the identity map for
several different grid sizes.

The method we use to obtain an approximation to D∗ (or J∗) is discussed in
some detail in [10]. Here we give a brief overview. We use a nested sequence of
m+1 rectangular grids with continuous piecewise bilinear function subspaces of H1+δ

denoted by Hh0 ⊂ Hh1 ⊂ · · · ⊂ Hhm ⊂ H1+δ, where hn = 2−nh0, 0 ≤ n ≤ m. Let
V0 denote the initial guess in Hh0 obtained by solving the problem on the coarsest
subspace, Hh0 . In practice, we simply iterate with a discrete Newton iteration until
the error in the approximation is below discretization error. The result, V1, becomes
the initial guess for level h1, where the process continues. In general, the initial guess
for AMG on level hn comes from the final AMG approximation on level hn−1: Vn.

In sections 4.2 and 4.4, we study performance of the NI algorithm. Here we use
transfinite interpolation (TFI), which is analogous to linear interpolation, to form the
initial guess. The basic principle is to add the linear interpolant between the north and
south boundary maps to the linear interpolant between the east and west boundary
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Fig. 4.1. Pinched square with a = 1.

maps, then subtract the interpolant between the four corners. The computational
domain is the unit square. For boundary conditions x = w(ξ), we get

x = ηwn(ξ) +(1− η)ws(ξ) + ξwe(η) + (1− ξ)ww(η)
− [ξηwa + ξ(1− η)wb + (1− ξ)(1− η)wc + (1− ξ)ηwd] ,

where we define wn, ws, we, and ww as the boundary maps on the north, south,
east, and west boundaries, respectively, and wa, wb, wc, and wd as the values on
the northeast, southeast, southwest, and northwest corners, respectively. The initial
condition we use for J is the Jacobian of this map.

On the north and south boundaries, boundary conditions are needed for x, y, J11,
and J12. On the east and west boundaries, boundary conditions are needed for
x, y, J21, and J22. Boundary conditions are imposed on the finite element space.

We first establish the similarity between the first stage of the two-stage algorithm
(ε = 0) and the single-stage algorithm (ε = 1

2 and the functional in (4.1) multiplied by
2). Second, we test the effect of different numbers of relaxation sweeps for multigrid
V-cycles to suggest a good choice for the remainder of the tests. Third, we study
performance of the AMG solver for increasingly distorted grids for the pinched square.
Finally, we study the algorithm on the arch. Further results can be found in [9].

4.1. First-stage and single-stage algorithms. The one-sided pinched square
map has the following exact solution:

x = ξ, y =
η

aξ + 1
,

J11 = 1, J21 = 0,

J12 =
aη

(aξ + 1)2
, J22 =

1

aξ + 1
,

(4.3)

where a ∈ [0, 1]. The physical domain is a square for a = 0, with the pinch increasing
as a increases. See Figure 4.1.

To test performance of the first-stage and single-stage algorithms for standard
Newton iterations and NI on the pinched square with a = 1.0, we add a varying
amount of small error at each grid point (except for those on the boundary) to TFI
(the exact solution in this case) to form the initial guess:

x = ξ + g sin(bξ + cη), y =
η

ξ + 1
+ g sin(dξ + eη),

J11 = 1 + g sin(bξ + cη), J21 = g sin(bξ + cη),

J12 =
η

(ξ + 1)2
+ g sin(dξ + eη), J22 =

1

ξ + 1
+ g sin(dξ + eη),
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Table 4.1
Asymptotic convergence factors for V(1, 1)-cycles, with varying grid size and Newton iterations.

Newton 1
16

1
32

1
64

1
128

1 0.96 0.93 0.90 0.95
2 0.49 0.85 0.56 0.50
3 0.24 0.47 0.41 0.40
4 0.25 0.33 0.40 0.43
5 0.25 0.32 0.40 0.41
6 0.25 0.33 0.40 0.44
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Fig. 4.2. First-stage functional. Newton convergence, using standard Newton iterations with
imposed boundary conditions, in both functional (left) and H1 error (right) measures. Differences
between the values at the current and sixth Newton steps are plotted.

where

g = fξη(1− ξ)(1− η),
b = 12967493.946193764, c = 491843027.481264509,
d = 184625498.4710938, e = 174365204.5761938,

with f = 2 for grid h = 1
128 , f = 4 for grids h = 1

64 and h = 1
32 , f = 7 for grid h = 1

16 ,
and f = 24 for NI (with coarsest grid h = 1

4 ). Note that the exact solutions for x,
J11, and J21 are in the finite-dimensional subspaces.

