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Abstract  

Improved therapeutic approaches are needed for the treatment of recurrent and metastatic 

endometrial cancer (EC). ECs display hyper-activation of the MAPK and PI3K pathways, the result 

of somatic aberrations in genes such as FGFR2, KRAS, PTEN, PIK3CA and PIK3R1. FGFR2, as 

well as the PI3K pathway, have emerged as potential therapeutic targets in EC. Activation of the 

PI3K pathway is seen in >90% of FGFR2mutant ECs. This study aimed to examine the efficacy of 

the pan-FGFR inhibitor BGJ398 with pan-PI3K inhibitors (GDC-0941, BKM120) and the 

p110α-selective inhibitor BYL719. We assessed synergy in three FGFR2mutant  EC cell lines 

(AN3CA, JHUEM2 and MFE296) and the combination of BGJ398 and GDC-0941 or BYL719 

showed strong synergy. A significant increase in cell death and decrease in long- term survival 

was seen when PI3K inhibitors were combined with BGJ398. Importantly, these effects were seen 

at low concentrations correlating to only partial inhibition of AKT. The combination of BGJ398 

and GDC-0941 showed tumor regressions in vivo, whereas each drug alone only showed moderate 

tumor growth inhibition. BYL719 alone resulted in increased tumor growth of AN3CA xenografts, 

but in combination with BGJ398 resulted in tumor regression in b o t h  AN3CA and JHUEM2-

derived xenografts.  These data provide evidence that sub-therapeutic doses of PI3K inhibitors 

enhance the efficacy of anti-FGFR therapies and a combination therapy may represent a superior 

therapeutic treatment in FGFR2mutant EC patients. 



FGFR and PI3K inhibitors in FGFR2mutant endometrial cancer

Page 4

 

 

Introduction 

Endometrial cancer (EC) is the most common gynaecological malignancy in developed 

countries and its incidence is increasing in postmenopausal women (1). In 2016 the American 

Cancer Society estimates that ~10,500 USA women will die of EC ( 2 ) . Treatment options for 

patients with recurrent or persistent EC are limited to radiation and chemotherapy, which offer limited 

clinical benefit. As a result, the average survival of patients with metastatic or recurrent EC is only 7-

12 months (3). Thus, there is a need for more effective therapies with reduced side effects, as well as 

predictive biomarkers to identify patients most likely to respond to these treatment options. 

Our group and others have identified activating somatic mutations in FGFR2 in ~10% of 

patients presenting with primary endometrioid EC ( 4 - 9 ) . With regards to the E C  subtypes 

identified by The Cancer Genome Atlas (TCGA), FGFR2 mutations occur at  similar  

frequency in the microsatellite instability (MSI) hypermutated subtype as well as the copy number 

low subtype, which has also been described as those tumors with no specific molecular aberration 

(NSMP)(7,10). More recently, mutational analysis in a large multi-institute cohort has revealed 

FGFR2 mutations are more common in the tumors of patients that present with late stage disease 

(17%) as well as those that progress (progressed, recurred or died from disease) (26%) (11). In 

multivariate analysis where age, grade and stage were also taken into account, the presence of an 

FGFR2 mutation was associated with decreased progression-free survival and decreased EC- specific 

survival (11). 

Preclinical studies by our group and others have shown that FGFR2mutant EC cells are highly 

sensitive to a range of FGFR inhibitors including PD173074 (5 ,12)  ponatinib (13 ,14) , BGJ398, 

dovitinib (15) and AZD4547 (16). The majority (93%) of FGFR2mutant ECs also harbor 

mutations in the PI3K pathway (PIK3CA, PIK3CB, PIK3R1, PIK3R2, PTEN, AKT1) (7). 

Western blot analyses of FGFR2mutant EC cell lines show that FGFR inhibitors fail to completely 

block PI3K pathway activation ( 1 2 , 1 5 , 1 6 ) . Although these in vitro studies had shown classic 

oncogene addiction in FGFR2mutant   EC cell lines, in vivo studies with 30 mg/kg BGJ398 showed 

FGFR inhibition alone in the FGFR2mutant AN3CA cell line lead to a delay in tumor growth but not 
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tumor regression (15) . More recently, a similar study evaluating 30 mg/kg AZD4547 in AN3CA 

xenografts in vivo did show tumor regression (16), consistent with earlier studies performed in our 

lab using twice daily dosing of PD173074 (data not shown). 

The PI3K pathway regulates proteins involved in cell cycle, survival and metabolism. It is 

thought to be the most commonly activated signaling pathway in human cancer and EECs have 

amongst  the highest frequency (80-90%) of somatic mutations affecting this pathway ( 7 , 8 ) . In 

most tumor types loss of PTEN and activation of PIK3CA are mutually exclusive events, 

however EC is unusual in that many tumors carry aberrations in multiple members of this signaling 

pathway (7). 

There are several different classes of PI3K pathway inhibitors designed to target this pathway at 

one or more nodes and these include pan-PI3K, isoform-specific PI3K, mTOR, AKT, dual 

PI3K/mTOR and dual mTORC1/mTORC2 inhibitors (reviewed in 17) . Unfortunately, many 

inhibitors targeting this pathway have shown disappointing results in Phase II/III clinical trials, and 

this has been attributed to a small therapeutic window accompanied by on-target toxicity from 

inhibiting this pathway in normal tissues, as well as a lack of predictive biomarkers to better 

identify the patients that will respond (18,19). 

