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Effect of hydrogen bonding on the infrared absorption
intensity of OH stretch vibrations
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560 012, India

bSchool of Mathematics and Physics, University of Queensland, Brisbane 4072, Australia

Abstract

We consider how the infrared intensity of a hydrogen-bonded OH stretch varies
from weak to strong H-bonds using a theoretical model. We obtain trends for
the fundamental and overtone transition intensities as a function of the donor-
acceptor distance, a common measure of H-bond strength. Building upon our
earlier work using a two-diabatic state model, we introduce a Mecke function-
based dipole moment for the H-bond and calculate transition moments using
one-dimensional vibrational eigenstates along the H-atom transfer coordinate.
The fundamental intensity is found to be over 20-fold enhanced for strong H-
bonds, where non-Condon effects are significant. We analyse isotope effects,
including the secondary geometric isotope effect. The first overtone intensity
varies non-monotonically with H-bond strength; suppression occurs for weak
bonds but strong enhancements are possible for strong H-bonds. We also study
how these trends are affected by Mecke parameter variations. For a few specific
dimers, we compare our results with earlier works.

1. Introduction

A well-known signature of the O-H· · ·O hydrogen (H) bond, in addition to
the red-shift of the O-H stretch frequency, is a strong increase in the absorption
intensity of the infrared band of this mode [1, 2]. References [3, 4, 5, 6, 7, 8, 9,
10, 11] are but a subset of the many works that have previously addressed this
effect. The work by Iogansen [7] is particular in that it established an empirical
relation between the hydrogen bonding energy and the intensity of the infra-red
absorption of the O-H stretching mode for a wide range of compounds:

∆H = −12.2(A1/2 −A1/2
0 ), (1)
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where ∆H is the enthalpy (kJ/mol) of H-bond formation and A and A0 are
the intensities (in units of 104 cm mmol−1=100 km/mol) of O-H stretch in the
presence and absence of the H-bond respectively. This holds for energies varying
by a factor of 200 (between about 0.3 and 60 kJ/mol), thus spanning from
weak to strong H-bonds. Ratajczak, Orville-Thomas, and Rao [12] considered a
theoretical basis for the empirical relation given in equation (1) using Mulliken’s
charge transfer theory. Rozenberg [13] recently suggested a relation between
H-bond enthalpy and electron density at the bond-critical point from atoms-in-
molecules theory, and thereby an indirect linear relation between intensity and
electron density. Fillaux [6], though primarily concerned with the theory of H-
bond band shapes, conjectured a non-monotonic relationship between intensity
A and the donor-acceptor distance R, with a maximum around R ' 2.6 Å.

Bratos et al. reviewed experiments describing the variation of the intensity
enhancement with the strength of the H-bond in liquids, which are viewed as
static disordered media [5]. For weak H-bonds (R > 2.8Å) they find enhance-
ment in the range of about 5 to 10. For medium strong H-bonds (R ∼ 2.6− 2.8
Å), it is enhanced by 10 to 15, while for strong H-bonds it becomes as large as
about 30. For strong symmetrical H-bonds (R < 2.6 Å), the enhancement of A
decreases by about 10 when R decreases from 2.5 to 2.45 Å, consistent with a
non-monotonic dependence on R. However, estimating the intensity accurately
is difficult due to the broad spectra.

H/D isotope substitution causes a suppression in the O-H stretch intensity.
For free O-H bonds, one anticipates a decrease by a factor of two in the harmonic
picture. The suppression changes with H-bond strength as well. For instance,
Bratos et al. [5] state that AH/AD ' 2 for weak H-bonds, which gets enhanced
by ∼ 2.6 for medium bonds and ∼ 3−5 for strong H-bonds (see note in Ref. [5]).