Consider the first-stage one-sided pinched square. (Recall that there are no x or
y terms.) Table 4.1 depicts asymptotic convergence factors for the AMG solver. Note
the poor performance shown in the early Newton steps. This degradation probably
occurs because the functional is suffering from loss of elliptic character due to the crude
initial guess inheriting poor values for the Jacobian map. Nested iteration tends to
ameliorate this potential difficulty, so we may focus on later Newton iterations, where
these results suggest that two V (1, 1)-cycles yield overall convergence factors of about
0.2. We use two V (1, 1)-cycles in the tests that follow.

Figure 4.2 depicts Newton convergence results for grids h = { 1
16 ,

1
32 ,

1
64 ,

1
128}. We

study performance in terms of both the functional error measure (i.e., square root of
the functional) and the relative H1 errors in J,

eJ ≡ ‖J∗ − Jn‖1,Ω√‖J∗‖1,Ω‖Jn‖1,Ω

.

The graphs show the differences between the values at the current and sixth Newton
steps. We are interested in the functional measure because it is equivalent to the H1
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Fig. 4.3. First-stage functional. Functional and H1 error measures for standard Newton
iterations and NI with imposed boundary conditions. One work unit is the equivalent of one step on
the h = 1

128
grid using two V(1, 1)-cycles.

norm of the errors, as we established theoretically in [10] and as these graphs suggest.
The left-hand graph contains the functional values, and the right-hand graph contains
the errors. Convergence appears to be approximately linear, which is consistent with
the theoretical result. The factors also appear to be bounded independent of grid size.

Figure 4.3 compares standard Newton and NI results. We again report on the
functional and relative H1 error measures in J. For proper comparison of cost, we
now base the data on a work unit, defined to be the equivalent of one Newton step
on the h = 1

128 grid. (One Newton step has two V(1,1)-cycles.) We thus count one
Newton step on the h = 1

64 grid as 1
4 of a work unit, 1

16 on the next coarser grid,
and so on. After about the sixth standard Newton step for each of the grid sizes,
the change in the functional value (and the H1 error) at each iteration is very small
relative to the functional value itself. The exact solution is only approximated by the
finite-dimensional subspace. Thus, while the functional value for the exact solution
is zero, the minimum on the finite-dimensional subspace is not. With more Newton
steps, we can thus get as close as we choose to the finite-dimensional approximation
of the exact solution, but the decrease in the functional and, hence, in the error, stalls
because discretization error is reached. The ratios of the functional and the relative
H1 error measures in J are about 1.16 near the solution for grids h = { 1

16 ,
1
32 ,

1
64}

and 1.14 for grid h = 1
128 . After the third Newton step, this ratio is a constant for all

grid sizes, which affirms H1 equivalence.
Next we study performance of the single-stage algorithm, with the same map

and initial guess. Again, we report on functional and relative H1 error measures in J.
Figure 4.4 contains graphs of differences between these values at the current and sixth
Newton steps. Consistent with the theory, convergence using this measure appears to
be approximately linear, with factors bounded independent of grid size.

Figure 4.5 compares standard Newton iterations with NI based on work units as
defined above. Behavior of the errors for the single stage is essentially the same as
for the first stage. The ratios of functional measures of the single stage to the first
stage varies between 0.87 and 1.12, fixing at 1.09 after Newton step 4 for each grid.
For NI, the ratio is 1.09 for all the finer grids.

The relative error in the computed solution does not appear to vary with grid size
because the variation is small compared to the error. Again, on any finite-dimensional
subspace, we cannot expect to reduce the error to zero because of discretization error.
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Fig. 4.4. Newton convergence, using standard Newton iterations with imposed boundary condi-
tions, in both functional (left) and H1 error (right) measures. Differences between the value at the
current and sixth Newton steps are plotted.

0 1 2 3 4 5 6
10

-3

10
-2

10
-1

10
0

10
1

10
2

Work Units

(N
on

lin
ea

r 
F

un
ct

io
na

l)  1
/2

NI
1/128 Grid
1/64 Grid 
1/32 Grid 
1/16 Grid 

0 1 2 3 4 5 6
10

-3

10
-2

10
-1

10
0

10
1

Work Units

H
1  r

el
at

iv
e 

er
ro

rs
 (

e J
)

NI
1/128 Grid
1/64 Grid 
1/32 Grid 
1/16 Grid 

Fig. 4.5. Newton versus NI results, with imposed boundary conditions, in both functional (left)
and H1 error (right) measures.