In this study we chose to evaluate BGJ398 (Infigratinib), an orally bioavailable selective pan- 

FGFR inhibitor currently being evaluated in Phase II trials as a single agent in several FGFR- 

dependent malignancies (NCT02160041, NCT02150967) as well as the pan-PI3K inhibitor 

(BKM120) and the p110α-selective inhibitor BYL719 (Alpelisib), all developed by Novartis. Of 

direct relevance to this project, there is currently a Phase Ib expansion trial evaluating the efficacy 

of BGJ398 + BYL719 in breast and lung cancers (NCT01928459).  As BKM120 has been shown to 

possess off-target effects at concentrations above 1 µM (20), we also assessed BGJ398 in 

combination with the class I pan-PI3K inhibitor GDC-0941 (Pictilisib). This research shows that 

partial abrogation of signaling through the PI3K pathway enhances the efficacy of BGJ398 in 

FGFR2mutant EC models in vitro and in vivo. 
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Material and Methods 

Cell lines, Culture conditions and Inhibitors 

AN3CA, MFE296 and JHUEM2 were obtained from ATCC (2005), ECACC (2007) and 

Riken Cell Bank (2012) respectively. AN3CA, JHUEM2 and MFE296 were authenticated by 

STR profiling at sequencing facility of The QIMR Berghofer Medical Research Institute in 2013 

and 2016 and passaged less than 20 times since authentication. AN3CA and MFE296 cells were 

grown in MEM-alpha and JHUEM2 cells in 1:1 DMEM:HamF12, supplemented with 10% fetal 

bovine serum, 1% penicillin/streptomycin and 0.1 mM non-essential amino acids. According to 

the Cancer Cell Line Encyclopedia, the cell lines harbor the following mutations; AN3CA 

express FGFR2 N550K and K310R, PIK3R1 p.557_561REIDK>Q and PTEN p.R130fs;  

JHUEM2 express FGFR2 C383R, PIK3CA p.V344G, p.E978K, PIK3R1 p.N707del and PTEN 

p.N212_splice; MFE296 cells harbor FGFR2 N550K, PIK3CA p.I20M, p.P539R and PTEN 

p.R130Q and p.T321fs*23. Kinase inhibitors (BGJ398, GDC-0941, BKM120 and BYL719) were 

purchased from Selleck Chemicals for in vitro experiments and from Synkinase for in vivo studies. 

Structures of compounds are shown in Figure S1B. 

 

Cell Viability Assay 

Cell viability was assessed by sulforhodamine B staining. Briefly, 3000 cells were seeded 

in a 96-well plate. The following day cells were treated with half-log dilutions of drug (1 nM to 10 

µM). After 96 hours, cells were fixed in methanol, stained with SRB, solubilized with 10 mM Tris 

and absorbance read at 492 nm. Values were normalized to DMSO control. IC50 values are the 

mean of three independent experiments and were calculated using nonlinear regression analysis with 

variable slope in GraphPad Prism v6.0. 

 

Chou-Talalay Drug Combination Study 

Synergy between BGJ398 and the PI3K inhibitors was assessed using the methodology 

proposed by Chou and Talalay (21). Drug concentrations were in a series of 2-fold dilutions 
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above and below the IC50  of each drug. One day after seeding, cells were treated with BGJ398, 

GDC-0941, BYL719, BKM120 alone or in combination for 96 hours. All experiments were 

repeated three independent times. The combination index and fraction affected was calculated by 

Calcusyn, v2.0 (Biosoft). 

 

Colony Forming Assay 

Cells (600-1000) were seeded in 6-well plates and the following day treated with DMSO or 

inhibitors for 72 hours. Cells were washed thrice in PBS and grown in full-growth medium for 

1 0 - 16 days, fixed with methanol and stained with crystal violet (0.1% in 25% methanol). 

Colonies were counted and the mean of 2 (JHUEM2) or 3 (AN3CA, MFE296) independent 

experiments (each performed in triplicate) was plotted as a percentage of the DMSO control. 

 

Assessment of apoptosis 

Cells (4 × 105) were seeded in 6-well plates overnight. On the second day, cells were treated 

with the indicated drugs or DMSO for 72 hours. Floating and attached cells were collected and 

analyzed for Annexin and PI staining according to the manufacturer’s instructions (FITC 

Annexin V Apoptosis Detection Kit II, BD Biosciences) using BD LSR II and Flowjo, v10.7.  

 

siRNA-mediated depletion of p110α and p110β 

AN3CA and JHUEM2 cells (3.5x105) were reversed-transfected with 10nmol Dharmacon ON-

TARGETplus siRNA pools targeting p110α/PIK3CA and p110β/PIK3CB or a non-targeting control 

(D-001810-10) using Lipofectamine RNAiMAX in serum-free media in a 6-well plate.  Full-growth 

media was added 24 hours. Fourty-eight hours post–transfection, cells were treated with DMSO, 0.3 

µM GDC-0941 or 0.6 µM BYL719 for 6 hours then lysed and subjected to Western blot analysis. 

Quantification of band intensities from duplicate (JHUEM2) and triplicate (AN3CA) experiments 

(normalized to tubulin) was performed using ImageJ. 
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Immunoprecipitation, Western blot analysis and antibodies 

Proteins were harvested using RIPA buffer (50 mM Tris pH 7.4, 150 mM NaCl, 1 mM 

EDTA, 1% IGEPAL, 0.1% SDS, 0.5% sodium deoxycholate, 1 mM sodium orthovanadate, 1 

mM NaF, 1 mM PMSF, 10 μg/ml aprotinin and leupeptin). For  immunoprecipi ta t ion,  1  mg 

of  protein  lysate  was pre-cleared with Protein A SureBeads beads (Bio-Rad)  for  

30 min pr ior  to  incubat ing the lysate  with ant i-FGFR2 (C-17)  ant ibody  (Santa  

Cruz)  and Protein  A SureBeads beads overnight  a t  4°C.  Western blot t ing was 

performed using s tandard protocols .  The following antibodies were used:  p110α  

(#4249),  p110β  (#3011),  PARP (#9542), pFRS2α(Tyr436) (#3861),  pAKT(Ser473) 

(#4060), AKT  (#2920),  pERK(Thr202/Tyr204) (#4695), ERK  (#9107), pS6  (Ser240/244) 

(#2215), S6 (#2317), p-Tyr-100 (#9411) from Cell Signaling Technology; pERK (Thr202/Tyr204) 

(mouse), Tubulin (T9026) from Sigma; FGFR2 Bek-C17 (sc-122), ERK2 (sc-154), F R S 2  

( s c - 8 3 1 8 )  and GAPDH (sc-32233) antibodies from Santa Cruz Biotechnology, Inc. 

