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Abstract 

Cyclic loading-unloading tests in tension and compression were carried out on pure Mg 

and alloys with 0.4, 1.5 and 4.2 at.% Gd, over a range of grain sizes, to quantify the 

solute and strain dependence of the materials anelasticity in the form of hysteresis 

loops. For a given grain size, the anelastic effect was more pronounced, i.e., the loops 

were wider, for pure Mg, and it decreased rapidly with the Gd concentration. The effect 

was larger for the finer grains in all materials, and in compression for the pure Mg and 

the 0.4Gd alloy. No difference between tension and compression was observed for the 

1.5Gd alloy, whereas the loops were wider in tension than in compression for the 4.2Gd 

alloy. In comparison with existing studies in Mg-Al and Mg-Zn alloys, for a given 

solute concentration, Gd was more effective in reducing the magnitude of the effect than 

either Zn or Al, in that order. The overall behavior is discussed in terms of the 

hardening effects of short range order of the alloys on {1012} and {1011} twinning. 

 

Keywords: Anelasticity; Mg-Gd alloys; Mg-Al alloys; Mg-Zn alloys; Short range order; 

Elastic twinning.  
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1. Introduction 

The activation of twinning at low stress and strains in Mg allows it to play a crucial 

role, that of indirectly meeting the von-Mises criterion of five independent slip systems, 

for homogeneous plastic deformation [1-3]. These twins are not fully stable in the 

deformed state [4] and tend to partly revert, once the applied stress is removed [5] or 

reversed [6, 7], leading to hysteresis loops during loading and unloading. This type of 

hysteresis loops have been reported in pure Mg and Mg-Al [5, 6, 8-10], and Mg-Zn 

[11]. Similar loops have also been observed in Zr [12]. 

 

Gharghouri et al. [5, 6] used neutron diffraction to show that the partial reversion of 

{10 ̅2} twins upon unloading is the main cause of the loops in pure Mg and Mg-Al. An 

in-situ study on cast AZ31 alloy [13] also showed that {10 ̅1} twins form during 

unloading on grains with the c-axis normal (or nearly so) to the tensile direction, adding 

to the overall anelastic strain. More recent studies [10, 11] showed that the anelastic 

strain in Mg-Al first decreased with the Al content (up to 2 at.%) but increased again for 

the terminal solid solubility (~ 9%Al), whereas in Mg-Zn it decreased monotonically 

with increasing Zn contents up to the maximum solubility limit (~2.5 at.%). This 

difference in behavior was ascribed to short range order (SRO) at large Zn 

concentrations, considering that twinning generally becomes more difficult as ordering 

sets in [14]. In Mg-Al, Mg-Zn or in pure Mg, the loops were wider in compression than 

in tension, an effect that accounted for by the polar nature of twinning in conjunction 

with the tension character of the {10 ̅2} twins [11, 15]. Under compressive uniaxial 

stress the volume fraction of twins is larger in compression than under tension, hence 

the wider loops in the former situation. The increased amount of twinning in 
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compression leads also to a lower yield strength and in some cases to a plateau in the 

flow curve, giving rise to a tension-compression asymmetry [10, 16].  

 

More recent work on the Hall-Petch relation of Mg-Gd alloys [17] showed that dilute 

Mg-Gd alloys reproduced the pattern of behavior just described, i.e., the yield strength 

was lower in compression and a plateau in the flow curve. At higher concentrations, 

however, a reversion in the phenomenon occurred: the yield strength was less in tension 

than in compression. The reversion was explained through the activation of {10 ̅1} 

twins. Since these twins are ‘compression’ in character, (as opposed to ‘extension’ as 

{10 ̅2} twins) the effects upon the yield strength were reversed.  The activation of 

{10 ̅1} twins, in turn, was explained by the very high yield strength of the concentrated 

alloy, due to the strong SRO introduced by Gd. The same work, and in line with prior 

work in Mg-Zn [16], assigned twinning a determining role in the Hall-Petch behavior of 

alloys. When twinning is activated at small strain, a lower stress intensity factor, k, is 

expected, whereas when solute interferes with the activation of twinning, twinning is 

delayed and k increases. The study of the anelastic effect offers a straightforward way to 

characterise how twinning develops as a function of the applied stress and strain for the 

given alloy, and this was the driving force for the present study. This is required to 

understand the role of twinning on the Hall-Petch behavior of Mg alloys and also to 

correct the 0.2% yield strength data accounting for anelasticity.  

 

In this work, the effect of solute concentration on the anelastic behavior in Mg-Gd 

alloys was studied, in tension and compression, and for different grain sizes. The 

presence of SRO has been confirmed by diffuse x-ray scattering in this alloy system 
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[18], and a behavior akin, only stronger, to that of the Mg-Zn alloys was anticipated. 

