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Abstract 

 

Surface freshwater yield is a service provided by catchments, which cycle water intake by 

partitioning precipitation into evapotranspiration and streamflow. Streamflow generation is 

experiencing changes globally due to climate- and human-induced changes currently taking place in 

catchments. However, the direct attribution of streamflow changes to specific catchment 

modification processes is challenging because catchment functioning results from multiple 

interactions among distinct drivers (i.e., climate, soils, topography and vegetation). These drivers 

have coevolved until ecohydrological equilibrium is achieved between the water and energy fluxes. 

Therefore, the coevolution of catchment drivers and their spatial heterogeneity makes their 

functioning and response to changes unique and poses a challenge to expanding our 

ecohydrological knowledge. Addressing these problems is crucial to enabling sustainable water 

resource management and water supply for society and ecosystems. 

This thesis explores an extensive dataset of catchments situated along a climatic gradient in eastern 

Australia to understand the spatial and temporal variation in their ecohydrological functioning and 

to potentially identify responses to climate- and human-induced changes. To address this aim, the 

thesis has four major objectives:  

1) to investigate how streamflow similarity varies according to the annual water and energy 

balances and to determine to what degree biophysical drivers of runoff explain the observed 

spatial streamflow variability;  

2) to determine the changes in the drivers of key streamflow characteristics across different 

regions and scales;  

3) to examine long-term ecohydrological changes in the water and energy balances of 

catchments and separate out the climate- and human-induced components; and  

4) to investigate trends in baseflow and separate the contribution of precipitation, potential 

evapotranspiration and elevated atmospheric CO2 feedbacks with vegetation. 

Three hundred and fifty five catchments were analysed spanning a tropical to Mediterranean 

climatic gradient in the Australian east coast over multiple periods of time. An extensive dataset 

was compiled and analysed, composed of: daily streamflow and precipitation time series, monthly 

satellite-based time-series of vegetation, model-based soil moisture and temperature, and spatial 

data of land-cover, topography, soil properties, physiography, bioregions and human population 

density. To address the first objective, catchments were classified using streamflow signatures and 

modelling was used to relate the spectrum of water and energy balances (Budyko framework) to the 
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drivers of runoff generation (Dunne diagram). To address the second objective a robust statistical 

modelling framework was applied to understand changes in streamflow drivers with regions and 

scales. In the third objective, the temporal displacement into the Budyko framework and its 

decomposition into climate and human-induced changes were examined. In the fourth objective, 

non-linear regressions and trend statistics were used to detect the influence of CO2-vegetation 

feedbacks in baseflow. In addressing the four objectives, the following contribution to the 

ecohydrological knowledge has been made: 

1) The catchments were classified into five hydrological regimes, which vary along the 

spectrum of water and energy balances (Budyko framework). The drivers of runoff 

generation (from the Dunne diagram) explained 77% of the streamflow similarity. The 

findings highlighted a formal mechanistic link between the Budyko Framework and the 

Dunne diagram. 

2) Specific biophysical drivers govern the spatial variability of streamflow characteristics and 

therefore cannot be generalized across different regions. However, important drivers 

associated to climate and vegetation are consistent at both regional and continental scale but 

with differing importance. Catchment soil properties have a significant effect on streamflow 

characteristics, especially at regional scales. 

3) Both climate- and land cover-induced changes are altering the water and energy balances of 

catchments towards a streamflow reduction. The land cover-induced contribution to changes 

in streamflow is greater in water-limited catchments while energy-limited and equitant 

catchments experienced more climate-induced changes. Catchments are consistently moving 

towards a drier equilibrium regardless their aridity and streamflow regimes.  

4) A consistent spatio-temporal decline is observed in baseflow. Although the observed trends 

are mostly explained by climate forcings, residual baseflow trends attributed to other factors 

are best explained by increasing photosynthetic activity. The elevated atmospheric CO2 and 

its associated vegetation feedbacks are reducing baseflow with more acute impacts in water-

limited regions. 

The thesis findings provide new insights into the ecohydrological functioning and changes in 

freshwater availability currently taking place in eastern Australia with potentially profound 

implications for sustainable water resource management in other water-limited regions. The 

understanding of ecohydrological feedbacks over a range of regimes and their sensitivity to climate-

induced changes and human-induced landscape modifications is pivotal to ensure freshwater supply 

for societal and environmental needs in water scarce environments. 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   iii 

     

 

Declaration by author 

 

This thesis is composed of my original work, and contains no material previously published or 

written by another person except where due reference has been made in the text. I have clearly 

stated the contribution by others to jointly-authored works that I have included in my thesis. 

 

I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional editorial 

advice, and any other original research work used or reported in my thesis. The content of my thesis 

is the result of work I have carried out since the commencement of my research higher degree 

candidature and does not include a substantial part of work that has been submitted to qualify for 

the award of any other degree or diploma in any university or other tertiary institution. I have 

clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. 

 

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, 

subject to the policy and procedures of The University of Queensland, the thesis be made available 

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has 

been approved by the Dean of the Graduate School.  

 

I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the 

copyright holder to reproduce material in this thesis. 

 

 

 

 

 

 

 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   iv 

     

 

Publications during candidature 

 

Peer-reviewed papers 

Trancoso R., Larsen J.R., McVicar T.R., Phinn S., McAlpine C. (2017). CO2 – Vegetation 

feedbacks and other climate changes implicated in reducing baseflow. Geophysical Research 

Letters, 44(5): 2310-2318, doi:10.1002/2017GL072759. (Incorporated as Chapter 5) 

Trancoso R., Phinn S., McVicar T.R., Larsen J.R., McAlpine C.A., (2017). Regional variation in 

streamflow drivers across a continental climatic gradient. Ecohydrology e1816. 

DOI:10.1002/eco.1816 (Incorporated as Chapter 3) 

Trancoso R., Larsen J.R., McAlpine C., McVicar T.R., Phinn S. (2016). Linking the Budyko 

framework and the Dunne diagram. Journal of Hydrology 535: 581-597. 

doi:10.1016/j.jhydrol.2016.02.017 (Incorporated as Chapter 2) 

Trancoso R., Sano E.E., Meneses P, R. (2014). The spectral changes of deforestation in the 

Brazilian tropical savanna. Environmental Monitoring and Assessment 187(1): 1-15. 

DOI:10.1007/s10661-014-4145-3 

Conference abstracts 

Berghuijs, W., Woods, R.A., Aalbers, E., Trancoso R., Larsen, J. (2016). Recent changes in 

extreme floods across multiple continents. 2016 AGU Fall Meeting. 

Trancoso R. (2015). Catchment biophysical drivers of streamflow characteristics. 2015 AGU Fall 

Meeting. 

Trancoso R., McAlpine C., Phinn S., Larsen J.R., McVicar T.R. (2014). Hydrological similarity and 

controls of streamflow behaviour in eastern Australian catchments. 2014 AGU Fall Meeting. 

Book chapters 

Larsen, J., Leon, J., McGrath, C., Trancoso, R. (2013) Review of the catchment processes relevant 

to the Great Barrier Reef region. Australian Government. Great Marine Park Authority. e-book, 

48p. 

 

  



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   v 

     

 

Publications included in this thesis 

Trancoso R., Larsen J.R., McAlpine C., McVicar T.R., Phinn S. (2016). Linking the Budyko 

framework and the Dunne diagram. Journal of Hydrology 535: 581-597. 

doi:10.1016/j.jhydrol.2016.02.017 (Incorporated as Chapter 2) 

Contributor Statement of contribution 

R. Trancoso (Candidate) Research design/conceptualisation (90%)  

Data analysis/interpretation (100%)  

Write/edit paper (80%)  

J. R. Larsen Research design/conceptualisation (4%)  

Write/edit paper (6%) 

C. McAlpine Research design/conceptualisation (4%)  

Write/edit paper (6%) 

T. R. McVicar Research design/conceptualisation (1%)  

Write/edit paper (6%) 

S. Phinn Research design/conceptualisation (1%)  

Write/edit paper (2%) 

 

Trancoso R., Phinn S., McVicar T.R., Larsen J.R., McAlpine C.A., (2017). Regional variation in 

streamflow drivers across a continental climatic gradient. Ecohydrology e1816. 

doi:10.1002/eco.1816 (Incorporated as Chapter 3) 

Contributor Statement of contribution 

R. Trancoso (Candidate) Research design/conceptualisation (80%)  

Data analysis/interpretation (100%)  

Write/edit paper (80%)  

S. Phinn Research design/conceptualisation (1%)  

Write/edit paper (4%) 

T. R. McVicar Research design/conceptualisation (1%)  

Write/edit paper (2%) 

J. R. Larsen Research design/conceptualisation (1%)  

Write/edit paper (2%) 

C. McAlpine Research design/conceptualisation (17%)  

Write/edit paper (12%) 

 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   vi 

     

 

Trancoso R., Larsen J.R., McVicar T.R., Phinn S., McAlpine C. (2017). CO2 – vegetation feedbacks 

and other climate changes implicated in reducing baseflow. Geophysical Research Letters, 44(5): 

2310-2318, doi:10.1002/2017GL072759.  (Incorporated as Chapter 5) 

Contributor Statement of contribution 

R. Trancoso (Candidate) Research design/conceptualisation (76%)  

Data analysis/interpretation (100%)  

Write/edit paper (75%)  

J. R. Larsen Research design/conceptualisation (10%)  

Write/edit paper (10%) 

T. R. McVicar Research design/conceptualisation (10%)  

Write/edit paper (7%) 

S. Phinn Research design/conceptualisation (2%)  

Write/edit paper (3%) 

C. McAlpine Research design/conceptualisation (2%)  

Write/edit paper (5%) 

 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   vii 

     

 

Contributions by others to the thesis 

 

Chapter 1 – This chapter was solely written by the candidate with editorial assistance from Clive 

McAlpine, Stuart Phinn, Joshua Larsen and Tim McVicar. 

 

Chapter 2 – This chapter is a replication of the paper: Linking the Budyko framework and the 

Dunne diagram. The candidate conceived the idea for the chapter, conducted all analysis, 

interpreted results and wrote the first draft. Jeff Hanson, Peter Scarth and Ross Darnell gave useful 

assistance on data processing (acknowledged in the paper). Further writing improvements were 

made with editorial assistance of Clive McAlpine, Stuart Phinn, Joshua Larsen and Tim McVicar. 

 

Chapter 3 – This chapter is a replication of the paper: Regional variation in streamflow drivers 

across a continental climatic gradient. The candidate conceived the idea for the chapter, conducted 

all analysis, interpreted results and wrote the first draft. Further writing improvements were made 

with editorial assistance of Clive McAlpine, Stuart Phinn, Joshua Larsen and Tim McVicar. 

 

Chapter 4 – This chapter is a replication of the paper: Disentangling vegetation gain and climate 

contributions to long-term streamflow changes. The candidate conceived the idea for the chapter, 

conducted all analysis, interpreted results and wrote the first draft. Further writing improvements 

were made with editorial assistance of Clive McAlpine, Stuart Phinn, Joshua Larsen and Tim 

McVicar. 

 

Chapter 5 – This chapter is a replication of the paper: CO2 – vegetation feedbacks and other 

climate changes implicated in reducing baseflow. The candidate conceived the idea for the chapter, 

conducted all analysis, interpreted results and wrote the first draft. Further writing improvements 

were made with editorial assistance of Clive McAlpine, Stuart Phinn, Joshua Larsen and Tim 

McVicar. 

 

Chapter 6 – This chapter was solely written by the candidate with editorial assistance from Clive 

McAlpine, Stuart Phinn, Joshua Larsen and Tim McVicar.  

 

 

 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   viii 

     

 

Statement of parts of the thesis submitted to qualify for the award of another degree 

 

None 

 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   ix 

     

 

Acknowledgements 

Back to 1999, when I had my first contact with science at undergraduate level and decided I would 

become a scientist undertaking my PhD overseas, I had no idea about the challenge I was posing to 

myself neither the long-term planning it would require. Eighteen years later I am now starting 

writing the acknowledgments of my PhD thesis reflecting about the massive intellectual, physical 

and emotional journey I have gone through. Reaching this point and having one of my career goals 

coming through is a pleasant sensation – good stuff!  

I am thankful to my four supervisors who are all outstanding scientists from the different branches 

of science I have interest: landscape ecology, remote sensing, ecohydrology and catchment 

hydrology. I was fortunate enough to have received guidance along this 3.5 years journey - that 

helped me to become a much better scientist. Whilst challenging to manage distinct inputs and 

scientific styles, I learned different things from their expertise and constructed my own way of 

thinking and scientific style.  

My principal advisor, Prof Dr Clive McAlpine, encouraged me to come to Australia when I first got 

in touch with him in 2012 and since then has always been enthusiastic about my ideas and provided 

me guidance, encouragement and support throughout the long and windy PhD road. My associated 

supervisor, Prof Dr Stuart Phinn, has always been available to hear and make his considerations 

touching the heart of the matter. These are two truly great men. They gave me liberty to conduct my 

research and made me feel like they believed in my capacity. That provided me confidence and 

motivation to keep moving forward no matter how big the challenge was. I truly admire them 

professionally, the way they approach research, and their respect for the individualities and wishes 

of their PhD students. 

My other two associated supervisors, Dr Josh Larsen and Dr Tim McVicar joined the supervision 

team a bit further to strength the hydrological component of my research and they really did it. Josh 

has always been enthusiastic about my findings and helped me to improve my writing skills. I am 

also grateful to Josh for the opportunity to be involved as a tutor in the course Climatology and 

Hydrology (GEOS2101) for three years. Tim was the last to join the supervision team, yet I have 

learned a lot from him. He is a great scientist, and has an unbelievable capacity to pay attention to 

details. He greatly improved my research and I am lucky to have had the opportunity to work with 

him.  

This research would have been impossible without the availability of: (i) streamflow time-series by 

the State governments of Queensland, New South Wales, Victoria and Tasmania; (ii) gridded 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   x 

     

 

precipitation time-series by the Bureau of Meteorology; (iii) hydroclimatological and (iv) 

vegetation time series by CSIRO Land and Water; (v) Digital Elevation Model and (vi) national 

dynamic land cover by Geoscience Australia; (vii) soil spatial datasets by CSIRO Land and Water; 

and (viii) atmospheric CO2 concentration time series by CSIRO. 

I am also grateful to the University of Queensland and the Australian Government, which provided 

the funding for my PhD scholarship, tuition fees and conference travel.  

The discussions with several colleagues in the Remote Sensing Research Centre, Landscape 

Ecology and Conservation Group and in other groups within the former School of Geography, 

Planning and Environmental Management - GPEM (now, School of Earth and Environmental 

Sciences - SEES) have indirectly contributed to make my own way. Particularly, Matt Watts, Jeff 

Hanson and Dr Peter Scarth assisted me with data processing in the early stages. Dr Ross Darnel 

kindly shared his expertise helping me to debug my R scripts a couple of times.  

I was lucky enough to have met Nivea Siqueira when I first arrived at GPEM. Since then, she has 

been like a close aunt for my family and myself throughout our ups and downs here in Australia. 

Was great to meet “my big mate” Matt Rice at GPEM as well, he is such a great friend who has 

always been available to catch up and hear me. I am deeply thankful to both of you. 

Still in Brazil, Dr Robert Miller and Dr Edson Sano encouraged me to come here when I was in 

doubt and their experience and wise words helped me to make the right decision.  

I am also grateful to my family (“The Trancosos” – Adelaide, Elizabeth, Indra Raquel and Ingrid) 

as well as my family-in-law (“The Sardinhas” – Aureiza, Ijanil, Aline and Lorena). They helped me 

with their love and support. Special thanks to Aureiza, who came here three times, and has always 

been close, no matter how far a half planet is.  

Last but foremost, I am deeply thankful to my wife Ingrid Sardinha Trancoso, who supported me 

wholeheartedly over the last eight years of my life and turned my career dream into our family goal. 

She encouraged me to come to Australia more than anyone, temporally stopped her promising 

career as a doctor, and quitted her jobs in Brazil to embrace the challenging adventure of a student 

lifestyle beside me overseas. In the meantime, during the last stages of my PhD, she made me father 

giving birth to our adorable little girl Evelyn, who flooded our lives with love and happiness. 

Evelyn, you are still young to understand it now, but if you read this in future, know that you made 

me a better man and that helped my PhD as well. Ingrid and Evelyn you are wonderful. I am truly 

lucky to have you both with me and proud to call you my family – this is my best achievement, all 

my love to you.  



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   xi 

     

 

Keywords 

Ecohydrology, catchment classification, Budyko framework, Dunne diagram, streamflow drivers, 

streamflow changes, baseflow trends, climate change, land cover change, CO2 fertilization effect 

Australian and New Zealand Standard Research Classifications (ANZSRC) 

ANZSRC code: 040608, Surface Water Hydrology, 60% 

ANZSRC code: 040607, Surface Processes, 20% 

ANZSRC code: 040104, Climate Change Processes, 20% 

 

Fields of Research (FoR) Classification 

FoR code: 0406, Physical Geography and Environmental Geoscience, 70% 

FoR code: 0502, Environmental Science and Management, 30% 

 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   xii 

     

 

Table of Contents 

CHAPTER 1 

INTRODUCTION .............................................................................................................................. 1 

1.1 Background to the problem ........................................................................................................ 2 

1.1.1 Importance of catchments for streamflow generation ......................................................... 2 

1.1.2 Drivers of streamflow generation and change .................................................................... 2 

1.1.3 Climate change and variability impacts on streamflow ...................................................... 4 

1.1.4 Landscape transformation and impacts on streamflow ....................................................... 6 

1.2 Problem statement ...................................................................................................................... 8 

1.3 Thesis Aims and Objectives ....................................................................................................... 9 

1.4 Thesis approach........................................................................................................................ 10 

1.5 Thesis outline ........................................................................................................................... 14 

CHAPTER 2 

LINKING THE BUDYKO FRAMEWORK AND THE DUNNE DIAGRAM .......................... 16 

2.1 Abstract .................................................................................................................................... 17 

2.2 Introduction .............................................................................................................................. 18 

2.3 Study Area and Materials ......................................................................................................... 23 

2.3.1 Study catchments .............................................................................................................. 23 

2.3.2 Hydrological data .............................................................................................................. 26 

2.3.3 Ancillary data .................................................................................................................... 26 

2.4 Methods .................................................................................................................................... 26 

2.4.1 Flow signatures ................................................................................................................. 26 

2.4.2 Data analysis ..................................................................................................................... 28 

Grouping catchments with similar hydrological behaviour ................................................... 28 

Catchments with distinct flow characteristics in the context of the Budyko framework ...... 28 

Maximum variability of flow signatures as a proxy of the dominant streamflow behavior .. 29 

Modelling flow variability with the drivers of runoff mechanism from Dunne’s diagram ... 29 

2.5 Results ...................................................................................................................................... 30 

2.5.1 Correlation, spatial distribution and variability of streamflow signatures ........................ 30 

2.5.2 Hydrological similarity of catchments .............................................................................. 34 

2.5.3 Cluster shifts according to long-term water and energy balances in the Budyko 

framework .................................................................................................................................. 35 

2.5.4 Extracting the long-term dominant streamflow behaviour ............................................... 39 

2.5.5 Does the Dunne diagram explain the dominant streamflow behaviour? .......................... 40 

2.6 Discussion ................................................................................................................................ 42 

2.6.1 Characteristics and drivers of streamflow behaviour along a large climatic gradient ...... 42 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   xiii 

     

 

2.6.2 Links between the Budyko framework and the Dunne diagram ....................................... 45 

2.7 Conclusion ............................................................................................................................... 49 

CHAPTER 3 

REGIONAL VARIATION IN STREAMFLOW DRIVERS ACROSS A CONTINENTAL 

CLIMATIC GRADIENT ................................................................................................................ 50 

3.1 Abstract .................................................................................................................................... 51 

3.2 Introduction .............................................................................................................................. 52 

3.3. Conceptual Model ................................................................................................................... 54 

3.4 Study Site and Data .................................................................................................................. 55 

3.4.1 Study regions..................................................................................................................... 55 

3.4.2 Data ................................................................................................................................... 58 

3.5 Methods .................................................................................................................................... 61 

3.5.1 Streamflow characteristics ................................................................................................ 62 

3.5.2 Assessing the importance of explanatory variables .......................................................... 63 

3.5.3 Statistical modelling of streamflow characteristics .......................................................... 63 

3.6 Results ...................................................................................................................................... 64 

3.6.1 Streamflow characteristics across scales and regions ....................................................... 64 

3.6.2 Model performance of streamflow characteristics ............................................................ 65 

3.6.3 Drivers of streamflow characteristics ............................................................................... 65 

3.6.4 Variability in climate and vegetation effects on streamflow characteristics .................... 70 

3.7 Discussion ................................................................................................................................ 72 

3.7.1 Cross-regional similarities and differences ....................................................................... 72 

3.7.2 Model generality ............................................................................................................... 74 

3.7.3 Implications for water resource management ................................................................... 75 

3.8 Conclusion ............................................................................................................................... 76 

CHAPTER 4 

DISENTANGLING VEGETATION GAIN AND CLIMATE CONTRIBUTIONS TO LONG-

TERM STREAMFLOW CHANGES............................................................................................. 78 

4.1 Abstract .................................................................................................................................... 79 

4.2 Introduction .............................................................................................................................. 80 

4.3 Material and methods ............................................................................................................... 82 

4.3.1 Study area and data ........................................................................................................... 82 

4.3.2 Approach ........................................................................................................................... 82 

Assessing long-term shifts in the water and energy balances ................................................ 82 

Evaluating climate vs anthropogenic impacts in Budyko space ............................................ 83 

Changes in water and energy balances of catchments with vegetation gain ......................... 84 

4.4 Results and discussion ............................................................................................................. 84 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   xiv 

     

 

4.4.1 Long-term shifts in the water and energy balances ........................................................... 84 

4.4.2 Separating climate and anthropogenic induced changes to water and energy balances 

across aridity and streamflow regimes ....................................................................................... 87 

4.4.3 Changes in water and energy balances of catchments with vegetation gain .................... 91 

4.5 Conclusion ............................................................................................................................... 94 

CHAPTER 5 

CO2 – VEGETATION FEEDBACKS AND OTHER CLIMATE CHANGES IMPLICATED 

IN REDUCING BASEFLOW ......................................................................................................... 95 

5.1 Abstract .................................................................................................................................... 96 

5.2 Introduction .............................................................................................................................. 97 

5.3 Methods .................................................................................................................................... 98 

5.3.1 Study area and data ........................................................................................................... 98 

5.3.2 Approach ........................................................................................................................... 99 

5.4 Results and discussion ........................................................................................................... 100 

5.5 Conclusion ............................................................................................................................. 108 

CHAPTER 6 

SUMMARY AND CONCLUSION............................................................................................... 109 

6.1 Overview ................................................................................................................................ 110 

6.1.1 Objective 1 ...................................................................................................................... 110 

6.1.2 Objective 2 ...................................................................................................................... 111 

6.1.3 Objective 3 ...................................................................................................................... 112 

6.1.4 Objective 4 ...................................................................................................................... 113 

6.2 Contributions to the field ....................................................................................................... 114 

6.2.1 Functioning of streamflow generation processes ............................................................ 115 

6.2.1 Changes in streamflow generation processes .................................................................. 116 

6.3 Implications for management................................................................................................. 117 

6.4 Approach and limitations ....................................................................................................... 118 

6.5 Future Research...................................................................................................................... 119 

6.6 Conclusion ............................................................................................................................. 121 

REFERENCES ............................................................................................................................... 122 

APPENDICES ................................................................................................................................ 141 

Appendix 1 – Chapter 1 ................................................................................................................. 142 

Appendix 2 – Chapter 2 ................................................................................................................. 156 

Appendix 3 – Chapter 3 ................................................................................................................. 168 

Appendix 4 – Chapter 4 ................................................................................................................. 172 

Appendix 5 – Chapter 5 ................................................................................................................. 174 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   xv 

     

 

List of Figures 

Figure 1.1 Interdisciplinary framework applied to infer the catchment ecohydrological feedbacks 

among vegetation, climate, landscape properties and ultimately the effect on streamflow generation. 

The circles represent the branches of science whereas colour rectangles represent the Earth’s 

biophysical compartments. The main niche of knowledge my PhD addresses (i.e. Ecohydrology) is 

given by the intersection of science areas and biophysical compartments ........................................ 11 

Figure 1.2 Multiple gradients of catchment biophysical characteristics along 355 catchments 

situated in the Australian east coast explored in this PhD thesis: (a) long-term annual precipitation; 

(b) long-term annual potential evapotranspiration; (c) long-term Aridity Index; (d) long-term annual 

actual evapotranspiration; (e) mean elevation; (f) mean slope; (g) catchment area; and (h) forest 

cover. .................................................................................................................................................. 12 

Figure 1.3. Diagram of the thesis structure highlighting the relationship among the four papers and 

the thesis chapters. Solid arrows denote the linkage is made by dataset and processes interpretation 

while dashed arrows mean that studies are linked by processes interpretation. ................................ 15 

Figure 2.1 Schematic diagrams for each framework. (a) Budyko framework for annual water and 

energy balances. Catchments in the water-limited region have potential evapotranspiration greater 

the precipitation (i.e., PET > P), whereas those located in the energy-limited region have the water 

supply (assumed to be solely precipitation) greater than the evaporative demand (i.e., P > PET). The 

horizontal dashed line is the water-limit, where 100% of P becomes AET and the diagonal dashed 

line is the energy-limit, where 100% of PET is converted to AET; and (b) Qualitative diagram for 

the drivers of runoff mechanisms (adapted from Dunne, 1983) showing that the contribution of the 

three mechanisms of runoff generation changes according to biophysical controls. ......................... 19 

Figure 2.2 Distribution and characteristics of the study catchments. Part (a) shows the location of 

the 355 catchments in eastern Australia extending over four States: Queensland – QLD, New South 

Wales – NSW, Victoria – VIC and Tasmania – TAS. Frequency distributions of: (b) drainage area, 

(c) annual precipitation, (d) annual potential evapotranspiration, (e) mean elevation, and (f) woody 

vegetation cover are also provided. .................................................................................................... 25 

Figure 2.3 Spatial distribution and frequency of the eight flow signatures including: (a) Long-term 

runoff ratio (RQP), (b) Streamflow elasticity (EQP), (c) Rising limb density (RLB), (d) Baseflow 

index (BFI), (e) Slope of the flow duration curve (FDC), (f) Streamflow at 10 percentile (Q10N), 

(g) Streamflow at 90 percentile (Q90N), and (h) Frequency of no flow days (FNF). ....................... 33 

Figure 2.4 Box-Whisker plots of flow signatures by catchment clusters derived from the ellipsoidal 

Gaussian finite mixture model. The boxes are bound by the 25th and 75th percentiles of the datasets, 

while the heavy mid-line displays the median value. The upper and lower ‘whiskers’ represented by 

the dashed lines are the upper quartile plus 1.5 times the interquartile distance (IQD) and the lower 

quartile minus 1.5 times the IQD, where IQD refers to the inter-quartile distance. Dots are data 

points out of this range. See Table 2 for a brief definition of flow signatures and Supplementary 

Information for detailed description. Table A4.1 shows the statistical significance of an unpaired 

Wilcoxon rank sum test on the differences between the distributions of flow signatures by 

catchment clusters. ............................................................................................................................. 35 

Figure 2.5 Spatial distribution, long-term annual water and energy balances and flow characteristics 

of catchment clusters. Column (I) shows the spatial distribution of catchments by cluster. The 

numbers in parenthesis under each of the cluster letters are the number of catchments in this cluster. 

Column (II) show the original Budyko (1974) curve (black) and Choudhury (1999) parametrised 

curves (coloured). See Table 2.2 for details regarding curves. Brown, green and grey lines, 

respectively, represent energy-limit, water-limit and the threshold between water- and energy-



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   xvi 

     

 

limited environments. Column (III) documents the main hydrological characteristics of the 
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A2.2 in Appendix 2 for details). Table A2.1 (Appendix 2) shows the statistical significance of an 
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Figure 3.2 Study area with multi-scale sampling design encompassing 354 catchments along the 

east seaboard and the three distinct regions. QLD, NSW, VIC and TAS are abbreviations for 



Trancoso, R. (2016) PhD Thesis, The University of Queensland 

Ecohydrology in space and time   xvii 

     

 

Queensland, New South Wales, Victoria and Tasmania respectively. The inset in the bottom left 
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Figure 3.3 Flowchart of the modelling framework. .......................................................................... 61 
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SRTM – Shuttle Radar Topographic Mission 

SSE – Sum Squared Error 

TAS – Tasmania 

VIC – Victoria 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

Most of the Australian freshwater supply relies on the east coast catchments. Currumbin Creek at 

Springbrook National Park, Queensland. Photo by Ralph Trancoso.  
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1.1 Background to the problem 

Streamflow and catchments are two core subjects approached by this thesis. The overarching 

knowledge pursued is the understanding of catchment-scale ecohydrological mechanisms driving 

the natural variability and changes in the long-term annual streamflow. As a background to the 

research problems and objectives addressed by this thesis, this section will introduce why 

streamflow is important, how it is generated and how changes to the climate and landscape taking 

place within catchments are affecting streamflow processes. 

1.1.1 Importance of catchments for streamflow generation 

Streamflow plays a critical role in the water cycle and terrestrial ecosystems. Globally, the 

streamflow is the main source by which water returns to the oceans, while the evaporation from the 

oceans is the primary source by which water returns to the atmosphere, and the precipitation over 

the land is the primary source of streamflow generation (Oki, 2006).  

Streamflow is generated by catchments, which are landscape units naturally delimited by 

topographic features that partition precipitation into evapotranspiration, percolation and streamflow 

according to their biophysical characteristics. Catchments use gravity to drain water downhill to an 

outflow point, often the ocean (Berry et al., 2006). Therefore, catchments are continuously cycling 

the water intake from the headwaters to the lower plains, generating streamflow and providing one 

of the most important ecosystem services – the freshwater yield (Poff et al., 1997).  

Streamflow is the main source of freshwater for urban populations, agriculture and riverine 

ecosystems (Johnson et al., 2001). The quantity and quality of streamflow generation is largely 

influenced by the catchment characteristics as well as the climate-induced changes and human 

landscape modifications impacting the upstream catchment. Hence, the freshwater yield by 

catchments is given by the summation of these processes that are changing in space and time 

(Wagener et al., 2006). Likewise, streamflow is highly variable both within and among catchments 

in space and time. Climate- and human-induced changes in streamflow impact communities and 

economies through floods and droughts, which impact freshwater availability, economic activities 

and water-dependent ecosystems (Sterling et al., 2013; van Dijk et al., 2013). 

1.1.2 Drivers of streamflow generation and change 

The hydrological behaviour of catchments reflects the co-evolution of climate, soils, topography 

and vegetation (Dunne, 1983; Winter, 2001; Woods, 2003; Berry et al., 2006; Sivapalan, 2006). The 
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spatial and temporal heterogeneity of these biophysical characteristics makes the hydrological 

processes of each catchment unique (McDonnell et al., 2007). This uniqueness challenges the 

development of hypotheses that can adequately test the overall functioning of hydrological systems 

(Beven, 2000).  

Understanding the factors driving streamflow behaviour has been the focus  of scientists and water 

decision-makers worldwide (Postel and Richter, 2012). Changes in rainfall regimes associated with 

climate variability and change and anthropogenic landscape modifications are often identified as the 

main drives of streamflow changes (Sterling et al., 2013; Delworth and Zeng, 2014; Karoly, 2014; 

Zhou et al., 2015; Sarojini et al., 2016). While few studies have attempted to separate the effects of 

climate and landscape changes and rising levels of atmospheric CO2 on streamflow using global 

models (Gedney et al., 2006; Piao et al., 2007), separating these individual effects remains 

challenging for observational studies (Wang et al., 2013). Understanding the relative influence of 

the drivers of change in freshwater availability is particularly important on water-limited regions 

that are more sensitive to changes because this resource is already scarce (Barnett et al., 2008; 

Seddon et al., 2016) and are inhabited by more than one third of world’s population (Gilbert, 2011). 

These drivers of change are quite significant in Australia where its landscapes have been 

dramatically modified over the last 200 years (Walker et al., 1993; Butzer and Helgren, 2005) with 

forest clearing for cropping and grazing. However, in the last few decades an increase in biomass in 

woodland and forest ecosystems has been reported as a result of regrowth and CO2 fertilization 

(Fensholt et al., 2012; Donohue et al., 2013; Liu et al., 2015; Evans, 2016).  

Australia also is experiencing climate change as evidenced by a reduction in annual rainfall, most 

pronounced over eastern and south-west regions since 1950 (Delworth and Zeng, 2014; Karoly, 

2014) and increasing temperature (Alexander and Arblaster, 2009). Increase in atmospheric demand 

and transpiration have also been reported (Zhang et al., 2016b), although the global dimming and 

stilling (Roderick and Farquhar, 2002; McVicar et al., 2012a) are offsetting that. Along the eastern 

seaboard, where most of the human population is concentrated, both climate-induced changes and 

human-induced landscape modifications may alter the hydrological cycle impacting catchment 

outflows. However, the detection of these hydrological changes, and particularly their attribution to 

drivers, is challenging due to the large variability of catchments (Beven et al., 1988) and  their 

responses according to their specific physiographical characteristics (Sivapalan, 2006).   
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1.1.3 Climate change and variability impacts on streamflow 

Globally, climate change and variability affect terrestrial ecosystems (Seddon et al., 2016) and 

freshwater availability with consequences for human health, economic activity, ecosystem function 

and geophysical processes (Milly et al., 2005; Collins et al., 2013). There is increasing evidence that 

the observed changes in hydroclimatological variables (Alkama et al., 2011; McVicar et al., 2012a; 

Ukkola and Prentice, 2013; Greve et al., 2014; Zhang et al., 2016b) are resulting in an overall 

increase in water fluxes, with an ongoing claim that any stationarity in water cycle has already been 

modified by anthropogenic climate change (Milly et al., 2008). Despite past controversies (Ohmura 

and Wild, 2002; Labat et al., 2004; Labat et al., 2005; Legates et al., 2005), there is an emerging 

consensus that global warming is intensifying the global water cycle (Huntington, 2006; Syed et al., 

2010; Wu et al., 2010; Eicker et al., 2016).     

Being the driest inhabited continent, Australian freshwater availability is quite sensitive to changes 

in climate forcings compared to other continents (Wu et al., 2010; Eicker et al., 2016; Seddon et al., 

2016). This, however, was experienced by the first European settlers who faced cool and wet 

weather during 1788-1790 (La Niña) followed by hot weather and droughts from 1791 to 1793 (El 

Niño), limiting initiatives to establish European agricultural in the colony (Gergis et al., 2010). 

These five initial years were a good proxy to comprehend the natural variability of climate in 

Australia. The water scarcity and associated constraints to living in the driest populated continent, 

which also has the lowest proportion of rainfall converted to runoff (Finlayson and McMahon, 

1988; McMahon et al., 2007), has shaped the Australian economy and society over the past 228 

years. As a result, most human settlements were established in the wetter coastal regions with the 

majority of population now inhabiting Australia’s east coast (ABS, 2014). 

Australia’s climate is highly variable, with a strongly seasonal, inter-annual and even inter-decadal 

variations. This diversity is driven by different climatic teleconnections occurring in the Pacific, 

Indian and Southern Oceans. These connections can be represented by four factors: El Niño or 

Southern Oscillation (ENSO), Inter-decadal Pacific Oscillation (IPO), Indian Ocean Dipole (IOD) 

and Southern Annular Mode (SAM) (Verdon-Kidd and Kiem, 2009). Fu et al. (2010) showed that 

the highest intense rainfall events occur over east coast for the period 1910-2006. In addition, they 

found strong relationships between the occurrence of extreme rainfall events and the Southern 

Oscillation Index (SOI) and the IPO especially during La Niña years. Increasing trends in the 

number of rain days were observed over southern and northern parts of the east coast between 1910 

and 1998 at a rate of 6.4 - 9.2 days 100 years-1 (Haylock and Nicholls, 2000), while upward trends 
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for wet extremes were also detected over the continent between 1910 and 2005 at a rate of 1-2% 

decade-1 (Gallant and Karoly, 2010). The declines in Southern Australia occurred mainly between 

March and August which is closely related to the trend in SAM (Nicholls, 2010). 

Considering the factors simultaneously controlling rainfall in Australia, this high seasonal, inter-

annual and inter-decadal variation is expected. Such natural variability impacts water availability, 

especially for agriculture and urban areas. Potter and Zhang (2009) showed a streamflow decrease 

of 44% in Murray-Darling Basin between 1997 and 2006 due to an observed 13% reduction in 

rainfall. Australia’s east coast has also become drier in recent decades, with a negative trend up to -

5 mm/years from 1950 to 2009. These changes in rainfall patterns were partially explained by 

exceptionally wet years during the early 1950s and, in part, attributed to human-induced climate 

change (Cai and van Rensch, 2012). The natural variability of rainfall impacts Australian society 

through extreme events, such as these recent floods and droughts. The negative rainfall anomaly 

recorded between 1998 and 2008, which was popularly called as “Big Dry” or “Millennium 

Drought” was the worst drought since the arrival of European settlers (Gergis et al., 2012; van Dijk 

et al., 2013). However, the ongoing rainfall decline in south-eastern Australia appears worse than 

previous droughts (Timbal and Fawcett, 2012). Conversely, after this dry decade extreme 

consecutive rainfall events have occurred in Queensland, begetting severe floods that impacted 

population in different ways (van den Honert and McAneney, 2011). These events were later 

explained in light to an association of a negative Pacific Decadal Oscillation (PDO) and 

Interdecadal Pacific Oscillation (IPO) during La Niña years (Cai and van Rensch, 2012). 

Evidence has shown that Australia is already experiencing climate change impacts, despite the 

difficulties of separating its effect from natural variability (Nicholls and Collins, 2006; Murphy and 

Timbal, 2008; Collins et al., 2013). Particularly with regard to Australian runoff, most studies have 

used output scenarios from global climate models (GCMs) as inputs into hydrological models to 

forecast potential changes on streamflow (Chiew and McMahon, 2002; Chiew et al., 2009b; Zhang 

and Chiew, 2009; Vaze et al., 2010). Model results often indicate that runoff tends to decrease more 

markedly than precipitation due the convergence of precipitation reduction and potential 

evapotranspiration increase (Chiew et al., 2009a; Vaze et al., 2011; Silberstein et al., 2012). The 

calibration period also has an important role in the predictability of rainfall-runoff models. Models 

can generally predict climate change impacts, since the future mean annual rainfall is not more than 

15% higher or 20% wetter in relation to the model calibration period (Vaze et al., 2010). Model 

outcomes are also sensitive to climate change scenarios. In a comparison of climate change 

projections, derived from 23 GCMs for 210 catchments across southeast Australia, annual rainfall 
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changes ranged from -10% to 3% change per degree global warming, with the corresponding  

streamflow changes ranging between -23% to +4% (Chiew et al., 2009a). In addition, projections 

for 106 catchments in south-western Australia from 15 GCMs showed a median annual rainfall 

decline of 8%, which results in a median decline of 25% in runoff (Silberstein et al., 2012). This 

magnitude of runoff decline may significantly reduce water yields and freshwater availability for 

urban water supplies and agriculture, and threaten water-dependent ecosystems (Barron et al., 2012; 

McFarlane et al., 2012). 