Secondary antibodies IRDye 680LT Donkey anti-Rabbit IgG (C31024-04) and IRDye 800CW 

Donkey anti-mouse IgG (#C30904-02) were from LI-COR® Corporate. 

 

In vivo murine xenograft model 

Six-week-old female NOD-SCID mice (15-18 g) were purchased from the Animal 

Resources Centre (Canningvale, WA, Australia) and hosted in the pathogen-free Biological 

Resource Facility (BRF) of the Translational Research Institute, Brisbane, Australia. Mice were 

maintained and handled under aseptic conditions, and were allowed access to food and water ad 

libitum. In vivo animal studies were performed according to institution-approved protocols 

(TRI/160/14/AUC) and guidelines for maintenance of animals and end point of tumor studies were 

followed. Xenografts of AN3CA and JHUEM2 EC cell lines were established by subcutaneously 

injecting 1 × 106 viable cells in growth factor-reduced matrigel (#354230, BD Biosciences) 1:1 with 

PBS into the flank of the mice. Perpendicular tumor diameters were measured by a single observer 
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using Vernier scale calipers, and tumor volumes were calculated using the formula [(x× y2)/2]. 

JHUEM2 and AN3CA xenografts were allowed to grow for 10 and 14 days respectively (to allow 

formation of tumors with mean xenograft volume ~150mm3). Mice were then stratified into 

treatment groups with one tumor per mouse on the basis of their weight and tumor volume. Mice 

(8/group) were treated for three weeks via oral gavage, 5 days on/1 day off, of (i) vehicle control 

(100 mM acetic acid/sodium acetate buffer pH 4.6/PEG300 (1:1)), (ii) BGJ398, 20 mg/kg, (iii) 

GDC-0941, 75 mg/kg, (iv) BYL719, 12.5 mg/kg, (v) BGJ398 + GDC-0941 and (vi) BGJ398 

+ BYL719. Body weight was recorded for each animal every other day to monitor potential 

toxicities. Additional animals (4/group) were treated for 4 days, with their final treatment 6 

hours prior to tumor collection. P a r t  o f  t h e  t u m o r  w a s  s n a p - frozen,  t h e n  lysed in RIPA 

lysis buffer (2.5 μl/mg) for Western blot analysis and the other part fixed in 4% paraformaldehyde.  

 

Immunohistochemical staining of mouse xenografts  

Tumors were fixed in 4% paraformaldehyde solution overnight, paraffin-embedded and cut into 

5 μm-thick sections. Sections were deparaffinized, rehydrated, followed by antigen retrieval with CC1 

buffer at 100 oC for 64 mins using the Ventana Discovery Ultra. Slides were blocked with Discovery 

Inhibitor for 8 mins, incubated with Anti-Rabbit Cleaved Caspase-3 antibody (#9661; Cell Signaling 

Technology) for one hour at 37oC, followed by secondary anti-Rabbit HQ and anti-HQ HRP. The 

signal was detected with DAB substrate (Discovery ChomoMap kit) followed by a haemotoxylin 

counterstain. All images were taken with Olympus IX73 inverted Fluorescence microscope fitted with 

XM10 monochrome camera. Histopathologic scoring of cleaved caspase 3 was performed on five 

fields (x400 magnification) for each of the four tumors treated with the different drug/s avoiding areas 

of marked necrosis. Identification of positive cells was performed blinded and independently on a 

multi-header microscope by MC, VB and PP and averaged for each sample and condition. Data for 

caspase positivity for each drug treatment is presented as a ratio over vehicle control.  

 

Statistical Analysis 
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The in vitro data was analyzed using one-way ANOVA with Tukey’s multiple comparison to 

test all treatment combinations. Differences in xenograft volume between groups were assessed for 

significance using a repeated two-way ANOVA. p-values, calculated with Prism (Graphpad), are 

coded by asterisks: <0.05 (*), <0.01 (**), <0.001 (***), P<0.0001(****). 
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Results 

Effects of BGJ398, GDC-0941, BKM120 and BYL719 on ERK and AKT activity 

We first determined the effect of increasing concentrations of BGJ398, GDC-0941, BKM120 

and BYL719 on phospho-ERK (pERK) and phopsho-AKT (pAKT) downstream signaling in 

FGFR2mutant EC cell lines AN3CA and JHUEM2. Both AN3CA and JHUEM2 cells showed 

complete inhibition of ERK activity at 0.1 μM BGJ398 (Figure S1A). While phosphorylated 

ERK1/2 is often used to indicate FGFR inhibition, we confirmed inhibition of FGFR2 

by BGJ398 by immunoprecipitating FGFR2 and staining for phosphorylated-tyrosine 

(Figure S1C). As expected, BGJ398 caused loss of phosphorylated FGFR2 in all three 

cell lines. AKT (Ser473) phosphorylation was unchanged even at higher concentrations of 

BGJ398. This is consistent with previous data we have published using the FGFR inhibitor 

PD173074 (12). The pan-PI3K inhibitor GDC-0941 showed significant inhibition of AKT 

activity in JHUEM2 and AN3CA at 0.3 μM and complete inhibition at 1 μM, whereas higher 

concentrations of BKM120 were required to obtain similar pathway inhibition (Figure S1). 

JHUEM2 cells were more sensitive to the p110α /PIK3CA-specific inhibitor BYL719, consistent 

with this cell line carrying activating mutations in PIK3CA.  