The ratios of the functional andH1 error measures in J are about 1.3 near the solution
for grids h = { 1

16 ,
1
32 ,

1
64} and 1.2 for grid h = 1

128 . After the third Newton step, this
ratio is a constant for all grid sizes, which affirms H1 equivalence. We need at least 4
standard Newton steps to reduce the functional to about the same level for which NI
needed an equivalent of only about 1.5 steps. We expect this difference to widen for
larger problems, where the required steps for standard Newton would tend to grow,
while NI would probably remain below an equivalent of two.

4.2. V-cycle tests. To determine which V(q,s)-cycle is most efficient, we study
asymptotic convergence factors with q + s ≤ 3 and h = 1

64 . Here we linearize the
equations about the exact solution, set the right-hand side to zero, start with a ran-
dom initial guess, and then observe residual reduction factors after many V-cycles.
Table 4.2 shows the observed V-cycle convergence factors for different values of a.
The cycles with more relaxation sweeps naturally have better convergence factors but
involve more computation. We thus consider a measure of the time required to reduce
the initial residual by a factor of 10. Since we are interested only in comparisons, we
choose the relative measure t ≡ (q+s+c)ln(0.1)/ln(r), where r is the observed asymp-
totic convergence factor for the V(q,s)-cycle and c estimates the fixed cost of a cycle.
We choose c = 2 because of residual calculations and intergrid transfers. Observed
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Table 4.2
Asymptotic convergence factors for different V-cycles and values of a; grid size h = 1

64
.

a V(0,1) V(1,0) V(0,2) V(1,1) V(2,0) V(0,3) V(1,2) V(2,1) V(3,0)
0.0 0.33 0.23 0.20 0.13 0.13 0.16 0.11 0.11 0.11
0.1 0.33 0.25 0.21 0.14 0.14 0.16 0.12 0.12 0.12
0.4 0.38 0.30 0.26 0.18 0.19 0.21 0.15 0.15 0.16
0.7 0.47 0.39 0.34 0.26 0.25 0.28 0.22 0.22 0.22
1.0 0.60 0.53 0.45 0.40 0.39 0.37 0.32 0.32 0.28

Table 4.3
Relative time to reduce residual by a factor of 10 with various a for different V-cycles and h = 1

64
.

a V(0,1) V(1,0) V(0,2) V(1,1) V(2,0) V(0,3) V(1,2) V(2,1) V(3,0)
0.0 6.2 4.7 5.7 4.5 4.5 6.3 5.2 5.2 5.2
0.1 6.2 5.0 5.9 4.7 4.7 6.3 5.4 5.4 5.4
0.4 7.1 5.7 6.8 5.4 5.5 7.4 6.1 6.1 6.3
0.7 9.1 7.3 8.5 6.8 6.6 9.0 7.6 7.6 7.6
1.0 13.5 10.9 11.5 10.1 9.8 11.6 10.1 10.1 9.0
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Fig. 4.6. Asymptotic convergence factors for various grid sizes and values of a. The scaled
functional was used in all but the test for h = 1

64
.

values for t for the h = 1
64 grid and different values of a are given in Table 4.3. While

performance of the V(1,1)- or V(2,0)-cycles were similar, we chose the V(1,1)-cycle
for the remainder of our tests.

4.3. AMG tests. We next test the performance of the linear solver with varying
h. Again, the equations are linearized about the solution and the right-hand side is set
to zero. We study the deterioration in asymptotic convergence factors as a increases
from zero to one; the results are plotted in Figure 4.6. In all but one test, we used the
scaled functional in (4.1) with the boundary conditions enforced so that the boundary
terms vanish. For the test marked “unscaled” and for which h = 1

64 , factor
1
Jn

in
the second term of the functional in (4.1) was omitted. For the scaled functional,
asymptotic convergence factors increase as a increases, as expected. At a = 0, which
corresponds to the identity map, convergence factors are similar to those for the
Laplace problem. There is some variation with respect to the grid size, although
for smaller h

(
1
64 and

1
128

)
the factors are similar. The results for the unscaled and

scaled convergence factors for the h = 1
64 grid confirm that scaling the second term of

the functional in (4.1) by 1
Jn

significantly improves convergence factors: the unscaled
factors are significantly larger than the scaled factors for a ≥ 0.5.
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Table 4.4
Asymptotic convergence factors for the V(1, 1)-cycle, with varying grid size and Newton itera-

tions, for the arch.

