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Abstract 

Inhibition of mushroom tyrosinase was observed with synthetic dihydropyrano[3,2-

b]chromenediones. Among them, DHPC04 displayed the most potent tyrosinase inhibitory 

activity with a Ki value of 4µM, comparable to the reference standard inhibitor kojic acid. A 

kinetic study suggested that these synthetic heterocyclic compounds behave as competitive 

inhibitors for the L-DOPA binding site of the enzyme. Furthermore, molecular modeling 

provided important insight into the mechanism of binding interactions with the tyrosinase 

copper active site.   
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Introduction 

Melanin is the major cellular component observed in many species of animals, plants, 

fungi and bacteria (1). In humans it is responsible for skin color and protection against 

radiation (2). However, abnormal accumulation of melanin induces pigmentation disorders, 

among which, the most deadly form of skin cancer can form (i.e. melanoma) (3). Melanin 

develops in pigment cells called melanocytes due to the overproduction of melanin, the 

protective tanning pigment in the skin (4).  

 

Melanin biosynthesis is conducted in melanocytes, found in the basal layer of the 

epidermis and controlled by a binuclear copper enzyme called tyrosinase (TYR) (EC 

1.14.14.1) (5). TYR is ubiquitous and catalyzes the oxidation of both monophenols (cresolase 

or monophenolase activity) and o-diphenols (catecholase or diphenolase activity) into 

reactive o-quinones. In addition, it is a rate-limiting enzyme for controlling the production of 

melanin. The melanogenesis begins with the conversion of the amino acid L-tyrosine to L-

3,4-dihydroxyphenylalanine (L-DOPA) catalyzed by tyrosinase (TYR) (6). Therefore, the 

regulation of the TYR activity is directly connected with melanin biosynthesis. 

 

TYR is classified structurally as a type-3 copper protein in which each active-site 

copper ion is coordinated by three histidine residues (7) (Figure 1).  In general, the TYR 

inhibition mechanism is frequently based on both specific TYR inhibitors and specific TYR 

inactivators (8). A large set of potent TYR inhibitors from natural and synthetic resources 

have been reported during the last few years (8-12). Kojic acid (KA) is a well-known TYR 

inhibitor and is widely used as a popular cosmetic skin-lightening ingredient. Its capacity to 

chelate copper ion at the active site of the enzyme may consistently explain its inhibitory 

effect (13). However, it only showed slight inhibitory activity against pigmentation within 

intact melanocytes or in clinical assays (14). Therefore, it remains necessary to find new TYR 

inhibitors with higher activity and without off target side effects. 
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Figure 1. Catalytic site of TYR. The

histidine residues.  
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Figure 2. The 4H-chromene scaffold (left) and the pyrano[3,2-b] motif (right). 

 

Materials and Methods 

Experimental Section 

Materials 

TYR of mushroom (M.W. 128 kDa), L-DOPA, dimethylsulfoxide (DMSO) and KA 

were purchased from Sigma-Aldrich.  

TYR Activity 

TYR-inhibition activity of the DHPC01-04 compounds (Table 1) were performed by 

using L-DOPA as a substrate according to Kubo and co-workers (22) with slight 

modification. Incubation was carried out at 160 µl of different concentrations of the substrate 

L-DOPA, 20 µl (2.4 U) of enzyme mushroom tyrosinase, 20 µl of KA and different 

concentrations of DHPCs (25, 50 and 100µM).  All solutions were prepared in Phosphate 

Buffered Saline (PBS) pH 7.2.  