The solute contents were selected to cover the range of dilute (Gd < 0.4 at.%) and 

concentrated (up to 4.5 at.%) solid solutions. 

 

2. Experimental Procedure 

Pure Mg and Mg-Gd alloys with 0.4, 1.5 and 4.2 at % were selected for the present 

study. Commercial purity magnesium was melted in an electric resistance furnace and 

predetermined amounts of Mg-40.5 wt.% Gd master alloy were added. Different 

amounts of Zr in the form of Mg-22.5 wt.% Zr master alloy were added to the melt as a 

grain refiner to achieve different grain sizes for each alloy composition. The melt was 

stirred for 10 minutes by hand
1
 to ensure the dissolution of the solute elements and 

pouring into either sand, steel or copper mould was carried out at 710-755 C to get 

different grain sizes employing different cooling rates. Plates of dimensions 150 x 150 x 

32 mm
3 

from the sand and copper moulds, and cylinders of diameter 70 mm x height 

150 mm
 
from the steel mould castings were obtained. 

 

The castings were sectioned into either 10 x 10 x 95 mm
3
 or 20 x 20 x 95 mm

3
 bars for 

making tensile samples or diameter 22 mm x height 45 mm cylinders for making 

compression samples, and these were solution-treated in argon followed by quenching 

in water. Solution heat treatment was carried out at 535 C for 3 and 9 hrs for the 0.4 

and 1.5% Gd, respectively, and 540 C for 12 hrs for the 4.2% Gd. The additional time 

and temperature was given for the concentrated alloys to ensure the complete 

                                                 
1
 Mechanical stirring resulted in excessive burning of the melt due to the extreme reactivity of Gd. 
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dissolution of the precipitates in to the solid solution. The pure Mg specimens were 

stress-relieved at 250 C for 2 hrs and furnace cooled. 

 

The chemical composition of the alloys was determined using the inductively coupled 

plasma atomic emission spectroscopy and the results are shown in Table 1. Samples for 

grain size measurement were polished to 1 μm diamond finish followed by alumina 

polishing and etched using acetic – picric acid mixture [20 ml acetic acid, 3 g picric 

acid, 20 ml H2O and 50 ml ethanol]. The mean grain sizes calculated over 800 grains 

using the linear intercept method are listed in Table 1. 

 

Table 1: Chemical composition and mean grain sizes of the alloys. 

 

Cylindrical tensile specimens of different gauge diameter, according to the grain size, 

with a gauge length of 25 mm and cylindrical compression specimens of diameter 20 

mm and height 40 mm were machined from the heat treated sections. To ensure true 

Material 

Fine grain size Medium grain size Coarse grain size 

grain 

size 

(μm) 

Actual 

Gd 

(at.%) 

Zr 

(at.%) 

grain 

size 

(μm) 

Actual 

Gd 

(at.%) 

Zr 

(at.%) 

grain 

size 

(μm) 

Actual 

Gd 

(at.%) 

Zr 

(at.%) 

Mg 55 - 0.16 170 - 0.20 400 - 0.06 

Mg-0.4Gd 48 0.37 0.14 188 0.35 0.02 730 0.35 - 

Mg-1.5Gd 35 1.25 0.52 120 1.43 0.13 432 1.32 - 

Mg-4.2Gd 53 3.92 0.32 160 3.65 0 300 3.90 0.01 
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polycrystalline behavior, the specimen gauge diameter to the grain diameter ratio was 

always maintained greater than 35 for all the mechanical testing samples, except for the 

tensile samples of the coarsest grain sizes 432 and 730 m, which was maintained at 15. 

Cyclic loading – unloading tests (see Fig. 1) were carried out at crosshead speeds 

ranging between 0.05 and 0.7 mm/ min, the lower speed was used for the lower strain 

values of the hysteresis loop testing. A pair of opposing, knife-edge averaging 

extensometers were used to reduce any error in the recorded strain values caused 

because of sample misalignment. Tension samples were tested until fracture and 

compression samples were tested up to 7% strain. Data were stored at a rate of 250 

points per second. 

 

3. Observations 

Fig. 1. Shows a representative loading-unloading flow curve where the terms used in 

this work are defined. 
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Fig. 1. A tensile loading-unloading test in pure Mg. E is the elastic modulus (44 GPa), 

f is the flow stress at the start of the unloading; p is the true plastic strain, a the 

anelastic strain and e the linear elastic strain, at zero load. 

 

Flow curves in tension and compression for the alloys studied are shown in Fig. 2a and 

b. The strength increased with the Gd content and with the exception of the most 

concentrated alloy, the loops were wider in compression than in tension. The tensile 

ductility of the 4.2Gd alloy specimens was very low due to the presence of large oxide 

films, and that limited the collection of data to strains of about 0.015 [17].  