In contrast to the fundamental transition, a number of studies have reported
that the intensity of the first overtone of the O-H stretch shows a pronounced
suppression upon H-bonding [14, 10, 11, 9]. Indeed, eighty years ago failure
to observe a OH stretching overtone was correlated with the presence of an
H-bond.[15] Di Paolo et al. [14] explained this in terms of a balance between
mechanical and electrical anharmonicity. Suhm and co-workers’ studies of a
range of alcohol dimers [10, 11] report fundamental-to-overtone intensity ratios
in the range of 300 to 1000 for the H-bonded OH stretches, compared to about
10 for the monomeric OH. For diols, Howard et al. [9] found that the suppres-
sion increases for the donor O-H with H-bond strength from ethane- (∼ 15)
to propane- (∼ 83) to butanediol (∼ 500). The acceptor O-H has a smaller
value of about 7. We parenthetically note that the study of overtones is in-
teresting in its own right: Heller [16] pointed out that overtone excitation is a
purely quantum effect, associated with dynamical tunneling, just like reflection
above a potential barrier. Lehmann and Smith [17] and Medvedev [18] consid-
ered the factors that influence overtone intensity of hydrogen stretches in simple
molecules. They showed that the intensity of the 0 → n, n ≥ 2, overtones is
sensitive to the shape of the (inner) repulsive wall of the stretch potential, i.e.
the classically forbidden region. Medvedev [18] has also noted that, though the
electrical anharmonicity affects the intensity by upto an order of magnitude
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relative to when a linear dipole is used, it does not affect the general trend of
several orders of magnitude drop in the overtone intensities with n.

In this paper we study the intensity variation of the O-H stretch transition
with H-bond strength using a simple one-dimensional two-state diabatic model
potential. Using this model, our prior works have discussed vibrational frequen-
cies along the OH stretch coordinate, H-atom position, primary and secondary
(geometric) isotope effects, as well as isotopic fractionation [19, 20, 21]. The
present work adds to the model a dipole moment function, based on the Mecke
form [22], along the OH stretch coordinate in order to compute the intensities.
Section 2 briefly describes the diabatic model, the dipole moment function we
use, the Condon approximation, and some of the computational details. Sec-
tion 3 presents results for the O-H fundamental intensity variation, isotope effect
on the fundamental intensity, the first overtone intensity variation, and the ef-
fect of modifying the dipole function shape. In Section 4 we give a detailed
comparison of our results with previous theoretical and experimental works.
We offer some remarks in the concluding section.

2. Computation of the infrared intensity

The intensity of a vibrational transition j ← i is experimentally obtained as
the integral molar absorption coefficient over the corresponding spectral band,
[23, 7]

Aji = − 1

c `

∫
lnT (ν̃)dν̃. (2)

where T is the transmittance, c in the concentration, and ` is the path length.
The unit for Aji is km/mol. Time-dependent perturbation theory yields the
theoretical expression for the intensity as [23]

Aji =
2π2

3ε0hc
ν̃ji|µji|2, (3)

where the transition dipole matrix element

µji =

∫
drφ∗j (r)µg(r)φi(r) (4)

where νji = Ej − Ei and φi(r) is a vibrational wave function and r denotes
the nuclear co-ordinates. Here ν̃ji is in cm−1, µ is in Debye, and the units of
Aji are km/mol. In the present work on O-H· · ·O H-bond intensities, we focus
on the hydrogen atom motion along the O-O axis. We therefore consider the
wavefunctions and the dipole moment along this line alone.

In order to have a sense of the magnitude of A, we note that simple al-
cohol monomers are reported to have experimental and theoretical gas phase
fundamental intensities in the range of about 25 km/mol [24, 25, 26]. The corre-
sponding gas phase dimers show an intensity enhancement of about an order of
magnitude [9, 10, 26]. Several studies on the (H2O)2 dimer have shown signficant
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enhancement with respect to the monomer [27, 28, 29, 30, 31, 32, 33, 34, 35]: the
intensities are about 45 and 140 km/mol for the monomer (asymmetric stretch)
and dimer, respectively.