 

BGJ398 synergizes with PI3K inhibition to inhibit cell proliferation 

In order to assess synergy, the half maximal inhibitory concentration (IC50) for each single 

agent (BGJ398, GDC-0941, BKM120 and BYL719) was determined (Table 1). AN3CA and 

JHUEM2 were slightly more sensitive to BGJ398 (IC50 20 nM and 30 nM, respectively) than 

MFE296 (IC50 80 nM). AN3CA cells showed greater sensitivity to GDC-0941 than JHUEM2 and 

MFE296 cells, with an IC50  value of 140 nM compared to 355 nM and 630 nM respectively. 

JHUEM2 cells were more sensitive to BYL719, with an IC50 value of 530 nM compared to 1730 nM 

for AN3CA and 4050 nM for MFE296. AN3CA and JHUEM2 cells responded in a similar manner to 

BKM120, with IC50 values of 320 nM and 260 nM respectively. 

These IC50 values were used to assess potential synergy using the Chou-Talalay equipotent 
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fixed ratio method (Figure 1A- I). Combination treatment of AN3CA, JHUEM2 and MFE296 cells 

with BGJ398 and either GDC-0941 or BYL719 resulted in enhanced inhibition of cell proliferation 

compared to BGJ398 alone. The combination of BGJ398 with GDC-0941 or BYL719 was 

synergistic (combination index values < 0.7) at all concentrations in JHUEM2 and MFE296 and in 

all but the lower two concentrations in AN3CA (Figure 1C, F, I). The BGJ398 and BKM120 

combination had a more subtle effect, with synergy seen only at the highest concentrations (Figure 

S1D-F). These results suggest that dual treatment with BGJ398 and either GDC-0941 or 

BYL719 is more synergistic at inhibiting proliferation of FGFR2mutant EC cells than BGJ398 

combined with BKM120. 

 

Co-targeting FGFR2 and PI3K signaling reduces long-term cell survival 

Clonogenic assays were performed to further examine the effect of the combination 

treatments on long-term cell survival and to determine if synergy could be seen at clinically relevant 

doses (Figure 2). Plasma concentrations of BGJ398 in phase I trial patients were found to have a 

Cmin-Cmax range of approximately 100-450 nM (22) and as such 100 nM and 300 nM 

concentrations were assessed, as these represented a low and mid range concentration, 

respectively. The reported Cmax   of GDC-0941, BYL719 and BKM120  is  2.07  µM  (23),  2.3  µM  

(24)  and  1.8  µM  (25) respectively, therefore 0.3, 0.6 and 1 µM were initially assessed. When 

combined with BGJ398, even low concentrations of the PI3K inhibitors caused a substantial 

reduction in colony formation (Figure S2A-B), despite the small reduction in AKT 

phosphorylation seen with the lower drug concentrations (Figure S1). For subsequent analysis, 

we used 0.3 µM GDC-0941, 0.6 µM BYL719 and 0.6 µM BKM120. These concentrations were 

well below the plasma Cmax  values (often close to the Cmin) such that evidence of synergism 

might open new avenues for using these drugs at sub-therapeutic doses. 

Treatment with 0.3 µM BGJ398 significantly reduced colony formation by ~70% (P< 

0.0001) in AN3CA cells (Figure 2A, B). Long-term survival of AN3CA cells was slightly reduced 

by single agent PI3K inhibitor treatment, suggesting this pathway contributes to the survival of 
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these cells. GDC-0941 alone significantly reduced colony formation by ~50% (P<0.0001), 

whereas BYL719 and BKM120 only reduced colony formation by 20% and ~35% (P<0.01) 

respectively. In AN3CA cells, combining BGJ398 with GDC-0941, BYL719 or BKM120 reduced 

clonogenic survival by a further 20-30% compared to BGJ398 single agent treatment (BGJ + GDC 

P<0.01, BGJ + BYL P<0.05, one way ANOVA). In JHUEM2 cells, BGJ398 treatment led to a 

~50% reduction (P<0.001) in colony formation, whereas single agent PI3K inhibition had no 

significant effect (Figure 2C, D). Nevertheless these cells were particularly sensitive to dual 

inhibition of FGFR2 and PI3K, with a further reduction of ~40-50% (P<0.01) by all three PI3K 

inhibitors compared to BGJ398 treatment alone. The colony formation in MFE296 cells was 

significantly reduced by BGJ398 (~75% reduction; p>0.0001), but not by any of the PI3K 

inhibitors alone. The combination of GDC-0941 or BKM120 with BGJ398 further reduced the 

colony formation by 15% (ns) and 10% (ns) respectively, but no additional benefit was seen when 

BYL719 was combined with BGJ398. It should be noted that for this assay, cells were treated with 

single agents or combinations for 72 hours after which cells were washed to remove residual drugs 

before plating, so this assay under-represents the cell death that would be seen following 

continuous drug exposure. 

 

BGJ398 synergizes with PI3K inhibition to induce cell death 

 To test the hypothesis that BGJ398 combined with a PI3K inhibitor enhances apoptosis, 

Annexin V positivity was assessed following 72 hours drug treatment (Figure 2E). Treatment 

with BGJ398 alone induced approximately 30% - 40% cell death in AN3CA (P<0.05), JHUEM2 

(P<0.0001) and MFE296 (P<0.05), compared to 10% in the vehicle control (Figure 2G-I). The 

single agent PI3K inhibitors had little effect on cell death in any cell line at the low concentrations 

chosen. The combination of BGJ398 with any of the PI3K inhibitors induced significantly more 

cell death than BGJ398 alone.  This data demonstrate that combining the FGFR inhibitor BGJ398 

with a pan-PI3K or p110α /PIK3CA-selective inhibitor not only reduces cell proliferation and 

long-term survival, but also enhances the effect of BGJ398 in inducing cell death in BGJ398- 
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sensitive EC cells. 