1.1.4 Landscape transformation and impacts on streamflow 

With over seven Billion people inhabiting the world’s catchments, human-induced landscape 

modifications can have a significant impact on catchment streamflow and freshwater availability 

(Sterling et al., 2013).  Studies have been addressing the global impact of human activities such as 

forest clearing, regulation and irrigation for energy and food production on freshwater availability 

(Destouni et al., 2013; Sterling et al., 2013; Jaramillo and Destouni, 2014; Jaramillo and Destouni, 

2015).  

A large global network of experimental catchments has been implemented since the beginning of 

the last century with the aim of addressing the impacts of landscape changes on streamflow (Bosch 

and Hewlett, 1982; Andréassian, 2004; Brown et al., 2005). The results from experimental 

catchment studies are extensive, and comprehensive reviews have been developed about the theme. 

Bosch and Hewlett (1982) published a well-known review, grouping results of 94 experiments 

about hydrological impacts of deforestation. More recently, Andréassian (2004) expanded this 

review to include 137 catchments. The overall trend revealed by these experiments shows that 

deforestation leads to an increase in streamflow, whereas reforestation tends to reduce water yield. 

The changes in water yield however, are proportional to annual rainfall and proportion of the 

watershed affected. Other reviews concluded that streamflow impacts of reductions of forest cover 

by less than 20% of the catchment area could not be statistically detected (Sahin and Hall, 1996; 

Stednick, 1996). Paired catchment studies have shown that catchment flow impacts are more 

pronounced immediately following deforestation, and are attenuated in subsequent years. This 

hydrological behaviour occurs especially when deforested areas are abandoned, which is becoming 

a common practice worldwide. Giambelluca (2002) showed that whilst albedo from secondary 

forests reduces radiation efficiency, saturated hydraulic conductivity and the evaporative fraction 

increase gradually for up to around 30 years since abandonment of the deforested area. Brown et al. 

(2005) performed another comprehensive review that added 72 paired catchments in relation to 
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those from Bosch and Hewlett (1982), focusing on a total of 166 paired catchments. They showed 

that changes in water yield are proportional to biomass, vegetation types and percentage of 

catchment treated. It is important to note that most catchments from experimental studies are 

smaller than 2 km2, mainly for the application of treatment (deforestation or reforestation) and 

control of natural variability of biophysical properties. However, the convenience in terms of 

experimentation conditions in many cases does not represent the real-world complexity of larger 

catchments.  

Australian landscapes have been extensively transformed since the establishment of the first 

European settlements (Walker et al., 1993; Butzer and Helgren, 2005). Numerous studies have 

shown that these recent land cover changes (LCC) are also affecting the climate and water cycle in 

Australia (Gordon et al., 2003) and globally (Gordon et al., 2005; Scanlon et al., 2006; Scanlon et 

al., 2007). Comparisons between pre-European and modern land cover highlight that historical LCC 

has been contributing to observed regional climate changes by warming surface temperatures and 

decreasing rainfall (Timbal and Arblaster, 2006; McAlpine et al., 2007) where up to 50% of these 

changes can be explained by LCC (Pitman et al., 2004). Convective storms are also sensitive to 

LCC, with travel velocity and intensity increasing over agricultural and dense urban surfaces 

respectively (Gero et al., 2006). The replacement of woody vegetation by croplands and grasslands 

has caused significative changes in evapotranspiration during the past 200 years, decreasing by 10% 

water vapour flows at continental scale (Gordon et al., 2003). These shifts in water and energy 

fluxes attributed to LCC can also impact plant physiology and ecohydrological processes of 

catchments (McVicar et al., 2010).  

Long-term experimental catchments studies have shown significant changes in the water and 

biogeochemical cycles after converting native vegetation to grain cropping and livestock pastures 

(Cowie et al., 2007; Radford et al., 2007; Thornton et al., 2007). A large deforested catchment in 

Queensland also increased streamflow by 78% (Siriwardena et al., 2006), whilst smaller increases 

were observed in other large Queensland catchments in the first years of clearing (Peña-Arancibia et 

al., 2012). However, further analysis showed an increase in peak flow and reduced low flows, also 

suggesting changes to catchment streamflow dynamics.  

Recent study showed that in the last two decades, the forest cover in the Australian east coast has 

been increasing rather than decreasing (Liu et al., 2015) as a result of both regrowth and elevated 

CO2-vegetation feedbacks (Ukkola et al., 2016). This is in the context of acceleration in native 

vegetation clearing in Queensland and New South Wales due to wind-back of vegetation 

management legislation (Evans, 2016). There is also evidence of increasing trends in actual 
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evapotranspiration for the same period (Zhang et al., 2016b), which can potentially lead to 

streamflow reductions (Sahin and Hall, 1996; Bruijnzeel, 2004; Brown et al., 2005; Farley et al., 

2005; van Dijk and Keenan, 2007). 

1.2 Problem statement 

The relationship between landscape biophysical properties at the catchment scale (1-1000s km2) and 

hydrological processes has been targeted by water related scientists. It is well-recognised that 

spatial and temporal heterogeneity of climate, soils, topography and vegetation control the water 

and energy balances differ among catchments with important consequences for runoff generation 

mechanisms. Two underlying hydrological theories regarding the coevolution of catchment 

properties and the hydrological behaviour are the Budyko framework (Budyko, 1974) and the 

Dunne diagram (Dunne, 1983). The Budyko framework describes the catchment long-term water 

and energy balances through a curvilinear relationship between Evaporative Index (Actual 

evapotranspiration (AET) / Precipitation (P)) and the Dryness Index (Potential evapotranspiration 

(PET) / P). The Dunne diagram describes how the runoff generation mechanisms – Horton overland 

flow, subsurface stormflow and return flow – change with biophysical variables and catchment 

properties. Despite the popularity of these well-established theories, the convergence between them 

is not well understood. This is important for Australian systems because developing this 

understanding will allow us to classify catchments with similar streamflow regimes and enhance the 

management of water resources.  

Studies have investigated the relationship between catchment properties and streamflow 

characteristics at different scales (from local to global) and regions (all over the world) (Lacey and 

Grayson, 1998; Mwakalila et al., 2002; Beck et al., 2013a; Zhang et al., 2014; Beck et al., 2015). 

While there is a certain convergence about the main drivers, a substantial variability with regard to 

the dominance and contribution of drivers has been reported.  Currently, we do not know if the 

contribution of drivers determining streamflow characteristics varies across different regions and 

spatial scales. 

Previous evidence suggests that Australia is currently experiencing increased climate variability, 

land cover changes and climate change simultaneously (McAlpine et al., 2009). These processes are 

collectively driving changes in the ecohydrological feedbacks of catchments, altering their 

streamflow generation process in sometimes opposing directions (Tomer and Schilling, 2009; Wang 

and Hejazi, 2011; Jaramillo and Destouni, 2014). Climate change, variability and land use (i.e. 

deforestation, afforestation and natural regrowth) potentially affect catchment water and energy 
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balances differently. Understanding how these distinct drivers of change are currently impacting 

catchment streamflow is crucial to water resource knowledge and management. 

The slow contribution component of streamflow (baseflow) ensures stability and persistence of 

water availability during the dry season (Smakhtin, 2001). However, it is sensitive to reductions in 

precipitation and increases in evapotranspiration currently occurring as a result of climate change 

and variability. In addition, recent studies have been reporting an increased photosynthetic activity 

as a response to changes in atmospheric CO2 concentration (Ukkola et al., 2016). These changes in 

vegetation function are potentially impacting baseflow. However, there is little empirical analysis of 

the relative contribution of these documented changes in baseflow. 

1.3 Thesis Aims and Objectives 

The overall aim of this thesis is to understand the characteristics and controls of streamflow 

generation and to investigate how historical climate variability and landscape change influence the 

streamflow response along a sub-continental gradient of multiple catchments characteristics in 

eastern Australia. This major aim is partitioned in the following specific objectives. 

Objective 1: Investigate how streamflow similarity varies according to the annual water and energy 

balances and determine to what degree the biophysical drivers of runoff generation 

explain the observed flow variability among catchments. 

Rationale:  

The spatial and temporal heterogeneity of climate, soils, topography and vegetation control the 

water and energy balances among catchments. Two well-known hydrological theories underpinning 

these processes are the Budyko framework of water and energy balances and the Dunne diagram of 

runoff generation mechanisms. This study investigates the process overlaps between these 

approaches and offer insights into the mechanics of catchment co-evolution. 

 

Objective 2: Model streamflow characteristics with catchment biophysical factors across distinct 

regions and scales and determine changes in importance and contribution of drivers. 

Rationale:  

Streamflow characteristics are driven by specific flow-generation mechanisms, which are 

determined by the biophysical properties of catchments. They provide important environmental 

services for society, regulating water supply and quality, flood mitigation, and the biological 

diversity of aquatic and riverine ecosystems. This study investigates how the drivers of spatial 

variability of streamflow characteristics vary at the level of bioregional management (regional 

(104km2) and sub-continental scales (107km2)) in Australia. 

 

  



Trancoso, R. (2016) PhD Thesis, Chapter 1: Introduction 

Ecohydrology in space and time   10 

     

 

Objective 3: Assess ecohydrologic shifts in the long-term water and energy balances of catchments 

and separate out the climate- and land cover-induced changes components. 

Rationale:  

Changing climate and landscape modifications impact the catchment water balance in different 

ways. While climate change impacts precipitation and potential evapotranspiration, landscape 

modifications impact actual evapotranspiration. The resultant ecohydrologic shift can therefore be 

separated according to the observed change trajectory each catchment has experienced. This study 

builds upon this concept to determine the dominant changing trajectory catchments experienced in 

the last four decades and its relationship with vegetation gain.   

 

Objective 4: Investigate trends in baseflow and separate the contribution of precipitation, potential 

evapotranspiration and feedbacks between vegetation and elevated atmospheric CO2. 

Rationale:  

Numerous studies indicate that precipitation, temperature and winds have been changing in the last 

decades in different regions around the world. In Australia, these changes are particularly acute and 

catchment streamflow has also been experiencing resulting changes. The increasing atmospheric 

CO2 concentration raises photosynthesis activity and water consumption ultimately impacting 

catchment streamflow as well. The slow contribution component of streamflow (baseflow) is 

sensitive to such changes, but their impacts are yet poorly understood. This study quantifies the 

relative contribution of precipitation, potential evapotranspiration and atmospheric CO2 in baseflow 

trends. 

1.4 Thesis approach 

This PhD applies an interdisciplinary framework to infer the catchment feedbacks with vegetation 

and climate and their relationship with landscape properties to generate streamflow. The catchments 

are the landscape units seen through the lens of hydrology, remote sensing and ecosystem sciences. 

The thesis integrates these three branches of science to address the aforementioned problems with 

an ecohydrological perspective (Figure 1.1). This holistic view, which integrates different branches 

of environmental sciences, is required to understand the relationships between hydrological 

processes and catchment properties and to distinguish the impacts of drivers of changes taking place 

in catchment streamflow.  
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Figure 1.1 Interdisciplinary framework applied to infer the catchment ecohydrological feedbacks 

among vegetation, climate, landscape properties and ultimately the effect on streamflow generation. 

The circles represent the branches of science whereas colour rectangles represent the Earth’s 

biophysical compartments. The main niche of knowledge my PhD addresses (i.e. Ecohydrology) is 

given by the intersection of science areas and biophysical compartments.   

 

The thesis builds upon the spatio-temporal variability of catchment characteristics and hydrological, 

climatic and vegetation time-series to enhance the ecohydrological knowledge of Australian 

catchments. Firstly, it explores the spatial variability of a multiple gradient of biophysical 

characteristics (Figure 1.2) along 355 catchments in the Australian east coast (Table A1.1 in 

Appendix 1) to infer the dominant ecohydrological feedbacks of catchment functioning. Secondly, 

the thesis analyses the temporal changes in hydrological, climatic and vegetation time-series to 

assess the changes in the streamflow generation and determine the causal drivers. 

A combination of approaches is applied, spanning areas such catchment hydrology, remote sensing 

and spatial analysis, and integrating them with modern data analysis techniques. The four objectives 

differ in terms of studied catchments, period and length of time-series, target hydrological metrics, 

hydroclimatic and landscape data and approaches used. Table 1.1 presents a comparative 

methodological overview of the four analytical chapters.  
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Figure 1.2 Multiple gradients of catchment biophysical characteristics along 355 catchments 

situated in the Australian east coast explored in this PhD thesis: (a) long-term annual precipitation; 

(b) long-term annual potential evapotranspiration; (c) long-term Aridity Index; (d) long-term annual 

actual evapotranspiration; (e) mean elevation; (f) mean slope; (g) catchment area; and (h) forest 

cover.  
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Table 1.1 Comparative methodological aspects of this PhD thesis per research objective.  

ASPECTS OBJECTIVE 1 OBJECTIVE 2 OBJECTIVE 3 OBJECTIVE 4 

Climate 

domains 
Tropical, Sub-tropical, Temperate and Mediterranean 

Number of 

catchments 

355 unregulated 

catchments 

354 / 40 / 51 / 69 

unregulated 

catchments 

193 / 47 unregulated 

catchments 

315 / 44 unregulated 

catchments 

Catchment 

area range  

(total area) 

0.6 – 3,299.3 km2 

(126,328.7 km2) 

2.4 – 3,299.3 km2 

(126,328.1 km2) / 

16.1 – 2914.5 km2 

(22,880.3 km2) / 

7.1 – 1401.0 km2 

(13,474.2 km2) / 

4.5 – 1635.7 km2 

(19,867.3 km2)  

13.1 – 3,299.3 km2 

(86,480.7 km2) / 

6.8 – 3,299.3 km2 

(119,060 km2) /          

16.1 – 1,557.4 km2 

(18,826.4 km2)  

Period (time 

series length) 

1980 – 2013  

(33 years) 

1980 – 2013 

(33 years) 

1971 – 2010  

(40 years)  

1981 – 2013  

(32 years) /  

1950 – 2013  

(63 years) 

Latitude range -43.08 – -11.36 

-43.08 – -11.36 / 

-20.39 – -11.36 / 

-29.38 – -24.42 / 

-38.70 – -33.20  

-41.64 – -16.73 
-43.08 – -11.36 /                

-41.46 – -17.34 

Aridity range 0.43 – 2.90 

0.43 – 2.90 / 

0.43 – 2.88 / 

0.77 – 2.13 / 

0.54 – 2.10 

0.48 – 2.86  
0.43 – 2.90 /                    

0.48 – 2.10 

Hydroclimatic 

data (a) 
Q, P, PET, AET Q, P, PET, AET, T Q, P, PET, AET Q, P, PET 

Target 

hydrological 

metrics (b) 

RQP, EQP, BFI, 

RLD, SFDC, Q10N, 

Q90N, Rzero, PET/P 

and AET/P 

RQP, BFI and Rzero 

∆ PET/P, ∆ AET/P, 

%∆Q, %∆Qc and 

%∆Qh 

trends in Qb and 

Qbr,  

Landscape and 

anthropogenic 

data (c) 

Slope, soil depth, soil 

saturated hydraulic 

conductivity, fPAR 

and woody 

vegetation cover 

Elevation, fPAR, 

woody vegetation 

cover, soil moisture, 

soil depth, saturated 

hydraulic 

conductivity, clay 

content, soil pH, soil 

plant available water 

capacity,  soil bulk 

density 

Land use, fPAR and 

biomass  

fPAR, atmospheric 

CO2 concentrations 

Main 

approaches 

Bayesian hierarchical 

clustering, Principal 

Components 

Analysis, Budyko 

framework and 

Generalized additive 

Model for Location, 

Scale and Shape 

Random forests and 

Generalized additive 

Model for Location, 

Scale and Shape 

Movement in 

Budyko space and 

decomposition of 

climate- and human-

induced changes in Q  

Mann-Kendall test, 

Sen-slope estimator 

and LOESS 

regressions 

(a) Where: Q = streamflow; P = precipitation; PET = Potential evapotranspiration; AET = Actual evapotranspiration; 

and T = temperature. 

(b) Where: RQP = runoff ratio; EQP = Q elasticity to P; BFI = baseflow index; RLD = rising limb density; SFDC = 

slope of the flow duration curve; Q10N = normalized 10th percentile of Q; Q90N = normalized 90th percentile of Q; 

Rzero = Zero flow ratio; PET/P = aridity index; AET/P = evaporative index; ∆PET/P = change in aridity index; ∆PET/P 

= change in evaporative index; %∆Q = relative change in Q; %∆Qc = relative climate-induced change in Q; %∆Qh = 

relative human-induced change in Q; Qb = baseflow and Qbr = baseflow detrended from P and PET.  

 (c) Where: fPAR = fraction of photosynthetically active radiation. 
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1.5 Thesis outline 

This PhD thesis covers contemporary themes in ecohydrology knowledge such as: (i) functioning; 

(ii) drivers; and (iii) changes. It is constructed using the “by publication” approach, where the 

analytical chapters are developed according to the scientific journal style they aim to be submitted. 

The Thesis is structured in six chapters. The first and last ones aim to introduce the research 

problems (Chapter 1) and summarize the overall contribution of knowledge (Chapter 6), while the 

four intermediate chapters (i.e. the analytical chapters) are prepared as research articles (Chapters 2 

to 5).  Figure 1.3 summarizes the structure of this PhD thesis in terms of chapter organization and 

linkages. 

The first chapter (this chapter) provides background to the research problem and introduces the 

research questions and objectives in regard to the relevant gaps in knowledge. The second chapter 

addresses objective one, which assesses the hydrological similarity and classify streamflow regimes 

in light of the spectrum of water and energy balances and the drivers of streamflow generation. The 

third chapter addresses objective two, which analyses the regional variability of drivers of key 

hydrological characteristics. The fourth and fifth chapters address objectives three and four, 

analysing the shifts in water and energy balances of catchments induced by climate and landscape 

changes and trends in baseflow induced by climate and feedbacks between elevated CO2 

concentrations and vegetation functioning. The final chapter integrates the four studies together in 

terms of their main findings, contribution to scientific knowledge, and recommendations.  
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Figure 1.3. Diagram of the thesis structure highlighting the relationship among the four papers and 

the thesis chapters. Solid arrows denote the linkage is made by dataset and processes interpretation 

while dashed arrows mean that studies are linked by processes interpretation.  

 

With regards to publications of the chapters / papers, the first paper (chapter 2) entitled “Linking the 

Budyko framework and the Dunne diagram” has been published in Journal of Hydrology.  

The second paper (chapter 3) entitled “Regional variation in streamflow drivers across a 

continental climatic gradient” has been published in Ecohydrology.  

The third paper (chapter 4) is entitled “Disentangling vegetation gain and climate contributions to 

long-term streamflow changes”. The chapter is in the final stages of preparation to be submitted to 

Environmental Research Letters. 

The fourth paper (chapter 5) entitled “CO2 – vegetation feedbacks and other climate changes 

implicated in reducing baseflow” has been published in Geophysical Research Letters.  
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CHAPTER 2 

 

LINKING THE BUDYKO FRAMEWORK AND THE DUNNE DIAGRAM 

 

 

 

Quality freshwater yield is an ecosystem service provided by pristine catchments. Aire River, Beech 

Forest, Victoria. Photo by Paul Ryjkoff (source: flickr.com). 

 

 

 

 

This chapter is based on the following manuscript: 

Trancoso R., Larsen J.R., McAlpine C., McVicar T.R., Phinn S. (2016). Linking the Budyko 

framework and the Dunne diagram. Journal of Hydrology 535: 581-597. 
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2.1 Abstract  

The spatial and temporal heterogeneity of climate, soils, topography and vegetation control the 

water and energy balances among catchments. Two well-known hydrological theories underpinning 

these processes are the Budyko framework and the Dunne diagram. Relating the scaling of water-

energy balances (Budyko) and runoff generation mechanisms (Dunne) raises some important 

catchment comparison questions, namely: (i) how do streamflow characteristics vary according to 

the annual water and energy balances?; (ii) to what extent do biophysical drivers of runoff  explain 

the observed streamflow variability?; and (iii) are there quantifiable process overlaps between these 

two approaches, and can they offer insights into the mechanics of catchment co-evolution? This 

study addresses these questions by analysing daily streamflow and precipitation time series data to 

quantify hydrological similarity across 355 catchments located along a tropical-temperate climatic 

gradient in eastern Australia. We used eight hydrological metrics to describe the hydrological 

response over a 33-year period (1980 to 2013). Hierarchical cluster, ordination analysis, the Budyko 

framework, and generalised additive models were used to evaluate hydrological similarity, extract 

the dominant response, and examine how the landscape and climatic characteristics of catchments 

influence the dominant streamflow response. The catchments were classified into five clusters 

based on the analysis of their hydrological characteristics and similarity, which vary along the 

annual water and energy balance gradient in the Budyko framework. Furthermore, we show that the 

streamflow similarity is explained by six catchment-specific biophysical factors that overlap with 

those described by the Dunne diagram for runoff generation, which in this case have the following 

order of relative importance: (i) Dryness Index; (ii) Fraction of Photosynthetically Active Radiation; 

(iii) Saturated Hydraulic Conductivity; (iv) Soil Depth; (v) Maximum Slope and (vi) Fraction of 

Woody Vegetation Cover. The research makes an important contribution to understanding of the 

role of biophysical controls on hydrologic similarity and formal process links between the Budyko 

Framework and Dunne diagram of runoff mechanisms. 

 

Keywords: Streamflow regime; Catchment classification; Budyko framework; Dunne diagram; 

Hydrological similarity; Biophysical properties 
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2.2 Introduction  

The hydrological behaviour of catchments reflects the coevolution of climate, soils, topography and 

vegetation (Dunne, 1983; Winter, 2001; Berry et al., 2006; Sivapalan, 2006; Pelletier et al., 2013). 

The interplay between these biophysical factors and climate forcings drives the variation in 

hydrological behaviour that emerges when comparing catchments (Troch et al., 2015). The spatial 

and temporal heterogeneity of these biophysical factors, and their interactions, make the 

hydrological processes of each catchment unique (McDonnell et al., 2007), challenging the 

development of new theories on the overall functioning of hydrological systems (Beven, 2000). 

Two established approaches in hydrology, (i) the convergence in long-term water and energy 

balances according to climatic factors - the Budyko framework - and (ii) the runoff generation 

mechanisms according to catchment properties - the Dunne diagram (Dunne 1983) - together 

encompass the key drivers of catchment co-evolution. The Budyko framework describes the 

catchment long-term water and energy balances through a curvilinear relationship between 

Evaporative Index [Actual evapotranspiration (AET) / Precipitation (P)] and the Dryness Index 

[Potential evapotranspiration (PET) / P] (Budyko, 1974). The Dunne diagram describes how the 

runoff generation mechanisms – Horton overland flow, subsurface stormflow and return flow – 

change with biophysical variables and catchment properties (Dunne, 1983). Figure 2.1 displays 

these well-known approaches that were developed for distinct insights, despite being both primarily 

driven by the atmospheric evaporative demand (x-axes in both schemes): being the Dryness Index 

in the Budyko framework and “Climate” in the Dunne diagram. This is, therefore, the logical 

starting point to examine the linkages between them. Linking these approaches can provide 

important mechanistic insights on what controls the similarity, or dissimilarity, in observed 

hydrological behaviour between catchments, as well as a more powerful conceptual tool to predict 

hydrological behaviour.  
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Figure 2.1 Schematic diagrams for each framework. (a) Budyko framework for annual water and 

energy balances. Catchments in the water-limited region have potential evapotranspiration greater 

the precipitation (i.e., PET > P), whereas those located in the energy-limited region have the water 

supply (assumed to be solely precipitation) greater than the evaporative demand (i.e., P > PET). The 

horizontal dashed line is the water-limit, where 100% of P becomes AET and the diagonal dashed 

line is the energy-limit, where 100% of PET is converted to AET; and (b) Qualitative diagram for 

the drivers of runoff mechanisms (adapted from Dunne, 1983) showing that the contribution of the 

three mechanisms of runoff generation changes according to biophysical controls. 
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In the absence of a formal theoretical connection between the Budyko framework and the Dunne 

diagram, it is necessary to explore observed streamflow behaviour from a sufficiently wide variety 

of catchment settings and ask whether the data supports such links emerging. In this case, a 

classification scheme is necessary to objectively organize and synthesize large observational 

datasets according to their biophysical traits and streamflow characteristics (McDonnell and Woods, 

2004; Wagener et al., 2007; Sivakumar et al., 2014).  

Previous studies have used a variety of classification approaches according to streamflow regimes 

(Botter et al., 2013), hydro-climatology (Berghuijs et al., 2014a; Carmona et al., 2014), catchment 

morphology (Beven et al., 1988), hydrological signatures (Sawicz et al., 2011), similarity indexes 

(Ali et al., 2012), landscape structure and land use (Wardrop et al., 2005) and water resource use 

and impact (Dynesius and Nilsson, 1994; Destouni et al., 2013; Jaramillo and Destouni, 2014). 

Olden et al. (2012) separated catchment classification approaches into those based on deductive or 

inductive reasoning. Deductive approaches are based on environmental datasets describing climate, 

topography, soils, geology, vegetation and land use to define spatial similarities and differences. 

Inductive approaches rely on gauged streamflow data using a combination of attributes to 

characterize streamflow regimes. The main advantage of the inductive approaches is that they are 

based on real hydrological measurements rather than surrogates. Table 2.1 presents a summary of 

relevant literature on catchment similarity studies, and specifically those based on flow signatures 

(inductive approaches) organising catchments according to their hydrological response to boundary 

conditions across a range of climatic and biophysical gradients. While classification approaches 

have  so far provided promising results, it is widely agreed that a classification framework which 

coherently organizes catchments according to their structure and function is still required to 

optimally integrate the inductive and deductive classification strategies (McDonnell and Woods, 

2004; Wagener et al., 2007; Sivakumar et al., 2014).  

This chapter has three main aims: (a) to investigate how streamflow similarity and characteristics 

vary according to the annual water and energy balances using the Budyko framework; (b) to 

determine to what degree biophysical drivers of runoff (Dunne diagram) explain the observed flow 

variability among catchments; and (c) to evaluate whether links between these two approaches 

(Budyko framework and Dunne diagram) offer insights into the mechanics of catchment co-

evolution. We do this by: (i) using long-term (1980-2013) streamflow and rainfall data for 355 

catchments widely distributed over the climatic and topographic gradients of eastern continental 

margin of Australia to derive eight streamflow signatures, (ii) statistically classifying catchments 

with regard to their similarities in streamflow behaviour based on these signatures, (iii) evaluating 
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the consistency of the classification framework along the spectrum of water and energy balances, 

(iv) extracting the dominant streamflow spectrum from a multi-dimensional ordination space of 

streamflow signatures, and (v) modelling the extracted dominant streamflow spectrum with 

biophysical drivers of runoff. Following these steps, the paper approach is designed to test whether 

the drivers of runoff mechanisms explain the streamflow spectrum captured by the catchment 

classification, and hence reveal any links between the Budyko framework and the Dunne diagram. 
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Table 2.1 Summary of relevant literature on catchment similarity studies based on flow signatures 

in relation to the aims of this study, which are: (a) to investigate how streamflow similarity and 

characteristics vary according to the annual water and energy balances using the Budyko 

framework; (b) to determine to what degree biophysical drivers of runoff (Dunne diagram) can 

explain the observed flow variability within catchments; and (c) to evaluate whether links between 

the Budyko framework and the Dunne diagram offer insights into the mechanics of catchment co-

evolution. We added the current study for completeness. Studies are ordered chronologically then 

alphabetically. The symbol ‘n.r.’ means ‘not reported’. 

Study 

Approach to assess 

catchment 

similarity 

Location/climate/ number 

of catchments/ size range 

of catchment/length of 

time series 

Main output with regard to 

streamflow similarity / (relation 

with the three component aims 

of this study) 

1. Mosley 

(1981) 

Discriminant and 

cluster analysis by 

sum of square of 

distances 

New Zealand/Temperate to 

polar/174/n.r./n.r. 

Four groups of catchments with 

similar hydrologic regime / (a) 

2. Ogunkoya 

(1988) 

Cluster analysis by 

Euclidian distances 

South-western 

Nigeria/Tropical/15/2-18.8 

km2/ < 1 year 

Five regions hydrologically 

homogeneous / (a) 

3. Pegg and 

Pierce 

(2002) 

Discriminant and 

cluster analysis by 

Euclidian distances 

Northern United States/ 

Cold/15/64,070-1,353,000 

km2/30 years 

Six hydrologically distinct units 

exhibiting similar flow 

characteristics / (a) 

4. Snelder et 

al. (2005) 

Ordination and 

Euclidian distances 

New Zealand/Temperate to 

polar/335/n.r./5-21 years 

River Environment Classification 

(REC) groups catchments in 14 

similar regions more consistent 

than other schemes / (a, b) 

5. Leigh and 

Sheldon 

(2008) 

Cluster analysis by 

Euclidian distances 

Gulf of Carpentaria, 

Australia/Tropical/15/1077-

17,382 km2/20 years 

Two groups related to flow 

magnitude and stability and three 

groups related to seasonality / (a) 

6. Moliere et 

al. (2009) 

Hierarchical 

agglomerative cluster 

analysis by Euclidian 

distances 

Northern Australia/ Dry 

and tropical/28/318-

107,150 km2 /20 years 

Catchments divided in four 

groups: Perennial; Seasonal; Dry 

seasonal and Seasonal-

intermittent / (a, b) 

7. Kennard 

et al. (2010) 

Bayesian mixture 

modelling  

Australian continent/ Dry, 

tropical, and 

temperate/830/6-222,674 

km2 /15-35 years 

12 classes of flow regimes 

differing in seasonality, flow 

permanence, magnitude and 

frequency / (a, b) 

8. Ley et al. 

(2011) 

Cluster analysis by 

Self-Organizing 

Maps  

Germany/Temperate, 

cold/53/9-1469 km2/25 

years 

Five clusters of similarly 

behaving catchments with 67% of 

correspondence with clusters of 

physical characteristics / (a) 

9. Patil and 

Stieglitz 

(2011) 

Variability of flow 

duration curves 

Northeast United 

States/Temperate/25/65-

4163 km2/19 years 

Spatial variability in streamflow 

is determined by the high 

evaporative demand during the 

warm period / (a, b) 

10. Sawicz 

et al. (2011) 

Bayesian clustering 

scheme  

Eastern half of United 

States/ Temperate and cold 

/280/67-10,096 km2/10 

years 

Catchments separated into 9 

homogeneous classes  

interpreted in light of climatic and 

landscape attributes / (a, b) 

11. Ali et al. 

(2012) 

Affinity propagation 

for clustering 

Scotland/Temperate/36/0.4

4-1712.1 km2/n.r. 

 Distinct combination of 

catchment properties are used to 

form five to nine groups with low 

agreement between outcomes / (a) 



Trancoso, R. (2016) PhD Thesis, Chapter 2: Linking Budyko Framework and Dunne Diagram 

Ecohydrology in space and time   23 

     

 

12. 

Coopersmith 

et al. (2012) 

Decision trees with 

Iterative 

Dichotomiser 3 

algorithm 

Continental United 

States/Dry, temperate, and 

cold /428/ 500–10,000 

km2/53 years 

Catchments are grouped in five 

regime behaviours primarily 

controlled by climate seasonality / 

(a, b) 

13. Toth 

(2013) 

Self-Organizing 

Maps by neural 

network 

North-central 

Italy/Temperate/44/18-

1303 km2/ 3.5-10 years 

Groups of three and six 

catchments are distinguished with 

an overall consistency with 

location, altitude and precipitation 

/ (a, b) 

14. 

Berghuijs et 

al. (2014a) 

Manual grouping by 

trial and error based 

on visual observation 

Continental United 

States/Dry, temperate, and 

cold /321/67-10,329 km2/10 

years 

10 clusters with similar seasonal 

water balance behaviour 

consistent with flow signatures 

and Budyko framework / (a) 

15. Sawicz 

et al. (2014) 

Bayesian mixture-

clustering algorithm 

and decision tree 

Continental United 

States/Dry, temperate, and 

cold /314/67-10,096 

km2/38-40 years 

12 clusters of catchments are 

formed for a baseline scenario 

and the clusters composition 

change on further decades / (a) 

16. This 

study 

Model-based 

hierarchical 

clustering 

East coast of 

Australia/Tropical to 

temperate/355/0.6-3,299 

km2/23-33 years 

Five clusters of similar 

hydrological behaviour consistent 

with the water and energy balance 

spectrum and explained by drivers 

of runoff mechanisms / (a, b, c) 

 

2.3 Study Area and Materials 

2.3.1 Study catchments 

The study area covers the entire eastern margin of the Australian continent, covering an area > 106 

km2 that extends 4,000 km north-south and up to 200 km inland. We selected 355 catchments 

ranging in size from 0.6 to 3,299 km2, with 79% being smaller than 500 km2 (Figure 2.2a and 2.2b). 

All catchments were unregulated. To avoid nested catchments, we chose the most upstream gauging 

station per stream. The total surface area covered by all catchments was 126,398 km2. For the 355 

catchments, the 1980-2013 catchment-average annual average precipitation (P) ranged from less 

than 500 mm/year to more than 3,500 mm/year, with 88% within the 500-1,500 mm/year range 

(Figure 2.2c). The 1980-2013 Priestley-Taylor potential evapotranspiration (PET) ranges from 836 

to 2,183 mm/year, with an average of 1,316 mm/year (Figure 2.2d). The major physiographic 

feature in mainland eastern Australia is the Great Dividing Range (GDR) with strong elevation 

gradients and rugged terrains (Figure 2.2e). Twenty-three per cent of the catchments drain west (to 

the interior of the continent, with a long flow path to the ocean, if at all) and 77% drain east, usually 

as smaller coastal systems with far shorter flow paths to the ocean. More than 70% of the 355 

catchments have at least 80% of their surface covered by woody vegetation (Figure 2.2f), thus 

minimising the impact of land-use change on streamflow. 
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The north-south hydro-climatological gradients are driven by distinct climate regimes (equatorial, 

tropical, sub-tropical and temperate) which have a strong influence on the precipitation delivery and 

ultimately streamflow (Risbey et al., 2009). A strong orographic effect generally causes lower 

precipitation west of the GDR, as well as minor snow packs in the Alpine regions (Reinfelds et al., 

2014). Seasonality (i.e., in-phase and out-of-phase local maxima of P and PET) is also a strong 

feature along the climatic gradient affecting the water and energy balances (Potter et al., 2005; 

Jothityangkoon and Sivapalan, 2009; Potter and Zhang, 2009). 
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Figure 2.2 Distribution and characteristics of the study catchments. Part (a) shows the location of 

the 355 catchments in eastern Australia extending over four States: Queensland – QLD, New South 

Wales – NSW, Victoria – VIC and Tasmania – TAS. Frequency distributions of: (b) drainage area, 

(c) annual precipitation, (d) annual potential evapotranspiration, (e) mean elevation, and (f) woody 

vegetation cover are also provided. 
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2.3.2 Hydrological data 

We used daily streamflow (Q) time series data from 1980 to 2013 (12,045 days over these 33 years) 

measured in m3/s. The data were obtained from the water monitoring agencies of each State. We 

only used gauges with at least 70% valid Q data within these 33 years. We used gridded daily 

precipitation time series (~ 5 km pixel-size) developed by Jones et al. (2009) for the same period 

where Q data was available.  

2.3.3 Ancillary data 

A hydrologically-conditioned and drainage-enforced DEM with a 1 arc-second (~ 30 m) pixel-size 

derived from SRTM data produced by Geoscience Australia was used to map catchment boundaries 

(Wilson et al., 2011). The geographic coordinates of the streamflow stations were used as the 

catchment outlets.  

In order to allocate catchments in the context of the Budyko framework and to model the controls of 

the long-term dominant streamflow behaviour we used monthly gridded dataset of Priestley-Taylor 

potential evapotranspiration with ~ 5 km pixel size (Donohue et al., 2010a), the fraction of 

photosynthetically active radiation absorbed by vegetation (fPAR) with spatial resolution of 1 km 

(Donohue et al., 2008) , digital maps of saturated hydraulic conductivity and soil depth (McKenzie 

et al., 2000) and vegetation classification with 250 m pixel-size (Lymburner et al., 2011). 

Catchment boundaries were used to extract the average daily precipitation time-series as well as the 

aforementioned ancillary data. 

2.4 Methods 

2.4.1 Flow signatures 

Metrics which characterise long-term behaviour serve as flow signatures that integrate the influence 

of all the streamflow drivers (Shamir et al., 2005). While no single descriptor is able to capture the 

overall complexity of the hydrological behaviour of a catchment, the analysis of a set of 

complementary streamflow signatures provides insights into the overall catchment hydrological 

behaviour (Olden and Poff, 2003; Sanborn and Bledsoe, 2006; Kennard et al., 2010; Sawicz et al., 

2011). This signature approach has been widely used to evaluate, compare and model the 

hydrological behaviour of catchments worldwide (Casper et al., 2012; Sawicz et al., 2014; Zhang et 

al., 2014). As a result, hundreds of hydrological signatures are currently available to characterize 

streamflow regimes (Yadav et al., 2007). However, signature metrics are often highly correlated 
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and therefore the choice of which signature to use risks introducing redundancy to the analysis, 

thereby potentially leading to data to be overfit (Olden and Poff, 2003).   

The streamflow characteristics we considered pivotal to describe the hydrological response to 

boundary conditions of Australian catchments are partitioning of water release, baseflow 

contribution, flow sensitivity to rainfall, flow variability, degree of intermittency, and intensity of 

low and high flows. We selected eight streamflow signatures to characterize the catchment 

streamflow behaviour (Table 2.2). Six signatures were derived from Q records alone while the 

remaining two require P data in their calculation. The first four signatures were calculated using 

separate expressions, while the last four were based on the analysis of the Flow Duration Curve 

(FDC). Although the FDC-based streamflow signatures are long-term averages, they also reflect the 

seasonal variability along the climatic gradient. 

Table 2.2 Summary of flow signatures used to represent the dominant streamflow characteristics 

and hydrological response of the 355 catchments (see Supplementary Information for detailed 

descriptions). 

Flow signature Acronym  Description  Temporal scale 

Long-term runoff 

ratio 

RQP Cumulative faction of P released by Q. 33 years 

Streamflow elasticity EQP Percentage of change in Q expected for 

a 1% change in P. 

Annual 

Rising Limb Density RLD Denotes the shape and smoothness of a 

hydrograph. 

Daily 

Baseflow Index BFI Fraction of Q resulting from slower 

water release components 

Daily 

Slope of the Flow 

Duration Curve 

SFDC Measure of flow variability based on 

the shape of the flow duration curve. 

Daily 

Normalized 10th 

percentile streamflow 

Q10N Measure of the intensity and variability 

of high flows. 

Daily 

Normalized 90th 

percentile streamflow 

Q90N Measure intensity and variability of 

low flows. 