The linearized dipole approximation is often applied to Eq. (4), where only
the first derivative of the dipole function is used in the intensity expression:

µji ' µC
ji ≡

∂µg(req)

∂r
rji, (5)

where rji is the matrix element of the OH coordinate (r) between the jth and
ith states, and req is the equilibrium O-H bond length (i.e. the value of r
at which the potential energy is a minimum along the O-H stretch). Some
authors refer to this as the Condon approximation following the introduction
by Condon [36] to the treatment of electronic transitions. We shall follow this
nomenclature. Deviations from the Condon approximation are also known as
electrical anharmonicity.

The Condon approximation leads to several further analyses. (1) There are
two distinct physical mechanisms whereby H-bonding can increase the inten-
sity. The first is by increasing the dipole derivative. The second is by increasing
the position matrix element, which will be related to the amount of zero-point
motion. (2) If the nuclear wave functions are harmonic, then the only vibra-
tional transition with non-zero intensity is that of the fundamental (i.e. from
the ground state i = 0 to the first vibrational excited state, i = 1). There
are no overtones, i.e. higher harmonics. This is known as the double harmonic
approximation. (The first is the Condon approximation). In reality, all poten-
tial energy surfaces are anharmonic and so this leads to the presence of weak
overtones in IR spectra. Their intensity can be used to estimate the amount of
anharmonicity, both in the potential and the dipole moment surface (i.e. devia-
tions from Condon). In the harmonic approximation, |r01|2 ∼ ~/(mω) ∝ 1/

√
m,

where ω is the harmonic frequency of the oscillator. This gives a limiting value
for the isotope effect on the fundamental intensity: AH/AD = 2. (3) The
Thomas-Reiche-Kuhn (TRK) sum rule [37] relates the oscillator strengths of
the ground-to-excited-state transitions:∑

j

(Ej − E0)|rj0|2 =
~2

2m
. (6)

Ej is the energy of the jth vibrational state and m is the reduced mass of
the oscillator. This is true for any potential. In the Condon approximation
(Eq. (5)), the terms in the summation differ from the intensity (Eq. 3) by a
common pre-factor the dipole derivative. Generally, the sum will be dominated
by the fundamental.

The intensities of overtones involve contributions from both electrical and
mechanical anharmonicities. Early work by di Paolo et al. [14] showed that, for
a Morse oscillator with second-order dipole expansions, the two anharmonicities
have cancelling influences for the first overtone’s intensity while being additive
for the fundamental. Ref. [10] found that the relative signs of the dipole moment
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first and second derivatives for H-bonded OH of 2,2,2-trifluoroethanol dimer to
be in agreement with this notion.

Recent works have quantified the effect of the two anharmonicities on the
fundamental and overtone intensities of infrared lines for simple molecules. For
example, Vazquez and Stanton [38] studied H2O and HFCO, while Banik and
Durga Prasad [39] studied H2O and H2CO. For these simple isolated molecules
the effect of the anharmonicities on the intensity of the fundamental is typically
only a few per cent. For molecules that have weak fundamentals (due to small
dipole first derivatives) and stronger overtones, the anharmonicities would play
a greater role.

Whether the assumption of slow variation of the dipole moment over the
relevant length scale of the oscillator wave functions is applicable for H-bonded
complexes, at various H-bond strengths, is a relevant question. To the extent
that it is valid, the other contribution to the intensity is the mechanical anhar-
monicity. This increases as H-bonding strengthens, which results in an increase
in intensity as well. However, there are significant cases of non-Condon effects.
Schmidt, Corcelli, and Skinner [40] found that for the OH stretch in liquid wa-
ter one needs to take into account the dependence of the dipole moment on the
nuclear co-ordinates of the surrounding water molecules. McCoy et al. [41] ar-
gued that there were large non-Condon effects in H3O+·X3 (X = Ar, N2, CH4,
H2O) complexes and suggested this is relevant to the intensity of the ‘association
band’ seen in the vibrational spectrum of liquid water.

2.1. Diabatic state model for H-bonding

In this work, we use the two-state diabatic state model for linear symmetric
O-H· · ·O H-bonds from recent work by McKenzie [19]. It was shown in subse-
quent work [20, 21] that it affords a quantitative description of the correlations
observed [42] between the OO distance (R) and OH bond lengths (r), the fre-
quencies of OH vibrations (both stretch and bend), and H/D isotope effects for
a diverse range of chemical compounds [20, 21]. We use the same notation and
parameters as in Ref. [20].