The reaction was initiated by addition of enzyme to all wells simultaneously, which 

was measured over the first 5 minutes in the microplate reader (ELx800, BioTek) with a 490 

nm filter.  Furthermore, a control reaction was also performed by incubating the enzyme with 

KA or DHPCs in the absence of the substrate to demonstrate that there was no variation in 

absorbance over time. 
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Determination of Inhibition Constant (Ki) 

The mode of inhibition on the enzyme was assayed by incubation of the different 

concentrations of L-DOPA (0; 0.25; 0.5; 0.75; 1.0; 2.0; 3.0 and 4.0 mM) and inhibitors (0; 

0.001; 0.025; 0.05; 0.1; 0.2; 0.4; 0.8 and 1.6 mM). The kinetic parameters (Km, Vmax and Ki) 

were determined with the GraphPad Prism®5.0 software, according to the following 

equations: 

I. Competitive Inhibition: 

= · 1 +  

= ·+  

II. Mixed Inhibition: 

= 1 + ·  

= · 1 +1 + ·  

= ·+  

where Y, X and I denotes average absorbance change per minute, concentration of L-DOPA 

and concentration of DHPCs, respectively. The parameter α determines mechanism, its value 

determines the degree to which the binding of inhibitor changes the affinity of the enzyme for 

substrate. 

Computational Section 

Molecular Docking 

The crystal structure of tyrosinase from A. bisporus (AbTYR) was used as the initial 

point for computational procedures, it was obtained from the Protein Data Bank (PDB) under 

code 2Y9X (23), which contains tropolone (TRO) as a crystal inhibitor. In order to validate 
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the protocol and computational program used for molecular docking simulations for the 

proposed inhibitors, the crystal inhibitor (TRO) was re-docked in the active site of TYR. 

Then, the KA and DHPCs derivatives were submitted for docking calculations. 

The molecular docking procedures were performed using the Molegro Virtual Docker 

(MVD) program (24). It has two docking search algorithms; MolDock Optimizer and 

MolDock SE (Simplex Evolution). The first is the default search algorithm in MVD (25), 

which is based on an evolutionary algorithm. However, MolDock SE performs better on 

some complexes where the standard MolDock algorithm fails (26). Accordingly, for previous 

computational analysis performed for TYR systems, the MolDock SE can be applied with 

success for this type of complex (27). The default parameters for the search algorithm were 

used to carry out molecular docking analysis. The detailed theory behind the MVD program 

and its characteristics are described elsewhere (24, 27). 

 

Results and Discussion 

4H-Chromene Analogues Synthesis 

 The synthesis of the dihydropyrano[3,2-b]chromenediones was successfully achieved 

by employing principles of “green chemistry”, and these included inexpensive off-the-shelf 

catalysts, short reaction times, solvent-free conditions, straightforward work-up, and good-to-

high yielding syntheses (28). 

 

For this study DHPCs were prepared in racemic form (mixture of enantiomers) via a 

three-component condensation reaction of an aromatic aldehyde, dimedone, and KA (28). To 

synthesize DHPC03 and DHPC04, chlorokojic acid (29) was used instead (Scheme 1). All 

compounds were fully characterized by 1H NMR, 13C NMR, IR, HRMS and in some cases X-

ray crystallography (see SI file).  
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Scheme 1. Synthesis of DHPC01 (R=
(R=2-F, X=Cl), and DHPC04 (R=4-F
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Analysis of these kinetics parameters show that the Ki values of three compounds 

were 6.00 µM, 9.00 µM and 4.00 µM for DHPC02, DHPC03 and DHPC04, respectively (see 

Table 1). Therefore, these results show high rates of inhibition of TYR and the order appears 

to be DHPC04 > DHPC02 > DHPC03. 

The increase in the slope of the graph 1/[S] indicated the binding strength of the 

competitive inhibitors. That is, the slope of the graph is increased by the factor (1+ [I] / Ki) in 

the presence of the inhibitor. The kinetic analysis showed that these inhibitors have a single 

inhibition site, possibly with small differences in the docking site. Alternatively, these 

inhibitors can bind in multiple orientations within the catalytic site of the enzyme, giving an 

unexpected interactions, which may reflect small differences in inhibitor affinities.  