Daily 

Frequency of no flow FNF Determines the fraction of time a 

stream is ephemeral 

Daily 
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2.4.2 Data analysis 

Grouping catchments with similar hydrological behaviour  

Cluster analysis is the automated identification of groups with similar observations that are 

significantly different from other likewise similar groups (Fraley and Raftery, 2002). We used 

Model-based Hierarchical Clustering (MHC) with an Expectation-Maximization (EM) algorithm to 

divide catchments into clusters with similar hydrological behaviour based on the eight streamflow 

signatures. Behavioural hydrological similarity can be derived from signatures of catchments 

functional response and serve as the basis for model parameter transferability (Oudin et al., 2010). 

The main advantage of this approach, compared to the distance-based agglomerative clustering 

approach, is that MHC algorithm automatically infers the number of clusters and uses a Bayesian 

approach to model selection (Heller and Ghahramani, 2005). Following Burnham and Anderson 

(2002), we assessed the performance of 10 models with up to 20 clusters using the Bayesian 

Information Criterion (BIC) as implemented by Fraley and Raftery (2002). We also modelled a 

classification tree based on the MHC results to determine thresholds of flow signatures on clusters 

and allow further inclusions of other catchments into the clusters with similar hydrological 

behaviour. Following Jaramillo and Destouni (2015) we used the Wilcoxon rank test to determine 

whether the catchment clusters are significantly different in terms of flow signatures, Dryness Index 

and Evaporative Index. 

Catchments with distinct flow characteristics in the context of the Budyko framework 

The Budyko framework partitions catchment P (assumed to be the sole source of water) into Q and 

AET. It relates the catchment water and energy balances through AET, PET and P derived from 

observational data (Budyko, 1974). It has been widely used to study the long-term catchment water 

balance and to estimate the Evaporative Index as a function of the Dryness Index (Arora, 2002; 

Donohue et al., 2007; Zhang et al., 2008a; Gentine et al., 2012; van der Velde et al., 2014). Several 

equations are used to capture this relationship (Fu, 1981; Zhang et al., 2001; Zhang et al., 2008a; 

Gerrits et al., 2009; Donohue et al., 2012). Here, we use the original Budyko (1974) formula: 

1 − 𝑅𝑄𝑃 = √
𝑃𝐸𝑇̅̅ ̅̅ ̅̅

𝑃̅
𝑡𝑎𝑛ℎ (

𝑃̅

𝑃𝐸𝑇̅̅ ̅̅ ̅̅
) (1 − 𝑒𝑥𝑝 (−

𝑃𝐸𝑇̅̅ ̅̅ ̅̅

𝑃̅
)) ;      (1) 

where 𝑄̅, 𝑃̅ and 𝑃𝐸𝑇̅̅ ̅̅ ̅̅  are long-term catchment-mean values for streamflow, precipitation and 

potential evaporation, where the Evaporative Index term assumes 𝑃̅ = 𝑄̅ + 𝐴𝐸𝑇̅̅ ̅̅ ̅̅  over the long-term 

and storage changes (dS) are negligible.  
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In order to assess the displacement of catchment clusters across the Budyko framework, we also 

used the Choudhury (1999) formulation which uses a free parameter ‘n’ to better fit observed data 

within the generalized Budyko framework to different catchment characteristics. This is given as: 

1 − 𝑅𝑄𝑃 =
𝑃̅ 𝑃𝐸𝑇̅̅ ̅̅ ̅̅

(𝑃̅𝑛+𝑃𝐸𝑇̅̅ ̅̅ ̅̅ 𝑛)1 𝑛⁄  ;                   (2) 

where n is a dimensionless parameter that modifies the partitioning of 𝑃̅ between 𝐴𝐸𝑇̅̅ ̅̅ ̅̅  and 𝑄̅, 

encoding all factors driving this partitioning under a steady-state climate assumed by using long-

term averages (Roderick and Farquhar, 2011). The n-parameter was optimised within each 

catchment cluster by minimising the least squares differences between observed Q and Q predicted 

by Equation (2).  

We used the Mean Absolute Deviation (MAD) of the catchment data from the actual evaporative 

index positioned along the Budyko (1974) and Choudhury (1999) curves to evaluate whether the 

data points fell predominantly above or below the curves. We also used the Sum Squared Error 

(SSE) of the actual evaporative index as an estimate of scatter about the curves. Finally, we 

quantified the fraction of catchments within a given cluster that were above or below PET/P = 1 

(i.e., water- or energy-limited). 

Maximum variability of flow signatures as a proxy of the dominant streamflow behavior 

Principal Components Analysis (PCA) has been used to explore continuous patterns in hydrological 

variability among catchments (Poff et al., 2006). Ordination techniques such as PCA have been 

widely used to progress beyond the correlation among multiple hydrologic signatures (Olden and 

Poff, 2003; Snelder et al., 2005; Poff et al., 2006; Sanborn and Bledsoe, 2006; He et al., 2011; 

Olden et al., 2012). We used PCA to extract the maximum unidimensional variance within a multi-

dimensional space of eight correlated flow signatures. This allows the identification of patterns in 

the data based on their similarities and differences. We evaluated whether the first principal 

component (PC1) scores sufficiently capture the variance extracted from the eight streamflow 

signatures and can therefore be used as a proxy of the dominant streamflow behaviour.  

Modelling flow variability with the drivers of runoff mechanism from Dunne’s diagram 

We used Generalized Additive Models for Location, Scale and Shape (GAMLSS) (Stasinopoulos 

and Rigby, 2007) to test whether the maximum variance among the eight flow signatures (PC1) is 

controlled by the drivers of flow characteristics as described in the Dunne diagram of runoff 

mechanisms (Dunne, 1983). We selected six variables to quantitatively represent the variables 
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described in the Dunne diagram (see Figure 2.1) and test whether this conceptual model explains 

the observed variability of flow signatures among catchments. The x-axis of the Dunne diagram is 

represented by a gradient of aridity, vegetation structure and land use. We use the Dryness index, 

fPAR and the catchment fraction of woody vegetation cover, respectively, to account for each of 

them. The y-axis of Dunne diagram is represented by a gradient of soil thickness, slope 

characteristics and soil permeability. Therefore, we used soil depth, maximum catchment slope and 

saturated hydraulic conductivity as proxies for Dunne’s y-axis. We split the dataset, using random 

sampling with 90% for training and 10% for validation. We evaluated several possible models 

resultant from the interactions of the six explanatory variables to select  the one with smallest 

Akaike Information Criterion (AIC) (Akaike, 1974) and then assess its fit using Nagelkerke R-

squared (Nagelkerke, 1991). We used random forests with 5000 trees in order to assess the 

importance of each predictor on the response variable (Breiman, 2001). The importance is given by 

the relative increment on mean square error when the predictor is removed. 

2.5 Results 

2.5.1 Correlation, spatial distribution and variability of streamflow signatures 

Catchments exhibited a spatial patterning in the similarities and differences both within and among 

the eight streamflow signatures. There was a general congruency in the spatial distribution of the 

signatures, suggesting it is useful to pursue comparative hydrology based on their classification. 

Flow signatures were chosen to represent different hydrological characteristics of flow response, 

but are often dependent on the same dominant hydrological processes. For example, higher 

groundwater and/or snowmelt availability leads to an increase in the baseflow contribution (BFI), 

which stabilises the flow response and converge high and low flows (Q10N and Q90N) toward the 

mean flow ensuring the perennial condition (FNF). In this sense, this dominant hydrological 

mechanism can control four flow signatures: BFI, Q10N, Q90N, and FNF. These signatures have 

correlation coefficient values (both Spearman’s Rho and Pearson’s) higher than 0.7 (Table 2.3), 

although they represent distinct characteristics of flow response. RQP and EQP are also highly 

negatively correlated because they are both rainfall dependent and RQP is a term in the equation for 

EQP. Both their correlation coefficients values were higher than 0.6, mainly because drier 

catchments with low RQP values are often more sensitive to rainfall changes, which lead to a higher 

EQP.  
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Table 2.3 Pairwise correlation of the flow signatures used in this study. Values above the framed 

and bold cells are Spearman’s Rho rank non-parametric correlation coefficients, while values below 

the framed cells are linear Pearson’s correlation coefficients.  

 Spearman’s Rho correlation coefficients 
P

ea
rs

o
n

 c
o

r.
 c

o
ef

fi
ci

en
ts

 

 RQP EQP RLD BFI SFDC Q10N Q90N FNF 

RQP 1 -0.70 0.23 0.39 -0.01 -0.35 0.48 -0.50 

EQP -0.61 1 -0.32 -0.45 0.19 0.44 -0.49 0.46 

RLD 0.20 -0.19 1 0.12 -0.30 0.18 0.05 -0.06 

BFI 0.36 -0.46 0.06 1 -0.15 -0.84 0.77 -0.78 

SFDC -0.01 0.08 -0.23 -0.09 1 -0.19 -0.09 0.12 

Q10N -0.33 0.44 -0.10 -0.84 0.12 1 -0.79 0.74 

Q90N 0.40 -0.47 0.20 0.79 0.27 -0.73 1 -0.91 

FNF -0.34 0.37 0.19 -0.59 -0.22 0.54 -0.43 1 

 

 

The driest catchments with RQP < 0.15 were generally those draining to the west of the GDR and 

south-western VIC. Most catchments with RQP values > 0.45 were located in northern QLD with a 

smaller number in the central and north coast of NSW and south-east QLD (Figure 2.3a). In 

general, higher EQP values (> 3.5) were observed in the drier regions (PET/P > 2) whereas 

catchments with lower EQP values (< 1.5) were concentrated in the wetter regions (PET/P < 1) 

and/or those receiving snowfall in the Alpine regions (Figure 2.3b). These findings are in 

accordance with Arora (2002). Catchments with the highest streamflow vulnerability to long-term 

changes in precipitation are located in the inland draining catchments and southwest VIC. The 

change in streamflow was at least 4.5 times greater than the observed change in precipitation for 

catchments located in the drier environments. Catchments with lower sensitivity to precipitation 

variability were located in northern QLD, the Victorian Alps and the north coast of Tasmania (TAS) 

(Figure 2.3b). 

Catchments with higher RLD values (> 0.55) have a more rapid response to precipitation events, 

and were mostly located in the mountainous regions of the Australian Alps and in the central coast 

of NSW. Lower RLD values (< 0.4) occurred mostly within the western draining catchments of the 

GDR, and in shorter flow path coastal catchments with uniform precipitation supply in western 

Victoria and northern TAS (Figure 2.3c). Higher BFI values (> 0.6) occurred in catchments located 

in the wetter regions of north QLD, the Victorian Alps, and the north coast of TAS (Figure 2.3d). It 

is important to highlight that despite the similarity in BFI values, the flow paths (overland-flow, 

return-flow and subsurface-flow) incorporated into this slow flow component are likely to vary 

markedly among catchments. For example, it is likely that for far north QLD catchments have 

groundwater inputs dominating their BFI, while snowmelt will make a major contribution to BFI 
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for a small number of catchments that develop a seasonal snowpack in Australia’s alpine areas 

(Figure 2). In contrast, the lowest BFI values (> 0.15) generally coincide with ephemeral 

catchments.  

Ephemeral streams for at least one-third of the year (SFDC = 0) are mostly concentrated in western 

draining catchments of the GDR in QLD and in western VIC where the catchments drain into the 

Murray-Darling Basin. Catchments with a low to intermediate SFDC values (< 6.0) were distributed 

across the lowland east coast catchments (Figure 2.3e). In contrast, the 135 catchments with steeper 

flow duration curves (> 6.0) were mostly associated with lower annual precipitation (P = 885±259 

mm/year) and higher elevations (E = 395±263 m). This notation used henceforward denotes the 

mean ± one standard deviation, comprising the 66% central of the referred data distribution. 

Higher Q10N values (> 20) were found mainly in catchments from south-east TAS, western VIC 

and those draining west (inland) of the GDR. A noticeable cluster of catchments with a more equal 

distribution of high streamflow magnitudes (i.e., Q10N values < 10.0) occurred in the Victorian 

Alps catchments receiving snowfall and in the north coast of TAS. Another smaller group emerged 

in the wetter (PET/P < 1.2) coastal regions of QLD and NSW (Figure 3f). A major cluster with 

catchments ephemeral for at least 10% of the year (Q90N = 0) occurred in the west of VIC, whereas 

small clusters were scattered along eastern Australian coast. Catchments with less variability in 

magnitude of low flows, with at least 15% of low flows greater than the average flows (Q90N > 

0.15), were concentrated in northern TAS, eastern and the west coast of VIC and far north QLD 

(Figure 2.3g).  

The perennial catchments (FNF < 0.05) comprised 60.2% of the total number of catchments, with 

the remainder being ephemeral (FNF > 0.05). The truly perennial catchments, with water flowing 

permanently comprised only 27.9% of the total number of catchments. Perennial catchments were 

predominantly located in the wetter regions (PET/P < 1.2), while catchments which were ephemeral 

for > 33% of the time occurred almost exclusively within arid environments (PET/P > 2) (Figure 

2.3h). 
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Figure 2.3 Spatial distribution and frequency of the eight flow signatures including: (a) Long-term 

runoff ratio (RQP), (b) Streamflow elasticity (EQP), (c) Rising limb density (RLB), (d) Baseflow 

index (BFI), (e) Slope of the flow duration curve (FDC), (f) Streamflow at 10 percentile (Q10N), 

(g) Streamflow at 90 percentile (Q90N), and (h) Frequency of no flow days (FNF). 
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2.5.2 Hydrological similarity of catchments 

Using the EM algorithm, we assessed 10 statistical models with up to 20 components (or clusters). 

The five component ellipsoidal Gaussian finite mixture model with equal shape had maximum BIC 

(5752.7) and was selected as the optimal model for the hierarchical clustering of catchments based 

on the streamflow signatures. Figure A2.1 (Appendix 2) displays the variation in BIC across the 

different models and different number of components. 

The five catchments clusters display distinct hydrological patterns according to the eight flow 

signatures (Figure 2.4). Some signatures such as RQP, BFI, SFDC, and Q10N showed consistent 

trends among clusters and were influential in separating and aggregating catchments. Other 

signatures, such as EQP, RLD, Q90N, and FNF, only showed major differences between several 

clusters. For instance, EQP and Q90N distinguished clusters D and E, RLD separated clusters A 

and E, and FNF was the primary flow signature separating clusters A and B.  
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Figure 2.4 Box-Whisker plots of flow signatures by catchment clusters derived from the ellipsoidal 

Gaussian finite mixture model. The boxes are bound by the 25th and 75th percentiles of the datasets, 

while the heavy mid-line displays the median value. The upper and lower ‘whiskers’ represented by 

the dashed lines are the upper quartile plus 1.5 times the interquartile distance (IQD) and the lower 

quartile minus 1.5 times the IQD, where IQD refers to the inter-quartile distance. Dots are data 

points out of this range. See Table 2 for a brief definition of flow signatures and Supplementary 

Information for detailed description. Table A4.1 shows the statistical significance of an unpaired 

Wilcoxon rank sum test on the differences between the distributions of flow signatures by 

catchment clusters. 

2.5.3 Cluster shifts according to long-term water and energy balances in the Budyko framework 

The Budyko framework was used to verify shifts in the long-term water and energy balances that 

may exist among the catchment clusters. We find a clear gradation from clusters A to E ranging 

from catchments with highly seasonally variable and ephemeral flows, erratic low and high flows. 

There was a high sensitivity to precipitation changes (cluster A) in water-limited environments, to 

catchments with highly stable and perennial flows, low variability in both low and high flows, and 

low sensitivity to changes in precipitation (cluster E) in environments that become energy-limited 

(Figure 2.5).  
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Interestingly, there is no obvious regional dominance in the distribution of clusters along the eastern 

margin of Australia, although some broader spatial patterns exist. These distinctions include 

catchments within clusters A and B, which occur predominantly in the drier regions (PET/P > 2) 

draining to the west of the GDR (including inland-flowing streams of western VIC), and southern 

TAS. Cluster C occurs predominantly along transitional zones between dry and wet environments 

(PET/P = 1.34 ± 0.37). Clusters D and E are mostly located in the areas with higher annual 

precipitation that are also more evenly distributed throughout the year (which tend to be east 

draining coastal catchments), and in catchments that receive snowmelt in the Australian Alps.  

With respect to the distribution of clusters around the Budyko curve (Figure 5 II), they are clearly 

moving along a gradient from strongly water-limited (PET/P = 2.03 ± 0.51) (cluster A) to mostly 

energy-limited catchments (PET/P = 0.82 ± 0.23) (cluster E) (Figure 2.5). It is interesting that this 

gradient holds despite the large spatial range of each cluster, suggesting the large seasonal 

differences in the distribution of P and PET do not necessarily lead to unique streamflow 

behaviours. Rather, the annual values of P, PET and AET can adequately capture the main drivers 

of the water and energy balances.  
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Figure 2.5 Spatial distribution, long-term annual water and energy balances and flow characteristics 

of catchment clusters. Column (I) shows the spatial distribution of catchments by cluster. The 

numbers in parenthesis under each of the cluster letters are the number of catchments in this cluster. 

Column (II) show the original Budyko (1974) curve (black) and Choudhury (1999) parametrised 

curves (coloured). See Table 2.2 for details regarding curves. Brown, green and grey lines, 

respectively, represent energy-limit, water-limit and the threshold between water- and energy-

limited environments. Column (III) documents the main hydrological characteristics of the 

catchment clusters along the streamflow spectrum. Thresholds were determined using 10th and 90th 

percentiles of flow signatures by catchment cluster. Column (IV) reports the flow signatures 

threshold for allocating catchments to clusters with similar streamflow behaviour. Values are 

determined using a classification tree where the subgroups are distinct tree branches (see Figure 

A2.2 in Appendix 2 for details). Table A2.1 (Appendix 2) shows the statistical significance of an 

unpaired Wilcoxon rank sum test on the differences between the distributions of flow signatures by 

catchment clusters. 
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In cluster A catchments (N = 49) the Budyko curve is slightly overestimating AET losses from 

these catchments, and a greater partitioning of P to Q is required from this equation as streamflow 

intermittency and PET/P both increase. This is also reflected in the value of n, which is the lowest 

of all the clusters, meaning that as a fraction of P, more Q is generated relative to AET compared to 

catchments in other clusters. The prolonged ephemeral conditions characteristic of this cluster 

precludes their occurrence in temperate TAS. Catchments from cluster B (N = 91) are also almost 

entirely (except for one) water-limited. The increase in streamflow intermittency with increasing 

PET/P is a consistent pattern, highlighting the rapid depletion of catchment storage as atmospheric 

demand (PET) increases.  

Although the catchments comprising clusters A and B are almost entirely water-limited, an 

interesting transition occurs from high to lower streamflow intermittency which is manifested 

within the Budyko framework as a shift from a slight over-prediction to slight under-prediction of 

AET. This suggests there are thresholds in the partitioning of P into Q and AET in response to 

subtle changes in the water and energy balances, which is also supported by the higher n values 

fitted for cluster B.  In cluster C catchments (N = 57) a transition to energy-limited environments is 

observed with 12.28% of the catchments. This cluster also has the highest fitted n values, 

suggesting these catchments are partitioning more P into AET over Q than all others along the 

eastern Australian margin. 

Considering the distance from the water- to energy-limit threshold (PET/P = 1), it is likely that 

many catchments from cluster D (N = 107) might be “equitant”. Catchments considered “equitant” 

are those switching between energy- and water-limited on a seasonal basis (if intra-annual time 

steps are adopted) and/or between wetter versus drier years (McVicar et al., 2012b). The streams 

with more stable and perennial flows are represented by cluster E (N=51), with 78.43% of these 

catchments occurring within the energy-limited region of the Budyko curve. The remaining 

catchments occurring in the water-limited region had BFI values > 50% (BFI = 0.56 ± 0.17), 

indicating higher catchment storages can be maintained with increasing PET. The slower flow 

components in these catchments may be the result of distinct factors (e.g., strong anti-phase 

seasonality between P and PET in the tropics, snowmelt in alpine regions and water retention in 

upland swamps). The n value fitted to this cluster is also low, consistent with the progression to 

energy-limited environments being linked to a greater partitioning of P into Q rather than AET. The 

optimised Choudhury (1999) curves fitted best to all catchment cluster datasets with smaller SSE 

and MAD when compared to the original Budyko curve. The range in the n-parameter from 2.05 

(cluster A) to 2.55 (cluster C) suggests that the clusters are formed by catchments with different 
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characteristics with distinct mechanisms determining the partitioning of P between AET and Q 

(Table 2.4). 

Table 2.4 Statistical descriptors of catchment clusters distribution on the Budyko (1974) and the 

Choudhury (1999) curves. MAD and SSE of the actual evaporative index measure the dispersion 

(direction and spreading of clusters); whereas the proportion of catchments within the water-limited 

environments describes the primary limit of actual evaporation that the clusters are predominantly 

enclosed. The n-parameter was optimised by catchment cluster. 

Cluster 
Number of 

catchments 

% water-

limited 

catchments  

Budyko (1974)  Choudhury (1999) 

MAD SSE  n  MAD SSE 

A 49 100.00% -0.006 0.218  2.05 0.004 0.209 

B 91 98.90% 0.035 0.576  2.37 0.005 0.445 

C 57 87.72% 0.054 0.330  2.55 0.003 0.188 

D 107 71.96% 0.052 0.629  2.48 0.004 0.385 

E 51 21.57% 0.028 0.134  2.28 0.002 0.120 

 

2.5.4 Extracting the long-term dominant streamflow behaviour 

We used the maximum unidimensional variance from PCA analysis to extract the broader patterns 

in streamflow behaviour from the eight flow signatures and represent the dominant streamflow 

behaviour along the climatic and topographic gradients (Figure 2.6). The first two principal 

components (PC1 and PC2) explained 63.7% of the total variability within the eight flow 

signatures. PC1 explained 45.7% of total variance, and had a stronger correlation with the main 

flow signatures (RQP, BFI, Q90N, EQP, Q10N, and FNF). PC2 explained 18.0% of the variance 

and was correlated with SFDC, RLD and FNF. The superimposition of the previous cluster analysis 

with the space comprised by PC1 and PC2 denotes that the extracted variance within the eight flow 

signatures is consistent with the catchment separation from our classification outcome (Figure 2.6a). 

Importantly, the clusters from the previous analyses are best separated by the PC1. Because PC1 is 

strongly correlated with six out of eight flow signatures and explains almost half of the total 

variance, we consider it a reliable proxy of the dominant streamflow behaviour. PC1 is 

proportionally related to BFI, RQP, and Q90N and inversely related to EQP, Q10N, and FNF 

(Figure 6b). 
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Figure 2.6 Principal Components Analysis (PCA) for the eight streamflow signatures. (a) Biplot of 

PCA, where the dots are catchments coloured according to the clustering analysis, the small arrows 

are flow signatures, and the confidence ellipsoids show the 50% central of each catchment cluster. 

The coloured curved arrow shows the direction of the streamflow spectrum referred in Figure 4, 

which is inversely proportional to PC1. (b) Loadings from the two first principal components of the 

eight flow signatures are shown with Green lines being positively correlated and Red lines 

negatively correlated. Thicker and darker lines are more correlated. The acronyms refer to the flow 

signatures (see Table 2.1 for details). 

 

2.5.5 Does the Dunne diagram explain the dominant streamflow behaviour? 

Having extracted the dominant streamflow response from the eight flow signatures using PCA, we 

next test whether, and to what extent, the drivers of flow characteristics in the Dunne diagram 

explain this behaviour. The statistical family distribution that best fitted the response variable was 

the skew normal type 2.The fitted non-linear model (AIC=1066.7) used six biophysical explanatory 

variables to explain 77.0% of the variance observed in the dominant streamflow response (PC1). 

The six predictors used to represent the Dunne diagram and explain the dominant streamflow 

behaviour of the catchments as described by PC1 were: (i) Dryness Index; (ii) average Fraction of 

Photosynthetically Active Radiation (fPAR); (iii) fraction of wood vegetation cover; and (iv) 

maximum slope; (v) average soil depth from A and B horizons; and (vi) saturated hydraulic 

conductivity (Ksat) within the A horizon (Table 2.5). These variables had an acceptable level of 

collinearity (r < 0.5). The validated global deviance was 112.16 with mean prediction error of 3.20. 

More details regarding the implementation and validation of the statistical modelling are provided 

in Figure A2.2 (Appendix 2). 
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Table 2.5 Parameter coefficients of the non-linear model fitted to explain the dominant streamflow 

behaviour. Predictors were rescaled to have mean zero and variance one. PC1 was used as response 

variable whereas the drivers of the runoff mechanisms pointed by the Dunne diagram are the 

explanatory variables. 

Link to 

conceptual 

model 

Model predictors 

Coefficients parameters 

Estimate Std. Error t value P 

 Intercept 0.49 0.05 9.00 < 0.001 

Dunne 

diagram 

x-axis 

cs (Dryness index) 0.35 0.11 3.20 < 0.001 

ps (fPAR) 0.18 0.10 1.84 < 0.001 

ps (Fraction of wood veg.) 1.13 0.06 18.58 < 0.001 

Dunne 

diagram 

y-axis 

cs (Maximum slope) -0.27 0.05 -5.36 < 0.001 

ps (Soil depth) -0.70 0.07 -10.34 < 0.001 

ps (log(Ksat)) 0.79 0.08 10.04 < 0.001 

* where cs refers to the cubic spline and ps to the penalised B-spline smothers. 

The random Forest analysis revealed the predictors to be in the following relative order of 

importance: (i) Dryness Index; (ii) fPAR; (iii) Ksat; (iv) soil depth; (v) slope and (vi) fraction of 

woody vegetation cover. Biophysical variables representative of the x-axis on the Dunne diagram 

explained 62.9% of the variability whereas the remaining 37.1% of the variability was explained by 

variables representative of the y-axis. Figure 2.7 displays the partial effects of the predictors on the 

dominant streamflow behaviour (PC1). In the upper plots representing x-axis of the Dune diagram, 

the effect is closer to linear with some inflections, especially for the Dryness Index. Interestingly, 

this inflection is very close to 1, the threshold between water- and energy-limited regions in the 

Budyko framework. As expected, the vegetation variables are inversely proportional to PC1 with 

generally less vegetation cover in catchments from clusters A and B. The fPAR steadily increases 

up to 0.45 followed by a linear decay while the fraction of woody vegetation cover follows a linear 

downward trend with minor oscillations. With regard to the variables representative of the y-axis on 

the Dunne diagram, the effect is more non-linear and the benefit of smoother additive terms is 

clearly exhibited especially for the soil depth and Ksat. These controls are mostly influencing PC1 

values in the negative range, comprising catchments from clusters D and E. The soil depth, an 

important catchment storage component, peaks around 0.8 m and gradually decreases showing 

clearly the development of deeper soils in wetter catchments. The contribution of Ksat to PC1 

follows a similar trend observed in the soil depth with increasing Ksat (in log space) from clusters C 

to E, however with greater variability at higher values. 
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Figure 2.7 Partial effects for each explanatory variable from the Dunne diagram for the drivers of 

runoff mechanisms on the dominant streamflow behaviour (PC1). The upper three sub-plots (i.e., 

(a) to (c)) represent x-axis and the bottom three sub-plots (i.e., (d) to (f)) the y-axis of the Dunne 

diagram. Red lines are the smoothed partial effects, grey shades around them show the standard 

errors (± 1 SE) and the grey rug ticks show the distributions of the explanatory variables. 

 

2.6 Discussion 

2.6.1 Characteristics and drivers of streamflow behaviour along a large climatic gradient   

We aimed to test for conceptual links between the Budyko framework and Dunne diagram using 

classification techniques of streamflow behaviour. In doing so, we were able to better characterise 

how streamflow behaviour changes over a large climatic (latitudinal) and topographic (elevation) 

gradients along the entire eastern continental margin of Australia. We found that the: (i) Dryness 

Index; (ii) fPAR; (iii) Ksat from A horizon; (iv) average soil depth from A and B horizons; (v) 

maximum slope; and (vi) fraction of woody vegetation cover explain 77% of the maximum 

variability observed in the dominant streamflow behaviour. These controls are consistent with 

previous studies which have used a variety of empirical approaches to test the importance of these 

six catchment-attributes (Snelder et al., 2005; Poff et al., 2006; McVicar et al., 2007; Kennard et al., 

2010), and can be considered the key biophysical drivers of streamflow behaviour. Table 2.1 shows 
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that our research has distinct novel aspects compared to earlier studies that primarily focus on 

classifying streamflow similarity. The framework we present links the conceptual understanding of 

the quantitative approach to long-term water and energy balances (i.e., Budyko framework) and 

how catchment biophysical properties drive runoff processes (i.e., Dunne diagram). 

The links between the variability in streamflow characteristics and drivers based on our analysis are 

summarised in Figure 2.8. Both the variability in catchment streamflow characteristics and the key 

biophysical drivers of streamflow follow clear transitions from water- to energy-limited 

environments. This is important for comparative hydrology (Woods, 2003; Wagener et al., 2007), 

demonstrating that judiciously selected streamflow signatures can be combined through a 

classification approach and linked to catchment biophysical drivers (i.e., climate, vegetation, soils 

and topography). 

The main controlling factors of streamflow behaviour are commonly reported as some combination 

of climate, topography, soils, and vegetation / land cover (Dunne, 1983; Sefton and Howarth, 1998; 

Woods, 2003; Yadav et al., 2007; Li et al., 2014). Therefore, there is also some degree of feedback 

between the biophysical controls empirically quantified here and it is likely that the importance of a 

certain predictor in explaining the streamflow behaviour is partially dependent on the other drivers. 

As examples fPAR (a proxy of moisture depletion) is dependent on the Dryness Index (moisture 

availability) while soil depth and hydraulic conductivity are the result of the co-evolution between 

climate vegetation and topography (Dryness Index, fPAR, woody vegetation cover and slope). Over 

the long-term, these soil physical properties have been primarily developed in response to the 

moisture availability dictated by the catchment water and energy balances (Berry et al., 2006; 

Yetemen et al., 2015). 
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Figure 2.8 Conceptual framework for drivers and characteristics of the dominant streamflow 

spectrum. The thicker coloured arrow represents the spectrum of dominant streamflow behaviour 

varying from water-limited to energy-limited catchments along the Australian east coast (1980-

2013). The main characteristics of flow regime are displayed below the streamflow spectrum, 

whereas the flow regime drivers appear above. Longer arrows have higher correlation (flow regime 

characteristics) and importance (flow regime drivers), with green indicating positive correlation and 

red negative correlation. Flow drivers with normal arrows represent the x-axis in the Dunne 

diagram whilst dashed arrows represent the y-axis. The importance criterion accounts for the 

average relative increment in MSE when the variable is removed from the models. Only six of the 

possible eight signatures are shown here due to their higher correlation with PC1 (see Figure 2.6b 

for details). 
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2.6.2 Links between the Budyko framework and the Dunne diagram  

The clusters of hydrological similarity resulted from the classification of catchments according to 

flow signatures are consistent with the water and energy balances within the Budyko framework 

(Figure 2.9a). The key biophysical drivers within the Dunne diagram relate to both the dominant 

streamflow behaviour and the clusters of hydrological similarity that emerge from our classification 

approach. The Dunne diagram divides the biophysical drivers into the appropriate axes representing 

climate and vegetation (x-axis) and topography and soils (y-axis). The six biophysical controls, 

highlighted in a qualitative sense on the two axes of the Dunne diagram, explained most of the 

variability observed in PC1 (Figure 2.9b). The approximate positioning of the dominant streamflow 

behaviour within the Dunne diagram was determined by the relative ability of each axis to explain 

the variability in the first principal component (PC1) when plotted orthogonal (i.e., 90-degrees) to 

each other. As the x-axis explained 62.9% of the variability within PC1 the arrow angle from the 

dominant streamflow behaviour (PC1) was placed closer to this axis (33.3 degrees). If this method 

was applied to another case study with a greater degree of topographic regional dominance, rather 

than climatic dominance (as experienced here), we expect an angle greater than 45 degrees. After 

placing the maximum streamflow variability (PC1) in accordance with the dominant axes on the 

Dunne diagram, the main streamflow signatures driving this variance within PCI also appear 

consistent with the biophysical controls. Specifically, BFI, RQP and Q90N all increase right to left 

with increasingly humid climates and vegetation density, and Q10N, EQP, FNF increase left to 

right with increasingly arid to sub-humid climates and less vegetation cover (increasing Dryness 

Index). SFDC and RLD are also consistent with the biophysical controls of the Dunne diagram y-

axis, increasing and decreasing, respectively, with increasing slope, soil depth and saturated 

hydraulic conductivity (see Figure 2.6 for details). These relations between flow signatures and 

catchment properties have been previously highlighted for BFI (Lacey and Grayson, 1998; 

Schneider et al., 2007; Beck et al., 2013b), RQP and FNF (Zhang et al., 2014), 10th and 90th 

percentiles streamflow (Ssegane et al., 2012) and FDC (Castellarin et al., 2004; Castellarin et al., 

2007; Cheng et al., 2012).  

The three runoff generation mechanisms considered in the Dunne diagram (i.e., Horton overland 

flow, subsurface stormflow and return flow) are also consistent with the clusters of hydrological 

similarity as well as the biophysical controls. It is expected that water-limited ephemeral catchments 

with highly erratic flow regimes (cluster A) have Horton overland flow dominating their 

hydrographs, which is also reinforced by the higher values of FNF, Q10N and EQP for these 

catchments. Conversely, catchments from cluster E, which are mostly energy-limited with perennial 
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and highly regular flow regimes, tend to have their hydrographs dominated by subsurface stormflow 

(higher BFI values) with peaks influenced by direct precipitation (denoted by greater RQP) and 

return flow indicated by lower soil depth and saturated hydraulic conductivity. Topographic and soil 

variations may be important drivers distinguishing flow regimes in catchments from clusters A to B 

in water-limited regions and E to D in energy-limited regions. As a result, steeper catchments have 

increasing values of SFDC, with direct precipitation and return flow dominance in their 

hydrographs also because nothing stays for long in storage. It is worth noting that catchments from 

intermediate clusters may have a fractional combination of the three runoff mechanisms driving 

their hydrographs, whereas clusters A and E are likely to have more dominant contributions from 

those highlighted mechanisms. 

Our catchment classification approach divided the catchments along the eastern margin of Australia 

into five groups based on similar hydrological functioning. It is of course reasonable to expect that 

the number of clusters may change according to the study region,  choice of flow metrics, the range 

of climate and flow conditions included, and the classification approach (Wagener et al., 2006; 

Kennard et al., 2010; Sawicz et al., 2011; Berghuijs et al., 2014a). However, if conducted in a 

similar way, the output of these comparative techniques should still yield maximum streamflow 

variance within the three runoff generation categories proposed by Dunne. This convergence 

between the aridity gradient and runoff generation mechanisms also means that the classification 

framework partitions the water and energy balances in a manner consistent with the Budyko 

framework (Budyko, 1974) and provides a robust link with the catchment biophysical 

characteristics. We therefore argue that an output from a catchment classification scheme based on 

representative flow signatures should be related to the long-term water and energy balances and be 

explained to some extent by the catchment co-evolution factors contained within the Dunne 

diagram regardless of the dataset characteristics such as region and number of catchments. It is 

therefore reasonable to expect that the relative importance of the axes on the Dunne diagram, as 

well as the contribution of the individual variables within them, will shift according to the regional 

dominance of the drivers of runoff mechanisms.   

Simple runoff models have been used to partially quantify the Dunne diagram based on the 

partitioning between infiltration and saturation excess overland flow (Larsen et al., 1994), and to 

evaluate the relationship between the Budyko framework and the Dunne diagram (Li et al., 2014). 

Our results further demonstrate that the controls proposed by Dunne also emerge within large, long-

term Q observational datasets summarised using a classification approach. Our findings relate 

streamflow characteristics (inductive classification approach to biophysical drivers) and the water 
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and energy balances (deductive classification) using observational data, developing a way to link 

the Budyko framework with the biophysical controls and runoff characteristics within the Dunne 

diagram. Conceptually, this link should have its basis in the co-evolution of catchment streamflow 

behaviour with biophysical drivers (Figure 9b) as catchments shift along the Budyko curve from 

water- to energy-limited regions (shown with the clusters identified in this study in Figure 2.9a).  

In the context of the catchment co-evolution factors within the Dunne diagram, the dominant 

streamflow behaviour (PC1) is dependent on both axes (climate and vegetation on the x-axis, and 

topography and soil properties on the y-axis). Within the Budyko framework, the dominant 

streamflow behaviour (PC1) is an outcome of the atmospheric water supply and atmospheric 

evaporative demand. Likewise, the dominant streamflow behaviour (PC1) relates to both the 

biophysical factors driving flow characteristics on the Dunne diagram and the Dryness Index on the 

Budyko framework, revealing an important linkage between these two well-known schemes (Figure 

2.9).  

Whilst there has been progress using modelling and analytical approaches to link annual water and 

energy balances (e.g., Budyko framework) with biophysical streamflow controls (e.g., Dunne 

diagram) (Li et al., 2014), the co-evolution feedbacks that develop within and among catchments 

mean that separating cause and effect is difficult in lumped or distributed physical models. Several 

studies have implicitly, or explicitly, tested some of the specific controls provided by the Dunne 

diagram within the Budyko framework, such as the role of soil water storage capacity (Milly, 1994; 

Gentine et al., 2012), topography (Nippgen et al., 2011), soil permeability (Yokoo et al., 2008), 

vegetation (Donohue et al., 2012), soil moisture (Yin et al., 2014), and elevation (Berghuijs et al., 

2014b; Reinfelds et al., 2014). An alternative approach, which we have pursued here, is to ask 

“what information can long-term streamflow data reveal about the variation and similarity in 

streamflow behaviour and to what extent are these characteristics explained by biophysical 

controls?” If large datasets are used, then a classification approach is needed to constrain the large 

heterogeneity in streamflow characteristics. Our findings using such a dataset highlight important 

overlaps and consistencies between the two schemes that can inform future work which seeks to 

develop formal theoretical links.   
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Figure 2.9. Graphic representation of the catchment classification results and the linkage between 

the Budyko framework and the Dunne diagram. (a) Catchment clusters plotted on Budyko 

framework with data ellipses based on the 66% probability range (average  ± 1 standard deviation). 

Catchment clusters from A to E present a gradient of streamflow characteristics (see Figure 4 for 

details).(b) Dominant streamflow response spectrum and catchment clusters in the context of 

Dunne’s diagram that relates the distinct runoff processes to their major controls (adapted from 

Dunne, 1983). The Dryness Index is increasing to the right (i.e. PET > P, as shown by the 

arrowhead) and fPAR and woody vegetation are increasing to the left (as shown the arrowhead). 
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2.7 Conclusion 

We mapped the distribution of eight long-term (1980-2013) flow signatures to provide insights into 

the hydrological functioning of 355 catchments along topographic and climatic continental 

gradients in eastern Australia. The catchment classification of eight key hydrological signatures 

identified five clusters with distinct hydrological functioning along the streamflow spectrum. 