 

The combination of BGJ398 and a PI3K inhibitor caused enhanced inhibition of AKT and 

downstream target S6  

To understand the molecular basis of the synergistic cell death induced by the combination of 

BGJ398 and PI3K inhibitors we measured the response of key downstream targets to the individual 

inhibitors and combinatorial treatments after 1, 8 and 24 hours (Figure 3A, 3B, S3). 

Phosphorylation of ERK, a downstream marker of FGFR activity, is totally abrogated by 0.3 µM 

BGJ398 at all time points in all three cell lines. BGJ398 slightly blocks AKT phosphorylation in 

JHUEM2 and MFE296 and shows little effect on AKT phosphorylation in AN3CA cells. 

In JHUEM2 all three PI3K inhibitors inhibit AKT activity to a similar extent, leading to 

dephosphorylation of S6 at 8 a n d  2 4  hours. In AN3CA a n d  M F E 2 9 6  cells, GDC-0941 is 

the most effective inhibitor of AKT and S6 with strongest inhibition seen at the earlier two 

timepoints. BYL719 has little effect on AKT or S6 activity in AN3CA cells. This may be 

explained by the lack of a PIK3CA mutation in AN3CA cells, the presence of which likely 

sensitizes JHUEM2 cells to this isoform-selective inhibitor. The inhibition of the PI3K pathway 

by single agents is short-lived, with phospho-S6 levels returning to almost normal by 24 hours 

in AN3CA and JHUEM2. The dephosphorylation of S6 in  response to  dual targeting of the 

FGFR and PI3K pathways was greatest at 8 hours and s t i l l  evident at 24 hours in all three 

cell lines.  

 

Preferential signaling of JHUEM2 cells through p110α/PIK3CA 

To determine whether AN3CA and JHUEM2 cells show preferential signaling through 

p110α/PIK3CA or p110β/PIK3CB, siRNA knockdown of each gene was performed (Figure 3C). As 

predicted, knockdown of p110α in JHUEM2 (PIK3CAmutant) resulted in almost complete inhibition 

AKT and S6, suggesting that p110α regulates PI3K pathway activity in these cells. In contrast, while 

p110α knockdown in AN3CA (PIK3CAWT) cells inhibited AKT (though to a lesser extent than 
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JHUEM2), this did not translate into an equivalent inhibition of the downstream effector S6, 

suggesting that AN3CA does not solely rely on p110α/PIK3CA for PI3K pathway activation.  

Knockdown of p110β resulted in an unexpected increase in the expression of p110α in both 

cell line models (Figure 3D), which resulted in an increase in the activation of AKT and S6 (Figure 

3C), unlike knockdown of p110α, which did not alter p110β levels (Figure 3D). Knockdown of both 

p110α and p110β abrogated this activation of AKT signaling. The pan-PI3K inhibitor GDC-0941 

almost completely inhibits AKT/S6 signaling in AN3CA, more so than the combined siRNAs (which 

elicit only partial knockdown), suggesting that AN3CA relies on both p110α and p110β for PI3K 

pathway activation.  

  

Combined BGJ398 and PI3K inhibition induced marked tumor regression in FGFR2mutant 

xenograft models in vivo 

We then studied the anti-tumor activity of the BGJ398 + GDC-0941 and BGJ398 + 

BYL719 combinations in AN3CA- and JHUEM2-derived murine xenografts. BGJ398, GDC-0941 

and BYL719 alone and in combination were well tolerated with no significant weight loss 

observed throughout the course of treatment (Figure S4A, B). While BGJ398 has been used at 

concentrations ranging from 5 mg/kg to 45 mg/kg in vivo (26), we utilized a concentration of 20 

mg/kg in order to detect increased efficacy in our combination studies. As expected, 20 mg/kg 

BGJ398 resulted in significantly delayed tumor growth in both cell line models compared with 

the control group (P<0.001, Figure 4A, 4B). GDC-0941 (75 mg/kg) and BYL719 (12.5 mg/kg) 

administered as single agents had surprising opposite effects. GDC-0941 inhibited tumor growth 

to a similar extent as BGJ398, consistent with increased pathway inhibition by 75 mg/kg GDC-

0941 in vivo compared to the lower concentrations utilized for the in vitro studies (Figure 4D). In 

contrast, BYL719 monotherapy unexpectedly enhanced the growth of AN3CA-derived tumors 

(P<0.0001). 

Combinatory treatment of BGJ398 + GDC-0941 and BGJ398 + BYL719 resulted in a 

marked inhibition of tumor growth in both AN3CA (P<0.001, P<0.05 respectively) and JHUEM2 
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xenograft models, compared to the BGJ398-treated groups. Indeed, these combinations caused 

complete or partial tumor regression, with no palpable tumor present in 5/8 and 4/8 mice with 

AN3CA and 2/8 and 1/8 mice with JHUEM xenografts treated with BGJ398 + GDC-0941 and 

BGJ398 + BYL719 respectively (Figure S4B). 

Biochemically, BGJ398-treated xenografts show partial inhibition of AKT and almost 

complete inhibition of ERK at 4 days (Figure 4D). AN3CA xenografts treated with GDC-0941 for 4 

days show marked reduction in pAKT, pS6 and p4EBP-1 levels, confirming inhibition of the PI3K 

pathway. BYL719 treatment also resulted in a reduction in pAKT and pS6 levels, albeit not to the 

extent seen with GDC-0941. The combination of BGJ398 + GDC-0941 caused a stronger reduction 

in pAKT, pS6 and p4EBP1 than GDC-0941 alone. These results are consistent with the cell death 

and clonogenic data, which confirm that a synergistic effect occurs when blocking FGFR and PI3K 

pathways. 

Histological analysis of the AN3CA tumors, which had been treated for four days, revealed 

very frequent mitoses in both the vehicle control and in the BYL719 tumors (data not shown). Only 

occasional apoptotic bodies were observed in the GDC-0941 treated tumors whereas a high number 

of apoptotic bodies were seen in the tumors treated with BGJ398 + GDC-0941 (data not shown). 