The high slope value in the analysis of the variation in Km as a function of inhibitor 

concentration: 22.12 ± 1.98 and r2= 0.98 for DHPC02; 19.92 ± 1.37 and r2= 0.99 for 

DHPC03; and 42.19 ± 7.58 and r2= 0.94 for DHPC04 (see Figure S4), suggests that these 

compounds have a single inhibition site of inhibition. 

Finally, these findings quite reasonably suggest that the DHPC compounds bind to the same 

binding site as the substrate L-DOPA. The results match the values of affinity enzyme-

inhibitor (Ki) and the values of free interaction energy. It is therefore likely that these 

inhibitors present kinetic parameters that show similar features derived from inhibitors with 

chelating and competitive properties (30). 

Molecular Modelling Analysis 

Molecular docking techniques have successfully been used to propose the bind mode 

and interactions occurring between the TYR enzyme and some potential inhibitors, such as, 

isophthalic acid (30), hesperetin (31), oxymatrine (32), hydroxy-based thymol analogues 

(33), KA, and KA analogues (27). In this sense, we have performed similar analyses using 

the DHPC compounds derived from chemical synthesis. In order to validate the molecular 

docking procedure, and the MVD program, a re-docking calculation was computed using the 

crystal inhibitor (TRO) as a reference. Thus, comparing theoretical and experimental 

complexes (TYR-TRO) revealed excellent agreement between theoretical and experimental 

models. In this way, this molecular docking procedure was used to compute the favored 

conformation of the DHPC compounds in the binding site of the AbTYR. 
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According to the re-docking results, the TRO conformation obtained by molecular 

docking was in good agreement with its crystal structure conformation (see Figure S1). 

Furthermore, the DHPC compounds were also submitted to the same molecular docking 

steps. Our results showed that these compounds are complexed to the same binding pocket of 

the TRO inhibitor (see Figure S2), and that the MVD program can reproduce suitable 

conformations for molecular like KA and DHPC compounds in complex with the TYR 

enzyme. 

During the synthesis of the DHPC compounds two enantiomers were obtained for 

each KA derivative (R and S). However, it is not clear at this stage which enantiomer is 

responsible for the TYR activity during kinetic analysis. In order to elucidate this aspect, 

molecular docking calculations using both enantiomers for all the DHPC compounds were 

undertaken. This information was taken into account with respect to the binding affinity 

values, and the interactions between the compounds and the amino acids residues of TYR. 

The binding affinity values obtained through the MOLDOCK scoring function 

showed better affinity for the R enantiomer in all cases (Table 1). The binding affinity values 

for the S enantiomers are provided in the SI file. The orientation of the aryl group for this 

conformation allowed suitable interactions with part of TYR enzyme (Figure 4A). Since the 

aryl group for the S enantiomer was exposed to solvent the interaction with the residues of 

TYR disappeared (Figure 4B). Comparing KA with the DHPC compounds, all molecules 

interacted directly with one copper ion in the catalytic site of TYR as well as the TRO 

inhibitor (Figure 5), which supported the competitive inhibition proposal. Considering that 

DHPC04 had the strongest TYR inhibitory effect, our discussion at this point will be focused 

around this facet, although, it is representative of all other DHPC compounds. 
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Conclusion 

The inhibitory effect of various DHPC compounds were investigated against the TYR 

enzyme, which were found to induce changes in km. This is consistent with competitive 

inhibition interactions with the substrate (L-DOPA) at the active site. Correspondingly, 

changes in Vm indicated binding of the test compounds provided very effective to the 

inhibition of TYR in a competitive inhibitory manner. The inhibitory mechanism of such 

compounds is in accordance with the copper ion chelator concept, in that, analogues to kojic 

acid compete with L-DOPA in the active site,, which induces changes in the hydrophobic 

surfaces. 

Therefore, a combination of inhibition kinetics and computational modeling may 

facilitate the testing of new potential TYR inhibitors and the prediction of their inhibitory 

mechanisms, as shown in the present study. Further biological evaluation of DHPCs and 

detailed toxicity studies are ongoing and will be reported in due course.   
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