Within each cluster similar hydrological behaviour existed despite the large climatic and 

topographic gradients. The dominant streamflow behaviour is consistent with the catchment clusters 

and integrates an important fraction of the variability within the flow signatures. The classification 

output organised catchments along a spectrum of hydrological characteristics, which is consistent 

with the distribution of catchments along the hydro-climatic regions on Budyko framework. The 

drivers of the long-term dominant streamflow behaviour are consistent with the Dunne diagram of 

runoff mechanisms with the following catchment attributes provided in decreasing relative order of 

importance, being: (i) Dryness Index; (ii) Fraction of Photosynthetically Active Radiation; (iii) 

Saturated Hydraulic Conductivity; (iv) Soil Depth; (v) Maximum Slope; and (vi) Fraction of 

Woody Vegetation Cover.  

The study represents a substantial methodological advance in the use of a sequence of well-

established data analysis techniques to classify catchments based on their hydrological functioning. 

The catchment clusters follow a consistent pattern along the hydro- climatic gradients and are 

driven by the biophysical drivers of runoff mechanisms (Dunne diagram). This represents a novel 

approach based on streamflow characteristics (inductive classification) that independently organises 

catchments along the spectrum of water and energy balances and is statistically controlled by the 

catchment co-evolution factors normally used to organize catchments by deductive classification. 

Our findings suggest a more definitive convergence along the water and energy balance spectrum 

with the biophysical drivers and streamflow characteristics, providing new insights into how a 

catchment classification scheme links two well established theories in hydrology: the Budyko 

framework and the Dunne diagram. 
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CHAPTER 3 

 

REGIONAL VARIATION IN STREAMFLOW DRIVERS ACROSS A CONTINENTAL 

CLIMATIC GRADIENT 

 

 

 

The Great Divinding Range defines catchment boundaries across the Australian east coast. Mount 

Edwards, Queensland. Photo by Glen Ross (source: flickr.com). 

 

 

 

 

 

 

 

 

 

This chapter is based on the following manuscript: 

Trancoso R., Phinn S., McVicar T.R., Larsen J.R., McAlpine C. (2016). Regional variation in 

streamflow drivers across a continental climatic gradient. Ecohydrology. 
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3.1 Abstract  

Streamflow characteristics are driven by specific flow-generation mechanisms, which are in turn 

determined by the biophysical properties of catchments. They provide important environmental 

services for society and ecosystems, regulating water supply and quality, flood mitigation, and the 

biological diversity of aquatic ecosystems. This study investigates how the drivers of streamflow 

characteristics vary at the level of regional management (regional (104 km2) and continental scales 

(107 km2)) in eastern Australia. Three hydrological signatures were used to represent streamflow 

characteristics: runoff coefficient, baseflow index and zero flow ratio. Long-term streamflow data 

and 24 spatially distributed biophysical properties from 354 catchments in eastern Australia were 

analysed with random forest and generalised additive beta regression models to determine the 

dominant drivers of streamflow characteristics. We found that the main drivers of streamflow 

characteristics cannot be generalized from region to region and that specific biophysical variables 

govern their spatial variability. However, some important drivers such as the Dryness Index and the 

fraction of photosynthetically active radiation from vegetation explain the variability of streamflow 

characteristics at both regional and continental scales with differing importance. Our findings also 

suggest that soil properties have a significant effect on streamflow characteristics at regional scales. 

However, the relative importance of these soil properties varies among regions depending on the 

streamflow characteristics. This paper demonstrates that: the drivers of streamflow characteristics 

are scale- and region-dependent; and biogeographically different regions have specific mechanisms 

governing streamflow. It opens an avenue to better connect the management perspectives of 

ecology and hydrology. 

 

Keywords: Streamflow characteristics; Streamflow signatures; Catchment properties, Mixed-effect 

models; Beta regressions; Climate effect; Vegetation effect. 
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3.2 Introduction 

Drivers of streamflow characteristics are investigated at different spatial extents, including local 

(102 km2; e.g., Soulsby et al. (2010)), regional (104 km2; e.g., Zhang et al. (2014)) and global (Beck 

et al., 2015). While global studies have revealed that the Dryness Index, precipitation seasonality 

and topographic slope are the dominant catchment properties influencing streamflow characteristics 

(Beck et al., 2013b; Beck et al., 2015), finer spatial scale studies suggest that their relative 

importance shows greater regional variability (Lacey and Grayson, 1998; Mwakalila et al., 2002; 

Zhang et al., 2014). Therefore, studies within a region of relatively uniform climatic and 

biophysical characteristics are often not able to reliably explain ecohydrological processes and 

inform catchment management decisions in other regions. This problem of cross-regional variability 

of catchment biophysical properties and their influence on streamflow characteristics, which is at 

the heart of streamflow regionalisation, is not yet well understood. Therefore, important questions 

such as: (i) “how does the relative influence of the dominant drivers of streamflow characteristics 

vary at continental scales and across biogeographically-contrasting regions?”; and (ii) “to what 

degree can studies in one region be used to inform decisions in other regions?” are yet to be fully 

answered. In addition, there is a need to understand process-based knowledge of streamflow 

variation at the regional scales adopted by management and policy frameworks common in 

biodiversity conservation (Mac Nally et al., 2002) and ecological assessments (Klein et al., 2009). 

The increased availability of spatial data that are important biophysical drivers (e.g., climate, 

topography, soil and vegetation) of streamflow within catchments encourages their use in making 

progress towards answering these important questions. Here, we examine variation in these metrics 

at the biogeographic regional level to determine the ecohydrological characteristics influencing 

streamflow, as this is the typical management scale used in biodiversity / ecology, policy and 

management. 

Streamflow characteristics are determined by the hydrological processes within the catchment, 

which in turn, are driven by the inter-relation and co-evolution of catchment biophysical properties 

(Berry et al., 2006). Subsequently, different combinations of catchment properties leads to divergent 

partitioning of water and energy balances and flow paths between catchments that ultimately 

determine streamflow characteristics.These differences have been the focus of hydrological and 

ecological research for the last five decades. While hydrologists are usually interested in the 

magnitude, frequency, duration, timing and rate of change of streamflow (Sopper and Lull, 1965), 

ecologists typically seek insight into the ecological process and biological patterns within riverine 

and aquatic ecosystems (Minshall and Winger, 1968). This difference in objectives results in 
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ecological management priorities at spatial resolutions and scales usually not considered in 

hydrological studies, but can nonetheless have important regional hydrological implications. This 

paper therefore seeks to examine the processes that can explain streamflow variability at the 

regional scales of biodiversity management, and whether this provides a meaningful avenue for 

linking biodiversity and water resource management. 

A common way to summarize key streamflow characteristics of catchments is through the use of 

‘streamflow signatures’ (Sawicz et al., 2011; Trancoso et al., 2016) as thy provide a glimpse into 

the holistic functioning of the catchment and the relationship between landscape structure and 

catchment responses (Wagener et al., 2007). The main streamflow signatures of interest are 

typically: (i) flow variability (i.e. slope of the flow duration curves - Coopersmith et al., 2012); (ii) 

slow flow components (i.e. baseflow index - Beck et al., 2013b); (iii) recession rates (van Dijk, 

2010); (iv) runoff ratio (i.e. fraction of precipitation converted to runoff - Zhang et al., 2014); (v) 

magnitude of low and high flows (i.e. 10th and 90th streamflow percentiles - Ssegane et al., 2012); 

(vi) magnitude of extreme events (i.e. minimum and maximum streamflow - Villarini and Smith, 

2010) and; (vii) the degree of flow intermittency (Moliere et al., 2009). 

The long-term spatial variability of streamflow characteristics is primarily determined by spatial 

variations in the key drivers, especially precipitation and actual evapotranspiration (and their 

characteristics), which are then further modified by catchment biophysical properties such as 

vegetation, topography, soil and physiography (Dunne, 1983; Winter, 2001; Wolock et al., 2004; 

Berry et al., 2006). However, we do not know how these drivers combine to determine variations in 

streamflow characteristics at different regions and spatial scales - e.g., regional (104 km2) and sub-

continental (107 km2). Likewise, the reason for adjacent streams with similar biophysical properties 

having different streamflow characteristics is often difficult to determine (Costigan et al., 2015). 

Conversely, biogeographically different regions may have similar streamflow characteristics 

resulting from distinct processes whereby catchments have coevolved (Trancoso et al., 2016).  

When these processes are investigated at larger spatial extents (i.e., intra-continental and global 

scales), the regionally-specific factors governing streamflow characteristics are often overlooked. 

This paper explores the differences in hydrological processes between sub-continental (107 km2) 

and regional (104 km2) scales using a widely-distributed catchment database, and among three 

biogeographic regions, all with differences in climate, terrain, soils and vegetation. The aims of this 

research are threefold: 

file:///C:/RALPH/MS2/Drivers%20of%20streamflow%20characteristics%20vary%20with%20region%20and%20scale_v5_TMcV.docx%23_ENREF_81
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(i) to determine the changes in the relationships between streamflow characteristics and 

catchment properties along regional and sub-continental scales and across 

biogeographically-contrasting regions; 

(ii) to examine how dynamic catchment biophysical properties (i.e., vegetation and climate) 

affect key hydrological characteristics within and between regions; and 

(iii) to infer the processes governing streamflow variation at larger biogeographic regional 

scales in order to better inform how biodiversity management scales can link with water 

resource management. 

We address these aims using statistical modelling of a long-term ecohydrological dataset for 354 

catchments in eastern Australia by testing the importance and weight of 24 explanatory variables to 

explain three of the most informative streamflow characteristics across the East Coast and three 

biogeographically-contrasting regions that define current biodiversity management boundaries. We 

also apply a novel modelling approach using a Generalized Additive Model for Location Scale and 

Shape (GAMLSS) with beta distribution for the response variable (fully described in the Methods) 

to account for the spatial variability of streamflow characteristics. This paper is structured in seven 

sections. Section 3.3 presents the conceptual model used, section 3.4 describes the study area and 

data, section 3.5 describes the methods, section 3.6 presents our findings and addresses the three 

objectives, section 3.7 discusses the findings in light of the relevant literature and section 3.8 

summarises the conclusion of our study.  

3.3. Conceptual Model 

The conceptual basis of this research builds on the catchment co-evolution concept, whereby the 

development of spatial patterns in landscape features and the hydrological response of catchments 

are closely connected (Troch et al., 2013; Troch et al., 2015). We, therefore consider five primary 

hydrological drivers that may have coevolved over time to control the streamflow characteristics at 

the catchment scale: climate, vegetation, soils, topography and physiography (Figure 3.1). It is 

widely accepted that climate is the foremost control governing the supply of moisture and energy 

(i.e., precipitation and potential evapotranspiration), which in turn help determine the weathering 

processes largely underpinning the coevolution of the other drives. The interaction between climate 

and vegetation regulates actual evapotranspiration, whilst the landscape features determine the way 

that the non-evaporated water (i.e., precipitation - actual evapotranspiration) is transported within 

the catchment (i.e., by different flow paths such as overland flow, infiltration and soil or 
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groundwater storage supply) that ultimately define the streamflow characteristics (Dunne, 1983; 

Winter, 2001; Wolock et al., 2004; Berry et al., 2006). 

 

Figure 3.1. Conceptual model of the biophysical properties of catchments and how they influence 

flow paths and streamflow characteristics. Climate and vegetation, represented with shaded ellipses 

and black arrows, are dynamic properties sensitive to landscape and climate change, whereas the 

non-shaded ellipses are largely static at anthropogenic timescales. Grey dashed lines represent 

interactions between biophysical properties. 

3.4 Study Site and Data 

3.4.1 Study regions 

The study area encompasses the whole eastern seaboard of Australia (including Tasmania) referred 

to here as the continental scale. It covers approximately 1,000,000 km2, extending 200 km inland 

and ~3,600 km north-south. This area varies in climatic and biophysical properties including the 

amount and seasonality of precipitation, potential evapotranspiration, topography, vegetation, soils 

and physiography. We used 354 unregulated, non-nested catchments of which the majority (77%) 

drained east towards the coast and the remainder drained inland. Three widely-distributed and 
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biogeographically-contrasting regions (Thackway and Cresswell, 1995) were selected to test for 

regional variation in the patterns of influence of the dominant drivers on streamflow characteristics 

(Figure 3.2). These regions followed the bioregions from the Interim Biogeographic Regionalisation 

for Australia (IBRA7), which are classified according to climate, topography, soil and vegetation 

types (IBRA, 2013). Region 1, extending ~1,150 km north-south and 400 km east-west, 

encompasses three adjacent tropical IBRA bioregions (Cape York Peninsula, Wet Tropics and 

Einasleigh Uplands) and includes 40 catchments (Table 3.1). Region 2 extends ~700 km north-

south and 160 km east-west, represents subtropical catchments from South East Queensland 

containing 51 catchments. Region 3, extends ~680 km north-south and 530 km east-west, and 

comprises 69 catchments from the South Eastern Highlands with a temperate climate and 

mountainous terrain. A summary of physiographic and hydroclimatic catchment characterisation for 

the entire dataset and the three regions is provided in Table 3.1. 
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Figure 3.2 Study area with multi-scale sampling design encompassing 354 catchments along the 

east seaboard and the three distinct regions. QLD, NSW, VIC and TAS are abbreviations for 

Queensland, New South Wales, Victoria and Tasmania respectively. The inset in the bottom left 

shows an isolated sub-section of Region 3. 
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Table 3.1 Summary physiographic and hydroclimatic catchment characteristics for the full dataset 

and separately for the three regions. The statistics are: number of catchments, average ± standard 

deviation of area, elevation, and for the 1980- 2013 annual average precipitation (P), streamflow 

(Q), actual evapotranspiration (AET) and the seasonal variability in the supply of water and energy 

given by the difference between the month of maximum precipitation (Pmax) and month of 

maximum potential evapotranspiration (PETmax). AET was obtained as the difference between P 

and Q. 

Region 
Number of 

catchments 

Average ± Standard Deviation  

Area 

(km2) 

Elevation 

(m) 

P  

(mm/year) 

Q 

(mm/year) 

AET    

(mm/year) 

Pmax-

PETmax 

(months) 

East Coast 354 361 ± 429 491 ± 306 930 ± 272 203 ± 298 727 ± 150 2.83 ± 1.47 

Region 1 40 572 ± 656 451 ± 218 1672 ± 744 625 ± 567 1047 ± 238 3.59 ± 1.52 

Region 2 51 264 ± 341 301 ± 195 1189 ± 342 233 ± 269 956 ± 143 2.25 ± 1.68 

Region 3 69 288 ± 320 666 ± 250 1031 ± 246 284 ± 191 747 ± 79 2.96 ± 1.04 

 

3.4.2 Data 

We used daily streamflow (Q) data from 1980 to 2013 across the 354 catchments to compute long-

term streamflow characteristics (Trancoso et al., 2016). All selected gauges have at least 70% of Q 

data for these 33 years (12,045 days). We only used years with a complete record. Catchment 

boundaries were defined using a hydrologically-conditioned and drainage-enforced DEM with a 30 

m pixel size (Wilson et al., 2011). We mapped the upstream area of each streamflow gauge using 

their geographic coordinates. The catchment boundaries were used to calculate catchment averaged 

daily precipitation from a gridded precipitation time series with ~ 5 km pixel-size (Jones et al., 

2009) and for the other explanatory data used to predict streamflow characteristics. We used the 

climate, topography, vegetation, soils, and physiography of the catchments (Table 3.2). Because 

precipitation is one of the input variables to calculate runoff coefficients, we did not include it as an 

explanatory variable in our models to account for the effect of the other catchment biophysical 

properties. 
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Table 3.2 Listing of the 24 explanatory variables assessed to model streamflow characteristics with sources and description. Metrics with empty 

brackets are non-dimensional. 

Explanatory variables (Units) Source 
Description 

Climatic   

 1. Dryness index ( ) Budyko (1974) Determines the balance between atmospheric supply and demand of 
moisture by the ratio of long-term Potential Evapotranspiration and 
Precipitation extracted from gridded time-series (~5km pixel size) 

 2. Monthly maximum air temperature (° C) Jones et al. (2009) Long-term average maximum monthly air temperature (determined as item 
1). 

 3. Monthly minimum air temperature (° C) Jones et al. (2009) Long-term average minimum monthly air temperature (determined as item 
1). 

 4. Seasonality index ( ) Feng et al. (2013) Measures the magnitude and concentration of the rainy season by 

combining the extent of precipitation concentration in the wet season with 

the mean annual precipitation normalized by the maximum mean annual 

precipitation (determined as item 1). 
 5. Annual average precipitation (mm) Jones et al. (2009) Long-term mean annual precipitation (determined as item 1). 
Topography   

 6. Fraction of erosional landscapes ( ) Gallant and Dowling 
(2003) 

Fraction of non-deposition catchment surface based on an index that 

determines the flatness in valleys (Multi-resolution valley-bottom flatness) 

determined using DEM with 30 m pixel-size. 
 7. Average slope (%) Wilson et al. (2011)  Average inclination of the catchment surface in per cent determined using 

DEM with 30 m pixel-size. 
 8. Maximum slope (%) Wilson et al. (2011) Maximum Inclination of the catchment surface in per cent determined using 

DEM with 30 m pixel-size. 
Vegetation   

 9. Monthly average fPAR ( ) Donohue et al. (2008) Long-term monthly average of the fraction of Photosynthetically Active 
Radiation (fPAR) absorbed by vegetation estimated by AVHRR and 
MODIS imagery with 1 km of spatial resolution 

 10. Annual range of fPAR ( ) Donohue et al. (2008) Long-term average of the fPAR annual range estimated by AVHRR and 
MODIS imagery with 1 km of spatial resolution 

 11. Fraction of woody vegetation cover ( ) Lymburner et al. (2011) Determined by grouping the natural arboreal vegetation of MODIS imagery 
classification with 250 m pixel-size 

 12. Annual average of actual 
evapotranspiration (mm) 

Raupach et al. (2012) 
Long-term total annual evaporation and transpiration by soil and vegetation 
(determined as item 1). 
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Soils   

 13. Monthly average of soil moisture ( ) Raupach et al. (2012) Long-term monthly average relative soil moisture from upper layer 
(determined as item 1). 

 14. Average soil depth (ABhorizon) (m) McKenzie et al. (2000) Determines the volume of water for storage capacity and for vegetation use 
(determined using digital maps). 

 15. Saturated Hydraulic Conductivity (mm/h) McKenzie et al. (2000) Indicates the vertical drainage capacity of a soil as well as the likelihood of 
surface runoff and erosion (determined as above). 

 16. Average clay content (%) ASRIS (2015) The argillic component (< 2 um mass fraction of the < 2 mm) of soil texture 
is determined using the pipette method and affects most chemical and 
physical properties and indicates some processes of soil formation 
(extracted from gridded data with ~ 270 m pixel size). 

 17. Average pH ( ) ASRIS (2015) Indicates the degree of weathering and controls nutrient availability and 
many chemical reactions (determined as item 16).  

 18. Average plant available water capacity 
(mm) 

ASRIS (2015) Primary control on biological productivity and soil hydrology (determined 
as item 16). 

 19. Average bulk density in top 30 cm (g/cm3) ASRIS (2015) Density of the whole soil (including coarse fragments) in mass per unit 
volume by a method equivalent to the core method Depends on the 
composition and degree of compaction, and relates with suitability for root 
growth and permeability (determined as item 16). 

Physiography   

 20. Area (km2) Schumm (1956) Drainage area upstream the station from which the surface runoff in derived 
(determined with catchment boundaries mapped using DEM with 30 m 
pixel-size). 

 21. Perimeter (km) Schumm (1956) The length of the ridge line along the topographic divide that delineates the 
catchment area (determined as item 20). 

 22. Circularity Ratio( ) Miller (1953) It indicates how circular a catchment shape is and is determined by the 
catchment area divided by the area of a circle whose perimeter is equal to 
the length of the ridge line of the catchment (determined as item 20). 

 23. Shape factor( ) Snyder (1938) Describes the general runoff concentration behaviour of the catchment. It is 
determined considering the distance between the catchment outlet (here the 
location of streamflow station) and the catchment centroid and the longest 
dimension of the catchment (determined as item 20). 

 24. Compactness coefficient ( ) Bendjoudi and Hubert 
(2002) 

It indicates how elongated a catchment shape is and is calculated by the 
ratio of the perimeter of the catchment to the perimeter of the circle whose 
area is equal to the catchment area (determined as item 20). 
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3.5 Methods 

We used three streamflow signatures to represent streamflow characteristics (see details in section 

3.5.1). We considered over 70 possible explanatory biophysical variables in our initial exploratory 

analysis and eliminated the highly correlated (r > 0.7) variables and those with low predictability 

(i.e., low Akaike Information Criterion (AIC) and the R-squared (R2)) for the sake of parsimony. 

We then assessed the importance of the 24 selected as potential explanatory variables with random 

forests (see details in section 3.5.2) for the entire East Coast catchment and the three regions. 

GAMLSS with beta distribution models were fitted to the calibration data and validated against the 

independent data (see details in section 3.5.3). This approach allowed us to determine the 

performance, weights and the partial effect of the explanatory variables across the regions (Figure 

3.3). 

 

Figure 3.3 Flowchart of the modelling framework. 

 



Trancoso, R. (2016) PhD Thesis, Chapter 3: Regional Variation in Streamflow Drivers 

Ecohydrology in Space and Time 62 

 

3.5.1 Streamflow characteristics 

Streamflow characteristics are commonly represented by flow signatures as proportions, for 

example runoff ratio, slope of the flow duration curve and baseflow index. These types of 

proportional streamflow signatures are bounded by zero and one. The metrics explored here are: (i) 

runoff ratio – the amount of runoff relative to the amount of precipitation received; (ii) zero flow 

ratio – represents intermittency and is defined as the proportion of time that water is not flowing; 

and (iii) baseflow index – defined as the proportion of the ‘slow’ component contribution to the 

streamflow (Table 3.3). Here we adopt the widely accepted baseflow definition as the portion of 

flow that comes from groundwater storage and other delayed sources – i.e., wetlands, lakes, snow 

and ice melting and channel bank storage (Hall, 1968; Smakhtin, 2001; Beck et al., 2013b). While 

numerous techniques are available to separate baseflow from streamflow, we used the Lyne and 

Hollick (1979) algorithm as its performance has been widely reviewed within Australian 

environments (Nathan and McMahon, 1990; Lacey and Grayson, 1998; Ladson et al., 2013; Li et 

al., 2013). Whilst there are many additional streamflow signatures to choose from, for the sake of 

parsimony in our analysis we focus on these three as they provide different perspectives on the 

governing hydrological processes and their variability between regions. These characteristics are 

also extremely relevant for both ecology and water resource management (Poff et al., 1997; Bunn 

and Arthington, 2002). 

Table 3.3 Summary of streamflow characteristics and signatures. 

Streamflow 

characteristic 
Signature [acronym] Source Equation 

Partition of 

Precipitation (P) into 

Streamflow (Q) 

Long-term runoff 

coefficient [RQP] 

 

Milly (1994) RQP =  
∑ Qn

i=1

∑ Pn
i=1

   (1) 

Fraction of slow 

component 

contribution into Q 

Baseflow Index 

[BFI] 

 

Lyne and Hollick 

(1979) 
BFI =  ∑

Qb(i)

Q(i)

n
i=1   (2) 

Degree of 

intermittency 

Zero flow ratio 

[Rzero] 

Zhang et al. (2014) Rzero =  
NNF

NS
 (3) 

(1) where Q and P are the long-term cumulative streamflow and precipitation; 

(2) where Qb and Q are the baseflow contribution over streamflow in a long-term basis; 

(3) where NNF is the number of zero flow days, and NS is the total number of days within the 

streamflow time series. 
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Following Jaramillo and Destouni (2015) we used the Wilcoxon rank test to determine whether the 

three regions were significantly different in terms of these streamflow characteristics. The 

significance of the test results was also assessed using the Bonferroni correction (i.e., p-value ≤ 

0.0125). 

3.5.2 Assessing the importance of explanatory variables 

We used random forests models in order to assess the importance of each explanatory variable on 

the response variable (Breiman, 2001). Random forests are a combination of classification trees that 

randomly select a set of possible explanatory variables without overfit. They are used for both 

predictions and to assess variable importance. The importance was computed by permutation, where 

the difference between prediction errors (mean square error - MSE) before and after the permutation 

of variables was averaged and normalized by the standard deviation. This procedure considered 

3,000 trees. The importance is therefore given by the relative increment of MSE when the variable 

is removed. For the sake of model parsimony we only included the drivers which incremented the 

MSE by at least 5% when removed from the models and correlation coefficients lower than 0.6. 

3.5.3 Statistical modelling of streamflow characteristics 

We used Generalized Additive Models for Location, Scale and Shape (GAMLSS) (Stasinopoulos 

and Rigby, 2007) to model streamflow signatures with catchment biophysical properties as 

explanatory variables. GAMLSS are semi-parametric, as they use parametric distributions for the 

response variable and non-parametric smoothing functions for the explanatory variables. The beta 

distribution is appropriate for modelling rates and proportions (Ferrari and Cribari-Neto, 2004). 

GAMLSS is able to account for streamflow signatures scaled between zero and one by mixing 

continuous and discrete distributions when the response variable contains either of these cases 

(Ospina and Ferrari, 2010; Ospina and Ferrari, 2012). 

Because our response variables are bounded between zero and one, we used beta (for RQP and BFI) 

and zero-inflated beta (for Rzero) distributions to implement the non-linear beta regressions. The 

penalised B-splines (Eilers and Marx, 1996) non-linear smoothing function were used as additive 

terms. The degree of smoothing is selected automatically using penalized maximum likelihood in 

the gamlss package in R (Stasinopoulos and Rigby, 2007). To estimate the accuracy of the 

predictions of flow signatures, we randomly split the dataset using 90% for calibration and 10% for 

validation for the whole East Coast and 67% for calibration and 33% for validation in each of the 

three regions (Figure 3.3). We used a bootstrapping approach with 2,000 samples and assessed the 

model performance with the AIC and R2. 
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We applied spline correlograms to examine spatial autocorrelation on streamflow characteristics 

and model residuals and test how the covariance of data pairs evolves as a function of distance. This 

is a nonparametric procedure to estimate spatial dependence as a continuous function of distance 

(BjØrnstad and Falck, 2001). The bootstrap algorithm with 1,000 resamples was used to estimate a 

confidence envelope around the covariance function. 

3.6 Results 

3.6.1 Streamflow characteristics across scales and regions 

The streamflow signatures showed high variability throughout the East Coast and the three regions 

of eastern Australia (Figure 3.4). The regions with contrasting biophysical properties represent 

catchments with distinct streamflow characteristics. The Wilcoxon rank sum test showed each 

region to be statistically different in terms of the distribution of at least one of the assessed 

streamflow signatures. The test compared the frequency distribution of streamflow characteristics of 

the four regions (i.e., including the entire East Coast as a region in this analysis) and identified two 

distinct distributions for RQP, and three for both BFI and Rzero, see Figure 4 parts (a), (b) and (c), 

respectively. 

 

 

Figure 3.4 Box-Whisker plots of streamflow characteristics across the East Coast and the three 

biogeographical regions in eastern Australia: (a) Runoff coefficient, (b) Baseflow index, and (c) 

Zero flow ratio. The boxes are bound by the 25th and 75th percentiles of the datasets, while the 

heavy mid-line displays the median value. The upper and lower ‘whiskers’ represented by the 

vertical lines are the upper quartile plus 1.5 times the interquartile distance (IQD) and the lower 

quartile minus 1.5 times the IQD, where IQD refers to the inter-quartile distance. Dots are data 

points out of this range. Letters above the boxes denote whether the distributions of streamflow 

characteristics are significantly different among regions. Different letters indicate statistically 

different distributions (p-value < 0.0125 with Bonferroni correction) according to the Wilcoxon 

rank sum test. 
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There was no significant spatial structure in each of the streamflow characteristics, indicating the 

assumption of spatial independence of streamflow characteristics within and among the regions is 

justified (Figure A3.1 in Appendix 3).  

3.6.2 Model performance of streamflow characteristics 

The GAMLSS with beta distribution function showed a good overall performance in predicting 

streamflow indices using 24 catchment biophysical properties as explanatory variables (Table 3.4). 

The generally low standard deviations highlight the stability of the model fit regardless of 

catchment allocation for calibration or validation. The model fit was generally poorer at the sub-

continental scale when compared to the three regions. Tests for goodness of fit of all selected 

models for the three streamflow characteristics returned p-values ≤ 0.05, thereby indicating good 

model fit. Similarly, residuals of the best models using the spline correlograms showed no 

significant spatial structure and therefore the assumption of spatial independence of the residuals 

was valid (Figure A3.2 in Appendix 3). 

Table 3.4 Model parameter performance summary statistics using cross-validation with 2,000 

bootstrap samples of three streamflow signatures across the whole East Coast (EC) and separately 

for each bioregion. R1 = Tropical catchments, R2 = Subtropical catchments and R3 = Temperate 

catchments. AIC is the Akaike Information Criterion and R2 is the R-square value. Statistics are 

show for the mean ± standard deviation. 

 

 

3.6.3 Drivers of streamflow characteristics 

Dominant biophysical drivers 

Figure 3.5 summarizes the modelling results and provides insights into biophysical controls of 

streamflow characteristics within the regions and for all East Coast catchments. Overall, the main 

Streamflow 

signature 
Region 

Mean ± Standard deviation 

AIC R2 

Runoff 

Coefficient 

[RQP] 

EC -617.9 ± 29.9 0.73 ± 0.02 

R1 -37.4 ± 11.8 0.92 ± 0.03 

R2 -107.6 ± 16.3 0.91 ± 0.03 

R3 -118.8 ± 10.8 0.89 ± 0.03 

Baseflow Index 

[BFI] 

EC -578.2 ± 10.4 0.72 ± 0.04 

R1 -62.7 ± 21.6 0.88 ± 0.05 

R2 -80.9 ± 16.4 0.86 ± 0.03 

R3 -92.0 ± 8.6 0.85 ± 0.02 

Zero Flow Ratio 

[Rzero] 

EC -382.2 ± 18.1 0.62 ± 0.03 

R1 -28.8 ± 26.8 0.88 ± 0.03 

R2 -64.8 ± 11.4 0.84 ± 0.05 

R3 -60.2 ± 14.1 0.69 ± 0.05 
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drivers governing the variability of streamflow characteristics are: (i) Dryness Index (relative 

importance greater than 5% in 100% of the 12 models); (ii) soil moisture (relative importance 

greater than 5% in 91.7% of models; and (iii) mean fPAR (relative importance greater than 5% in 

83.3% of models). These explanatory variables represent the influence of climate, soils (hydro-

pedological function), and vegetation respectively. Topography and physiography showed 

importance greater than 10% on streamflow characteristics only at regional scales for BFI and Rzero, 

which indicates that at the sub-continental scale Q generation variability was not primarily 

controlled by these explanatory variables. The Dryness Index and soil moisture appeared to exert a 

similar level of control over streamflow characteristics across all regions and at different spatial 

scales (Figure 3.5). 

Runoff coefficient 

An important mechanistic insight that emerges for RQP is the strong negative relationship with 

Dryness Index and positive relationship with soil moisture (Figure 3.5), showing that the 

partitioning of P into Q is primarily determined by moisture availability (which in turn is related to 

the Dryness Index) across all regions. The inverse effects of the Dryness Index and the Seasonality 

Index also highlights that the partition of P into Q is controlled by the balance between the long-

term atmospheric evaporative demand and intra-annual P variation. For instance, while the Dryness 

Index had a high weight in Region 1 which receives higher average annual precipitation, the 

Seasonality Index had a stronger weight in Region 3 that presents more mountainous catchments 

and a more seasonal climate. Another important variation was the different effects of soil variables 

across the regions. While the soil variables do not have a strong effect on RQP variability at the 

continent scale, they do have a stronger effect and higher importance regionally. For example, in 

Region 1 the lower total soil depths and hydraulic conductivity in combination with high 

precipitation tended to increase RQP values (Figure 3.5) probably by promoting runoff via 

infiltration excess overland flow. This effect, however, varies according to the subsurface lithology 

as denoted by the positive weight of soil pH (acidic soils tend to have lower RQP). Conversely, for 

mountainous catchments in Region 3, RQP values increase with increasing soil depth as most of the 

streamflow water relies on hillslope hydrological process with major streamflow contributions from 

sub-surface storages. 

Baseflow index 

With regard to BFI, the Dryness Index, mean fPAR and mean soil moisture were the most 

consistent controls with mostly positive and higher effects across the East Coast and the three 

separate regions (Figure 3.5). However, while soil moisture increases with BFI for all regions, 
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Region 1 presented an inversely proportional behaviour between BFI and seasonality and fPAR. 

This suggests that in tropical regions, both increasingly out of phase delivery of precipitation and 

increasingly photosynthetically active vegetation tends to diminish baseflow. A possible 

explanation is that the higher precipitation in tropical regions may be generating more overland 

flow, which tends to reduce the slow component contribution to the streamflow. Region 1 was also 

influenced by topography, with positive and negative effects for erosional fraction and slope 

respectively, indicating that steeper catchments in the tropics may have higher quick flow 

contributions probably due to the association with orographic P-generation effects and increasing 

overland flow. Soil characteristics have also shown relevance controlling BFI at continental and 

regional scales (Figure 3.5). Yet, the relevant soil characteristic controlling BFI varied across the 

different regions. Higher soil depth and conductivity tended to increase BFI for all eastern seaboard 

catchments, whereas clay content increased BFI in steeper catchments from Region 3. Furthermore, 

catchments from Regions 1 and 2 show a negative effect of hydraulic conductivity and bulk density 

on BFI respectively, highlighting that soil water may not be an important storage in Region 2 and 

preferential flow possibly dominates connectivity in Region 1. Interestingly, the minimum 

temperature had a high importance in the east coast region because it is a consistent proxy to 

summarise the variability of the large climatic gradient across the region and hence explain the BFI. 

Conversely, when the individual regions are considered separately the temperature variability is 

more homogeneous. Thus, others specific drivers better explained the BFI variability (i.e., AET in 

R1 and Mean Slope in R2). In Region 3, where catchments from both humid and dry tropics are 

encompassed, the temperature variability remains a good predictor of the BFI. 

Zero flow ratio 

The most consistent controls for streamflow intermittency across the different regions were Dryness 

Index and precipitation with positive and negative effect in Rzero respectively (Figure 3.5). However, 

in Region 1 soil moisture and depth were also important drivers controlling the negative effect in 

Rzero. This highlights that the intermittency of this array of tropical catchments is strongly 

determined by the subsurface storage characteristics. Precipitation does not appear to have an 

impact on Rzero in Region 1, probably because it is more sensitive to the storage capacity due to the 

highly seasonal precipitation regime here, but in other regions they are more sensitive to P than 

storage capacity. Catchment area also had a negative influence on Rzero in Region 1, which means 

that smaller catchments tend to be more intermittent within tropical regions. At the continental scale 

the minimum annual temperature and mean fPAR had a positive relationship with Rzero. This shows 

that the higher intermittency occurred in colder catchments with higher photosynthesis activity. At 
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the regional scale, the controls of intermittency are highly dependent on soil characteristics. For 

example, the intermittency of tropical catchments (R1) is strongly dependent on the available depth 

for moisture storage, while subtropical catchments (R2) are less influenced by soil depth. Wet 

season intensity is probably less, meaning the storage capacity may not always be reached, whereas 

in the tropics the storage capacity may be a much more limiting factor given the amount of rain 

available in the wet season. Similarly, temperate catchments (R3) tend to be more intermittent in 

soils with reduced saturated hydraulic conductivity with lower clay content. 
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Figure 3.5 Standardized coefficients and importance of explanatory variables included in the subcontinent- and regional-level models. Explanatory 

variables were rescaled to have mean = 0 and variance = 1. Red and blue circles indicate negative and positive effects on flow signatures, respectively. 

Circle size indicates the magnitude of effects. Triangle size indicates the relative increment in the mean square error when the variable is excluded 

from the model.  EC comprises catchments all over the East Coast; R1 is Region 1 comprised of tropical catchments; R2 is Region 2 including sub-

tropical catchments from South East Queensland; and R3 is Region 3 with catchments from South Eastern Highlands; see Figure 2 for locations and 

Table 1 for basic physiographic and hydroclimatic catchment characteristics. Small dashes in runoff coefficient models indicate precipitation was not 

considered as it is in the response variable. Empty cells and explanatory variables not shown (i.e., #8, #22, #23 and #24) had importance lower than 

5%.
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3.6.4 Variability in climate and vegetation effects on streamflow characteristics 

Figure 3.6 shows the degree to which the variability in streamflow characteristics are captured by 

the biophysical properties used in our models. It suggests that distinct regions have regionally-

specific mechanisms driving the streamflow regime and the effects of climate and vegetation on 

streamflow appear highly variable. Some regions have the same response observed at continental 

scales (e.g., Dryness Index effect in RQP, fPAR effect on BFI for East Coast and Region 2, and 

fPAR effect on Rzero for Regions 1 and 3), and on the other hand relationships between explanatory 

and response variables may differ when comparing between biogeographic regions (e.g., Dryness 

Index effect on RQP for Regions 2 and 3 and fPAR effect on BFI for Regions 2 and 3). This 

highlight that these dynamic catchment biophysical properties may affect hydrological 

characteristics in different manners when experiencing shifts. 
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Figure 3.6 Partial effect (shown on the Y-axis) of climate (Dryness Index) and vegetation (fraction 

of Photosynthetically Active Radiation - fPAR) on streamflow characteristics by region. Filled and 

dashed lines are the B-spline smoothed partial effects of climate and vegetation respectively, grey 

shades around them show the standard errors (± 1 SE) and the small grey bars (aka ‘rug ticks’) on 

the bottom of each plot illustrate where the catchment-averages are located for the Dryness Index 

(upper pane of each sub-plot and upper X-axis labels) and fraction of Photosynthetically Active 

Radiation (bottom pane of each sub-plot and lower X-axis labels). 
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3.7 Discussion 

3.7.1 Cross-regional similarities and differences 

The drivers of long-term annual runoff coefficients are to the first order generally considered highly 

dependent on precipitation and potential evapotranspiration (or Dryness Index), with soil moisture 

and seasonality also playing an important role (Wolock and McCabe, 1999). Regional-scale studies 

have also reported permeability and geology as important controls of runoff coefficients (Ogunkoya 

et al., 1984; Norbiato et al., 2009). Our results are consistent with these drivers as saturated 

hydraulic conductivity and soil bulk density are associated with permeability and pH is, among 

other factors, a product of parent material weathering. Numerous studies have demonstrated the 

effect of land cover on runoff coefficients (Sriwongsitanon and Taesombat, 2011; Wang et al., 

2012; Zhang et al., 2014). Our findings are consistent with this, yet vegetation variables were not 

the primary drivers of runoff (Donohue et al., 2010b). Rather, Dryness Index and soil moisture were 

more important to explain RQP variability. This agrees with the findings by Hümann et al. (2011) 

that have previously highlighted the crucial effect of soil properties for runoff generation in German 

mountain ranges. In this study, specific soil properties emerged as important explanatory variables 

in regional models, with a stronger effect and importance at the regional-scale compared to the 

continent-scale (Figure 3.5). The regional soil properties controlling streamflow characteristics are 

generally consistent with relevant hydrological processes driving the streamflow regimes, such as 

soil depth and greater storage in tropical catchments and clay content and lower water residence 

time in temperate mountainous catchments. 