Both combination treatments showed broad, confluent areas of necrosis.  

 

Assessment of cell death markers following dual targeting of FGFR and PI3K pathways 

The single agent and combination treatments were assessed for their effect on the apoptotic 

marker PARP and cleaved caspase 3 (Figure 3A, 3B and 4E). In AN3CA cells, cleavage of PARP 

resulting in 25 and 89 kDa fragments, is more pronounced following treatment with BGJ398 + GDC-

0941 at 8 and 24 hours (Figure 3A). This is consistent with a significant increase in caspase 3 

cleavage by the BGJ398 + GDC-0941 combination in AN3CA-derived xenografts and the presence 

of numerous apoptotic bodies compared to BGJ398 and GDC-0941 single treatments (Figure 4E). 

This high level of caspase cleavage is not observed with the BGJ398 + BYL719 combination in the 
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AN3CA xenografts, despite large areas of tumor necrosis evident histologically, suggesting different 

mechanisms of cell death may be occurring.  

Similar annexin positivity was seen with all three combinations (Figure 2G), suggesting that 

BYL719 and BKM120 might elicit a different cell death mechanism. The inhibition of AKT caused 

by BYL719 alone or in combination with BGJ398 is much less than that caused by GDC-0941. It 

is possible that only minor abrogation of AKT signaling is required to kill AN3CA cells when 

FGFR is also inhibited. In contrast to the results observed in AN3CA cells, a strong induction of 

PARP cleavage in response to BGJ398 was seen in JHUEM2 cells, which was enhanced equally 

in all three PI3K inhibitor combinations treatments. This PARP cleavage coincides with similar 

levels of Annexin V positivity seen at 72 hours in all three combinations (Figure 2H).
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Discussion 

 

Small molecule inhibitors that target oncogenic drivers of tumorigenesis are becoming 

standard therapies in many cancer types. Given the high frequency of PI3K aberrations in EC, 

several Phase II trials evaluating PI3K inhibitors as single agents have been undertaken, with 

overall disappointing results (27) . A number of FGFR inhibitors have shown remarkable 

clinical responses in a subset of other FGFR dependent malignancies (28,29), but to date only 

multi-kinase inhibitors such as dovitinib have been tested in EC (30). No complete responses 

were documented in the latter, however no hyperphosphatemia was reported, bringing into question 

whether sufficient inhibition of the FGFR receptors was obtained. Although FGFR inhibi tors  

have been shown to induce cell death in FGFR2mutant EC cell lines with concomitant PI3K 

pathway activation (12), it is reasonable to assume that the co-occurrence of activating PI3K 

pathway mutations may limit the extent and durability of tumor responses to single agent FGFR 

inhibitors. 

Here we show that multiple inhibitors targeting the PI3K pathway enhance the efficacy of 

the FGFR inhibitor BGJ398 in FGFR2mutant ECs. Notably, we show that low doses of PI3K 

inhibitors, correlating with only partial inhibition of AKT phosphorylation, synergize with FGFR 

inhibition to achieve cell death and tumor shrinkage in vivo. Our data suggests isoform-specific 

inhibition of p110αby BYL719 has different effects in AN3CA and JHUEM2 cells. In 

JHUEM2 cells, carrying an activating PIK3CA mutation, BYL719 resulted in partial AKT 

inhibition, a small decrease in pS6 phosphorylation (Figure 3B) and a slowing of tumor growth in 

vivo (Figure 4B). In AN3CA cells, BYL719 had less of an effect on pAKT (Figure 3A and 5A), 

with little to no reduction of phosphorylated pS6, suggesting that inhibition of the 

PI3K/AKT/mTORC1 pathway by this p110α-specific inhibitor is incomplete. Unexpectedly 

BYL719 single agent treatment increased growth of AN3CA-derived xenografts (Figure 3A), 

which is blocked by the addition of BGJ398. This suggests that whatever pro-survival pathway 

is being activated by BYL719 in AN3CA tumors, it is blocked by pan-FGFR inhibition. 
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Activation of parallel pathways have previously been implicated in resistance to PI3K 

inhibitors (reviewed in 3 1 ) , leading to the belief that combination therapies are required to 

overcome such feedback loops. Further studies are required to understand the molecular basis of 

BYL719-induced tumor growth in AN3CA xenografts. 

The differential reliance of AN3CA and JHUEM2 on p110α/PIK3CA may explain their 

differential response to BYL719. BYL719 inhibits AKT/S6 signaling to a greater extent in JHUEM2 

cells, resulting in PARP cleavage when combined with BGJ398 in JHUEM2 cells (Figure 3B), which 

are more reliant on p110α  than AN3CA (Figure 3C). In contrast, PI3K signaling is only partially 

inhibited by BYL719 in AN3CA cells, which fails to cause PARP cleavage (Figure 3A) or caspase-

dependent cell death in combination with BGJ398 (Figure 4E). These results suggest that complete 

PI3K inhibition is required to induce caspase-dependent cell death. The fact that BGJ398 + BYL719 

induces tumor regression to the same extent as BGJ398 + GDC-0941 suggests that only partial 

inhibition of the PI3K pathway is needed to lower the apoptotic threshold of FGFR inhibitors. 

Furthermore, the results suggest that cell death induced by BYL719 is caspase-independent and may 

also be PI3K-independent. 

Our results show that in the context of EC S6 is regulated by both t h e  PI3K and FGFR2 

pathways, with the combination treatments reducing levels of phosphorylated S6 more than the 

individual treatments (Figure 3). The sustained inhibit ion of S6 by combination 

treatment is  likely the result  of inhibiting both the PI3K and FGFR2 pathways. 

Together with previous studies targeting the PI3K pathway alone or in combination with MEK 

inhibition, these results indicate that levels of phosphorylated S6 may be an effective biomarker 

of response to targeting these key survival pathways (32-34). 