 

 

Fig. 2. Loading-unloading loops: (a) tension, (b) compression. Grain sizes: pure Mg, 

170 μm; 0.4Gd, 188 μm; 1.5Gd, 120 μm; 4.2Gd, 160 μm.   

 

The anelastic strain, as defined in Fig. 1, was plotted as a function of true plastic strain 

for the different alloys and grain sizes in Fig. 3. The anelasticity progressively 

(a) (b) 
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developed after an incubation plastic strain, which depended upon the alloy content and 

grain size; it then reached a maximum at a plastic strain of between 0.01 and 0.025 for 

all of the alloys and grain sizes.   

 

 

 

(a) (b) 

(c) (d) 
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Fig. 3. The anelastic strain, εa, as a function of true plastic strain, εp, at different grain 

sizes of a) pure Mg, b) Mg-0.4% Gd, c) Mg-1.5% Gd, and d) Mg-4.2% Gd alloys, tested 

in both tension (solid lines) and compression (dashed lines). The line at which εa = εp is 

drawn for comparison.    

 

Fig. 4 shows that the anelasticity developed at very low plastic strains in pure Mg 

compared with the alloys. The addition of Gd reduced the magnitude of anelasticity and 

shifted its onset towards larger strains, keeping it below the εa = εp line for all of the 

alloys, save for the finer grain size 0.4Gd alloy in compression.  

 

Figs. 5a and b show the effect of grain size and the Gd content, respectively, on the 

anelastic strain, taken at a plastic strain of 0.002, for the alloys studied. The anelastic 

strain was generally larger in compression than the tension for all the grain sizes of the 

pure Mg and Mg-0.4Gd alloy, except for the coarsest grain size where there was no 

difference between the tension and compression. The anelastic strain was almost same 

at all the grain sizes for both tension and compression of the 1.5Gd alloy, whereas 

tension appeared to have more anelastic strain than the compression for the 4.2Gd alloy. 

Overall the anelastic strain decreased with the increasing grain size for all the materials. 

The anelastic effect decreased with increasing Gd content and was more pronounced for 

the finer grains in all materials.  

 

 



10 

 

 

Fig. 4. The anelastic strain, εa, as a function of true plastic strain, εp, for the alloys 

studied, in tension (solid lines) and compression (dashed lines). a) Small grain size. 

(grain sizes: Mg, 55 μm; 0.4Gd, 48 μm; 1.5Gd, 35 μm; 4.2Gd, 53 μm). b) Large grain 

size. (Mg, 400 μm; 0.4Gd, 730 μm; 1.5Gd, 432 μm; 4.2Gd, 300 μm). The line at which 

εa = εp is included for reference.  

 

 

(a) (b) 
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Fig. 5. The anelastic strain, εa, as a function of a) grain size, and b) Gd content, for the 

alloys studied. The crosses and solid lines denote tensile data, the triangles and dashed 

lines denote compression. 

 

4. Discussion 

4.1. Tension-Compression anelastic behavior 

The larger anelastic strain in compression than in tension for the pure Mg and the dilute 

(0.4Gd) alloy is consistent with the notion that the behavior arises from a combination 

of the polar nature of twinning and the fact that the twin mode with the lowest 

activation stress is the ‘tension” {1012} twin: in a random polycrystal, the fraction of 

grains having their c-axis favourably oriented for (tension) twinning is larger under a 

compressive stress than  under a tensile stress [5, 9-11, 15]. This behavior of the 0.4Gd 

alloys is consistent with the behavior of the Mg-Zn and Mg-Al alloys reported in [5, 6, 

9, 11, 13]. By the same token, the lack of difference between tension and compression 

for the 1.5Gd alloys, and the reversion, i.e., larger anelastic strain in tension, for the 

(b) (a) 
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4.2Gd alloys is puzzling.  A possible explanation is put forward when the effects of 

different solutes is discussed below.  

 

4.2. Grain size effects 

The larger anelastic strain at smaller grain sizes is consistent with the idea proposed in 

[9, 11] that small grain sizes offer more nucleation sites for favourably oriented 

twinning to occur due to the increased specific grain boundary area. At the same time, 

smaller twins are less likely to relax plastically, so their tendency to revert can be 

expected to be larger as well. That is, a reduced grain size is expected to create a larger 

population of smaller twins, more prone to revert upon unloading, thereby magnifying 

the anelastic effects. 

 

4.3. Solute concentration  

The decrease in the anelastic strain, as well as the shift of the onset to larger strains, 

with the Gd concentration is consistent with the explanation proposed for Mg-Zn 

involving SRO [11, 16]. It is known that twinning becomes more difficult when order is 

present [14], as it makes the atomic  shuffling  associated with twinning in hexagonal 

metals more difficult. The total amount of twinning, hence the anelastic strain, is 

reduced as the strength of the SRO increases.
2
 This explanation, however, is at odds 

with the reversion of the effect at the largest concentration of Gd.  To understand why 

the reversion happens, the effect of other solutes, Al and Zn, must be compared with 

that of Gd. 