For a O-H· · ·O complex, the Hamiltonian with respect to the diabatic states,
|O-H · · ·O〉 and |O · · ·H-O〉, is given as

H =

(
V (r) ∆(R)
∆(R) V (R− r) + Vo

)
(7)

The coordinates r and R are the OH and OO distances, respectively, and r0 is
the equilibrium free OH distance of 0.96 Å. V (r) is Morse potential with a depth
(D) of 120 kcal/mol, an exponential parameter (a) of 2.2 Å−1, corresponding
to a harmonic frequency of 3600 cm−1. Its arguments r and R − r in Eq. (10)
point to the O-H· · ·O and O· · ·H-O diabats, respectively. Vo is a vertical offset.
In this work, we consider both symmetric and asymmetric cases; more details
are at the end of this subsection. The coupling between the diabats is given
as ∆(R) = ∆1 exp(−b(R − R1), with ∆1 = 48 kcal/mol, b = a, and R1 =
2r0 + 1/a ≈ 2.37 Å. We note that this is the abbreviated form of the coupling:
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The full form contains an angular dependence on the two HOO angles as well
[19].

We treat the donor-acceptor distance R as a control parameter. The elec-
tronic ground state for the above Hamiltonian is given as

|Ψg(r|R)〉 = − sin θ(r|R) |O-H · · ·O〉+ cos θ(r|R) |O · · ·H-O〉 (8)

where the angle is given by

tan 2θ(r|R) =
2∆(R)

V (r)− V (R− r)− Vo
. (9)

We note that this form for the ground state of the electronic wavefunction allows
for the charge transfer character of a H-bond, as emphasized by Thompson and
Hynes [43]. The potential curve corresponding to this state is

ε−(r,R) = 1
2 [V (r) + V (R− r) + Vo]

− 1
2

[
(V (r)− V (R− r)− Vo)2 + 4∆(R)2

] 1
2 . (10)

For Vo = 0, this yields a symmetric double well. This is a suitable choice for
strong bonds, since the H atom is essentially shared by the donor and acceptor.
In other words, the respective pKa’s are about the same [42]. However, for weak
H-bonds, a sizeable Vo is more appropriate. In this work, we consider Vo = 0 at
all R, and Vo = 50 kcal/mol for R ≥ 2.7 Å. In the latter case, we discuss the
variability of the results with asymmetry.

2.2. Vibrational eigenstates

The vibrational eigenstates used in this work to compute infrared intensities
are the one-dimensional vibrational eigensolutions for a H/D atom on ε−(r|R).
They are calculated using sinc-DVR functions [44]. For the Vo = 0 case, the
potential is a symmetric double-well. Hence, the solutions are labelled φn± or
n±, where ± indicates symmetric and antisymmetric tunnel-split doublets. Of
course, such a label is truly relevant only if the energy levels are well-below the
barrier height. However, we use these labels at all R; see Ref. [20] for further
details. For the asymmetric cases, we simply drop the ± subscript.

Of primary interest in this work are the ground (φ0± or φ0), first excited
(φ1± or φ1), and second excited (φ2± or φ2) states. Transitions between these
states define the fundamentals and overtones we analyse.

When H is replaced with D, a secondary geometric isotope effect (SGIE)
is observed, wherein the O-O distance changes [45, 46, 47]. This is purely a
quantum effect based on the vibrational zero-point energy gradients. Within our
diabatic model, as the H-bond strengthens from R = 3.0 Å to about R = 2.45
Å, deuteration leads to a progressive increase in the O-O equilibrium distance of
up to about 0.04 Å. Though small in magnitude, it was found to yield significant
H/D frequency effects [20]. This is because changing R changes the shape of
the OH stretch potential, and small changes in R are particularly significant in
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the regime of low-barrier H-bonds where the energy barrier is comparable to
the OH stretch zero point energy. For R . 2.4 Å, the direction of the trend
is found to be reversed. In analysing the role of SGIE on the intensities, the
eigenenergies and wavefunctions for deuterium are computed at two distances,
namely without and with the model-estimated O-O distance change. This is
carried out only for the symmetric case, Vo = 0.