Newton 1
16

1
32

1
64

1
128

1 0.59 0.50 0.43 0.59
2 0.63 0.65 0.67 0.61
3 0.66 0.67 0.68 0.67
4 0.63 0.67 0.66 0.67
5 0.66 0.68 0.66 0.68
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Fig. 4.7. NI and standard Newton methods for the arch.

4.4. Nested iteration for the arch. We compare standard Newton iterations
for h = 1

128 ,
1
64 ,

1
32 , and

1
16 to NI with h = 1

4 for the coarsest grid and h = 1
128 for the

finest grid. The initial guess for the arch is

x = 1.5 + (1.5− ξ) cos(π(1− η)), y = (1.5− ξ) sin(π(1− η)),
J11 = − cos(π(1− η)), J21 = π(1.5− ξ) sin(π(1− η)),
J12 = − sin(π(1− η)), J22 = −π(1.5− ξ) cos(π(1− η)).

Choices of the numbers of V(1,1)-cycles per iteration and Newton steps on each
grid are currently made by observation. In the theoretical section of [10], we suggested
ρν0 ≤ 1

8 as a criterion, where ρ is the convergence factor and ν0 is the number of V-
cycles. A significantly larger value would allow the iterates to wander too far from
the true solution as the grid was refined. We could choose a smaller value for ρν0 so
that the multigrid solutions would shadow the exact finite-dimensional solutions more
closely. But too small a value would likely be less efficient than simply proceeding
to finer meshes. NI required significantly less work to obtain the same discretization
error than did the standard Newton method. Standard Newton needed just a few
steps to reach discretization error for our tests anyway, but the savings afforded by
NI for smaller h should be much larger still. More results can be found in [9].

Table 4.4 depicts asymptotic convergence factors for standard Newton iterations.
These factors are not small enough to allow just one V-cycle per Newton step. We
thus used three V(1,1)-cycles to solve each Newton step. Thus one work unit is three
V(1,1)-cycles on the 1

128 grid. Here we performed two coarsest-grid Newton iterations,
with only one on all finer grids.

Three standard Newton steps were required to reach discretization error, while
NI required less than one-and-a-half equivalents (see Figure 4.7). The final functional
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value decreases by about a factor of four as the grid size is halved, which confirms the
O(h) approximation in the H1(Ω) norm.

5. Conclusion. We showed theoretically that the nested iteration process in-
volving only one discrete Newton step on each level produces a result on the finest
level that is within discretization error of the exact solution. We also showed this
result numerically using an H1+δ(Ω) discrete space for each of the unknowns. Future
directions involve automating the numerical tests to include the following choices:
number of relaxations before and after coarsening, number of V-cycles, number of
Newton steps on each grid, size and choice of solvers for the coarsest grid, parameter-
ization of the boundary maps, and adaptive mesh refinement.

The first three choices dictate the overall efficiency of the algorithm and should be
considered carefully for maximum effectiveness. Automation would require heuristics
to sense performance of smoothing and coarse-grid correction, as well as linearization
trade-offs. We used one Newton step on all but the coarsest grid in our examples and
theory, but severely distorted regions may dictate more such steps to improve effective-
ness, and possibly other continuation methods to address the Newton method’s local
convergence characteristics. In any case, the special ability of the FOSLS functional
to signal errors could be exploited to make these choices in an effective and automatic
way. The fourth coarsest-grid choice rests heavily on the geometry of the particu-
lar map. Complex regions may require a fairly small coarsest grid and a significant
amount of effort to solve the nonlinear problem there. Damped Newton methods and
various forms of continuation techniques may come into play. Of course, complicated
regions generally require very fine meshes to supply meaningful simulations, so the
relative cost of such coarsest-grid effort may again be fairly minimal. Moreover, the
special properties of the FOSLS functional may also be exploited for these choices.
The fifth choice would be to use a parameterization of the boundary in the associated
terms of the functional that would allow concentration of grid points near special
boundary features. The final choice of adaptive mesh refinement can be served by
noting that the functional value on each element is a sharp measure of the error on
that element, which makes it suitable as a measure for determining which elements
need to be further subdivided (cf. [4]).
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