                                                 
2
It is noted that {1012} twins have been recently described as “shuffling dominated” [19-21], a feature 

that should make this kind of twinning more sensitive to the presence of order than others, such as {101
1}. 
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Fig. 6 shows that the addition of solute delays the onset of anelasticity and generally 

reduces the magnitude of the anelasticity.  At the higher end of the solute 

concentrations, close to the respective terminal solubilities (~2.5 at.% for Zn, ~9 at.% 

for Al and ~4.2 at.% for Gd), the latter is much more effective in reducing the 

anelasticity than either Zn or Al, in that order.    

 

 

Fig. 6. The anelastic strain, εa, as a function of the true plastic strain, εp, for different 

solutes at near constant grain sizes tested in both tension (solid lines) and compression 

(dashed lines) for a) dilute concentration, b) terminal solid solubility. In a), grain sizes 

of pure Mg – 170 μm; 0.5Al – 230 μm; 0.4Gd – 188 μm; 0.4Zn – 150 μm. In b), pure 

Mg – 170 μm; 2.3Zn - 81 μm; 4.2Gd - 160 μm; 9Al – 130 μm. The line at which εa = εp 

was drawn for comparison. The data for Mg-Al and Mg-Zn alloys are taken from Refs. 

[10] and [11], respectively. 

 

(a) (b) 
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The stronger (decreasing) effect of Gd concentration on the anelasticity, as well as the 

reversion (greater anelasticity in tension than in compression) for the 4.2Gd, can be 

rationalised as follows: The phase diagram indicates that Gd has a stronger tendency
3
 to 

develop short-range order than Zn. The ordering effect of Gd hardens the basal plane as 

well as increases the CRSS of {1012} twinning beyond and above the strengthening 

introduced by Zn [23]. The higher flow stress of Mg-Gd leads to the activation of {101

1} twins. The {1011} twins differ from the {1012} twins in two fundamental aspects: 

the former are not “shuffling dominated”, i.e., they are not expected to be so much 

affected by the presence of SRO, and they are “compression” type of twins. Thus, they 

can be expected to make the anelastic effect greater in tension than in compression, 

therefore accounting for the reversion observed for the 4.2Gd. The increasing trade-off 

between the hardening of the extension twins and the activation of the compression 

twins accounts for the increasing reversion of the effect when going from the 0.4Gd to 

the 4.2Gd. It should be noted that even though the earlier research by Yoo [2] assigned 

a higher shuffling factor for the {1011} twins than for the {1012} twins, the reversion 

of anelastic strain for the 4.2Gd alloy suggests that the {1012} twins are more sensitive 

to the local ordering than the {1011} twins. 

 

A third effect must be considered to fully account the effects of the different solutes. 

The larger difference in CRSS between basal and prism slip in pure Mg enables the 

activation of {1012} twinning at very low stresses and strains, and the large anelasticity 

in pure Mg follows. The introduction of solute in solution results in solid solution 

                                                 
3
 The Mg-Gd phase diagram contains 4 different compounds with melting points higher than that of 

MgZn2 , which is consistent with a stronger tendency to developing order in the solid solution in the 

former [22]. 
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softening of the prismatic planes, facilitating the activation of prism slip, thereby 

reducing the participation of twinning as deformation mechanism.  Solid solution 

softening of the prism planes is a general solid solution effect, i.e., it can be expected to 

operate for all three solutes considered here, Gd, Zn and Al [24].  At higher 

concentrations, Mg-Zn and Mg-Gd develop SRO, whereas Mg-Al is hardened by much 

weaker random solid solution effects [25]. The latter has limited effect on the {1012} 

twinning beyond an initial reduction up to about 2 at.% Al. Past that level, it is 

presumed that solid solution softening is offset by the increased solid solution 

hardening, and {1012} twinning gradually becomes a prominent deformation 

mechanism again, hence the increased anelasticity at higher concentrations of Al shown 

by Figure 6-b.  

 

5. Conclusions 

The anelastic strain was larger for the pure Mg and decreased with increasing Gd 

content. The anelasticity was more pronounced for the fine grains in all the materials. 

 

The anelasticity was larger in compression than in tension for the pure Mg and the 

0.4Gd alloys. No difference between tension and compression was observed for the 

1.5Gd alloys. The anelastic strain in tension was larger than in compression for the 

4.2Gd alloys.  

 

The effects can be rationalised by considering the solid solution hardening and 

softening upon prismatic slip, {1012} extension twinning and {1011} compression 

twinning. 
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