In a global-scale study, the most important factors driving BFI were mean annual potential 

evaporation, mean snow water equivalent depth, and abundance of surface water bodies (Beck et 

al., 2013b). For global tropical catchments, mean annual precipitation and dryness index explained 

the major variability of baseflow recession rates (Peña-Arancibia et al., 2010). Our modelling 

results for BFI for the entire East Coast catchments are consistent with these global drivers and with 

the drivers reported by van Dijk (2010), who studied catchments from the same region. However 

soil characteristics (soil moisture, depth and saturated hydraulic conductivity) were also important 

in this study (Figure 3.5). Previous studies with BFI are consistent with our findings of the 

importance of substrate and soil characteristics for BFI. For instance, Schneider et al. (2007) 

highlight the importance of soils and the dominant paths of water movement to explain BFI 

variability across European catchments whilst Ahiablame et al. (2013) suggested that hydrological 

properties of soils may govern BFI variability at the regional scale in the USA. Likewise, van Dijk 

(2010) pointed out that the explanation of BFI can be improved if the relevant substrate properties 
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are also considered. This highlights the importance of soils in mediating slow flow component of 

streamflow through factors influencing both storage and transport, and that regional variability in 

the influence of soil properties are likely a trade-off between these factors. 

At regional scales, previous work has found a mixture of controlling variables on streamflow 

characteristics. A regional study in south-eastern Australia found geology and ecological vegetation 

classes were the most important factors determining baseflow (Lacey and Grayson, 1998). 

Similarly, baseflow recession rates have been related to drainage density, geologic index, and  

ruggedness number in a regional scale study in the US (Brandes et al., 2005) while Bloomfield et al. 

(2009) reported lithology and aquifer structure as the most important controls on BFI in UK. 

Conversely, lithology was not reported as important for catchment streamflow in Zimbabwe 

(Mazvimavi et al., 2005). In Mediterranean catchments, a regional-scale modelling study showed 

that the changes soil and aquifer permeability with changing geology was the main driver of 

baseflow variability (Longobardi and Villani, 2008). For catchments within semi-arid Tanzania, the 

drivers of BFI were identified as climate and geology (Mwakalila et al., 2002). These findings 

combined show that geology related variables consistently emerges as a driver for BFI regionally, 

but not as often at continental scales. Our results are in accordance with this, although we only used 

surrogates for geology (i.e., topography, soils and physiography variables). For instance, soil 

moisture and clay content were identified as the main soil drivers of BFI in temperate regions 

(Region 3) whereas topographic controls (erosional fraction and slope) were more relevant in 

tropical and subtropical regions (Regions 1 and 2). Nevertheless, these drivers were not important at 

the scale of the entire East Coast. Vegetation (fPAR and actual evapotranspiration) were also 

important in explaining BFI variability in all regions. Similar insights have been made with regard 

to the forest growth stage and BFI (Lacey and Grayson, 1998) and soil moisture reduction has also 

been related to woody vegetation (Traff et al., 2015). 

Intermittent streams have received little attention compared to perennial streams despite the fact 

that their cumulative discharge can contribute to more than half of the length and 30% of discharge 

of the global river network (Datry et al., 2014). While studies regarding controls on the degree of 

intermittency are not as common as for RQP and BFI, the available literature suggests that 

intermittency should be associated with climate, geology, topography and land cover (Zhang et al., 

2014; Costigan et al., 2016), yet the in-depth mechanisms interacting to control this intermittency in 

water-limited catchments remains poorly understood (Tooth, 2000). Our results build on these 

findings and provide additional evidence that specific soil properties may play a key role in 

explaining the variability in flow intermittency within regions. For instance, we show (Figure 3.5) 
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that soil moisture and depth were important to tropical and sub-tropical regions, while in temperate 

regions soil moisture, hydraulic conductivity and clay content were more important in explaining 

intermittency variability. In terms of processes interpretation, flow intermittency in tropical regions 

is most sensitive to soil storage parameters, since they generally receive a lot of water in the wet 

season. This means intermittency depends on this storage volume and its rate of release during the 

dry season. The other regions were more sensitive to precipitation and dryness index, since they are 

more limited by the amount of water available to be put into storage, rather than the amount of 

actual storage available. 

To summarise, our findings sheds light on the variability of the dominant drivers of streamflow 

characteristics across regions and scales and provides meaningful insights into relevant hydrological 

processes and connections with landscape properties at distinct biogeographic regions. 

3.7.2 Model generality 

When models are generalized (calibrated in one region and used for predictions in other regions) 

and extrapolated (calibrated at regional scale and used for predictions at continent scale) the 

goodness of fit is substantially reduced (Figure 3.7). This shows that model generalizations and 

extrapolations can lead to inaccurate predictions and might be less useful at providing mechanistic 

insights into hydrological processes governing streamflow characteristics (Oudin et al., 2008). An 

explanation for the goodness of fit reduction lies in the disparity of catchment biophysical 

properties across the regions governing the flow paths and ultimately the streamflow characteristics 

within catchments. Despite the similarity in the statistical distributions of streamflow characteristics 

observed in some regions (e.g., East Coast, Region 2 and Region 3 for runoff coefficient), the 

drivers controlling the hydrological mechanisms are different, therefore making the model 

generality inaccurate. Previous studies highlighted the importance of regionalization of model 

parameters to make predictions in ungauged basins (Yadav et al., 2007; Zhang et al., 2008b) and 

recognized the ecological implications of regional differences (Hughes and James, 1989). Here we 

show that the calibration of regional models was strongly influenced by local characteristics of 

vegetation and soils and that specific coefficients assigned regionally cannot be transferred to other 

regions. 
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Figure 3.7. Goodness of fit (R2) of the application of regional models to the other studied regions 

and extrapolation for the entire East Coast for RQP, BFI and Rzero. 

3.7.3 Implications for water resource management  

This study investigated the regional variation in the dominant controls of three streamflow 

characteristics. The results are relevant to both human and natural systems. We pointed out the 

dominant catchment properties driving hydrological processes and ultimately streamflow 

characteristics that deliver relevant water-based ecosystem services to humans and the natural 

environment across distinct regions. The relevance to water resource management is that our 

findings highlighted the most important biophysical properties governing, noting that maintaining 

this functioning (to some degree) is a worthwhile management goal to avoid hydrological 

alterations (Mackay et al., 2014). Particularly in Region 1, where there is a concern regarding 

overland flow generation and transport of sediments to the Great Barrier Reef (Thorburn et al., 

2013; Wilkinson et al., 2013) we show that catchments with lower Dryness Index, soil depth and 

hydraulic conductivity tend to produce more runoff and therefore could be prioritized for 

management strategies to reduce overland flow (Thorburn, 2013). Regions 2 and 3 include 

catchments playing important roles for urban water supply for cities like Brisbane (2.4 million 

people), Melbourne (5.2 million) and Canberra (0.4 million). We show that in subtropical 

catchments (R2) characteristics such as lower bulk density, higher soil depth and steeper relief are 

associated with higher baseflow contributions and lower flow intermittency. The same streamflow 
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characteristics in temperate catchments (R3) were explained by higher clay contents and lower 

minimum temperatures, which highlights that hydrological characteristics desired for the sake of 

water supply rely on specific catchment properties that vary between regions. From a management 

and policy perspective, catchments from different regions are expected to experience variable 

changes in streamflow characteristics as a result of climate change and vegetation modification. 

Also, given the successful extraction of unique factors governing key streamflow characteristics at 

these regions are already used for biodiversity conservation and ecology policies, this study shows 

that it is possible to co-opt water management at the same scale. Under the impacts of climate and 

land cover changes these regions are facing  (McAlpine et al., 2009), these controls on streamflow 

may shift at decadal timescales at variable rates (Figure 6), which is critical to understand for future 

water management planning. In addition, our findings suggest that catchment management 

decisions based on assumptions made from generalizations or extrapolations from other regions 

may result in misleading guidelines and inappropriate management actions for the targeted 

catchment (Figure 3.7). 

3.8 Conclusion 

This study shows that several selected drivers, such as the dryness index and the fraction of 

photosynthetically active radiation from vegetation, explained the variability of flow characteristics 

at both regional and continental scales with distinct importance in the models. Soil properties had a 

significant effect on streamflow characteristics especially at regional scales. The importance and 

weights of these soil properties did vary across regions, and depended on the streamflow 

characteristics. The regional scale soil effects may contribute to the disparity between the 

importance of climate and vegetation effects that we have found across regions. 

Our results showed that models used to estimate streamflow characteristics should not be 

generalised, as the explanatory variables and their importance changes from region to region and 

across scales. Hence, models calibrated in one region should not be used to inform decisions in 

other regions. Although useful to determine the primary controls in broader scales, studies 

undertaken at a continent scale may not be sensitive enough to capture regional controls and offer 

insights into regional-specific features driving variability of streamflow characteristics in 

biogeographically or hydrologically different regions. 

The differences captured by our models across regions and scales provide useful insights for 

understanding the effects of catchment biophysical properties on specific streamflow 

characteristics. In general, climate, vegetation and soil moisture played key roles in explaining 
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streamflow characteristics in all regions, while soil properties helped to explain regional variability 

of streamflow regimes. 

This study provides a methodological advance in using a combination of random forest and 

generalised additive models with beta distribution, for cross-regional and multi scale modelling in 

the field of ecohydrology. Our approach and its results have provided acceptable performances and 

cross-regional discrimination ability for determining the streamflow characteristics with catchment 

biophysical properties. 
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CHAPTER 4 

 

DISENTANGLING VEGETATION GAIN AND CLIMATE CONTRIBUTIONS TO LONG-

TERM STREAMFLOW CHANGES 

 

 

 

Interactions between climate and land cover changes drive catchment streamflow. Agriculture at 

Barossa valley, South Australia. Photo by Steve Ryan (source: flickr.com). 

 

 

 

 

 

This chapter is based on the following manuscript: 

Trancoso R., Larsen J.R., McVicar T.R., Phinn S., McAlpine C. Disentangling vegetation gain and 

climate contributions to long-term streamflow changes. To be submitted to Environmental 

Research Letters. 
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4.1 Abstract 

The water and energy balances of catchments are simultaneously affected by climate- induced 

change and land cover modification with significant implications for society and the environment. 

Disentangling these impacts is an important research priority to understanding current changes in 

streamflow and to inform water resource management. Here we explore the spatio-temporal 

dimension of water and energy balances of 193 catchments situated along a climatic gradient in 

eastern Australia by decomposing the climate- and land cover-induced changes in the long-term 

mean annual streamflow within the Budyko framework. We found that both climate-induced 

changes and land cover change are altering the water and energy balances of catchments in eastern 

Australia towards a streamflow reduction. We found a consistent displacement of catchments 

towards drier conditions. Although the observed streamflow reduction is driven by increasing 

aridity and evapotranspiration, the land cover-induced contribution was consistently higher in 

water-limited catchments while climatic-induced changes were higher in energy-limited 

catchments. We also found that the reduction in surface water is consistent with an increase in the 

photosynthetic activity of vegetation and a gain in biomass. Given the projected changes in future 

climate, the observed surface water reduction in eastern Australia may be more acute tan previously 

recognised, affecting societal water supply and environment, especially in regions already facing 

water scarcity. 

 

Keywords: Streamflow changes; Climate change; Land cover changes, Budyko decomposition; 

Vegetation gain. 
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4.2 Introduction 

Contemporary changes in climate and land surface conditions are impacting the hydrological cycle, 

and ultimately global water resources, via multiple pathways (Tomer and Schilling, 2009; Destouni 

et al., 2013; Wang et al., 2013; Jaramillo and Destouni, 2014; Tan and Gan, 2015). Disentangling 

the relative influence of how climate and anthropogenic land cover changes drive streamflow (Q) 

change is of critical importance for effective water resource adaptation and management. Climate 

changes impact Q largely through changes in precipitation (P), potential evapotranspiration (PET), 

and snowpack, while anthropogenic land cover change mainly impacts Q via changes in actual 

evapotranspiration (AET) rates (Tomer and Schilling, 2009). 

While progress has been made in understanding climate change  (Milly et al., 2005) and 

anthropogenic modification (Destouni et al., 2013; Sterling et al., 2013; Woodward et al., 2014) 

impacts on Q, much of the research focus has centred on anthropogenic modifications that decrease 

native vegetation cover (e.g., clearing), causing a decrease in AET, and hence when experiencing 

steady-state conditions an increase in Q (Andréassian, 2004; Brown et al., 2005). Irrigation and 

flow regulation are also commonly reported anthropogenic drivers of Q reduction (Jaramillo and 

Destouni, 2015). However, there is also increasing evidence that many parts of the world are 

experiencing vegetation changes that can increase AET and decrease Q (Liu et al., 2015), such as 

native vegetation recovery following deforestation (e.g., forest regrowth) (Beck et al., 2013a), 

reforestation (Feng et al., 2016) and CO2 fertilization, particularly in water limited regions 

(Donohue et al., 2013; Ukkola et al., 2016; Trancoso et al., 2017a). Vegetation recovery following 

anthropogenic modification is likely to increase AET and decrease Q, however the scale of this 

potential impact across water and energy balance gradients is poorly known (Bruijnzeel, 2004; van 

Dijk and Keenan, 2007; Liang et al., 2015; Li et al., 2017). One possible reason is that many climate 

and land cover changes commonly occur simultaneously, and are difficult to disentangle at the 

catchment scale, especially at larger and heterogeneous catchments (Li et al., 2017; Zhang et al., 

2017). Larger and heterogeneous catchments integrate multiple feedbacks happening 

simultaneously in a range of scales varying from leaves to landscapes, which are aggregated at 

catchment scale, compensating local effects (Wilk et al., 2001; Rodriguez et al., 2010).   

The east coast of Australia is a good example of a heterogeneous region experiencing simultaneous 

land cover and climatic changes. In terms of land cover, extensive clearing of native vegetation 

began, and has been largely ongoing, since the arrival of European settlers in the late 1700s (Walker 

et al., 1993; Butzer and Helgren, 2005). However, from 1970 onwards, native vegetation policies 

have been changing and clearing fluctuated accordingly (Bradshaw, 2012; Evans, 2016). While 
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clearing continues in some areas (e.g. Brigallow Belt and Fitzroy Basin), many other regions have 

ceased clearing and logging native vegetation in the 1990s, which was then followed by an 

expansion of timber plantations or natural regeneration. This is important because the recovery of 

vegetation within previously cleared landscapes is likely contributing to documented increases in 

vegetation greenness (Fensholt et al., 2012) and biomass (Liu et al., 2015), in addition to CO2 

fertilisation effects (Donohue et al., 2013; Ukkola et al., 2016; Trancoso et al., 2017a). In terms of 

climate for the east coast of Australia, there is strong evidence for P declines (Delworth and Zeng, 

2014) increased P variability (Goutam et al., 2017) and P extremes (Zhang et al., 2013; Bao et al., 

2017), increases in PET and AET (Zhang et al., 2016b) and hence reduction in Q (Ukkola et al., 

2016; Zhang et al., 2016a). However, despite these observed changes in land cover and climate, 

reliably quantifying their separate impacts on surface water resource availability remains a major 

research and management challenge. 

In order to better understand these impacts, this study examines changes to the long-term water and 

energy balances of 193 catchments along a large aridity and streamflow regimes gradient on the 

east coast of Australia. Using the long-term displacement trajectory of catchments (Wang and 

Hejazi, 2011) along the Budyko curve (Budyko, 1974), which can simultaneously distinguish 

climate (P and PET) from land cover induced changes to AET and Q (Wang and Hejazi, 2011), our 

objectives are to: 

(i) quantify the direction and magnitude of long-term shifts in the water and energy 

balances of catchments and how they scale across aridity and streamflow regimes 

gradients; 

(ii) evaluate the relative impact of climate and land use changes on long-term water and 

energy balances; and 

(iii) investigate whether these relative climate and land cover change impacts are linked to 

known land use patterns, as well as long-term changes in catchment photosynthetic 

activity and biomass. 

The chapter is structured in four sections: section 4.2 introduces the problem and aims; section 4.3 

describes the data and approach; section 4.4 presents the results and discussion and section 4.5 

draws the conclusion. The approaches related to each of our three objectives are described, 

respectively, in three subheadings of section 4.3.3 and, likewise, the results and discussion for each 

objective are reported in sections 4.4.1, 4.4.2 and 4.4.3, respectively. 
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4.3 Material and methods 

4.3.1 Study area and data 

The study was conducted along a continental climatic gradient of 193 catchments in eastern 

Australia spanning Tropical, Sub-tropical, Temperate and Mediterranean climates. The catchments 

are a subset of  those described in Trancoso et al. (2016), but with longer and more complete time 

series. We used daily Q time-series from 1971 to 2010 (40-years), aggregated to the annual scale. 

We only used catchments with at least 95% of valid daily Q in entire time-series, with any missing 

days were filled using linear interpolation. We mapped catchment boundaries using a 

hydrologically conditioned digital elevation model (Wilson et al., 2011) with a 30 m of spatial 

resolution. The catchment’s drainage areas range from to 13.1 km2 to 3299.3 km2, with latitude 

varying from 16.73 S to 41.64 S and aridity index ranging from 0.48 to 2.86. We used daily gridded 

P (Jones et al., 2009) and monthly gridded Priestly-Taylor PET time-series (Raupach et al., 2012), 

then aggregated to the annual scale, with approximately 5 km of spatial resolution. The catchment 

boundaries were used to extract average daily values for each catchment. We used a 50 m land use 

map that combines catchment scale land use data (CLUM) from all Australian states with the date 

of mapping ranging from 1997 to 2012 derived from Landsat-like satellite data and field 

information (ABARES, 2014). We also used biomass maps with spatial resolution of 0.25o from 

1993 and 2010 (Liu et al., 2015) and fraction of Photosynthetically Active radiation (fPAR) from 

1990 and 2010 with ~ 1 km of spatial resolution (Donohue et al., 2008). 

4.3.2 Approach 

Assessing long-term shifts in the water and energy balances  

Exploratory analysis of our dataset revealed that the average change point of all Q time-series is not 

significantly different (one sample t-test, p < 0.001) from 1990, the mid-point between 1971 and 

2010. Utilising this, our analysis compares how the earlier 20-year period (1971 – 1990; denoted T1 

herein) changed in relation to the later 20-year period (1991 – 2010; denoted T2 herein). We 

therefore, use the long-term annual average of T1 and T2. Over these long time scales, the 

variability in storage can be neglected and therefore the AET can be determined as the difference 

between P and Q.  

To allocate catchments within the Budyko framework and to examine the displacement from period 

T1 to T2, we computed the dryness index (PET/P) and evaporative index (AET/P) for each period. 

In this approach, following Tomer and Schilling (2009), horizontal displacement indicates change 

in atmospheric demand, whereas vertical displacement reveals change in catchment water use. Per 
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Liang et al. (2015), we calculated the changes of direction (θ) and magnitude (β) from T1 to T2. 

These analyses are presented across the aridity and streamflow regimes. The three aridity regimes 

follow McVicar et al. (2012b): (i) water-limited (PET/P > 1.2); (ii) equitant (0.8 > PET/P < 1.2 or 

catchments that are water-limited and energy-limited for parts of the year); and (iii) energy-limited 

(PET/P < 0.8). The streamflow regimes follow Trancoso et al. (2016) classification of Australia’s 

east coast catchments. 

Evaluating climate vs anthropogenic impacts in Budyko space 

Changes in the water and energy balances can be related using Choudhury (1999) formulation of 

the Budyko framework (see Figure A4.1 in Appendix 4), which tracks the ratio of mean annual 

AET to mean annual P (i.e., Evaporative Index) with the ratio of PET to P (i.e., Dryness Index) as a 

one parameter (n which is italic herein the distinguish it from the number of catchments represented 

by a non-italic lower case n herein) power-law function: 

 

𝐴𝐸𝑇 =  
𝑃×𝑃𝐸𝑇

(𝑃𝑛+𝑃𝐸𝑇𝑛)1 𝑛⁄  ,                                                        (1) 

Using this approach, catchments experiencing a changing climate will vary their water and energy 

balances by moving along the Budyko curve, while land cover modifications only impact the 

partitioning of P into Q and AET (the vertical axis). This follows the ‘decomposition’ method of 

Wang and Hejazi (2011). Since the land cover modifications only impact AET in the Budyko 

framework, this was isolated first as: 

 

∆𝑄𝐿 = 𝑃2(𝐴𝐸𝑇2` 𝑃2 −⁄ 𝐴𝐸𝑇2 𝑃2)⁄ ,                                                                                         (2) 

where ∆QL is the magnitude of the land cover-induced change on Q, AET2` is the actual 

evapotranspiration as predicted by the Budyko curve for T2 (using n values calibrated separately for 

each catchment), P2 is the precipitation in T2, and AET2 is the actual evapotranspiration in T2 

obtained by the difference between P and Q. The climate-induced change on Q is then obtained as 

the difference: 

∆𝑄𝐶 = ∆𝑄 −  ∆𝑄𝐿,                                                                                                                  (3) 

where ∆QC is the magnitude of the climate-induced change on Q and ∆Q is the total change in 

streamflow between the two periods: 

∆𝑄 = 𝑄2 − 𝑄1,                                                                                                                        (4) 



Trancoso, R. (2016) PhD Thesis, Chapter 4: Climate and Landscape Induced Changes on Streamflow 

Ecohydrology in Space and Time 84 

 

where Q1 and Q2 are the long-term mean annual streamflow for the first and second time periods 

respectively. 

Changes in water and energy balances of catchments with vegetation gain 

To assess whether the observed hydrological changes relate to vegetation gain we calculated the 

increment in fPAR and biomass from 1990 (end of T1) to 2010 (end of T2) and select s subset of 47 

catchments with ∆ fPAR  ≥ 0.1 and increasing biomass. We then used a land use map to determine 

the dominant land use categories of catchments. In addition, for each catchment, we have 

determined the change in calibrated n parameter across the two periods from Choudhury (1999) 

form of the Budyko framework (equation 1).  

4.4 Results and discussion 

4.4.1 Long-term shifts in the water and energy balances 

We found strong evidence that changes in P, PET and AET across the last four decades have 

impacted the water and energy balances of eastern Australian catchments towards a drier surface 

and atmosphere. All aridity and streamflow regimes have increased PET and reduced P, hence 

aridity has increased from T1 to T2 (Table 4.1 and Figure 4.1a). This is consistent with observed 

declining trends in P associated with a complementary increasing trends of PET (Gordon et al., 

2003; Timbal and Fawcett, 2012; Delworth and Zeng, 2014; Karoly, 2014; Traff et al., 2015; 

Sarojini et al., 2016). Most catchments also experienced an increase in AET, with the greatest 

increases occurring in energy-limited and equitant regions that have predominantly perennial 

streamflow regimes (Table 4.1 and Figure 4.1a). 
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Table 4.1. Human- and climate-induced long-term annual changes in aridity and hydrological 

regimes from period 1971-1990 to 1991-2010. 

Regime classes 
n 

 [ - ] 

∆P 

[mm] 

∆PET 

[mm] 

∆AET  

[mm] 

∆Q 

[mm] 

∆QL 

[mm] 

∆QC 

[mm] 

Aridity regime 

       Water-limited 85 -66.3 29.3 -7.0 -59.3 -27.2 -32.1 

Equitant 79 -110.5 31.2 33.5 -144.0 -63.9 -80.1 

Energy-Limited 29 -133.9 25.9 35.6 -169.5 -57.1 -112.4 

Hydrological regime        

Ephemeral highly erratic 14 -84.5 28.3 -41.1 -43.4 -15.4 -28.0 

Ephemeral erratic 54 -78.9 30.0 1.2 -80.1 -37.2 -42.9 

Perennial erratic 30 -102.5 29.2 35.3 -137.8 -75.0 -62.7 

Perennial regular 64 -109.3 30.8 23.5 -132.7 -51.4 -81.3 

Perennial highly regular 31 -87.7 27.2 33.2 -120.9 -39.4 -81.5 

All catchments 193 -95.5 29.6 14.7 -110.2 -46.4 -63.8 

 

The displacement tends to be smaller for lower aridity values because there is less of an option for 

the catchments to move into the energy-limited region, whereas as the aridity increases, so does the 

variability, and therefore the displacement becomes larger. While the displacements in the energy-

limited and equitant regions tend to be dominated by changes in the evaporative index, in the water-

limited-region, the increasing dryness index is clearly dominating. Interestingly, this in interpreted 

as wetter catchments are trending towards a drier land surface but a wetter atmosphere (less Q and 

more AET). On the other hand, drier catchments are trending towards drier surfaces and drier 

atmospheres (less Q and less AET). The consistent displacement towards higher atmospheric 

demands (i.e., higher dryness index) is gradually moving catchments into the adjacent aridity 

regions; i.e., catchments originally energy-limited are moving towards the equitant region, equitant 

catchments are moving towards the water-limited region and water-limited catchments are getting 

drier (Figure 4.1b). This provides important observational evidence clearly supporting non-

stationarity in the long-term hydrological cycle (Milly et al., 2008), with important implications for 

future water resource availability if these trends persist. With regards to the displacement by 

streamflow regimes, all regimes are moving towards the upper right direction (i.e., increasing both 

aridity and evaporative indices). However, there is also a clear gradation in the dominance of these 

components according to streamflow regime (i.e., runoff generation processes). In the perennial 

regular regime catchments, the increase in evaporative index is dominant. In contrast, for the 

ephemeral erratic regime catchments, the increase in the aridity index dominates the displacement 

(Figure 4.1c). 
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Figure 4.1 Displacement in the Budyko framework space from 1971-1990 compared to 1991-2010 

across 193 catchments. (a) Arrows display the displacement of individual catchments from the pre-

change (starting point) to post-change period (arrowhead). Colours refer to a spectrum of 

streamflow regimes. (b) Averaged displacement of the 30% central cluster of aridity regime: water-

limited (PET/P ≥ 1.2), equitant (0.8 > PET/P < 1.2) and energy-limited (PET/P ≤ 0.8) catchments. 

(c) Averaged displacement of the 30% central cluster of streamflow regime.  In (b) and (c) dashed 

ellipses represent the pre-change values while filled ellipses are the post-change values. Arrows 

denote the displacement of ellipses centroids. The legend shows the changes of direction (θ) and 

magnitude (β). The number of catchments in each strata used in (b) and (c) are reported in Table 

4.1. 
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4.4.2 Separating climate and anthropogenic induced changes to water and energy balances across 

aridity and streamflow regimes 

We found that 96% of the 193 catchments showed long-term annual average Q declines when 

comparing the 1971-1990 and 1991-2010 periods. The magnitude of change ranged from -545.6 

mm to +106.9 mm, with a mean of -110.4 mm  and a standard deviation of 106.6  (Figure 4.2a). 

Energy-limited and equitant catchments showed the greatest reduction in total Q compared to the 

water-limited catchments. Likewise, the greatest magnitude of decrease occurred in catchments 

with perennial Q. This is somewhat expected given these catchments originally had a greater annual 

Q to begin with (Figure 4.2a).Large variability was observed in the climate- and land cover-induced 

contributions to the magnitude of changes in total Q (Figure 4.2b). The energy-limited and equitant 

catchments with perennial regimes had major contributions in Q changes also because they have 

greater annual Q to begin with (Figure 4.2b). However, when these climate- and land cover induced 

changes are considered in relative terms, this reveals that water-limited and equitant catchments 

with ephemeral flow regimes are more sensitive (Figure 4.2c).   

The greatest relative reductions in Q occurred mostly in the central and southern sections of the east 

coast catchments whereas tropical (Queensland) and temperate (Tasmanian) catchments 

experienced relatively minor Q reductions (Figure 4.3a). When looking at the dominance of 

climate- (50.3%) or land cover induced changes (49.7%) in Q, some interesting patterns emerge 

including: (i) Q changes in the Australian Alps are mostly dominated by climate modifications; (ii) 

Q changes in Tasmanian catchments were mostly attributed to land cover impacts; (iii) a major 

cluster of land cover induced changes emerged in the north coast of New South Wales; and (iv) a 

few smaller clusters of climate-induced dominated changes emerged along the Queensland coast.  

The observed climate-induced Q reductions in the Snowy Mountains (see Figure 4.3b) are 

consistent with the evidence for decreasing snow cover (Hennessy et al., 2008; Green and 

Pickering, 2009), and its expected impact on Q as a result of climate change (Berghuijs et al., 

2014b; Reinfelds et al., 2014).  



Trancoso, R. (2016) PhD Thesis, Chapter 4: Climate and Landscape Induced Changes on Streamflow 

Ecohydrology in Space and Time 88 

 

 
Figure 4.2 Climate- and direct land cover-induced changes in the streamflow of 193 catchments by 

dryness and streamflow regimes. (a) Magnitude of change in streamflow (∆Q [mm]) in relation to 

prechange period and relative contribution of climate- (∆QC [%]) and land cover-induced (∆QL [%]) 

components. (b) Magnitude of climate- (∆QC [mm]) and land cover-induced (∆QL [mm]) 

components of streamflow change. (c) Relative change of climate- and land cover-induced 

components [%] in relation to the 1971-1990 period. Colours refer to the spectrum of streamflow 

regimes and symbols refer to the dryness regime. 

The spatial distribution of climate- and land cover-induced relative changes in Q also provides 

relevant insights into the possible cause of Q declines (Figure 4.3c and 4.3d). Both climate- and 

land cover-induced change are simulataneously contributing to reductions in Q. The climatic 

contribution component is consistent with evidence for both decreasing P trends (Delworth and 

Zeng, 2014; Sarojini et al., 2016) and increasing AET trends (Zhang et al., 2016b). 
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Figure 4.3 Spatial distribution of changes in the streamflow of 193 catchments: (a) change in 1991-2010 streamflow relative to the 1971-1990 pre-

change period (∆Q [%]); (b) dominance of either climatic- or land cover-induced impact; (c) climate-induced (∆QC [%]) and (d) land cover-induced 

(∆QL [%]) changes in streamflow relative to the 1971-1990 period. 
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Next, we examine the impact of climate- and land cover-induced Q changes relative to existing 

surface water resources and streamflow processes for the 193 catchments. We then group 

catchments according to aridity and streamflow regimes to assess the overall differences and 

sensitivity these regimes have regarding the relative role of climate and humans in Q changes. 

Figure 4.4a shows that water-limited catchments are most sensitive to both climate- and land cover-

induced modifications, and that this sensitivity decreases for equitant and energy-limited regimes. 

While energy-limited catchments on average are dominated by climate-induced changes, equitant 

and water limited catchments are dominated by landscape-induced changes (Figure 4.4a). These 

results are supported by previous studies showing the influence of changing aridity and other factors 

such as land cover on the water and energy balances (Gudmundsson et al., 2016), where water-

limited regions are more sensitive to all factors that influence Q (Ukkola et al., 2016). With regards 

to streamflow regimes, Figure 4.4b shows that the contributing pattern of climate- and land cover-

induced modifications is not as clear. Yet, in ephemeral highly erratic regimes the climate-induced 

contribution was far greater than the land cover-induced contribution when compared to the other 

regimes. In ephemeral and perennial erratic regimes the land cover-induced contribution was 

slightly greater than the climate contribution. Perennial highly regular regimes had smaller 

contributions of both climate- and land cover-induced modifications compared to the other regimes, 

and these contributions are substantially increased in perennial regular regimes (Figure 4.4b). 

Considering the relationship between the water and energy balances and the streamflow generation 

processes (Trancoso et al., 2016), the climate and land cover-induced impacts on water and energy 

balances can implicate in changes in essential hydrological processes for society and environment 

(Bunn and Arthington, 2002; Lytle and Poff, 2004),  
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Figure 4.4 Relative climate- and land cover-induced contribution on streamflow changes in relation 

to pre-change period. Changes are compared among (a) water-limited (PET/P ≥ 1.2), equitant (0.8 > 

PET/P < 1.2) and energy-limited (PET/P ≤ 0.8) catchments and (b) among streamflow regimes (see 

Trancoso et al (2016) for a full description of streamflow regimes). Box plot statistics include the 

median (internal thick vertical line), interquartile range (IQR - denoted by the box), and horizontal 

lines (or whiskers) are calculated as ±1.58 × IQR√n. The p-values beside the boxes refer to the 

probability that the mean impacts are not different from zero using a one sample t-test. 

4.4.3 Changes in water and energy balances of catchments with vegetation gain 

Next, we ask whether the observed reductions in Q are associated with vegetation gain. We then 

determine the changes in fPAR and biomass that took place from the end of T1 (1990) to the end of 

T2 (2010) and select 47 catchments with ∆ fPAR  ≥ 0.1 and increasing biomass and group them by 

dominant land use class (Table 4.2). We find that fPAR and biomass have increased in all land use 

categories from 1990 to 2010. These increases are consistent with observed changes in the 

Evaporative Index and in the n parameter from the Choudhury (1999) Budyko type model, that 

accounts for catchment properties and partition of P into Q and AET (Table 4.2). This is strong 

evidence that the increasing AET in catchments may relate to changes in vegetation functioning and 

water-use efficiency.  
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Table 4.2. Hydrological and vegetation changes for the catchments with ∆ fPAR  ≥ 0.1 and 

increasing biomass per dominant land use. Vegetation metrics represent change in the 2010 signal 

(end of T2) relative to the 1990 signal (end of T1), expressed as a percentage of the 1990 signal. 

Dominant land use 

n 

[ - ] 

∆ fPAR 

[%] 

∆ biomass 

[%] 

∆ n 

[ - ] 

∆ PET/P 

[%] 

∆ AET/P 

[%] 

∆ QL 

[%] 

∆ QC 

[%] 

Natural vegetation 23 22.39 7.29 0.34 17.39 19.71 -16.44 -25.19 

Forestry 7 18.11 5.93 0.56 8.98 13.70 -17.60 -12.84 

Grazing 10 19.86 16.81 0.38 11.57 17.29 -11.79 -19.22 

Grazing and forestry 7 28.84 11.03 0.49 6.79 13.47 -16.87 -10.77 

Total 47 22.18 9.74 0.38 13.19 16.92 -13.64 -19.94 

 

Catchments dominated by grazing and forestry experienced major changes in fPAR, biomass and 

the n parameter (Table 4.2). Considering the 96 catchments with dominant land cover-induced 

impact (i.e., the red triangles in Figure 4.3b), fPAR increased in 83.5% and biomass increased in 

88.7% between the two periods. Interestingly, even catchments with large extents of native 

vegetation cover have experienced significant land cover-induced changes in Q, consistent with 

increases in the n parameter as well as in fPAR and biomass (Liu et al., 2016). The overall 

consistency between increasing fPAR, biomass gain, increasing AET and n parameter, and 

decreasing Q regardless the land use aligns with upward trends in vegetation greenness (Fensholt et 

al., 2012; Liu et al., 2015) that can be attributed to several potential factors: reforestation, natural 

regrowth (Arnold et al., 2012) and changes in vegetation feedbacks due to elevated atmospheric 

CO2 (Donohue et al., 2013; Lu et al., 2016; Ukkola et al., 2016; Yang et al., 2016b). Despite the 

substantial impact of land cover-induced changes on Q, the climate-induced contribution was 

generally greater across all land use types. 

The observed Q reductions due to land cover  changes are also supported by an increase in fPAR 

and vegetation biomass across the majority of Australian east coast (Liu et al., 2015). Increasing 

biomass via either reforestation or natural regrowth is likely to lead to a reduction in Q 

(Andréassian, 2004; Bruijnzeel, 2004; Brown et al., 2005; van Dijk and Keenan, 2007; Liang et al., 

2015). The major cluster of land cover-induced changes in the northern coast of New South Wales 

is consistent with the Australian hotspot of biomass gain, where an increment of up to 2 Mg C ha-1 

year-1 has been reported (Liu et al., 2015), thus linking increases in AET with vegetation regrowth 

following anthropogenic land cover changes.   

Interestingly, the small number of catchments that had increased Q are located in the dry tropics or 

in the alpine region (Figure 4.3a). They also had the largest relative contribution of land cover 

driven impacts (Figure 4.2a and 4.3b). The observed increases in the dry tropics are within the 

Brigalow region (Evans, 2016), which experienced extensive clearing of open woodland / savannah 
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for agriculture and grazing during the 1980s (in the pre-change period). Such land-cover 

modifications increase cathment runoff (Cowie et al., 2007; Thornton et al., 2007; Peña-Arancibia 

et al., 2012). The incresing Q observed in the catchments adjacent to the Australian Capital 

Territory, for example, is consistent with a loss in biomass across this region between 1993 and 

2012 (Liu et al., 2015). Likewise, southern catchments with increasing Q due to land cover changes 

(Figure 4.3d) also experienced a loss in vegetation biomass up to -2 Mg C ha-1 year-1 (Liu et al., 

2015). Increasing Q as a result of decreasing biomass and AET is a well-known catchment response 

consistent with field experiments worldwide (Brown et al., 2005; Andréassian et al., 2012). 

However, the climate component dominated their hydrological response (Figure 4.3b and 4.3c), 

resulting in an overall decline in Q. 

Where deforestation is the major land cover change, AET is expected to increase. However, the 

hydrological impact of vegetation gain has received comparatively little attention (Andréassian, 

2004; Li et al., 2017; Zhang et al., 2017). Exceptions apply in regions that experienced extensive 

reforestation (Xu et al., 2014; Liang et al., 2015; Feng et al., 2016; Ning et al., 2016). Although 

many regions globally have experienced considerable historical deforestation, a global reversal in 

forest loss has been reported  (Liu et al., 2015) and many parts of the world, especially water-

limited, are getting greener (Fensholt et al., 2012).  This is consistent with a global increase in AET 

during the last three decades. Evidences have also pointed out that irrigation and streamflow 

regulation not only increased AET, but also reduced local runoff variability over the last century 

(Jaramillo and Destouni, 2015). Our results show that a recent increase in fPAR and biomass due to 

vegetation regrowth (Bruijnzeel, 2004; Beck et al., 2013a), reforestation (Xu et al., 2014) and CO2 

fertilization (Donohue et al., 2013; Ukkola et al., 2016; Trancoso et al., 2017a), in addition to 

climate changes, is a likely contributor to the overall increasing AET and decreasing Q along the 

east coast of Australia. 
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4.5 Conclusion 

The research findings presented here show that over the last four decades, catchments situated along 

the Australian east coast experienced significant changes in streamflow as a result of both climate 

change and direct land cover-induced modifications. These changes altered the water and energy 

balances of catchments towards a drier condition (higher aridity) with higher AET and therefore 

less Q. This displacement within the Budyko framework space is consistent across all catchments 

regardless of the streamflow regimes, aridity regimes and land-use characteristics. We have also 

found that the reduction in Q seems to be associated with an increase in the photosynthetic activity 

of vegetation and a gain in biomass. Overall the contribution of climate and direct-human induced 

changes in Q changes was similar, despite the large spatial variability in the dominance of these 

drivers. However, water-limited catchments experienced slightly more direct land cover-induced 

changes than climatic changes on Q changes, whereas in equitant and energy-limited catchments the 

contribution of climate was slightly greater than land cover-induced changes. The consistent 

climatic shift towards a higher atmospheric demand (i.e., higher aridity), catchments within energy-

limited region are gradually moving to the equitant region, equitant catchments are moving to 

water-limited region and water-limited catchments are becoming drier. We also show that the land 

cover-induced reductions in Q are consistent with vegetation gain (i.e., increasing photosynthesis 

activity and biomass). These observed changes suggest a reduction in surface water availability and 

have important implications for environmental and societal water supply needs.  