Our data in EC is supported by similar combination studies in EC and other cancers. 

Specifically in EC, Gozgit et al. reported synergy between the multi-kinase inhibitor ponatinib and 

the mTOR inhibitor ridaforolimus (35). In liver cancer, the addition of the mTOR inhibitor 

RAD001 to dovitinib also showed an increase in growth inhibition of Hep3B xenografts (36) 

and the addition of the mTOR inhibitor rapamycin to BGJ398 resulted in increased tumor 
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growth inhibition in a subcutaneous and a syngeneic orthotopic model ( 3 7 ) . In FGFR1-

amplified lung cancer, the combination of BGJ398 and GDC-0941 led to enhanced growth 

suppression in vivo (38). Furthermore, a recent study in FGFR1-amplified lung and bladder cancer 

cells found that the FGFR inhibitor AZD4547 caused synergistic induction of cell death in vitro 

when combined with an mTOR inhibitor (either AZD8055 or KU0063794) or a pan-PI3K inhibitor 

(GDC-0941) (29). 

Early trials using pan-PI3K inhibitors were associated with on-target toxicity. Thus, 

considerable effort has gone into developing PI3K isoform-selective inhibitors and the identification 

of predictive biomarkers for these isoform selective PI3K inhibitors. Initial studies utilizing both 

genetically engineered mouse models and panels of cell lines from multiple cancer types showed 

that PTEN-deficient breast and prostate cancer cells preferentially signal through p110β (39-41). 

Moreover, clinical resistance to BYL719 in a metastatic breast cancer lesion carrying an 

activating PIK3CA mutation was attributed to loss of PTEN in this specific lesion (42). More 

recently, there have been reports that PI3K isoform usage in the context of PTEN loss is 

dependent on the genetic context by which the PI3K pathway is activated. Tumors where the PI3K 

pathway was activated by either activated KRAS (43) or the polyoma middle T antigen (44) showed 

a reliance on p110α  even in the presence of concurrent PTEN loss, in contrast to earlier studies 

where the reliance on p110β occurred only in models with PTEN loss. 

Our attempt to determine whether preferential signaling through p110α or p110β was taking 

place in AN3CA or JHUEM2 cells was somewhat hindered by the unexpected activation of AKT 

following p110β depletion. While unexpected, our results were in line with those of Utermark and 

colleagues (45), showing that increased AKT activation in a conditional knockout of p110β in murine 

mammary epithelium in transgenic models of breast cancer driven by the polyoma middle T antigen 

or Her2/New resulted in enhanced tumor growth. The authors presented data indicating that there was 

competition between p110α  and p110β for binding to the oncogenic receptor and removal of p110β 

allows increased binding of the more active p110α , leading to increased pathway activation (45). In 



FGFR and PI3K inhibitors in FGFR2mutant endometrial cancer

Page 20

 

 

the endometrial cancer lines examined the increased AKT activation could be due to both an increase 

in p110α expression (Figure 3C, 3D) as well as higher activation of AKT elicited by p110α . 

Whether the ablation of p110β resulted in an increase in p110α expression was not assessed in the 

murine models, but the data presented here suggests a level of compensatory crosstalk that has not 

been previously reported. 

As endometrial tumors are unique in that they often carry aberrations in multiple members 

of the PI3K pathway, identifying biomarkers of response to isoform-specific PI3K inhibitors in 

endometrial cancer has proven difficult. The study by Weigelt and colleagues investigating a number 

of drugs targeting different nodes of the PI3K pathway in a large panel of EC cell lines showed 

that PTEN-null ECs require inhibition of both p110α and p110β to reduce cell viability and suggest 

that the preferential use of specific catalytic subunits of PI3K may also depend on tissue context 

(17). This is in line with clinical data using mTOR inhibitors in EC where no association between 

specific mutations and clinical responses was observed (46). Our in vitro data is consistent with that 

of Weigelt et al. (17), with single agent pan-PI3K inhibitors GDC-0941 and BKM120 showing 

greater activity than BYL719 in a variety of assays. However, perhaps surprisingly, when combined 

with FGFR inhibition, p110α specific inhibition by BYL719 induced similar tumor growth 

inhibition to pan-PI3K inhibition with GDC-0941.  

A variety of studies have demonstrated that crosstalk between the MAPK and PI3K signaling 

pathways are associated with resistance to targeted therapies ( 4 7 - 4 9 ) . Thus, we hypothesize that 

dual inhibition of both the FGFR/MAPK axis and PI3K signaling pathways will not only induce 

more tumor cell death but also result in a decrease in intrinsic and acquired resistance. In a 

similar manner we would also hypothesize that pan-PI3K inhibition may well prevent the 

emergence of resistance via altered p110 isoform usage. 

Although many companies are developing inhibitors against these pathways, only a few 

companies have inhibitors against both FGFR and the PI3K in clinical development. Arqule have a 

specific FGFR inhibitor (ARQ087) and a pan-AKT inhibitor (ARQ092/ARQ751) and Astra Zeneca 
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also have a pan-FGFR inhibitor (AZD4547) and a pan-AKT inhibitor (AKT5363). At this time 

Novartis have the only combination in clinical trials (BYL719 + BGJ398) with enrolment focused 

on those patients with an activating PIK3CA mutation. Our data, and that of Weigelt and colleagues 

(17), would suggest that pan-PI3K inhibition is more efficacious than isoform specific PIK3CA 

inhibition in EC. As with all combination therapies, there remains a need to determine whether the 

toxicities seen with inhibition of either the PI3K or FGFR pathways are additive or synergistic 

when blocked together. Our in vitro data suggests that sub-therapeutic inhibition of the PI3K 

pathway may be effective in combination, allowing lower doses and ideally less toxicity. 
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Table 1 
 

Inhibitors Range of 
concentrations used in 

IC50 calculation 

IC50 in AN3CA 
(nM) 

IC50 in JHUEM2 
(nM) 

IC50 in MFE296 
(nM) 

BGJ398 0.1 nM– 1 μM 30 20 80 
GDC-0941 1 nM - 10 μM 140 355 630 
BYL719 1 nM - 10 μM 1730 530 4060 
BKM120 1 nM – 10 μM 320 260 695 

 
  



 

 

 
Figure Legends 

 

Figure 1. Synergistic inhibition of cell viability by combined treatment with BGJ398 and a 
PI3K inhibitor. 