2.3. Dipole moment function for an H-bonded complex

For the two diabats, the O-H dipole moments point in opposite directions.
For a symmetric H-bond, it is then evident that the ground adiabatic state
dipole moment function, µg(r|R), would be antisymmetric. To generate such a
dipole function, we assume the following form of the diabatic dipole function:

µ̂d =

(
µ0(r) 0

0 −µ0(R− r)

)
, (11)

where µ0(r) is a suitable, common form for the dipole moment of both diabats,
and the explicit sign indicates the dipole direction. This is the Mulliken-Hush
approach [48] where there is no cross term in the diabatic representation of
the dipole moment. We also assume that the choice of common form of µo(r)
for both diabats holds for asymmetric H-bonds as well. In that case it is an
approximation.

This leads to the definition of the adiabatic dipole surface µg(r) as

µg(r|R) = 〈Ψg|µ̂d|Ψg〉
= sin2 θ(r|R)µ0(r)− cos2 θ(r|R)µ0(R− r)
= µ0(r)− cos2 θ(r|R) {µ0(r) + µ0(R− r)} ,

(12)

where from (9)

2 cos2 θ(r|R) = 1 +
V (r)− V (R− r)− Vo√

[V (r)− V (R− r)− Vo]2 + 4∆2
. (13)

It remains to choose a form for µ0(r), which we discuss in the next subsection.
The Condon approximation (Eq. (5)) for µg(r) involves the evaluation of its

derivative at req(R), which is the minimum of the adiabatic potential ε−(r|R) at
different R. The approximation would be valid to the extent that this shape of
µg(r) is approximately linear in a sufficiently wide interval about req. In Section
3.2, we will compare the dipole moment function µg(r) with the wavefunction
shapes at different R to determine if this is so.

We note the selection rules for the fundamental and overtone transitions.
Since µg(r) is antisymmetric in r for all R, the allowed transitions involve a
change in the symmetry of the vibrational wavefunction, i.e., a change in parity.
We focus on three transitions: 1+ ← 0−, 1− ← 0+, and 2+ ← 0−. In section 3.1,
we discuss the possible identification of these transitions with the fundamental
and first overtone. See also the discussion in Sec. V of Ref. [20].
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2.4. Dipole moment function for diabatic states

In choosing a form of the diabatic dipole moment, we make a bond dipole
approximation. We note that molecular dipole moments are not always oriented
along bonds. However, our diabatic model (Sec. 2.1) treats the donor and
acceptor as unified atoms. In keeping with this, the present one-dimensional
treatment only affords a dipole moment along the O-O axis. We therefore do
not use a vector notation for the dipole moment throughout this work.

A simple analytical form of a bond dipole moment function is that due to
Mecke [22]:

µ0(r) = µ∗rm exp(−r/r∗). (14)

This three-parameter function has the desired limits in that it vanishes for small
and large r. It has the maximum magnitude at r = mr∗. Usually, m is fixed
to be 1. The Mecke form has been used in both theoretical and experimental
studies in the literature [49, 50, 51, 52, 25, 53, 54, 55, 56]. It has the significant
advantage that although it depends on just a few parameters it can be used to
give a quantitative description of the intensity of many overtones. For example,
for OH stretch vibrations, Phillips and coworkers have used the Mecke form to
describe the intensities of up to the fourth overtone of vapour phase alcohols,
including methanol, ethanol, and isopropanol, as well as acetic and nitric acid
[25, 54]. The intensities of the CH overtones for naphthalene have been studied
by Schek et al. [49] using this dipole form, while those in haloforms have been
extensively studied by Quack and coworkers [51]. Lin et al. have analysed SiH4

and GeH4 local mode overtone intensities using a local bond dipole model, for
which they fit ab initio dipole moments to Mecke forms (yielding m ' 0.7 and
a maximum near the equilibrium bond length for both molecules) [53]. Lemus
and coworkers have explored the continuum effects in coupled Morse oscillators
using a Mecke form for associated dipoles [56].