.  
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CHAPTER 5 

 

CO2 – VEGETATION FEEDBACKS AND OTHER CLIMATE CHANGES IMPLICATED 

IN REDUCING BASEFLOW  

 

 

 

Vegetation feedbacks with atmosphere determine the catchment freshwater budget. Mamu 

rainforest, Wooroonooran National Park, Queensland. Photo by Angus Mckenzie (source: 

flickr.com). 
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and other climate changes implicated in reducing baseflow. Geophysical Research Letters, 44(5): 
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5.1 Abstract 

Changes in the hydrological cycle have a significant impact in water-limited environments. 

Globally, some of these regions are experiencing declining precipitation trends yet are 

simultaneously becoming greener, partly due to vegetation feedbacks associated with increasing 

atmospheric CO2 concentrations. Reduced precipitation together with increasing rates of actual 

evapotranspiration diminishes streamflow, especially baseflow, a critical freshwater dry-season 

resource. Here we assess recent changes in baseflow in Australia from 1981-2013 and 1950-2013 

and separate the contribution of precipitation, potential evapotranspiration and other factors on 

baseflow trends. Our findings reveal that these other factors influencing the baseflow trends are best 

explained by an increase in photosynthetic activity. These results provide the first robust 

observational evidence that increasing atmospheric CO2, and its associated vegetation feedbacks are 

reducing baseflow in addition to other climatic impacts. These findings have broad implications for 

water resource management, especially in the world’s water-limited regions. 

 

Keywords: Elevated atmospheric CO2; CO2 fertilization; Baseflow; Vegetation feedbacks; Climate 

change; Trends. 
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5.2 Introduction 

Human activity and climatic change are altering the terrestrial water cycle (Sterling et al., 2013). 

Shifts in precipitation (P) (Chou et al., 2013; Greve et al., 2014), atmospheric demand (potential 

evapotranspiration - PET) (McVicar et al., 2012a), evaporative fluxes from the land surface (actual 

evapotranspiration - AET) (Zhang et al., 2016b), and streamflow (Q) (Wang and Hejazi, 2011; 

Ukkola et al., 2016; Zhang et al., 2016a) have all been detected (Collins et al., 2013). However, 

attribution to anthropogenic causes (Sarojini et al., 2016) such as land-cover change (Sterling et al., 

2013), increasing concentrations of greenhouse gases (Gedney et al., 2006; Delworth and Zeng, 

2014) and other climate changes (Karoly, 2014) as opposed to long-term natural variability remains 

challenging. These impacts are especially acute within water-limited regions (PET > P), where 

recent global increases in vegetation greenness are attributed to ‘fertilization’ through elevated 

atmospheric CO2 concentrations (eCO2) (Donohue et al., 2013; Liu et al., 2015). 

In water-limited regions, the implications of the vegetation feedbacks for the hydrological cycle are 

potentially profound, as the eCO2-driven enhancement of catchment leaf area (Donohue et al., 

2013) and rooting depth (Iversen, 2010; Bond and Midgley, 2012) potentially offsets the leaf-level 

reduction of water-use due to decreasing stomatal conductance (Bonan, 2008; Donohue et al., 

2017). This potentially leads to increasing rates of AET (when water is available), which may in 

turn reduces streamflow (Ukkola et al., 2016), especially of the baseflow (Qb or ‘slow-flow’) 

component. Adding to these vegetation impacts on the hydrological cycle are concurrent changes to 

climate drivers (P and PET) that primarily govern the magnitude and direction of streamflow 

changes (Piao et al., 2007). How these changes operate in combination to impact streamflow is a 

critical issue to resolve given 35.5% of the world’s population live in water-limited environments 

and rely on this scarce resource (Gilbert, 2011). 

Here, we focus on disentangling climate forcing and eCO2-driven vegetation feedback impacts on 

Qb, for two reasons: (i) streamflow is highly influenced by P variability, thus any impacts due to 

changes in vegetation functioning are best observed through the Qb lens as this component arguably 

exhibits greater sensitivity to catchment characteristics, such as vegetation cover, not hydroclimatic 

changes; and (ii) this is the portion of streamflow derived from groundwater storage and other 

delayed sources (Smakhtin, 2001) which temporally dominates streamflow generated by 

catchments. Thus Qb plays a pivotal role in the water supply to agriculture, urban areas and 

ecosystems, especially during periods of low or no P. Furthermore, there is currently a poor 

understanding of how shifts in Qb sources – e.g. groundwater and snow melt (Taylor et al., 2013; 
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Berghuijs et al., 2014b) and drivers – e.g. P, PET and eCO2 (Piao et al., 2007) impact this critical 

resource. 

To address this issue, we first separate Qb from total streamflow and assess trends in Qb, P, and 

PET from 1981-2013 in 315 catchments located across a large climatic gradient in eastern 

Australia. We next separate the relative contribution of climatic drivers (P and PET) from all other 

potential factors. We also used a subset of 44 catchments with longer time-series availability (1950-

2013) to analyse the sensitivity of trend slopes of Qb, P and PET to the length of time-series and 

assess the robustness of the results with a shorter Qb time-series (see Materials and Methods). 

5.3 Methods 

5.3.1 Study area and data 

The study focused on eastern Australia. We used two datasets of catchments according to the 

available length of streamflow (Q) time-series. The first dataset comprised 315 catchments with Q 

data from 1981 to 2013 (33 years) (56% are water-limited, i.e. PET/P ≥ 1.2; 36% are equitant 

(McVicar et al., 2012b), i.e. 1.2 < PET/P > 0.8; and 11% are energy-limited, i.e. PET/P ≤ 0.8). The 

second dataset had a longer Q time-series (1950-2013; 64 years) containing fewer (44) catchments 

(50% water-limited; 39% equitant; and 11% energy-limited). All catchments are unregulated and 

not nested. They are a subset of the Trancoso et al. (2016) dataset used for catchment Q regime 

classification, and range from wet-dry tropical savanna woodland (far north Queensland) to cold-

temperate rainforest (Tasmania). The catchments were primarily located in headwaters 

(mountainous forested areas) rather than lowland agricultural landscapes and had experienced little 

human-induced land-use change in the past 65 years. The 1981-2013 series catchment areas range 

from 6.8 to 3,299 km2 (total area is 119,060 km2), latitude 11.36 - 43.08o S, and the dryness index 

(PET/P) ranges from 0.43 to 2.90. The 1950-2013 series catchment areas range from 16.1 to 

1,557km2 (total area is 18,826 km2), latitude 16.73 - 41.64o S, and the dryness index ranges from 

0.48 to 2.10. These range of dryness index values encompass those where catchment rooting depth 

is maximum(Yang et al., 2016a) and so presents an opportunity where eCO2-driven vegetation 

feedbacks, including increased rooting depths (Iversen, 2010; Bond and Midgley, 2012), 

influencing the Qb response are maximized. 

We only used catchments with at least 95% valid daily Q in each time-series. Data were obtained 

from the Queensland, New South Wales, Victorian and Tasmanian state-government water 

monitoring agencies. We used daily gridded precipitation (Jones et al., 2009) and monthly Priestley-

Taylor PET (Raupach et al., 2012) time-series with spatial resolution of ~5 km for the same period 
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of Q data availability. Time-series of monthly fraction of Photosynthetically Active Radiation 

(fPAR) (Donohue et al., 2008) from 1981 to 2013 with ~ 1 km of spatial resolution were also used. 

We used catchment boundaries to extract the average values of these gridded datasets per catchment 

or the catchment centroid to extract the gridded value when the catchment area was smaller than the 

grid-size. We also compared our results with 1981-2013 annual atmospheric CO2 concentrations 

from Cape Grim Baseline Air Pollution Station (Tasmania). 

5.3.2 Approach 

We separated baseflow (Qb) from Q by applying the Lyne and Hollick (1979) algorithm to daily 

time-series. We then created annual time-series of Qb, P, PET and fPAR by summing the first three 

and averaging the last. Only years with complete records are used. Next, we used the Mann-Kendall 

test (Helsel and Hirsch, 2002; Hamed, 2008) to detect monotonic trends in Qb, P and PET. The 

magnitude of the trend was estimated using Kendall’s Tau statistic (Sen, 1968; Helsel and Hirsch, 

2002). Trends are quantified as mm/year/year (i.e. mm.a-2). We used the second smaller dataset 

with longer Q (1950–2013) to assess the sensitivity of Qb, P and PET trend slope estimation to the 

time-series length, using roughly 5-year intervals. 

To interpret the observed Qb trends we used : (i) the Budyko framework (Budyko, 1974); (ii) 

temporal phase offsets between the month of P maxima and month of PET maxima averaged per-

catchment across the entire time-series (Donohue et al., 2010b); and (iii) streamflow regimes as 

developed by Trancoso et al. (2016). Next, we estimated the relative contributions of P, PET and 

the non-explained fraction (i.e. other factors) to Qb trends. We considered the sum of these 

contributions to be the total trend: Qb(trend)  =  Qb[P](trend) + Qb[PET](trend)  +

 Other factors(trend), with the other factors trend calculated as the residual. 

Given that the relation between Qb and P and Qb and PET is often non-linear, local regressions 

(LOESS) were used to detrend Qb and remove the contribution of P and PET to the Qb time-series 

(Qbr). This was performed by sequentially taking the regression residuals, first between Qb and P, 

and then between Qb and PET, and finally multiplying the residuals by the long-term mean Qb. We 

then repeated the trend analysis on the Qbr time-series to determine: (i) to what extent climate 

factors (P and PET) contributed to the original Qb trends; and (ii) the relative contribution of the 

remaining trend (other factors) not explained by climate factors in the original Qb time-series. 

To examine whether the other factors contributing to the trends in Qbr can be explained by 

vegetation feedbacks associated with increasing CO2 concentrations, we first obtained time-series of 

vegetation greenness (fPAR) detrended for climatic (P and PET) effects (fPARr), using the same 
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approach described above for Qb. We then assessed whether the remaining Qbr trends were 

consistent with fPARr trends, and in addition, whether the remaining fPARr trends were consistent 

with trends in atmospheric CO2 concentrations. We also used a one sample t-test to infer whether 

mean climate and the eCO2-driven vegetation feedback impacts on Qb trends were significantly 

different from zero across the different aridity and streamflow regime categories (Trancoso et al., 

2016). 

5.4 Results and discussion 

In terms of Qb, 75% of catchments are declining for 1981-2013, with the majority of these declines 

(78%) up to -1 mm.a-2 (Figure 5.1a), yet only 56% of catchments experience decreasing P and of 

these 78% are decreasing by more than -1 mm.a-2 (Figure 5.1b). PET trends are almost uniformly 

(96%) increasing, and with 88% of these catchments increasing by > 0.5 mm.a-2 (Figure 5.1c). 

Similar results were found for 1950–2013 (Figure A5.1a-c in Appendix 5). While these trends are 

somewhat sensitive to the timescale over which they are determined and methods used to calculate 

the variables of interest, our sensitivity analysis suggests these trends are generally robust (Figures 

A5.2 and A5.3 in Appendix 5). 

Interestingly, the magnitude of the Qb trend increases with decreasing aridity (PET/P), and 

experiences the greatest magnitude within equitant catchments (i.e., where conditions switch 

between being energy- and water-limited seasonally (McVicar et al., 2012b) or are exclusively 

energy-limited (Figure 5.1d). However, these larger magnitudes (i.e. > 5 mm.a-2) are mostly 

increasing trends as opposed to the majority (75%) of declining trends and therefore are likely to be 

driven by distinct mechanisms given the large variability of streamflow drivers across the study area 

(Trancoso et al., 2017b). 

It is also important to highlight that despite the largest absolute declines in Qb occurring in equitant 

and energy-limited environments (Figure 5.1d), the larger proportion of available Qb in these 

catchments results in a lower sensitivity to change in comparison to water-limited environments 

which have lower Qb at the beginning of the study period. The generation and contribution of Qb to 

long-term average streamflow is already known to relate well to aridity spatially (Trancoso et al., 

2016), yet represents an important finding that the combined impact of changing drivers on Qb also 

follows this spectrum in water- and energy-availability over time (Figure 5.1e and Figure A5.4 in 

Appendix 5). We also found no relationship between the magnitude of the trends in Qb, P and PET 

with seasonality (month of P maximum – month of PET maximum) or streamflow regime (Figure 

A5.5 in Appendix 5).  
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Figure 5.1 Trends in (a) baseflow (Qb), (b) precipitation (P) and (c) potential evapotranspiration 

(PET) for 1981–2013. (d) Relationship between absolute magnitude of Qb trends and the dryness 

index (PET/P) for 1981-2013 (n = 315 catchments). Upward triangles have increasing trends and 

downward triangles decreasing trends. Symbol colours refer to the hydrological regime derived 

from eight streamflow indices (Trancoso et al., 2016). The solid black line shows the average 

increase in Qb trends with decreasing dryness for all catchments and the grey shaded area is the 

95% confidence interval. (e) 1981-2013 Qb trends in the context of the Budyko framework; solid 

grey line is the Budyko (1974) curve. Dashed lines in parts (d) and (e) define the water-limited, 

equitant and energy-limited regions. 

 

Within the ternary space defined by the relative contributions of P, PET and other factors 

influencing the 1981-2013 Qb trends (Figure 5.2), the region with the highest density of catchments 

had 30-50% P and 20-40% PET contributions to observed changes in Qb. Importantly, this 

demonstrates that 25-40% of changing Qb must be explained by other factors, with 67% of 

catchments retaining a declining Qb trend after climatic effects are accounted for. The longer time-

series (1950-2013) also supports these findings with 75% of catchments exhibiting declining Qb 
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trends with 10-25% of Qb changes attributed to other factors (Figure A5.6 in Appendix 5). These 

additional factors potentially include: (i) catchment storage changes; (ii) changes in seasonality of 

climate drivers; (iii) streamflow changes due to land-cover changes, and (iv) eCO2-driven 

vegetation feedbacks (denoted eCO2–Veg herein). Given the persistence of the long-term (64 years) 

declines in Qb (Figure A5.7a-b in Appendix 5), they are unlikely to be maintained exclusively by 

catchment storage changes, which generally balance or become very small over long time scales 

(Budyko, 1974). We did not find any relation between the Qb trend with climate effects removed 

and the seasonal offset in water- and energy-availability (Figure A5.8 in Appendix 5). Land-cover 

changes are also known to cause similar feedbacks (Sterling et al., 2013), however we used only 

headwater catchments with high native vegetation cover and little or no contemporary land-cover 

change (Trancoso et al., 2016). Thus, after discounting the first three other factors, we next examine 

whether the remaining Qbr trends (i.e., Qb trends after climate effects are removed) can be 

attributed to eCO2–Veg. 
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Figure 5.2 Spatial distribution of the relative contributions of (a) P, (b) PET and (c) other factors on 

Qb trends with histograms showing the relative distribution of each component for 1981-2013. (d) 
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Ternary diagram integrating the relative contributions of P, PET and other factors on Qb trends. 

Catchment density refers to the relative frequency of catchments within the ternary space. 

To do this, we first assess 1981-2013 fPAR trends (Donohue et al., 2008), which reveals 91.1% of 

the 315 catchments exhibited an increasing fPAR trend. When climate effects on fPAR trends were 

removed (i.e. fPARr, Figure A5.9b in Appendix 5), 90.8% of the 315 catchments retained 

increasing fPARr trends. We propose this increase in fPARr is best explained by a continuously 

increasing atmospheric CO2 concentration resulting in increased leaf-level water-use efficiency 

which invokes an increasing Leaf Area Index (LAI) that is most noticeable in water-limited and 

equitant environments (Donohue et al., 2013; Lu et al., 2016). Other limiting factors such as light 

and nutrients can be discounted as they are unlikely to maintain persistent trends, nor apply 

uniformly to almost all catchments. If eCO2 is the main driver of fPARr trends (Lu et al., 2016) 

across almost all studied catchments, then this implies sub-annual AET rates have also increased 

(when water is available) through some combination of landscape-level photosynthetic 

enhancement (Donohue et al., 2013) and/or deeper roots at the plant level (Iversen, 2010; Bond and 

Midgley, 2012) changing the subsurface distribution of water in a catchment and hence the 

generation of Q. Both these processes seemingly offset the reduction in leaf-level stomatal 

conductance (Bonan, 2008; Donohue et al., 2017), ultimately contributing to Qb declining. 

The extent of this eCO2–Veg hydrological impact can be detected in 59.3% of the 315 catchments, 

as these experience declining Qbr trends while simultaneously displaying increasing fPARr trends 

(Figure A5.9 in Appendix 5). Focusing on the 210 catchments with declining Qbr trends and 

binning the relative contribution of the Qbr trends to the overall Qb trends into deciles, reveals a 

linear relationship with fPARr trends (Figure 5.3a), demonstrating that a robust mechanistic link 

exists between eCO2–Veg feedbacks and declining Qbr. Although changes in both fPARr and Qbr 

are roughly balanced over the last 30 years (Figure 5.3b), during the last decade changes in fPARr 

appear to be consistently outpacing changes in Qbr. This raises the important question as to whether 

Qbr changes will also rise in response, or whether there is a limit to the influence of fPARr changes 

on Qbr under eCO2. Nonetheless, the overall increase in fPARr across all catchments is consistent 

with the trend in atmospheric CO2 concentrations observed at Cape Grim, Tasmania (Figure 5.3c 

and Figure A5.10 in Appendix 5), which is further observational evidence to support the attribution 

of increasing fPARr to eCO2-Veg feedbacks. 
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Figure 5.3 Impact of eCO2–Veg on Qb. (a) Relationship between the Qbr trends relative to the total 

Qb trends and fPARr trends for the 210 catchments with declining Qbr. Means (black dots) and 

standard deviations (vertical bars) are shown for each group of binned catchments. The linear trend 

line (y = 0.0002x + 0.0015, R2 = 0.75 and p<0.001) is shown in red. (b) Ratio of the annual relative 

change in Qbr to the annual relative change in fPARr averaged across all 315 catchments (grey 

bars). Red line is the 3-year moving averages for all 315 catchments and red shaded area is the 

envelope composed by the same analysis for the five hydrological regimes introduced in Figure 

5.1d. (c) Annual time-series of fPARr averaged across all 315 catchments and Cape Grim 

atmospheric CO2 concentrations. Red dotted line is the 3-year moving averages for fPARr, and the 

black line is the 2-year moving averages in atmospheric CO2 concentrations (Spearman correlation 

coefficient (rs) = 0.643; p < 0.001). See Figure A5.10 in Appendix 5 for the linear relationship 

between atmospheric CO2 concentrations and fPAR across the aridity spectrum. 
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Having systematically accounted for all potential factors influencing Qb, we are confident the 

identified relationship between Qbr and fPARr is causal rather than only correlative. Next we 

evaluate the relative impacts of climate effects (P and PET) and eCO2–Veg feedbacks separately on 

Qb. We use the 1981-2013 catchment average Qb as a benchmark to evaluate these impacts, and 

find firstly a clear association with aridity, namely minor impacts in energy-limited environments 

(PET/P ≤ 0.8), increasing climatic impacts which reduce Qb in equitant environments (1.2 < PET/P 

> 0.8), and increasing climate effects and eCO2–Veg feedbacks which combine to cause the largest 

Qb impact in water-limited environments (PET/P ≥ 1.2) (Figure 5.4a). Secondly, these impacts can 

be separated by hydrological flow regime, which shows catchments with highly stable and perennial 

streamflow receive little or even slightly positive climate and eCO2–Veg impacts that increase Qb 

(Figure 5.4b). Given these catchments are almost exclusively energy-limited, this positive feedback 

with eCO2–Veg likely reflects the conditions under which increased leaf-level water use efficiency 

also increases Qb at the catchment scale. The 1950-2013 analysis supports these findings with an 

overall similar pattern, albeit with lower contributions and variability from both climate and eCO2–-

Veg (Figure A5.11 in Appendix 5). The remaining streamflow regimes increase in flow variability 

and transition from perennial to ephemeral conditions, and are almost exclusively declining in Qb 

due to the increasing impact of both climate and eCO2–Veg feedbacks, with the greatest impact on 

relative Qb occurring within perennial but variable flow regimes. 

Although climatic changes have the greatest impact on Qb, which is consistent with previous work 

by (Piao et al., 2007), this study reveals that eCO2–Veg feedbacks also play a critical role as water 

limitation and baseflow variability increase. This corroborates previous findings that catchment 

evapotranspiration is increasing and depleting total streamflow, especially in sub-humid and semi-

arid areas (Ukkola et al., 2016). However, our work also highlights that the combined impacts of 

climate change and eCO2–Veg feedbacks on surface water resources may be better observed 

through baseflow, since no significant actual evapotranspiration impacts were found for arid 

(Ukkola et al., 2016) or tropical catchments (Yang et al., 2016b) using streamflow. It is also worth 

noting that very dry (i.e. arid) catchments are underrepresented in this, and most previous 

comparative studies, constraining our understanding of the hydrological response of these regions. 

We also have not directly accounted for potential feedbacks between eCO2 and P and PET 

(Delworth and Zeng, 2014; Karoly, 2014; Roderick et al., 2015), and our use of a radiation-based 

method for PET (Priestley–Taylor) may not represent the entire atmospheric demand process 

(McVicar et al., 2012a). However, in the absence of reliable long-term wind data we are not able to 

use a more physically-based form of PET (McVicar et al., 2012a). In this context, we note that our 

increasing PET trends contrasts with declining pan evaporation trends (Roderick and Farquhar, 
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2002; McVicar et al., 2012a). Therefore, assuming complementarity, any overestimate in the 

contribution of PET to Qb trends would result in an underestimate of the eCO2–Veg feedbacks 

considered here. 

    

Figure 5.4 Impact of eCO2–Veg feedbacks and climate (P + PET) on Qb trends relative to the long-

term mean annual Qb. Impacts are compared across: (a) water-limited (PET/P ≥ 1.2), equitant (0.8 

> PET/P < 1.2) and energy-limited (PET/P ≤ 0.8) catchments, and (b) the five hydrological flow 

regimes (Trancoso et al., 2016). Box plot statistics include the median (internal vertical line), 

interquartile range (IQR - denoted by the box), and horizontal lines (or whiskers) are calculated as 

±1.58 × IQR√n. The p-values beside the boxes refer to the probability that the mean impacts are 

not different from zero using a one sample t-test. 

 

Current climate projections for eastern Australia suggest lower supply of P, higher PET demand, 

and therefore lower Qb (Collins et al., 2013). However, they do not account for eCO2–Veg 

feedbacks that need to be acknowledged to ensure sustainable water resource management, 

especially during future droughts. This study used observational data of the hydrological cycle over 

~30- and ~60-year periods to demonstrate that such climate impacts are indeed occurring. However, 

these impacts are also compounded by eCO2–Veg feedbacks, and are highly differentiated 

according to water and energy availability (aridity) as well as streamflow generation processes. 

Using a data-driven approach applied over a broad climatic gradient, we provide direct evidence 

demonstrating how long-term eCO2–Veg feedbacks impact Qb. This is important because such 

evidence is difficult to establish using climate projections coupled to land surface models that 

generally do not capture the ecohydrological feedbacks described here (Collins et al., 2013; Swann 

et al., 2016; Knauer et al., 2017). Results from such models typically yield additional soil or surface 

water through increased leaf-level water use efficiency, which recent modelling studies suggest 

could reduce drought severity (Swann et al., 2016) and increase runoff (Knauer et al., 2017), a 
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result generally not supported by our, and others (Ukkola et al., 2016; Yang et al., 2016b), 

observational evidence. Importantly, our findings also highlight the vulnerability of streamflow in 

water-limited environments to the combined influence of changing climate drivers and CO2 

fertilization of vegetation, and that these reductions of available water resources need to be 

considered more thoughtfully in water planning and allocation for both humans and ecosystems. 

This impact may also extend to the availability of other hydrologically linked water resources such 

as groundwater (Taylor et al., 2013), which can dominate the supply of Qb, with any reduction in 

recharge further compounding the uncertainty surrounding future water availability. 

5.5 Conclusion 

We separated the impact of changing climate forcings (precipitation and potential 

evapotranspiration) and CO2-driven vegetation feedbacks on catchment baseflow – the portion of 

streamflow derived from groundwater storage and other delayed sources that plays a critical role in 

water supply to agriculture, urban areas and ecosystems. We show that the widespread reductions in 

baseflow not associated with climate forcings are best explained by increasing photosynthetic 

activity due to increased atmospheric CO2, offsetting leaf-level increases in water use efficiency. 

This observational evidence emphasises the importance of considering the combined impacts of 

changing climate drivers and CO2-driven vegetation feedbacks on water resources, especially in 

regions already experiencing water scarcity (i.e., water-limited) where the relative impacts are 

largest. 
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CHAPTER 6 

 

SUMMARY AND CONCLUSION 

 

 

 

How do we maintain the essential ecohydrological processes to ensure freshwater yield in a 

changing world? Harnett Falls at Mersey River. Walls of Jerusalem National Park, Tasmania. Photo 

by Gavin Owen (source: flickr.com). 
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6.1 Overview 

The primary aim of this chapter is to summarise the key research findings in relation to the broad 

objectives described in section 1.3 and the specific objectives described in the introduction of the 

analytical chapters (i.e. sections 2.2, 3.2, 4.2 and 5.1). The overall contribution of these findings is 

then discussed in light of improvements to the field of ecohydrology. Finally, I highlight the 

implications for water resource management and make recommendations for future research.  

The overarching aim of this thesis was to understand the characteristics and controls of streamflow 

generation and to investigate how historical climate-induced changes and human-induced landscape 

transformations influenced the streamflow along a broad-scale gradient of catchment biophysical 

characteristics (see Figure 1.2). To achieve this, I explored the spatial and temporal variability of a 

dataset from 355 catchments along the Australian east coast. The data included streamflow and 

precipitation time series, satellite-based time-series of vegetation properties, model-based soil 

moisture and temperature surfaces, and a range of spatial data of land-cover, topography, soil 

properties, physiography, bioregions and human population density.  

The research targeted two key problems in order to enhance ecohydrological knowledge: (i) the 

functioning of catchments influencing streamflow generation; and (ii) the changes in streamflow 

generation induced by climate and landscape modifications (see Figure 1.3).  To address the first 

problem, I used long-term averages (33 years) of hydrological metrics (i.e. streamflow signatures) 

to represent catchment’ streamflow “steady-state” and explored the spatial variability of 

hydrological behaviours to typify hydrological regimes (objective 1) and determine the dominant 

biophysical drivers of hydrological functioning (objective 2). To address the second problem, I used 

the temporal dimension to quantify changes in the streamflow, climate forcings and vegetation to 

then separate the climate-induced and human induced changes on streamflow (objective 3) as well 

the changes attributed to CO2-vegetation feedbacks (objective 4). 

6.1.1 Objective 1 

The first objective, addressed in Chapter 2, investigated how streamflow similarity varies according 

to the annual water and energy balances and to determine to what degree biophysical drivers of 

runoff explain the observed spatial streamflow variability. This objective was decomposed into 

three aims: (a) to investigate how streamflow similarity and characteristics vary according to the 

annual water and energy balances using the Budyko framework; (b) to determine to what degree 

biophysical drivers of runoff (Dunne diagram) explain the observed flow variability among 
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catchments; and (c) to evaluate whether links between these two approaches (Budyko framework 

and Dunne diagram) offer insights into the mechanics of catchment co-evolution. 

I firstly mapped the distribution of eight long-term (1980-2013) streamflow signatures to provide 

insights into the hydrological functioning of 355 catchments along the eastern Australia. I then 

classified the catchments into five streamflow regimes with distinct hydrological functioning. By 

using PCA, I extracted the maximum unidimensional variability of the eight streamflow signatures 

to represent the dominant streamflow behaviour, which is consistent with the streamflow regimes 

classified. The classification output also organised catchments along the spectrum of water and 

energy balances within the Budyko framework. The drivers of runoff mechanisms from the Dunne 

diagram explained 77% of the variability of the dominant streamflow behaviour with the following 

order of importance: (i) Dryness Index; (ii) Fraction of Photosynthetically Active Radiation; (iii) 

Saturated Hydraulic Conductivity; (iv) Soil Depth; (v) Maximum Slope; and (vi) Fraction of 

Woody Vegetation Cover.  

This chapter represents a methodological advance in the use of a sequence of well-established data 

analysis techniques to classify catchments based on their hydrological functioning. The classified 

streamflow regimes follow a consistent pattern along the hydro- climatic gradients (Budyko 

framework) and are driven by the biophysical drivers of runoff mechanisms (Dunne diagram). It 

represents a novel approach based on streamflow characteristics (inductive classification) that 

independently organises catchments along the spectrum of water and energy balances and is 

statistically controlled by the catchment co-evolution factors normally used to organize catchments 

by deductive classification. Using a catchment classification scheme coupled with other data 

analysis techniques I showed the link between two well established theories in hydrology: the 

Budyko framework and the Dunne diagram. 

6.1.2 Objective 2 

The second objective (Chapter 3) aimed to identify the catchment-scale biophysical drivers of key 

streamflow characteristics across distinct regions and scales and determine changes in importance 

and contribution of drivers. The specific objectives were: (a) to determine the changes in the 

relationships between streamflow characteristics and catchment properties along regional and sub-

continental scales and across biogeographically-contrasting regions; (b) to examine how dynamic 

catchment biophysical properties (i.e. vegetation and climate) affect key hydrological characteristics 

within and between regions; and (c) to infer the processes governing streamflow variation at larger 

biogeographic scales in order to better inform linkages between water resource management and 

biodiversity management. 
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The study explored 354 catchments in the whole east coast as well as three subsets within 

biogeographically contrasting regions. Three key long-term streamflow signatures were used to 

represent important hydrological characteristics - i.e. partitioning of P into Q; contribution of 

delayed sources to Q; and degree of intermittency. I determined the importance and weight of 24 

potential biophysical drivers using random forest and Generalised Additive Model for Location 

Scale and Shape (GAMLSS).  

The study identified the overall and regional drivers of streamflow characteristics. While the 

dryness index and the fraction of photosynthetically active radiation from vegetation explained the 

variability of streamflow characteristics at both regional and continental scales, soil properties had a 

significant effect especially at regional scales. Moreover, the importance and weights of these soil 

properties varied across regions, and depended on the streamflow characteristics.  

I concluded that models used to estimate streamflow characteristics should not be generalised 

across regions and spatial scales, as the explanatory variables and their importance changes from 

region to region and across scales. Hence, models calibrated in one region should not be used to 

inform decisions in other regions. Despite the utility to determine the primary controls in broader 

scales, studies undertaken at a continent scale may not be sensitive enough to capture regional 

controls and offer insights into regional-specific scales. The study provided a methodological 

advance in using a combination of random forest and GAMLSS with beta distribution, for cross-

regional and multi scale modelling in the field of ecohydrology.  

6.1.3 Objective 3 

The third objective (Chapter 4) aimed to assess ecohydrologic shifts on long-term water and energy 

balances of catchments and separate out the climate- and human-induced changes components. This 

overarching aim had three sub-objectives: (a) to quantify the direction and magnitude of long-term 

shifts in the water and energy balances of catchments and how they scale across aridity and 

streamflow regimes gradients; (b) to evaluate the relative impact of climate and land use changes on 

long-term water and energy balances; and (c) to examine whether these relative climate and land 

use change impacts are linked to known land use extents, as well as long term changes in catchment 

photosynthetic activity and biomass. 

This study explored the changes in the water and energy balances of two long-term periods (20 

years) of 193 catchments spanning the entire east coast. I used the displacement within the Budyko 

framework to display the changes in the water and energy balances and the decomposition approach 

proposed by Wang and Hejazi (2011) to separate the changes in Q induced by climate change and 
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variability and anthropogenic landscape modifications. I then assessed the change components in 

light of streamflow and aridity regimes and anthropogenic landscape categories. 

The research findings showed that over the last four decades, catchments located along the entire 

east coast of Australia experienced changes in streamflow as a result of both climate and direct 

human-induced modifications. These changes altered the water and energy balances of catchments 

towards drier conditions with higher AET and therefore less Q. Overall, the contribution of climate 

and direct-human induced changes to changes in Q was similar, despite the large spatial variability 

in the dominance of these drivers. However, Q changes in water-limited catchments have been 

influenced slightly more by land cover-induced changes than climatic changes, whereas in equitant 

and energy-limited catchments the contribution of climate was slightly greater than human-induced 

changes. With the consistent climatic shift towards a higher atmospheric demand (i.e. higher 

aridity), catchments within energy-limited region are gradually moving to the equitant region, 

equitant catchments are moving to water-limited region and water-limited catchments are becoming 

drier. We also show that the land cover-induced reductions in Q are consistent with vegetation gain 

(i.e., increasing photosynthesis activity and biomass). These observed changes suggest a reduction 

in surface water availability and have important implications for environmental and societal water 

supply needs.  

6.1.4 Objective 4 

Finally, the fourth objective (Chapter 5) investigated trends in baseflow (Qb), climate forcings and 

vegetation and then separated the contribution of precipitation, potential evapotranspiration and 

feedbacks between vegetation and elevated atmospheric CO2 on baseflow trends. To address this 

issue the specific objectives were: (a) to assess trends in baseflow, precipitation and potential 

evapotranspiration; (b) to separate out the relative contribution of precipitation, potential 

evapotranspiration and other factors influencing baseflow trends; (c) to evaluate residual trends 

(after Qb – P – PET is accounted for) in baseflow and relate it with the residual trends in vegetation 

greenness (fPAR trends with effect of precipitation and potential evapotranspiration removed). 

The study explored trends in hydroclimatological and vegetation time-series in two multi-temporal 

datasets with 44 (1950-2013) and 315 (1981-2013) catchments in eastern Australia. Because Q is 

highly influenced by P variability, the study focused on Qb trends to distinguish long-term changes 

in vegetation functioning. I used trend statistics and LOESS regression to remove the effect of P 

and PET from Qb and fPAR time-series and then quantify the fraction of Qb trends explained by 

climate and eCO2-vegetation feedbacks along the aridity and streamflow regimes. 
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The findings reveal that these other factors influencing the baseflow trends are best explained by an 

increase in photosynthetic activity. These results provide the first robust observational evidence that 

increasing atmospheric CO2, and its associated vegetation feedbacks are reducing freshwater 

availability in eastern Australian catchments in addition to other climatic impacts. Using a data-

driven approach applied over a broad climatic gradient, I provided evidence demonstrating how 

long-term Veg – eCO2 feedbacks impact Qb. I also highlighted the vulnerability of streamflow in 

water-limited environments to the combined influence of changing climate drivers and CO2 

fertilisation of vegetation, and that these reductions of available water resources need to be 

considered more thoughtfully in water planning and allocation for both humans and ecosystems. 

This impact may also extend to the availability of other hydrologically linked water resources such 

as groundwater, which can dominate the supply of Qb, with any reduction in recharge further 

compounding the uncertainty surrounding future water availability. 

6.2 Contributions to the field  

This PhD research makes important theoretical and applied contributions to the fields of 

ecohydrology and catchment hydrology in advancing the understanding of the functioning and 

changes in the streamflow generation process. In particular, it contributes to understanding the 

ecohydrology and catchment hydrology of eastern Australian catchments and the impact of elevated 

CO2 levels on the latter. Figure 6.1 presents a schematic overview of the key findings and main 

knowledge contributions of this thesis as well as how the four objectives link together to make a 

meaningful contribution to our understanding of the functioning and changes to the streamflow 

generation process.  
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Figure 6.1 Summary of key findings and main contribution to the field of ecohydrology of this 

thesis concerning functioning and changes in streamflow generation. In the objective 1, the roman 

numerals in the Dunne diagram refer to the dominance in hydrograph of: (I) Horton overland flow; 

(II) subsurface stormflow; and (III) direct precipitation and return flow (see Figure 2.9 for details). 

The objective 2 illustrates the overall dominant drivers of streamflow and those more important at 

regional scale. Arrows sizes refer to the average weight of effect explaining streamflow 

characteristics (See figure 3.5 for details). In the objectives 3 and 4 the direction and size of the grey 

arrows illustrates the directions and magnitudes of change in streamflow and trends in baseflow. 

Arrows are scaled by the maximum effect per objective (see figures 4.4, A4.10 and 5.4 for details). 

EL, EQ and WL refer to the energy-limited, equitant, and water-limited aridity regimes 

respectively.  

 

6.2.1 Functioning of streamflow generation processes 

I firstly show that the catchment dataset spanning multiple gradients of biophysical characteristics 

follow a spectrum of streamflow characteristics, which can be divided into five categories of 

streamflow regimes. Furthermore, the streamflow spectrum scales well with aridity and is explained 

by the drivers of runoff mechanisms from the Dunne diagram. Hence, this work shows a 

convergence of two important underlying theories in hydrology linking the Budyko framework 

(Budyko, 1974) and the Dunne diagram (Dunne, 1983). 
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The study also represent a significant methodological advancement in the field of catchment 

classification as it shows that two different classification approaches (inductive and deductive) can 

be linked as long as the dominant streamflow spectrum is properly represented. 

Interestingly, the regimes are not spatially aggregated, which means that despite the similarity in 

hydrological behaviour, the specific hydrological processes of catchments in eastern Australia are 

driven by distinct mechanisms. For instance, catchments with perennial highly stable streamflow 

regimes occur in both tropical and alpine climatic domains and are driven by both high annual 

precipitation and snowmelt. Likewise, in the opposite extremity of the streamflow spectrum, 

ephemeral catchments with highly erratic streamflow occur in dry tropical environments as well as 

in Mediterranean and sub-tropical coastal regions. This highlights that regional controls may play 

an influential role on the intermittency of streamflow. 

This finding from Objective 1 guided the second objective of this thesis, where I showed that the 

controls of key hydrological characteristics vary across regions. Thus, biogeographically distinct 

regions, with a similar range in terms of specific hydrological characteristics have distinguishable 

biophysical drivers controlling the spatial variability of streamflow characteristics. This is an 

important contribution to the field given the ongoing focus on global studies (Beck et al., 2013b; 

Beck et al., 2015). I show that despite the valuable contribution brought by the understanding of 

dominant drivers of global variability, these studies are not sensitive enough to detect factors 

driving regional variability. Thus, they have more scientific than management value as they neglect 

regional processes and are unable to guide water resource management at the scale policies are 

implemented, decisions are made and freshwater is used. Hydrological processes and drivers change 

according to the scale at which they are assessed and global-scale generalizations should not inform 

decisions at local, regional and even continental scales.  

The study also has distinct novel methodological aspects by applying a combination of modelling 

techniques (random forest and GAMLSS with beta distribution) to tackle ecohydrological problems. 