 

Growth inhibition induced by the FGFR inhibitor BGJ398 and the PI3K inhibitors alone or in 

combination. AN3CA (A-C), JHUEM2 (D-F) and MFE296 (G-I) cells were treated with the 

indicated doses of BGJ398, GDC-0941 a n d  BYL719 alone or in combination for 96 hours and 

an Sulforhodamine B (SRB) assay was subsequently performed. Data are presented as a 

percentage of the control, in which cells were treated with 0.1% (v/v) DMSO. Points represent the 

mean of three independent experiments (each performed in triplicate). Error bars represent the 

standard error of the mean (SEM) and lines were fitted using non-linear regression analysis. 

Interaction of BGJ398 and GDC-0941  ( r ed  c i r c l es )  o r  BYL719  (b l ack  square s )  in  

A N 3CA (C) ,  JH U E M2 (F )  and  MF E296  ( I ) .  Median effect analysis (CalcuSyn software) 

was used to evaluate the interaction between the inhibitor combinations. Horizontal dotted lines 

indicate the boundaries for each interaction classification. 

 

Figure 2. Dual targeting of the FGFR and PI3K pathways leads to synergistic inhibition of 
long-term survival and enhanced cell death. 
Clonogenic survival assays in AN3CA (A-B), JHUEM2 (C-D), MFE296 (E-F) treated with the 

indicated doses (µM) of BGJ398 (BGJ), GDC-0941 (GDC) and BYL719 (BYL) alone or in 

combination for 72 hours. Cells were then cultured for 16 days without inhibitors and stained with 

crystal violet. Pictures are representative of three independent experiments. Colonies were counted 

and expressed as a percentage of the DMSO control. The mean of three independent experiments 

(each performed in triplicate) for AN3CA (B), JHUEM2 (D) and MFE296 (F) are shown along 

with the standard deviation (SD). Percentage of apoptotic cells in AN3CA (G), JHUEM2 (H) and 

MFE296 (I) treated with DMSO, 0.3 µM BGJ398 (BGJ), 0.3 µM GDC-0941 (GDC), 0.6 µM 

and BYL719 (BYL) alone or in combination for 72 hours. Apoptosis was detected by staining 

cells with annexin V and propidium iodide. The mean percentage of apoptotic cells from two 

(JHUEM2) or  three (AN3CA, MFE296) independent experiments (each performed in 

triplicate) is shown along with the SD. Statistical significance between the indicated groups 

according to a one-way ANOVA is shown (****P<0.0001; ***P<0.001; **P<0.01; *P<0.05). 

 

Figure 3. Inhibition of FGFR and PI3K pathways by BGJ398, GDC-0941 BYL719 and 
BKM120. AN3CA (A) and JHUEM2 (B) cells were treated for the indicated times with 



 

 

DMSO, 0.3 µM BGJ398 (BGJ), 0.3 µM GDC-0941 (GDC), 0.6 µM BYL719 (BYL) and 0.6 µM 

BKM120 (BKM) alone or in combination. Cell lysates were immunoblotted with antibodies for 

phospho-AKT (Ser473), total AKT, phospho-ERK (Thr202/Tyr204), ERK2, phospho-S6 

(Ser240/244), total S6, phospho-4EBP1 (Thr37/46), total 4EBP1, total PARP and cleaved PARP. 

Tubulin was detected as the loading control. Western blot analysis of AN3CA and JHUEM2 (C) 

cells transfected with siRNA pools targeting p110α and p110β and a non-targeting (NT) control for 

48 hours and treated with 0.3 µM GDC-0941 (GDC) or 0.6 µM BYL719 (BYL) for 6 hours. The 

mean band intensity of pAKT and pS6 (normalized to tubulin) are shown, along with the SD. The 

mean level of p110α with p110β knockdown (D) and p110β following p110α knockdown 

(normalized to tubulin) from three independent experiments along with the SD are also shown. 

 

Figure 4. PI3K inhibition improves anti-tumor efficacy when given in combination with 
BGJ398. AN3CA (A) and JHUEM2 (B) xenografts were established in nude mice and stratified 

into six groups (8/group) treated for the indicated number of days with vehicle, 20 mg/kg BGJ398, 

75 mg/kg GDC-0941, 12.5 mg/kg BYL719, BGJ398 + GDC-0941 and BGJ398 + BYL719. Mean 

tumor volumes are shown along with the standard error. Representative tumors including the 

smallest and largest from each group are shown. C) Tumor growth of AN3CA and JHUEM2 

xenografts assessed at 21 days of treatment with inhibitors described in A). Protein lysates from 

AN3CA (D) xenografts taken from mice treated with the above doses of BGJ398, GDC-0941 or 

BYL719 for 4 days were lysed and subjected to Western blot analysis for phospho-AKT (Ser473), 

total AKT, phospho-ERK (Thr202/Tyr204), total ERK, phospho-S6 (Ser240/244), total S6, 

phospho-4EBP1 (Thr37/46), total 4EBP1. Tubulin was detected as the loading control. E) 

Immunohistochemical staining of cleaved caspase 3 in AN3CA xenografts treated for 4 days with 

the indicated drugs, along with the mean of caspase 3 positive cells counted in five fields (x400 

magnification) in four tumors (presented as a ratio over vehicle control). 
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