6.2.1 Changes in streamflow generation processes 

With regards to changes in streamflow, while significant progress has been made to distinguish 

climate-induced changes from landscape-induced modifications (Tomer and Schilling, 2009; Wang 

et al., 2013; Jaramillo and Destouni, 2014; Tan and Gan, 2015), there is little evidences from 

Australian catchments, where acute climatic changes and biomass increases (Liu et al., 2015) have 

been reported. I separate, for the first time, the large-scale reductions on streamflow due to changes 

in climate and vegetation regrowth.  This phenomenon is consistent across the Australian east coast. 
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The approaches used in this work can also distinguish the fraction of change attributed to each one 

of these components and their dominance all over the coast. A novel aspect of this research is the 

sensitivity of streamflow to climate-induced changes and landscape-induced modifications across 

the aridity and streamflow regimes. I show that water-limited catchments have been more sensitive 

to landscape-induced modifications while climate-induced changes played a major role in the 

streamflow reduction of energy-limited catchments. Likewise, the streamflow regimes follow a 

similar pattern. I also highlight that aridity experienced remarkable changes over the last four 

decades and that all catchments have become drier because of climate-induced changes. This is a 

critical finding for the scientific branches of climate change and ecohydrology with important 

implications for societal and environmental health. 

Another key finding of my research that adds to the current pool of knowledge is the hydrological 

impacts of the long-term eCO2 feedbacks with vegetation. My analysis suggests that these 

feedbacks are reducing baseflow together with climatic forcings. This work, for the first time, 

separates the contribution of P, PET, and eCO2-veg feedbacks to baseflow trends and reveals that 

the relative reductions on streamflow are more acute in water-limited catchments that are already 

facing water scarcity. These outcomes provide meaningful novel aspects to the science of CO2 

fertilization over water-limited areas and enhance our understanding about ecohydrological 

interactions among climate forcings, vegetation and delayed streamflow sources. The implications 

for freshwater supply are highly significant, as baseflow dominates the surface freshwater yield 

during both the dry season and drier years.  

6.3 Implications for management 

These research outcomes underscore important challenges regarding future water supply and 

management, with important implications for the environment and society. Given the observed 

streamflow reductions, what can we expect for the future of water supply along the Australian east 

coast? Are essential water dependent societal needs, such as food production and urban domestic 

use impacted and threatened? How can the advancements in scientific knowledge achieved by this 

research bridge management and influence policy making and stakeholders? This section briefly 

discusses the issues highlighted above.  

Firstly, concerning climate forcings, reducing carbon dioxide emissions will help diminish the 

observed P reduction and PET increase (climate-induced change) as well as the eCO2-vegetation 

feedbacks also identified as a driver of reduction in freshwater availability. While Australia already 

has a comprehensive guideline to target climate change mitigation established by the Climate 

Change Authority Act 2011, the findings of this research show that climate change already has an 
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acute detrimental impact on freshwater availability. This highlights that the current framework of 

activities may not be enough to ensure the freshwater supply for basic societal needs, especially 

considering the ongoing scenario of growing demand and reducing availability. Urban centres and 

agricultural regions may need to reconsider alternative sources previously considered unsuitable 

due to high cost. This also has important implications for urban populations with a potential rise in 

the prices of food, domestic water use and hence in the overall cost of living.  

Secondly, the increasing human consumption pressure on water resources may also reduce 

environmental flows (Poff et al., 1997; Naiman et al., 2008; Kennard et al., 2010), posing a risk to 

the downstream riverine environments dependent on the same sources over extracted by humans. 

Alternative sources currently not explored for societal needs and serving to wildlife conservation 

may also be threatened by growing human demand and reduced availability. 

Thirdly, the new insights into streamflow regimes and drivers of streamflow characteristics can 

potentially assist decision-makers regarding the suitability of catchments for freshwater supply, 

both at present and in the future. In addition, the regional drivers of streamflow characteristics can 

help bridging water resource management and biodiversity conservation at bioregion scales. 

Integrated catchment management programs should be encouraged to conserve essential catchment 

biophysical drivers to achieve specific management goals such as reduction of overland flow and 

sediment load in reef catchments and maximization of recharge and release in urban and 

agricultural supply catchments.  

Finally, taking into account the streamflow reductions in regions already facing water scarcity, the 

dominant biophysical drivers of key streamflow characteristics may be of assistance in the 

identification of ungauged catchments with desirable characteristics for expansion of supply sources 

network (e.g. higher baseflow, lower intermittency and higher runoff ratio). 

6.4 Approach and limitations  

Ecohydrology in an emerging inter-disciplinary field of knowledge that has made major advances in 

the last decades. Some aspects inherent to these advancements are the range of publicly available 

catchment datasets, the emerging data processing techniques and the advancement of computer 

performance. My background in environmental and spatial sciences, remote sensing and hydrology 

helped me to identify this unique opportunity to undertake world-class research and make a solid 

contribution to the field of ecohydrology in my PhD. One of the greatest gains I developed was the 

ability to handle and analyse large datasets. This allowed me to compile and integrate data from 

different sources and to automate modern data analysis techniques to reveal the subtle patterns of 
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this thesis. It is worth noting that the current availability of free datasets, diffusion of scripting 

knowledge and advancement of computers supports the new generation of scientists and their 

ability to solve complex inter-disciplinary problems. That would not have been possible ten years 

ago. 

It is important to mention the limitations with regard to the datasets and approach used in this 

thesis. Firstly, this thesis addresses only the annual time scale (i.e., long-term mean, change in the 

steady-state and trends), which means that there are a range of other temporal scales that would 

certainly also provide additional mechanistic insights if they were assessed (e.g. seasonality). The 

gridded precipitation data does not have the same quality across the study region, as it is strongly 

dependent on the gauge density. This means that some catchments may have errors in P estimates. 

However, as most of the analyses were performed with long-term averages at the annual scale, these 

errors tend to be minimised. The most critical catchments are likely to be the mountainous ones that 

receive regular orographic rainfall as well as those with low gauge density in the surrounding area. 

The streamflow data may also have problems in some catchments as the accuracy depends on the 

sampling effort to construct the rating curve – i.e. the proper representation of the natural water 

level and streamflow range of each river.  Another constraint concerns the potential 

evapotranspiration data, as I use a radiation method (Priestley – Taylor) that may not adequately 

represent the atmospheric demand process. However, the absence of reliable long-term wind data 

precludes the use of a more physically-based form of PET. The soil data has limitations as well 

taking into account the limited number of field measurements and methods used extrapolate and 

generate the spatial datasets. Lastly, this study lacks a reliable source of atmospheric CO2 

concentrations and its spatial and temporal variability. However, this is a challenge faced for most 

researches, as these measurements are costly and the methods available to measure the past trends 

are limited and constrain the construction of spatially explicit time-series. 

6.5 Future Research  

The findings of this thesis offer a scope to develop future research. 

First, it is important to test the catchment classification scheme developed here considering a large 

number of streamflow signatures exploring their complementarity and redundancy based on 

orthogonality for selection of metrics before the classification. This prior exploratory data analysis 

based on a large range of streamflow signatures would allow the classification of rivers with 

different streamflow characteristics and could potentially suit other regions worldwide or even 

global datasets with a broader streamflow regime spectrum. It is also important to test to what 

extent the relationship between the spectrum of water and energy balances (Budyko framework) 
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and drivers of runoff characteristics (Dunne diagram) holds with different or broader spectrum of 

streamflow regimes. 

Second, there is a need to evaluate the importance of soil properties to explain the variability in 

streamflow characteristics at regional scales both in Australia and globally. Given the limitations of 

the Australian soil dataset (e.g. coarse resolution and low number of data points), it is recommended 

to repeat the analysis once improved soil data is available to better capture the soil effects already 

discussed. I would also recommend exploring smaller spatial extents, as the regional scales 

considered here are yet quite large. With this, new subtle patterns concerning the drivers of 

streamflow characteristics may emerge and hence enhancing the utility for water resource 

management and conservation of essential catchment ecohydrological processes for freshwater 

yield. 

Thirdly, there are important questions concerning the patterns of streamflow change as well as the 

climate-induced and anthropogenic landscape-induced in development countries in South America 

and Africa. Understanding global drivers of changes using empirical evidence rather than modelling 

is also a promising outreach of this research. While the data availability may be a constraint for 

these directions for future research, there is certainly data availability for larger catchments, 

although the majority of them are regulated. I would also recommend examining streamflow 

changes over multiple periods as well as the trajectory that single catchments undertake within the 

Budyko framework in light of climate and landscape modifications. The pre-selection of catchments 

that experienced a range of landscape changes with long-term data availability (e.g. >80 years) to 

perform a more detailed temporal analysis (i.e. annual and/or decadal timescales) could potentially 

reveal new insights into the changes in the water and energy balances the specific landscape 

changes could lead to. 

These recommendations for investigation expansion for other regions as well as to global scale also 

apply for assumptions regarding eCO2-vegetation feedbacks and streamflow reductions in other 

water-limited regions worldwide. An important consideration for future studies is the inclusion of 

CO2 time-series to relate with satellite-based vegetation data. The CO2 time-series can be derived 

from flux-towers, remote sensing or both. This could provide a source of validation for the eCO2-

vegetation feedbacks addressed in the objective 4. 

  



Trancoso, R. (2016) PhD Thesis, Chapter 6: Summary and Conclusion 

Ecohydrology in Space and Time 121 

 

6.6 Conclusion  

Catchment streamflow integrates the ecohydrological feedbacks of vegetation and atmosphere over 

a range of scales (i.e. at leaf, plant and landscape levels) and in space and time. This thesis makes 

an important contribution towards understanding streamflow generation functioning and the impacts 

of rapid changes in climate and landscapes currently taking place. This is particularly important for 

eastern Australia, as the study region includes over 80% of the Australian population and the 

freshwater supply for domestic use, food production, and ecosystem health strongly relies on the 

functioning and changes of streamflow generation addressed by this thesis. In a broader context, the 

findings of my PhD research advance the pool of knowledge regarding the underlying 

ecohydrological feedbacks generating streamflow in a range of climatic settings, especially in 

water-limited areas, where over one third of the global human population currently inhabit and 

struggle against water scarcity. 
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Appendix 1 – Chapter 1 

Table A1.1. List of the 355 streamflow stations selected for this PhD thesis 

Id Station 

code 

Station name State Latitude Longitude Time-series 

length (years) 

Area 

(km2) 

P 

(mm/year) 

Q 

(mm/year) 

1 102101A PASCOE RIVER QLD -12.88 142.98 46.28 648.11 1541.38 9.10 

2 104001A STEWART RIVER QLD -14.17 143.39 43.98 473.43 1204.58 4.33 

3 105001B HANN RIVER QLD -15.22 143.85 45.07 980.02 1037.20 1.50 

4 105102A LAURA RIVER QLD -15.61 144.48 45.80 1321.55 1050.96 2.26 

5 105105A EAST NORMANBY RIVER QLD -15.77 145.01 44.88 296.51 1653.06 4.05 

6 107001B ENDEAVOUR RIVER QLD -15.42 145.07 46.28 340.12 1552.89 4.49 

7 108002A DAINTREE RIVER QLD -16.18 145.28 45.30 911.30 2032.10 9.67 

8 108003A BLOOMFIELD RIVER QLD -15.99 145.29 43.99 256.15 2228.09 23.91 

9 110003A BARRON RIVER QLD -17.26 145.54 88.31 221.05 1617.03 6.67 

10 110011B FLAGGY CREEK QLD -16.77 145.52 58.29 138.78 1613.52 8.19 

11 111005A MULGRAVE RIVER QLD -17.18 145.72 47.21 362.42 2709.00 17.43 

12 111101D RUSSELL RIVER QLD -17.39 145.97 33.96 316.65 3473.99 39.29 

13 111105A BABINDA CREEK QLD -17.35 145.87 47.22 39.20 3490.53 54.15 

14 112002A FISHER CREEK QLD -17.57 145.91 85.31 16.09 3196.09 26.03 

15 112003A NORTH JOHNSTONE RIVER QLD -17.38 145.65 55.29 171.64 1948.35 11.94 

16 112101B SOUTH JOHNSTONE RIVER QLD -17.61 145.98 39.28 397.50 2905.57 22.97 

17 112102A LIVERPOOL CREEK QLD -17.71 145.91 43.64 78.36 3111.33 22.06 

18 113004A COCHABLE CREEK QLD -17.74 145.63 47.06 93.64 2179.87 19.84 

19 114001A MURRAY RIVER QLD -18.11 145.81 43.63 155.84 1839.90 12.34 

20 116008B GOWRIE CREEK QLD -18.44 145.85 60.29 123.66 1726.56 14.25 

21 116010A BLENCOE CREEK QLD -18.20 145.54 53.29 227.31 1234.02 6.38 

22 116012A CAMERON CREEK QLD -18.07 145.34 52.29 351.15 1120.85 4.91 
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23 116015A BLUNDER CREEK QLD -17.74 145.44 47.23 126.29 1711.98 7.72 

24 116016A RUDD CREEK QLD -17.92 145.15 43.28 1448.85 737.37 1.11 

25 116017A STONE RIVER QLD -18.77 145.95 43.54 165.82 1253.35 4.98 

26 117002A BLACK RIVER QLD -19.24 146.63 40.83 249.21 1117.34 4.31 

27 117003A BLUEWATER CREEK QLD -19.18 146.55 40.15 86.70 1359.95 7.61 

28 119005A HAUGHTON RIVER QLD -19.78 146.96 42.29 1121.20 787.86 1.95 

29 119006A MAJOR CREEK QLD -19.67 147.02 35.69 476.51 911.91 4.46 

30 119101A BARRATTA CREEK QLD -19.69 147.17 39.26 737.68 823.45 2.59 

31 120102A KEELBOTTOM CREEK QLD -19.37 146.36 46.39 193.10 1252.64 6.74 

32 120106B BASALT RIVER QLD -19.68 145.54 46.28 1308.86 666.50 0.69 

33 120112A STAR RIVER QLD -19.38 146.05 46.28 1204.65 1020.55 5.25 

34 120216A BROKEN RIVER QLD -21.19 148.45 44.62 96.06 1727.80 4.90 

35 120304A SUTTOR RIVER QLD -21.45 147.71 46.41 1957.54 631.77 0.71 

36 120307A CAPE RIVER QLD -20.48 145.48 44.95 772.57 677.93 0.82 

37 121001A DON RIVER QLD -20.29 148.12 56.88 593.39 727.60 0.50 

38 121002A ELLIOT RIVER QLD -19.93 147.84 40.84 270.10 822.46 2.44 

39 122004A GREGORY RIVER QLD -20.30 148.55 41.22 46.61 1548.98 8.17 

40 124002A ST.HELENS CREEK QLD -20.91 148.76 40.93 121.10 1753.71 11.94 

41 124003A ANDROMACHE RIVER QLD -20.58 148.47 37.96 231.38 1291.75 4.27 

42 125006A FINCH HATTON CREEK QLD -21.11 148.64 37.95 35.83 1713.15 16.89 

43 126003A CARMILA CREEK QLD -21.92 149.40 40.18 84.09 1153.65 5.45 

44 129001A WATERPARK CREEK QLD -22.84 150.67 61.91 248.25 1314.03 4.53 

45 130004A RAGLAN CREEK QLD -23.82 150.82 50.29 391.83 803.50 0.36 

46 130316A MIMOSA CREEK QLD -24.34 149.58 57.00 2480.45 638.28 0.35 

47 130319A BELL CREEK QLD -24.15 150.52 53.29 299.43 736.28 0.31 

48 130334A SOUTH KARIBOE CREEK QLD -24.56 150.75 41.24 285.56 689.92 0.12 

49 130335A DEE RIVER QLD -23.77 150.36 42.44 475.30 767.20 0.97 
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50 130336A GREVILLEA CREEK QLD -24.58 150.62 41.24 243.80 641.45 0.18 

51 130348A PROSPECT CREEK QLD -24.45 150.42 38.90 384.49 618.40 0.25 

52 130349A DON RIVER QLD -23.97 150.39 37.09 593.39 727.60 0.50 

53 130403A CONNORS RIVER QLD -22.04 149.13 48.09 1284.60 930.31 4.51 

54 130406A FUNNEL CREEK QLD -21.78 148.93 48.10 1046.22 1191.67 5.06 

55 130413A DENISON CREEK QLD -21.77 148.79 42.10 764.94 931.45 2.54 

56 132001A CALLIOPE RIVER QLD -23.98 151.10 75.30 1287.17 799.59 1.05 

57 134001B BAFFLE CREEK QLD -24.51 151.74 41.11 1401.02 1004.83 2.08 

58 135002A KOLAN RIVER QLD -24.75 151.59 48.21 550.54 870.64 1.16 

59 135004A GIN GIN CREEK QLD -24.97 151.89 48.21 537.19 806.66 0.93 

60 136108A MONAL CREEK QLD -24.61 151.11 51.50 91.63 803.76 0.62 

61 136111A SPLINTER CREEK QLD -24.75 151.26 49.28 141.42 775.12 0.65 

62 136112A BURNETT RIVER QLD -24.99 151.35 48.28 369.46 769.92 0.70 

63 136202D BARAMBAH CREEK QLD -26.30 152.04 49.28 650.17 833.94 0.79 

64 137003A ELLIOTT RIVER QLD -24.99 152.38 55.29 232.26 918.84 0.88 

65 138003D GLASTONBURY CREEK QLD -26.22 152.52 34.45 110.13 993.01 1.77 

66 138004B MUNNA CREEK QLD -25.90 152.35 39.28 1189.98 824.94 1.18 

67 138009A TINANA CREEK QLD -26.08 152.78 39.50 101.67 1266.59 2.94 

68 138110A MARY RIVER QLD -26.63 152.70 54.29 487.44 1292.79 3.57 

69 138113A KANDANGA CREEK QLD -26.39 152.64 42.17 170.62 1024.10 2.39 

70 140002A TEEWAH CREEK QLD -26.06 153.04 42.01 58.74 1387.66 6.28 

71 141003C PETRIE CREEK QLD -26.62 152.96 35.28 39.28 1740.08 8.14 

72 141006A MOOLOOLAH RIVER QLD -26.76 152.98 42.08 39.64 1650.07 6.85 

73 141008A EUDLO CREEK QLD -26.66 153.02 32.01 57.30 1661.79 6.25 

74 141009A NORTH MAROOCHY RIVER QLD -26.49 152.96 31.90 42.00 1614.78 6.01 

75 142001A CABOOLTURE RIVER QLD -27.10 152.89 48.28 97.66 1289.14 4.35 

76 142202A SOUTH PINE RIVER QLD -27.35 152.92 48.28 161.95 1156.35 3.63 
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77 143010B EMU CREEK QLD -26.98 152.29 37.13 916.19 772.14 0.52 

78 143028A ITHACA CREEK QLD -27.45 152.99 41.28 7.06 1063.62 5.01 

79 143032A MOGGILL CREEK QLD -27.49 152.89 37.50 22.75 1031.43 3.00 

80 143033A OXLEY CREEK QLD -27.73 152.95 37.08 50.54 855.91 1.35 

81 143110A BREMER RIVER QLD -27.83 152.51 45.28 126.49 950.50 1.52 

82 143113A PURGA CREEK QLD -27.68 152.73 40.13 212.85 814.85 0.69 

83 143219A MURPHYS CREEK QLD -27.47 151.99 34.28 15.93 819.95 1.18 

84 143303A STANLEY RIVER QLD -26.84 152.84 86.56 104.53 1480.47 6.97 

85 143307A BYRON CREEK QLD -27.14 152.64 35.57 55.59 1144.93 3.23 

86 145003B LOGAN RIVER QLD -28.20 152.77 60.29 174.80 1069.99 2.68 

87 145010A RUNNING CREEK QLD -28.25 152.89 48.13 132.40 1356.90 3.20 

88 145011A TEVIOT BROOK QLD -28.15 152.57 47.93 82.88 1054.63 1.60 

89 145018A BURNETT CREEK QLD -28.22 152.61 43.69 81.78 970.65 1.69 

90 145101D ALBERT RIVER QLD -28.05 153.04 60.29 166.97 1113.12 2.83 

91 145103A CAINBABLE CREEK QLD -28.09 153.08 51.62 42.18 1195.36 1.44 

92 145107A CANUNGRA CREEK QLD -28.00 153.16 40.96 100.23 1476.85 3.96 

93 146010A COOMERA RIVER QLD -28.03 153.19 51.29 97.49 1414.54 3.81 

94 146012A CURRUMBIN CREEK QLD -28.18 153.42 43.89 30.65 1853.59 8.31 

95 146014A BACK CREEK QLD -28.12 153.19 42.61 6.86 1565.44 6.67 

96 422306A SWAN CREEK QLD -28.16 152.28 94.65 82.32 988.73 1.06 

97 422313B EMU CREEK QLD -28.23 152.23 41.28 916.19 772.14 0.52 

98 422319B DALRYMPLE CREEK QLD -28.04 152.01 45.28 246.06 765.23 0.84 

99 422321B SPRING CREEK QLD -28.35 152.33 41.28 33.89 1123.89 3.03 

100 422326A GOWRIE CREEK QLD -27.52 151.94 44.28 123.66 1726.56 14.25 

101 422334A KINGS CREEK QLD -27.93 151.86 44.74 515.08 691.71 0.51 

102 422338A CANAL CREEK QLD -28.03 151.59 41.79 395.63 653.83 0.38 

103 422341A CONDAMINE RIVER QLD -28.33 152.31 37.63 95.54 1003.69 2.16 
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104 917107A ELIZABETH CREEK QLD -18.13 144.31 45.47 461.93 740.10 0.93 

105 919005A RIFLE CREEK QLD -16.68 145.23 45.36 366.81 1327.80 5.86 

106 919013A MCLEOD RIVER QLD -16.50 145.00 40.98 533.92 1506.00 3.33 

107 919201A PALMER RIVER QLD -16.11 144.78 46.09 535.68 1344.45 2.56 

108 922001A ARCHER RIVER QLD -13.42 142.92 45.08 2914.54 1306.04 5.89 

109 922101B COEN RIVER QLD -13.96 143.17 46.18 171.18 1328.02 6.83 

110 923001A WATSON RIVER QLD -13.13 142.05 40.97 994.46 1450.89 5.28 

111 926002A DULHUNTY RIVER QLD -11.83 142.42 43.15 330.26 1572.81 6.97 

112 927001B JARDINE RIVER QLD -11.15 142.35 35.32 2419.12 1795.35 9.27 

113 201001 OXLEY RIVER AT EUNGELLA NSW -28.35 153.29 66.66 216.38 1592.27 525.61 

114 201012 COBAKI CREEK AT COBAKI NSW -28.20 153.46 31.59 10.15 1696.18 592.40 

115 202001 BRUNSWICK RIVER AT DURRUMBUL (SHERRYS 

CROSSING) 

NSW -28.53 153.46 59.24 36.48 1798.23 555.45 

116 203002 COOPERS CREEK AT REPENTANCE NSW -28.64 153.41 93.95 63.59 1943.67 945.13 

117 203005 RICHMOND RIVER AT WIANGAREE NSW -28.50 152.97 70.64 702.64 1163.11 280.38 

118 203010 LEYCESTER RIVER AT ROCK VALLEY NSW -28.74 153.16 62.40 177.26 1373.48 412.27 

119 203012 BYRON CREEK AT BINNA BURRA NSW -28.71 153.50 62.39 38.71 1889.54 897.44 

120 203030 MYRTLE CREEK AT RAPPVILLE NSW -29.11 153.00 44.62 388.24 1089.22 130.12 

121 204008 GUY FAWKES RIVER AT EBOR NSW -30.40 152.35 90.16 32.89 1387.15 920.30 

122 204017 BIELSDOWN CREEK AT DORRIGO NO.2 & NO.3 NSW -30.31 152.71 66.93 82.32 1600.58 1085.57 

123 204030 ABERFOYLE RIVER AT ABERFOYLE NSW -30.26 152.01 62.32 209.26 860.06 75.70 

124 204031 MANN RIVER AT SHANNON VALE NSW -29.72 151.85 62.27 358.24 923.20 88.30 

125 204033 TIMBARRA RIVER AT BILLYRIMBA NSW -29.19 152.25 62.15 1268.63 995.24 115.47 

126 204034 HENRY RIVER AT NEWTON BOYD NSW -29.76 152.21 62.23 400.94 884.31 101.41 

127 204036 CATARACT CREEK AT SANDY HILL(BELOW SNAKE 

CREEK) 

NSW -28.93 152.22 61.84 245.32 949.15 177.56 

128 204037 CLOUDS CREEK AT CLOUDS CREEK NSW -30.09 152.63 61.56 63.14 1361.80 202.38 
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129 204039 MARYLAND RIVER D/S WYLIE CREEK NSW -28.47 152.20 60.30 386.11 834.95 77.40 

130 204043 PEACOCK CREEK AT BONALBO NSW -28.73 152.67 53.81 47.75 1162.24 115.26 

131 204055 SPORTSMANS CREEK AT GURRANANG SIDING NSW -29.47 152.98 41.87 201.49 1116.58 200.01 

132 204056 DANDAHRA CREEK AT GIBRALTAR RANGE NSW -29.48 152.45 41.67 113.45 1154.22 607.81 

133 204067 GORDON BROOK AT FINEFLOWER NSW -29.40 152.65 30.72 313.29 1096.81 216.74 

134 205002 BELLINGER RIVER AT THORA NSW -30.43 152.78 58.57 445.92 1429.67 526.17 

135 205006 NAMBUCCA RIVER AT BOWRAVILLE NSW -30.64 152.86 51.97 256.75 1495.66 467.62 

136 206001 STYX RIVER AT JEOGLA NSW -30.59 152.16 95.74 160.42 1210.47 552.05 

137 206009 TIA RIVER AT TIA NSW -31.19 151.83 86.23 266.12 986.18 149.53 

138 206014 WOLLOMOMBI RIVER AT CONINSIDE NSW -30.48 152.03 65.76 377.45 771.20 63.05 

139 206018 APSLEY RIVER AT APSLEY FALLS NSW -31.05 151.77 61.10 863.99 803.18 48.63 

140 206025 SALISBURY WATERS NEAR DANGAR FALLS NSW -30.68 151.71 41.04 650.34 767.99 39.03 

141 206026 SANDY CREEK AT NEWHOLME NSW -30.42 151.66 39.32 8.96 749.65 31.21 

142 206027 PIPECLAY CREEK AT KIRBY FARM NSW -30.47 151.63 39.12 6.22 725.46 34.46 

143 207006 FORBES RIVER AT BIRDWOOD(FILLY FLAT) NSW -31.38 152.33 58.53 334.03 1400.43 493.43 

144 207013 ELLENBOROUGH RIVER D/S BUNNOO RIVER JUNCTION NSW -31.48 152.45 38.80 498.75 1385.93 307.09 

145 208001 BARRINGTON RIVER AT BOBS CROSSING NSW -32.03 151.47 69.97 19.96 1243.29 1192.07 

146 208007 NOWENDOC RIVER AT NOWENDOC NSW -31.52 151.72 67.51 222.61 965.67 214.55 

147 208009 BARNARD RIVER AT BARRY NSW -31.58 151.32 64.92 157.55 935.24 224.79 

148 208015 LANSDOWNE RIVER AT LANSDOWNE NSW -31.79 152.51 44.56 95.57 1270.68 472.57 

149 208019 DINGO CREEK AT MUNYAREE FLAT NSW -31.84 152.29 42.47 523.35 1206.18 262.63 

150 209002 MAMMY JOHNSONS RIVER AT PIKES CROSSING NSW -32.24 151.98 46.07 157.62 1123.35 263.53 

151 209006 WANG WAUK RIVER AT WILLINA NSW -32.16 152.26 44.73 148.32 1109.14 211.24 

152 209018 KARUAH RIVER AT DAM SITE NSW -32.27 151.90 34.06 293.09 1170.09 309.40 

153 210006 GOULBURN RIVER AT COGGAN NSW -32.34 150.10 101.27 820.58 675.84 73.23 

154 210011 WILLIAMS RIVER AT TILLEGRA NSW -32.32 151.69 82.92 196.20 1153.39 385.16 

155 210014 ROUCHEL BROOK AT ROUCHEL BROOK (THE VALE) NSW -32.15 151.05 79.46 401.43 850.63 105.69 
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156 210017 MOONAN BROOK AT MOONAN BROOK NSW -31.94 151.28 73.61 102.64 963.24 232.82 

157 210022 ALLYN RIVER AT HALTON NSW -32.31 151.51 73.10 189.56 1114.37 380.85 

158 210040 WYBONG CREEK AT WYBONG NSW -32.27 150.64 58.67 664.48 681.07 27.26 

159 210061 PAGES RIVER AT BLANDFORD (BICKHAM) NSW -31.81 150.93 53.66 298.29 783.45 89.46 

160 210068 POKOLBIN CREEK AT POKOLBIN SITE 3 NSW -32.80 151.33 50.17 25.64 811.12 41.54 

161 210076 ANTIENE CREEK AT LIDDELL NSW -32.34 150.98 45.41 13.13 647.38 81.33 

162 210080 WEST BROOK AT U/S GLENDON BROOK NSW -32.47 151.28 44.71 73.18 825.77 108.35 

163 210093 KINGDON PONDS CREEK AT NEAR PARKVILLE NSW -31.96 150.86 41.75 178.57 723.80 28.20 

164 211008 JIGADEE CREEK AT AVONDALE NSW -33.07 151.47 44.10 67.10 1055.21 179.94 

165 211010 JILLIBY CREEK AT U/S WYONG RIVER (DURREN LANE) NSW -33.24 151.39 41.06 92.83 1161.28 185.77 

166 211013 OURIMBAH CREEK AT U/S WEIR NSW -33.35 151.34 37.14 83.72 1245.16 227.46 

167 211014 WYONG RIVER AT YARRAMALONG NSW -33.22 151.28 37.13 180.87 1089.15 184.00 

168 212018 CAPERTEE RIVER AT GLEN DAVIS NSW -33.12 150.28 43.41 1026.13 701.70 19.11 

169 212320 SOUTH CREEK AT MULGOA ROAD NSW -33.88 150.77 58.25 90.20 740.37 83.59 

170 213005 TOONGABBIE CREEK AT BRIENS ROAD NSW -33.80 150.98 34.85 71.07 854.78 306.17 

171 213006 FISHERS GHOST CREEK AT BRADBURY PARK NSW -34.07 150.81 33.09 2.44 813.84 235.89 

172 213200 O HARES CREEK AT WEDDERBURN NSW -34.16 150.84 35.94 74.08 1123.75 273.53 

173 214003 MACQUARIE RIVULET AT ALBION PARK NSW -34.58 150.71 64.38 35.51 1459.46 382.84 

174 215004 CORANG RIVER AT HOCKEYS NSW -35.15 150.03 89.38 163.76 850.82 240.49 

175 215008 SHOALHAVEN RIVER AT KADOONA NSW -35.79 149.64 63.33 283.48 850.99 169.97 

176 215014 BUNGONIA CREEK AT BUNGONIA NSW -34.82 149.99 32.74 164.47 656.70 40.97 

177 216004 CURRAMBENE CREEK AT FALLS CREEK NSW -34.97 150.60 44.22 93.48 1079.76 145.16 

178 216008 BUTLERS CREEK AT KIOLOA NSW -35.54 150.36 33.12 0.62 1125.78 63.51 

179 217002 DEUA RIVER AT WAMBAN NSW -35.92 150.03 54.31 1216.10 836.86 146.28 

180 218001 TUROSS RIVER AT TUROSS VALE NSW -36.26 149.51 65.57 90.15 817.91 223.50 

181 218007 WADBILLIGA RIVER AT WADBILLIGA NSW -36.26 149.69 39.58 124.57 818.88 220.94 

182 219001 RUTHERFORD CREEK AT BROWN MOUNTAIN NSW -36.59 149.44 89.81 15.75 854.18 284.21 



Trancoso, R. (2016) PhD Thesis, Appendices 

Ecohydrology in Space and Time 149 

 

183 219006 TANTAWANGALO CREEK AT TANTAWANGALO 

MOUNTAIN (DAM) 

NSW -36.78 149.54 89.37 81.84 843.16 183.13 

184 219017 DOUBLE CREEK NEAR BROGO NSW -36.60 149.81 47.52 157.30 829.93 165.96 

185 220003 PAMBULA RIVER AT LOCHIEL NSW -36.94 149.82 47.37 106.31 846.03 162.78 

186 221010 IMLAY CREEK AT IMLAY ROAD BRIDGE NSW -37.23 149.70 32.50 74.70 887.67 162.84 

187 222004 LITTLE PLAINS RIVER AT WELLESLEY (ROWES) NSW -37.00 149.09 72.86 614.56 859.07 95.99 

188 222016 PINCH RIVER AT THE BARRY WAY NSW -36.79 148.40 38.82 158.16 849.27 289.75 

189 222017 MACLAUGHLIN RIVER AT THE HUT NSW -36.65 149.11 35.36 313.77 589.82 57.16 

190 401009 MARAGLE CREEK AT MARAGLE NSW -35.93 148.10 66.13 216.54 997.01 122.25 

191 401012 MURRAY RIVER AT BIGGARA NSW -36.32 148.05 65.49 1258.20 1109.23 324.62 

192 401016 WELUMBA CREEK AT THE SQUARE NSW -36.03 148.12 30.72 50.64 909.39 114.94 

193 410024 GOODRADIGBEE RIVER AT WEE JASPER (KASHMIR) NSW -35.17 148.69 99.35 989.63 1153.37 246.48 

194 410025 JUGIONG CREEK AT JUGIONG (INVERLOCKIE) NSW -34.79 148.38 99.98 1361.65 682.47 62.99 

195 410026 YASS RIVER AT YASS NSW -34.84 148.91 98.42 1236.33 653.42 48.57 

196 410038 ADJUNGBILLY CREEK AT DARBALARA NSW -35.02 148.25 81.75 389.38 1065.21 177.69 

197 410057 GOOBARRAGANDRA RIVER AT LACMALAC NSW -35.33 148.35 69.08 667.09 1165.07 356.60 

198 410061 ADELONG CREEK AT BATLOW ROAD NSW -35.33 148.07 66.36 146.90 1071.69 210.10 

199 410076 STRIKE-A-LIGHT CREEK AT JERANGLE ROAD NSW -35.92 149.24 59.42 212.91 696.65 45.61 

200 410081 COOMA CREEK AT COOMA NO.2 (THE GRANGE) NSW -36.26 149.14 57.08 97.19 537.80 70.66 

201 410107 MOUNTAIN CREEK AT MOUNTAIN CREEK NSW -35.03 148.83 41.65 185.69 956.70 150.40 

202 410114 KILLIMCAT CREEK AT WYANGLE NSW -35.23 148.31 38.62 21.68 893.43 176.02 

203 410141 MICALIGO CREEK AT MICHELAGO NSW -35.70 149.15 59.65 190.98 649.12 33.46 

204 411003 BUTMAROO CREEK AT BUTMAROO NSW -35.26 149.54 42.29 63.92 752.76 66.44 

205 412029 BOOROWA RIVER AT PROSSERS CROSSING NSW -34.14 148.81 75.84 1557.44 650.59 45.12 

206 412066 ABERCROMBIE RIVER AT HADLEY NO.2 NSW -34.11 149.60 53.57 1635.75 752.36 76.46 

207 412080 FLYERS CREEK AT BENEREE NSW -33.51 149.04 45.76 86.26 805.23 93.01 

208 416003 TENTERFIELD CREEK AT CLIFTON NSW -29.03 151.72 92.54 555.37 823.69 64.07 
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209 416008 BEARDY RIVER AT HAYSTACK NSW -29.22 151.38 79.45 898.57 757.27 57.21 

210 416023 DEEPWATER RIVER AT BOLIVIA NSW -29.29 151.92 46.85 539.51 866.95 67.32 

211 418005 COPES CREEK AT KIMBERLEY NSW -29.92 151.11 84.76 238.58 841.30 74.08 

212 418014 GWYDIR RIVER AT YARROWYCK NSW -30.47 151.36 59.08 826.95 764.48 52.09 

213 418021 LAURA CREEK AT LAURA NSW -30.23 151.19 48.61 357.48 836.63 66.72 

214 419010 MACDONALD RIVER AT WOOLBROOK NSW -30.97 151.35 86.24 843.94 892.30 119.32 

215 419035 GOONOO GOONOO CREEK AT TIMBUMBURI NSW -31.27 150.92 48.58 459.64 764.10 39.47 

216 419054 SWAMP OAK CREEK AT LIMBRI NSW -31.04 151.17 39.65 393.70 815.45 60.13 

217 419076 WARRAH CREEK AT OLD WARRAH NSW -31.66 150.64 31.57 142.17 805.48 55.18 

218 421026 TURON RIVER AT SOFALA NSW -33.08 149.69 64.38 884.89 744.33 71.41 

219 221201 CANN RIVER (WEST BRANCH) @ WEERAGUA VIC -37.37 149.20 56.90 329.50 903.02 120.15 

220 221207 ERRINUNDRA RIVER @ ERRINUNDRA VIC -37.45 148.92 42.46 159.97 1005.86 324.42 

221 221208 WINGAN RIVER @ WINGAN INLET NATIONAL PARK VIC -37.69 149.49 31.07 420.84 919.24 159.22 

222 221209 CANN RIVER (EAST BRANCH) @ WEERAGUA VIC -37.36 149.21 41.22 149.70 850.05 108.75 

223 221210 GENOA RIVER @ THE GORGE VIC -37.42 149.52 41.39 840.10 864.85 114.38 

224 221211 COMBIENBAR RIVER @ COMBIENBAR VIC -37.44 148.98 39.42 179.95 951.60 153.22 

225 222206 BUCHAN RIVER @ BUCHAN VIC -37.50 148.17 87.83 847.99 955.09 125.35 

226 222210 DEDDICK RIVER @ DEDDICK (CASEYS) VIC -37.09 148.42 40.77 846.74 759.29 61.94 

227 222213 SUGGAN BUGGAN RIVER @ SUGGAN BUGGAN VIC -36.96 148.33 39.55 364.40 1013.63 121.56 

228 222217 RODGER RIVER @ JACKSONS CROSSING VIC -37.41 148.36 37.61 432.64 884.46 115.19 

229 223202 TAMBO RIVER @ SWIFTS CREEK VIC -37.27 147.73 36.84 895.98 857.72 61.52 

230 223204 NICHOLSON RIVER @ DEPTFORD VIC -37.59 147.70 52.68 321.58 747.43 81.12 

231 223212 TIMBARRA RIVER @ D/S OF WILKINSON CREEK VIC -37.45 148.06 31.68 431.74 872.61 130.22 

232 224201 WONNANGATTA RIVER @ WATERFORD VIC -37.49 147.17 37.49 1976.18 1092.29 243.76 

233 224213 DARGO RIVER @ LOWER DARGO ROAD VIC -37.50 147.27 40.64 667.50 1116.75 226.72 

234 224214 WENTWORTH RIVER @ TABBERABBERA VIC -37.50 147.39 39.52 441.46 836.76 81.88 

235 225209 MACALISTER RIVER @ LICOLA VIC -37.63 146.62 61.46 1238.37 1028.50 280.64 
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236 225213 ABERFELDY RIVER @ BEARDMORE VIC -37.85 146.43 50.55 312.13 1068.04 180.23 

237 225218 FREESTONE CREEK @ BRIAGALONG VIC -37.81 147.10 38.50 305.09 751.34 98.11 

238 225224 AVON RIVER @ THE CHANNEL VIC -37.80 146.88 41.50 557.83 781.75 126.25 

239 225230 GLENMAGGIE CREEK @ THE GORGE VIC -37.91 146.66 38.70 138.99 1024.53 109.98 

240 226209 MOE RIVER @ DARNUM VIC -38.21 146.00 53.24 229.60 962.56 202.76 

241 226218 NARRACAN CREEK @ THORPDALE VIC -38.27 146.19 58.57 66.37 1008.26 305.67 

242 226220 LOCH RIVER @ NOOJEE VIC -37.87 146.01 35.71 106.57 1278.40 235.48 

243 226222 LATROBE RIVER @ NEAR NOOJEE (US ADA R JUNCT.) VIC -37.88 145.89 42.68 64.93 1297.63 343.01 

244 226226 TANJIL RIVER @ TANJIL JUNCTION VIC -37.98 146.19 53.64 314.52 1226.31 399.14 

245 226407 MORWELL RIVER @ BOOLARRA VIC -38.41 146.31 41.68 116.37 1065.84 249.23 

246 226410 TRARALGON CREEK @ KOORNALLA VIC -38.32 146.53 60.52 85.83 1114.00 224.98 

247 227205 MERRIMAN CREEK @ CALIGNEE SOUTH VIC -38.35 146.65 48.08 39.38 1067.73 274.57 

248 227210 BRUTHEN CREEK @ CARRAJUNG LOWER VIC -38.40 146.74 61.44 18.76 915.39 148.97 

249 227211 AGNES RIVER @ TOORA VIC -38.64 146.37 57.01 66.43 1058.30 347.77 

250 227213 JACK RIVER @ JACK RIVER VIC -38.53 146.54 51.12 35.22 1016.74 291.23 

251 227225 TARRA RIVER @ FISCHERS VIC -38.47 146.56 45.72 20.49 998.00 374.72 

252 227226 TARWIN RIVER EAST BRANCH @ DUMBALK NORTH VIC -38.50 146.16 45.01 128.43 1096.37 250.06 

253 227227 WILKUR CREEK @ LEONGATHA VIC -38.39 145.96 43.45 105.66 937.16 314.94 

254 227236 POWLETT RIVER @ D/S FOSTER CREEK JUNCTION VIC -38.56 145.71 34.65 140.65 1016.23 329.50 

255 227237 FRANKLIN RIVER @ TOORA VIC -38.63 146.31 30.76 74.93 910.77 299.23 

256 230209 BARRINGO CREEK @ BARRINGO (U/S OF DIVERSION) VIC -37.41 144.63 47.58 5.21 777.30 189.65 

257 230210 SALTWATER CREEK @ BULLENGAROOK VIC -37.47 144.52 45.68 46.38 847.58 70.88 

258 231211 LERDERDERG RIVER @ U/S GOODMAN CREEK JUNCTION VIC -37.63 144.43 57.63 236.78 837.76 80.01 

259 231225 WERRIBEE RIVER @ BALLAN (U/S OLD WESTERN HWY) VIC -37.60 144.25 114.08 108.68 515.82 129.94 

260 231231 TOOLERN CREEK @ MELTON SOUTH VIC -37.73 144.58 34.69 89.96 583.89 30.45 

261 233223 WARRAMBINE CREEK @ WARRAMBINE VIC -37.93 143.87 43.61 53.87 844.93 21.22 

262 234203 PIRRON YALLOCK CREEK @ PIRRON YALLOCK VIC -38.35 143.42 49.71 165.11 860.31 80.71 
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(ABOVE H'WY BR.) 

263 234209 DEAN CREEK @ LAKE COLAC VIC -38.34 143.56 38.16 54.67 1175.57 68.04 

264 235203 CURDIES RIVER @ CURDIE VIC -38.44 142.96 48.58 780.47 824.99 102.14 

265 235204 LITTLE AIRE CREEK @ BEECH FOREST VIC -38.65 143.53 58.76 11.33 1621.65 940.49 

266 235205 ARKINS CREEK WEST BRANCH @ WYELANGTA VIC -38.64 143.44 35.65 4.48 1616.62 887.92 

267 235210 LARDNER CREEK @ GELLIBRAND VIC -38.53 143.54 49.57 51.92 1453.83 401.81 

268 235211 KENNEDYS CREEK @ KENNEDYS CREEK VIC -38.59 143.26 49.58 268.81 933.37 122.47 

269 235216 CUMBERLAND RIVER @ LORNE VIC -38.57 143.95 38.66 39.51 1275.07 462.87 

270 235232 PAINKALAC CREEK @ PAINKALAC CREEK DAM VIC -38.44 144.07 34.75 36.26 965.10 75.18 

271 235233 BARHAM RIVER EAST BRANCH @ APOLLO BAY 

PARADISE 

VIC -38.76 143.62 36.25 44.47 1262.03 491.41 

272 235234 LOVE CREEK @ GELLIBRAND VIC -38.48 143.57 34.69 81.52 988.19 104.73 

273 236202 HOPKINS RIVER @ WICKLIFFE VIC -37.70 142.72 31.93 1399.84 562.02 17.20 

274 236205 MERRI RIVER @ WOODFORD VIC -38.32 142.48 45.70 904.18 723.86 54.68 

275 236212 BRUCKNELL CREEK @ CUDGEE VIC -38.35 142.65 48.61 219.37 811.36 114.32 

276 237200 MOYNE RIVER @ TOOLONG VIC -38.32 142.23 32.61 559.71 716.26 64.70 

277 237202 FITZROY RIVER @ HEYWOOD VIC -38.19 141.96 50.81 424.94 689.09 52.31 

278 237205 DARLOT CREEK @ HOMERTON BRIDGE VIC -38.15 141.77 51.01 733.74 665.83 70.70 

279 237207 SURRY RIVER @ HEATHMERE VIC -38.24 141.66 43.73 306.50 774.53 83.34 

280 238207 WANNON RIVER @ JIMMY CREEK VIC -37.37 142.50 63.98 48.14 753.77 162.79 

281 238208 JIMMY CREEK @ JIMMY CREEK VIC -37.37 142.51 63.98 22.76 697.54 117.27 

282 238223 WANDO RIVER @ WANDO VALE VIC -37.50 141.43 49.75 176.13 670.98 70.18 

283 238229 CHETWYND RIVER @ CHETWYND VIC -37.32 141.48 46.79 70.82 662.17 85.94 

284 238230 STOKES RIVER @ TEAKETTLE VIC -37.87 141.41 47.55 200.29 714.29 68.07 

285 238231 GLENELG RIVER @ BIG CORD VIC -37.31 142.37 45.72 58.35 689.44 147.89 

286 238235 CRAWFORD RIVER @ LOWER CRAWFORD VIC -37.98 141.45 43.64 631.46 699.26 59.16 

287 401208 CUDGEWA CREEK @ BERRINGAMA VIC -36.21 147.68 46.29 357.83 1107.96 212.00 
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288 401210 SNOWY CREEK @ BELOW GRANITE FLAT VIC -36.57 147.41 81.28 413.56 1437.89 444.71 

289 401212 NARIEL CREEK @ UPPER NARIEL VIC -36.45 147.83 59.76 264.16 1274.12 473.16 

290 401215 MORASS CREEK @ UPLANDS VIC -36.87 147.70 46.87 538.79 920.54 51.11 

291 401216 BIG RIVER @ JOKERS CREEK VIC -36.93 147.47 79.19 359.80 1637.50 575.96 

292 401217 GIBBO RIVER @ GIBBO PARK VIC -36.76 147.71 42.47 389.66 1124.58 272.27 

293 401220 TALLANGATTA CREEK @ MCCALLUMS VIC -36.21 147.34 37.80 456.01 1082.93 158.12 

294 402204 YACKANDANDAH CREEK @ OSBORNES FLAT VIC -36.30 146.91 46.95 280.83 1084.54 171.32 

295 402206 RUNNING CREEK @ RUNNING CREEK VIC -36.54 147.04 42.77 127.83 1307.11 232.45 

296 403213 FIFTEEN MILE CREEK @ GRETA SOUTH VIC -36.62 146.24 55.08 227.32 1044.65 243.07 

297 403214 HAPPY VALLEY CREEK @ ROSEWHITE VIC -36.58 146.82 52.55 141.42 1131.78 158.04 

298 403218 DANDONGADALE RIVER @ MATONG NORTH VIC -36.81 146.63 51.43 381.88 1221.65 73.16 

299 403222 BUFFALO RIVER @ ABBEYARD VIC -36.91 146.70 48.54 416.18 1255.68 354.24 

300 403232 MORSES CREEK @ WANDILIGONG VIC -36.75 146.98 31.87 126.98 1428.93 319.39 

301 405205 MURRINDINDI RIVER @ MURRINDINDI ABOVE 

COLWELLS 

VIC -37.41 145.56 74.61 108.37 1307.65 457.90 

302 405209 ACHERON RIVER @ TAGGERTY VIC -37.32 145.71 52.98 626.17 1298.48 443.82 

303 405214 DELATITE RIVER @ TONGA BRIDGE VIC -37.16 146.11 45.85 360.04 1016.28 268.93 

304 405217 YEA RIVER @ DEVLINS BRIDGE VIC -37.38 145.47 38.74 360.50 1068.68 245.31 

305 405218 JAMIESON RIVER @ GERRANG BRIDGE VIC -37.29 146.19 30.28 367.12 1153.53 528.52 

306 405226 PRANJIP CREEK @ MOORILIM VIC -36.62 145.31 48.62 788.68 631.13 62.03 

307 405227 BIG RIVER @ JAMIESON VIC -37.37 146.06 55.94 628.75 1356.94 445.57 

308 405229 WANALTA CREEK @ WANALTA VIC -36.63 144.87 44.74 102.82 539.76 30.17 

309 405230 CORNELLA CREEK @ COLBINABBIN VIC -36.60 144.80 43.85 236.50 563.36 31.67 

310 405238 MOLLISON CREEK @ PYALONG VIC -37.12 144.86 47.68 164.61 735.17 105.83 

311 405241 RUBICON RIVER @ RUBICON VIC -37.29 145.83 64.52 127.78 1486.20 823.74 

312 405245 FORD CREEK @ MANSFIELD VIC -37.04 146.05 43.67 117.47 867.00 87.00 

313 405246 CASTLE CREEK @ ARCADIA VIC -36.59 145.35 43.69 102.70 611.58 119.12 
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314 405248 MAJOR CREEK @ GRAYTOWN VIC -36.85 144.91 39.73 292.31 602.38 38.65 

315 405251 BRANKEET CREEK @ ANCONA VIC -36.97 145.79 42.64 118.98 793.19 121.56 

316 405263 GOULBURN RIVER @ U/S OF SNAKE CREEK JUNCTION VIC -37.46 146.25 38.68 327.97 1244.59 394.62 

317 405274 HOME CREEK @ YARCK VIC -37.11 145.61 36.59 186.54 754.99 125.30 

318 406208 CAMPASPE RIVER @ ASHBOURNE VIC -37.39 144.45 54.58 38.13 922.66 143.19 

319 406216 AXE CREEK @ SEDGEWICK VIC -36.90 144.36 44.68 35.04 810.44 60.91 

320 406224 MOUNT PLEASANT CREEK @ RUNNYMEDE VIC -36.55 144.64 39.56 242.33 526.65 25.91 

321 406235 WILD DUCK CREEK @ U/S OF HEATHCOTE-MIA MIA 

ROAD 

VIC -36.95 144.66 33.13 212.72 698.03 82.94 

322 407221 JIM CROW CREEK @ YANDOIT VIC -37.21 144.10 36.92 8.58 625.04 248.00 

323 407230 JOYCES CREEK @ STRATHLEA VIC -37.16 143.96 35.88 150.79 694.55 54.28 

324 407246 BULLOCK CREEK @ MARONG VIC -36.73 144.14 41.59 186.52 569.32 38.03 

325 408202 AVOCA RIVER @ AMPHITHEATRE VIC -37.18 143.41 47.20 76.81 654.60 52.53 

326 415207 WIMMERA RIVER @ EVERSLEY VIC -37.19 143.18 40.64 305.98 648.69 52.32 

327 415226 RICHARDSON RIVER @ CARRS PLAINS VIC -36.74 142.79 42.71 129.68 482.90 23.12 

328 415237 CONCONGELLA CREEK @ STAWELL VIC -37.03 142.82 37.90 241.06 552.99 38.13 

329 415238 WATTLE CREEK @ NAVARRE VIC -36.90 143.11 37.86 139.49 572.50 34.13 

330 415244 SHEPHERDS CREEK @ WARRAK VIC -37.25 143.19 30.34 13.40 719.37 76.86 

331 30 RINGAROOMA RIVER TAS -41.13 147.87 36.34 553.73 1248.96 5.35 

332 76 NORTH ESK RIVER TAS -41.50 147.39 90.60 374.04 1133.16 4.36 

333 181 SOUTH ESK RIVER TAS -41.60 147.20 56.82 3299.27 822.05 2.23 

334 499 TYENNA RIVER TAS -42.71 146.71 49.41 206.16 1318.29 8.95 

335 2200 SWAN RIVER TAS -42.05 148.08 49.38 421.97 671.21 2.81 

336 2204 APSLEY RIVER TAS -41.94 148.24 45.37 158.90 747.44 2.42 

337 2206 SCAMANDER RIVER TAS -41.45 148.18 45.51 268.73 908.20 2.26 

338 2208 MEREDITH RIVER TAS -42.12 148.04 43.57 86.13 644.67 2.23 

339 2209 CARLTON RIVER TAS -42.87 147.70 44.59 141.93 738.34 1.26 
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340 2214 ANSONS RIVER TAS -41.05 148.22 34.39 229.36 982.85 2.34 

341 2216 ALLAN CREEK TAS -43.07 147.89 30.56 8.07 1011.95 3.51 

342 3203 COAL RIVER TAS -42.43 147.45 42.25 54.35 628.23 1.15 

343 5202 SNUG RIVULET TAS -43.07 147.24 48.14 17.53 1004.56 3.05 

344 14200 MONTAGU RIVER TAS -40.79 144.93 48.38 297.45 1182.42 2.81 

345 14207 LEVEN RIVER TAS -41.25 146.09 50.33 500.42 1829.49 10.28 

346 14212 CAN RIVER TAS -41.06 145.84 45.57 234.87 1476.05 6.53 

347 14213 BLACK RIVER TAS -40.87 145.30 45.38 319.22 1272.73 6.21 

348 14214 DUCK RIVER TAS -40.87 145.12 47.48 361.94 1238.34 5.00 

349 14215 FLOWERDALE RIVER TAS -40.97 145.61 47.57 152.47 1415.96 7.47 

350 14223 WELCOME RIVER TAS -40.78 144.75 32.51 280.58 1105.44 1.72 

351 17200 RUBICON RIVER TAS -41.25 146.56 46.31 263.97 964.71 2.55 

352 18217 MACQUARIE RIVER TAS -42.18 147.60 34.25 317.67 636.36 2.03 

353 18221 JACKEYS CREEK TAS -41.68 146.66 31.53 30.20 1103.84 6.18 

354 19200 BRID RIVER TAS -41.02 147.37 48.30 140.11 993.86 3.03 

355 19201 GREAT FORESTER RIVER TAS -41.11 147.61 43.65 194.11 1173.97 4.14 
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Appendix 2 – Chapter 2 

Supplementary material  

Linking the Budyko framework and the Dunne diagram 

 

Contents of this file  

Description of the eight streamflow signatures 

Figures A2.1 to A2.3 

Table A2.1 

 

A2.1 Introduction  

This supporting information provides a full description of the eight streamflow signatures 

used in this research. The supporting figures show the results of assessment for hierarchical 

classification model choice (Figure A2.1), classification tree based on five of the eight 

streamflow signatures to allocate further gauged catchments into the five clusters with similar 

streamflow behaviour (Figure A2.2), and evaluation of assumptions for mixed effect 

modelling (Figure A2.3). The supporting table displays the pairwise comparisons among 

flow signatures, Dryness Index and Evaporative Index by catchment clusters (Table A2.1). 
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A2.2 Description of the eight streamflow signatures 

Long-term runoff ratio – RQP 

The long-term runoff ratio (RQP) is the ratio between the long-term cumulative streamflow 

(Q) and long-term cumulative precipitation (P), where: 

𝑅𝑄𝑃 =  
𝑄

𝑃
 .              (S1) 

RQP is important in the context of the long-term catchment water balance because it 

determines the faction of water intake (precipitation) that is released as runoff (streamflow). 

Assuming that the long-term catchment water storage is stationarity (and there are no 

interactions with regional groundwater systems), RQP represents the partition of water 

yielded from a catchment as runoff, with the complement being the actual evapotranspiration 

from the catchment (Milly, 1994; Milly et al., 2008). 

Streamflow elasticity – EQP 

It is widely recognised that streamflow is sensitive to the local effects of climate seasonality 

and climate variability and change (Chiew, 2006; Donohue et al., 2011; Sankarasubramanian 

et al., 2001). Streamflow elasticity provides a measure of the sensitivity of long-term 

streamflow to changes in long-term precipitation. It is an annual hydrological signature 

obtained by the proportional change in mean annual streamflow divided by the proportional 

change in mean annual precipitation (Chiew, 2006; Dooge, 1992; Sankarasubramanian et al., 

2001; Schaake, 1990). We used the non-parametric estimator proposed by 

Sankarasubramanian et al. (2001), although other variations of the streamflow elasticity are 

available (Fu et al., 2007). This non-parametric estimator is more appropriate to the aims of 

this research because it is only dependent on streamflow and precipitation and uses the 

median, thereby providing a more stable value. In addition, it can be easily applied in 

comparative studies of many catchments and over a large spatial extent (Chiew, 2006). The 

EQP non-parametric estimator is expressed as: 

𝐸𝑄𝑃 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
(𝑄𝑡− 𝑄̅)

(𝑃𝑡− 𝑃̅)
 

𝑃̅

𝑄̅
);                                                                                        (S2) 

where Qt and Pt are the total annual streamflow and precipitation for each year respectively 

while 𝑄̅ and 𝑃̅ are the long-term mean annual streamflow and precipitation. EQP gives the 
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percentage of change on streamflow expected for a 1% of change in mean annual 

precipitation. 

Rising Limb Density – RLD 

Rising Limb Density (RLD) is the ratio between the number of rising limbs within the 

streamflow time series (NRL) and the total amount of time (days in this instance, defined by 

the temporal resolution of the streamflow data) where the streamflow is rising (TR). It is 

defined as: 

𝑅𝐿𝐷 =  
𝑁𝑅𝐿

𝑇𝑅
 .                                                                                                                  (S3) 

This signature captures the shape and smoothness of a hydrograph and is insensitive to flood 

magnitude and timing (Shamir et al., 2005). The larger the RLD value, the “flashier” the 

catchment’s hydrological response. 

Baseflow Index – BFI 

The separation of streamflow into slower water release components (termed baseflow) and 

quicker runoff components (stormflow) is widely used when considering water supply, water 

allocation, contamination impacts and flood hydrology (Arnold and Allen, 1999; Lacey and 

Grayson, 1998; Peña-Arancibia et al., 2010; Wittenberg, 1999). To perform this separation 

five main methods have been proposed, including use of: (i) simple graphical visualisation; 

(ii) chemical tracers; (iii) filtering methods; (iv) recursive digital filtering; and (v) unit 

hydrograph (see Gonzales et al. (2009) for a brief explanation and comparison of methods). 

Here, we used the recursive digital filtering method as it can be automated for multiple 

streamflow time series and provides reproducible and comparable results (Eckhardt, 2005; Li 

et al., 2013). Although several recursive digital filtering are available, the algorithm choice is 

still subjective because the true values of baseflow index are often unknown (Eckhardt, 

2008). We use the digital filter proposed by Lyne and Hollick (1979) because it has been 

extensively tested for Australian conditions, and is objective, repeatable, and therefore useful 

for comparative hydrology (Nathan and McMahon, 1990). The Lyne and Hollick digital filter 

was applied to the daily streamflow time series according to: 

𝑞𝑓(𝑖) = 𝛼𝑞𝑓(𝑖 − 1) +
(1+𝛼)

2
[𝑞(𝑖) − 𝑞(𝑖 − 1)]    𝑓𝑜𝑟 𝑞𝑓(𝑖) > 0 ;               (S4) 
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where 𝑞𝑓(𝑖) is the filtered quickflow response at the ith sampling instant; 𝑞(𝑖) is the original 

streamflow at the ith sampling instant; and 𝛼 is the filter parameter which was fitted as 0.925 

for daily data of Australian streams following Lyne and Hollick (1979). 

Three passes are recommended to fit the daily streamflow data. Passes, in order, should be: 

forward, backward, forward. 

The value of the baseflow 𝑞𝑏(𝑖) is then given by; 

𝑞𝑏(𝑖) = 𝑞(𝑖) − 𝑞𝑓(𝑖).         (S5) 

The baseflow index (BFI) is given by the summation of all time steps of the studied time 

series, as: 

𝐵𝐹𝐼 =  ∑
𝑞𝑏(𝑖)

𝑞(𝑖)

𝑛
𝑖=1  .         (S6)  

 Slope of the Flow Duration Curve – SFDC 

The Slope of the Flow Duration Curve (SFDC) quantifies the flow variability between the 

33rd and 66th percentiles of the flow duration curve (Yadav et al., 2007) and hence provides a 

metric of the shape of the flow duration curve. The algorithm uses the semi-log scale to 

estimate the slope because the region of FDC encompassed between these percentiles is often 

relatively linear (Zhang et al., 2008). The higher the slope, the more variable is the flow 

regime. A low slope denotes streams with low baseflow recession and a relatively larger 

baseflow contribution. The signature is defined as: 

𝑆𝐹𝐷𝐶 =  
ln(𝑄33%)−ln (𝑄66%)

(0.66−0.33)
 .        (S7) 

 

where SFDC is the slope of the flow duration curve, Q33% is the streamflow value at 33rd 

percentile, and Q66% is the streamflow value at 66th percentile. 

Normalized 10th percentile streamflow - Q10N 

The Normalized 10th percentile streamflow (Q10N) is an indicator of high flow intensity and 

variability. It is the daily streamflow value that exceeds 10% of the time normalized by the 

mean streamflow. The Q10N is related to the catchment “flashiness” and magnitude of high 

flow (Ogunkoya, 1988). The greater the number the more erratic the flow regime is. This 
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signature denotes how many times the top 10% highest flows are greater than the average 

flow within a time series. Q10N is calculated as: 

𝑄10𝑁 =  
𝑄10

𝑄̅
 ;                                                                                                                 (S8) 

where Q10 is the streamflow at 10th percentile and 𝑄̅ is the long-term average daily 

streamflow. 

Normalized 90th percentile streamflow - Q90N 

The Normalized 90th percentile streamflow (Q90N) addresses the intensity and variability of 

low streamflow. It is the ratio of the value of the daily streamflow being exceeded 90% of the 

time and the mean streamflow. The Q90N value indicates proportionally how small the low 

flows are in relation to average flows. Values can range from 0 to 1, being 0 for intermittent 

streams at 10th percentile flow and 1 for regular streams where the streamflow at 10th 

percentile has the same value of the average flow. Therefore, streams with a small Q90N 

value indicate lower and more variable low flows and are normally located in regions with a 

marked dry season. Conversely, high Q90N values indicate reduced low flow magnitude and 

variability. Q90N is calculated as:  

𝑄90𝑁 =  
𝑄90

𝑄̅
 .                                                                                                                (S8) 

where Q90 is the streamflow at 90th percentile and 𝑄̅ is the long-term average daily 

streamflow. 

Frequency of no flow - FNF  

The frequency of no flow (FNF) indicates the relative amount of time a stream is ephemeral. 

It is a daily hydrological metric that reports the proportional duration of no flow within a 

streamflow time series (Zhang et al., 2014). Australia is primarily a water-limited 

environment and intermittent streams are common in semi-arid and arid regions and in the 

upper catchments of the coastal ranges. Therefore, a signature that shows the ephemeral 

condition of lower order parts of the drainage network is crucial to evaluating the 

hydrological behaviour of Australian catchments. The signature is defined as: 

𝐹𝑁𝐹 =  
𝑁𝑁𝐹

𝑁𝑆
 .          (S10) 
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where FNF is the frequency of no flow days. 𝑁𝑁𝐹 is the number of zero flow days, and 𝑁𝑆 is 

the total number of days within the streamflow time series. 
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Figure A2.1 Results of the assessment for hierarchical classification model choice. The 

Bayesian Information Criterion (BIC) was used to assess models with differing 

parameterizations and/or numbers of clusters (10 models with 20 components). The 

ellipsoidal Gaussian finite mixture model with equal shape and five components was selected 

because of maximum BIC (5752.7). 
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Figure A2.2 Classification tree based on five of the eight streamflow signatures to allocate 

further gauged catchments into the five clusters with similar streamflow behaviour identified 

along the Australian east seaboard with 91.81% of accuracy. The five clusters are denoted A 

to E and with more cluster-specific information provided in Figures 4 and 5 of the paper. 
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Figure A2.3 (a) The skew normal type 2 distribution curve fitted for to the response variable 

(PC1) with minimum generalized Akaike Information Criterion (GAIC) of 146.2; (b) worm 

plot for checking the residuals within different ranges; (c) distribution of residuals in relation 

to fitted values; and (d) Q-Q plot. 
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Table A2.1 Statistical significance of an unpaired Wilcoxon rank sum test on the differences 

of the distributions of eight streamflow signatures (see Table 2 and section 1 of the 

Supporting Information for a description of streamflow signatures), Dryness Index (PET/P) 

and Evaporative Index (AET/P) among catchment clusters (see Figures 4 and 5 for a 

graphical display of flow signatures and indexes variability respectively). Significant 

differences (p-value < 0.5) are highlighted with an asterisk. 

Combinations RQP EQP RLD BFI SFDC Q10N Q90N FNF PET/P AET/P 

A-B 0.000* 0.128 0.000* 0.000* 0.000* 0.003* 0.003* 0.000* 0.000* 0.416 

A-C 0.000* 0.062 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.005* 

A-D 0.000* 0.000* 0.012* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

A-E 0.000* 0.000* 0.003* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

B-C 0.008* 0.385 0.984 0.004* 0.000* 0.000* 0.000* 0.000* 0.001* 0.134 

B-D 0.000* 0.000* 0.107 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

B-E 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

C-D 0.088 0.000* 0.134 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.005* 

C-E 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 

D-E 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 0.000* 
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Appendix 3 – Chapter 3 

Supplementary material 

Regional variation in streamflow drivers across a continental climatic gradient 

 

 

Contents of this file  

Table A3.1 

Figure A3.1 to A3.2 

 

 

A3.1 Introduction 

This supplementary information provides supporting table and figures showing the variability 

of explanatory variables across the regions (Table A3.1) and correlograms from streamflow 

characteristics (Figure A3.1) and residuals of cross-validation of models across different 

regions and scales (Figure A3.2). 
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Table A3.1. Listing of the 24 explanatory variables assessed to model streamflow characteristics with sources and average ± standard deviation 

by region, where: EC = East Coast of Australia; R1 = Region 1 - tropical; R2 = Region 2 - sub-tropical; R3 = Region 3, temperate. Metrics with 

empty brackets are non-dimensional. 

Explanatory variables (Units) 
Average ± Standard deviation 

EC R1 R2 R3 
Climatic     
 1. Dryness index ( ) 1.45 ± 0.49 1.28 ± 0.64 1.32 ± 0.39 1.13 ± 0.35 
 2. Long-term average maximum air temperature (° C) 20.34 ± 3.7 27.85 ± 1.95 24.62 ± 1.46 17.53 ± 1.27 
 3. Long-term average minimum air temperature (° C) 9.05 ± 3.39 18.19 ± 1.88 13.21 ± 1.53 6.55 ± 1.38 
 4. Seasonality index ( ) 0.004 ± 0.004 0.011 ± 0.003 0.005 ± 0.001 0.002 ± 0.002 
 5. Long-term annual average of precipitation (mm) 929.77 ± 272.07 1671.65 ± 744.4 1188.87 ± 341.8 1030.93 ± 245.56 
Topography     
 6. Fraction of erosional landscapes ( ) 0.73 ± 0.2 0.69 ± 0.2 0.82 ± 0.13 0.9 ± 0.1 
 7. Average slope (%) 12.36 ± 7.37 12.57 ± 7.09 15.67 ± 6.02 17.28 ± 7.02 
 8. Maximum slope (%) 62.79 ± 29.32 68.65 ± 27.34 80.1 ± 37.83 62.67 ± 19.45 
Vegetation     
 9. Long-term monthly average of fPAR ( ) 0.69 ± 0.11 0.66 ± 0.16 0.75 ± 0.09 0.75 ± 0.08 
 10. Long-term monthly range of fPAR ( ) 0.07 ± 0.04 0.06 ± 0.02 0.05 ± 0.02 0.05 ± 0.02 
 11. Fraction of woody vegetation cover ( ) 0.78 ± 0.26 0.93 ± 0.11 0.89 ± 0.09 0.83 ± 0.2 
 12. Long-term annual average of actual evapotranspiration (mm) 726.72 ± 150.09 1046.76 ± 238.08 955.9 ± 142.81 747.15 ± 79.35 
Soils     
 13. Long-term monthly average of soil moisture ( ) 0.38 ± 0.1 0.38 ± 0.14 0.35 ± 0.08 0.47 ± 0.1 
 14. Average soil depth (ABhorizon) (m) 0.99 ± 0.26 1.24 ± 0.33 0.91 ± 0.24 1.05 ± 0.24 
 15. Saturated Hydraulic Conductivity (mm/h) 699.47 ± 650.39 167.13 ± 90.42 107.87 ± 75.24 165 ± 91.66 
 16. Average clay content (%) 27.7 ± 10.51 26.35 ± 12.78 34.67 ± 11.52 30.21 ± 10.91 
 17. Average pH ( ) 5.17 ± 0.65 5.2 ± 0.45 5.24 ± 0.77 4.67 ± 0.33 
 18. Average plant available water capacity (mm) 102.05 ± 32.1 72.1 ± 27.96 94.01 ± 30.88 130.24 ± 33.02 
 19. Average bulk density in top 30 cm (g/cm3) 1.30 ± 0.18 1.51 ± 0.15 1.36 ± 0.19 1.15 ± 0.18 
Physiography     
 20. Area (km2) 361.37 ± 429.35 572.01 ± 656.37 264.2 ± 341.49 287.93 ± 320.2 
 21. Perimeter (km) 173.75 ± 107.31 181.22 ± 108.3 130.28 ± 86.43 154.95 ± 94.09 
 22. Circularity Ratio( ) 0.13 ± 0.04 0.18 ± 0.04 0.15 ± 0.03 0.13 ± 0.03 
 23. Shape factor( ) 0.36 ± 0.06 0.42 ± 0.05 0.38 ± 0.04 0.35 ± 0.04 
 24. Compactness coefficient ( ) 2.87 ± 0.49 2.41 ± 0.33 2.63 ± 0.33 2.86 ± 0.3 
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Figure A3.1. Spline correlograms from residuals of three streamflow characteristics (runoff ratio, 

baseflow index and zero flow ratio) across the entire east coast and three distinct regions. The black 

lines are the average spatial autocorrelation from 1000 resamples and the grey lines are the 

confidence envelope corresponding to the null distribution. 
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Figure A3.2. Spline correlograms from residuals of cross-validation of generalized additive models 

for location, scale and shape with penalised B-splines for three streamflow characteristics (runoff 

ratio, baseflow index and zero flow ratio) across the entire east coast and three distinct regions. 
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Appendix 4 – Chapter 4 

Supplementary material 

Disentangling vegetation gain and climate contributions to long-term streamflow changes 

 

 

Contents of this file  

 

Figure A4.1  

 

 

A4.1 Introduction 

This supplementary material provides a supporting figure showing the Conceptual diagram of (a) 

possible changes in the water and energy balances due to climate- (∆QC) and land cover-induced 

(∆QL) changes in the Budyko framework (Figure A4.1). 
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Figure A4.1. Conceptual diagram of (a) possible changes in the water and energy balances due to 

climate- (∆QC) and human-induced (∆QL) changes in the Budyko framework according to the 

trajectory described. Catchments moving towards B1 have decreasing ∆QC
 and ∆QL; catchments 

moving towards B2 have decreasing ∆QC
 and increasing ∆QL; catchments moving towards B3 have 

increasing ∆QC
 and ∆QL; and catchments moving towards B4 have increasing ∆QC

 and decreasing 

∆QL. (b) Decomposition of climate- and human-direct impacts where the changes in AET (vertical 

displacement) is partitioned into ∆QC
 and ∆QL (adapted from Wang and Hejazi (2011)). 
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Appendix 5 – Chapter 5 

Supplementary material 

CO2 – vegetation feedbacks and other climate changes implicated in reducing baseflow 

 

Contents of this file  

 

Figure A5.1 to A5.11 

 

 

A4.1 Introduction 

This Supporting Information provides additional figures showing trends in baseflow, precipitation 

and potential evapotranspiration for 1950 - 2013 (Figure A5.1); the influence of time-series length 

and wet and dry periods in trends (Figure A5.2); sensitivity of trends to the length of time-series 

(Figure A5.3); trends in baseflow in the context of the Budyko framework (Figure A5.4); 

scatterplots of trends in Qb and P and PET (Figure A5.5); ternary plot of relative contributions of 

P, PET and other factors for 1950 - 2013 (Figure A5.6); relationship of Qb and Qbr trends and 

fPAR and fPARr trends (Figure A5.7); ternary plots of relative contributions of P, PET and other 

factors in Qb trends in light of P max – PET max phase offset and spectrum of streamflow regimes 

(Figure A5.8); trends for Qbr and fPARr (Figure A5.9); relationship between atmospheric CO2 

concentrations and fPARr (Figure A5.10); and relative impact of eCO2 –Veg and climate (P + 

PET) on baseflow changes in relation to long-term annual baseflow for 1950 - 2013 (Figure 

A5.11). 
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Figure A5.1. Trends in (a) baseflow, (b) precipitation and (c) potential evapotranspiration for 

1950–2013. 
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Figure A5.2. Influence of time-series length, from 1950 onwards incrementing by roughly 5-year 

steps, and wet and dry periods in trend detection and trend magnitudes of hydroclimatic variables 

averaged for the 44 catchments for: (a) baseflow; (b) precipitation, (c) potential evapotranspiration, 

and (d) linear trends. In part (b) years with precipitation under the lower horizontal dashed line (i.e. 

P ≤ average (P) - standard deviation (P)) are considered dry (yellow shaded strips) while years with 

precipitation above the upper horizontal dashed line (i.e. P ≥ average (P) + standard deviation (P)) 

are considered wet (blue shaded strips). On (a) to (c) the coloured arrows display the changes in 

trend slopes according to the length of time-series considered, with the trends be reported in (d).  
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Figure A5.3. Sensitivity of trends to the length of time-series for the 44 catchments with 

streamflow data from 1950 to 2013: (a) baseflow; (b) precipitation; and (c) potential 

evapotranspiration. Coloured squares refer to the starting year used to calculate the trends. Box plot 

statistics include the median (internal vertical line), interquartile range (IQR - denoted by the box), 

and horizontal lines (or whiskers) are calculated as ±1.58 × 𝐼𝑄𝑅√𝑛. 
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Figure A5.4. Trends in baseflow (Qb) in the context of the Budyko framework for 1950 – 2013 

period. Solid grey line is the Budyko curve and vertical dashed lines are the thresholds defining the 

water-limited, equitant and energy-limited regions. 
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Figure A5.5. Scatterplots of trends in Qb and P, Qb and PET, and PET and P for 1981 - 2013 (a, b 

and c respectively) and 1950 - 2013 (d, e and f respectively). Symbol colours refer to the 

hydrological regimes (see Trancoso et al, 2016 for a full description). Symbol size refers to the 

temporal phase offset between month of P maxima and month of PET maxima averaged across the 

per catchment entire time-series. 
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Figure A5.6. Histograms and spatial distribution of the relative contributions of (a) P, (b) PET and 

(c) other factors on Qb trends for 1950-2013. (d) Ternary diagram integrating the relative 

contributions of P, PET and other factors on Qb trends. Catchment density refers to the relative 

frequency of catchments within the ternary space. 
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Figure A5.7. Scatterplots of Qb and Qbr trends for: (a) 1981-2013 and (b) 1950-2013. Part (c) is a 

scatterplot for fPAR and fPARr trends for 1981-2013. Symbol colours refer to the hydrological 

regimes (see Trancoso et al, 2016 for a full description). Symbol size refers to the temporal phase 

offset between month of P maxima and month of PET maxima averaged across the per catchment 

entire time-series. 
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Figure A5.8. Relative contributions of P, PET and other factors on Qb trends for (a) 1981-2013 and 

(b) 1950-2013. Symbol colours refer to the hydrological regimes (see Trancoso et al, 2016 for a full 

description). Symbol size refers to the temporal phase offset between month of P maxima and 

month of PET maxima averaged across the per catchment entire time-series. 
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Figure A5.9 Trends of (a) detrended baseflow (Qbr) and (b) detrended fPAR (fPARr) for 1981 – 

2013. 
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Figure A5.10 Relationship between atmospheric CO2 concentration in Cape Grim (Tasmania) and 

averaged fPARr for (a) all catchments, (b) water-limited catchments, (c) equitant catchments and 

(d) energy-limited catchments. Trend lines, linear equations and R2 values are displayed excluding 

(in black) and including 2000 (in red), which was a wet year identified as an outlier. Note that all 

the dry years (limited resources) are above the line of best fit (when resource use efficiency is high 

to maintain the high levels of fPAR – what vegetation have evolved to do – keep living when dry 

with a slow response in canopy-level fPAR). Note that the gain of line-of-best fit is highest for WL 

> Equitant > EL, which means that the less of a resource (in this case water) a catchment has, the 

more efficient it is used and there is less Q as a proportion of P. Note also that R2 follows similar 

pattern going from EL < Equitant < WL. These patterns suggest that these plots are tracking a 

biophysically important process related to water use efficiency.  
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Figure A5.11 Relationship between atmospheric CO2 concentration in Cape Grim (Tasmania) and 

averaged fPARr for (a) all catchments, (b) water-limited (PET/P ≥ 1.2) catchments, (c) equitant (0.8 

> PET/P < 1.2) catchments and (d) energy-limited (PET/P ≤ 0.8) catchments. Trend lines, linear 

equations and R2 values are displayed excluding (in black) and including 2000 (in red), which was a 

wet year identified as an outlier. Note that all the dry years (when resources are limited) are located 

above the line of best fit (when resource use efficiency is high to maintain the high levels of fPAR). 

The gain of line-of-best fit is highest for WL > Equitant > EL, which means that the less of a 

resource (in this case water) a catchment has, the more efficiently it is used and there is less Q as a 

proportion of P. Note also that R2 follows similar pattern going from EL < Equitant < WL. These 

patterns suggest that these plots are tracking a biophysically important process related to water use 

efficiency. 

 

 

 