In the context of O-H bonds, it has been argued that the Mecke form might
not be suitable for monomeric species [55, 57], and that Taylor expansions up
to a suitable order appear better. However, the present work aims at exploring
trends for a wide range of H-bonds, from weak to strong, over a wide donor-
acceptor range. On this account, we have chosen to retain the Mecke form for
µ0(r). We use the Lawton and Child [50] parameter values of m = 1, µ∗ = 7.85
D/Å, and r∗ = 0.6 Å, originally given for the OH bond in water. All results in
the sections 3.2-3.6 are with these parameters.

Two further aspects of our choice are of note. First, the dipole moment
for the left and right diabats are assumed to arise from bond dipoles from
the (donor) O-H and (acceptor) H-O alone; see Eq. (11) above. Second, the
chosen µ0(r) has a negative slope of −0.95 DÅ−1 at the equilibrium bond length,
r0 = 0.96 Å, since r∗ < r0. (Note: µ0(r0) = 1.52 D, and µ′′0(r0) = −1.06 DÅ−2.)
This is a point of departure from ab initio results for some OH monomers, where
the first derivative is found to be positive [55]. In terms of the Mecke form, this
means that r∗, the position of the maximum, occurs after r0. It was also found
that there was some variation of the position of the maximum with molecular
identity. Motivated by this, we have also investigated r∗ values that are smaller
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and larger than r0 and report our findings in Sec. 3.7. We note that r∗ alone
governs the shape of µ0(r) (since m is held fixed at 1), and hence the results we
present.

An alternative to using a simple analytical form for the dipole function is
to perform ab initio calculations for specific molecular systems. However, it
should be stressed that the results can vary significantly with basis set and level
of theory used [57, 58, 59]. Furthermore, our goal is not to consider specific
systems but rather to see if a simple model can capture trends observed across
a wide range of systems.

3. Results

3.1. Frequency vs H-bond length (R)
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Figure 1: Variation of different OH stretch transition frequencies with the donor acceptor R
for symmetric and asymmetric H-bonds. Solid lines, symmetric H-bonds: The curves plotted
are 1+ ← 0− (black), 1− ← 0+ (blue), 2+ ← 0− (red), and 0+ ← 0− (magenta). For
weak bonds (R > 2.7 Å) the black and red curves can be identified with fundamental and
first overtone transitions respectively. The blue curve separates from the fundamental curve
(solid black) only when the tunnel splitting becomes significant. For moderate bond strengths,
the solid black curve has the lowest frequency in the experimentally relevant range (> 500
cm−1) and so is identified as the fundamental. For strong bonds, there are large anharmonic
effects and the nomenclature of fundamental and first overtone is not particularly meaningful.
Dashed lines, asymmetric H-bonds: The 1 ← 0 and 2 ← 0 transition frequencies are plotted
for R ≥ 2.7 Å for an asymmetry (Vo) of 50 kcal/mol. The effective potential of the lower
well is a little less anharmonic than for the symmetric case. Consequently, the transition
frequencies are a little higher.

We begin with an analysis of the frequencies of different vibrational transi-
tions as the H-bond strength changes for both symmetric and asymmetric cases.
This is necessary, particular for the symmetric case, to clearly define what we
mean by a fundamental and a first overtone, since there are significant anhar-
monic effects for strong bonds in the symmetric case. For weak symmetric or
weak asymmetric H-bonds, the identification is straightforward.

9



  

The solid curves in Figure 1 are for the symmetric case. The frequency of
the 1+ ← 0− transition frequency is seen to have a non-monotonic variation
with R (black curve). It is progressively softened (red-shifted) as the H-bond
strength changes from weak (R & 2.7 Å) to moderately strong (R ∼ 2.5 − 2.6
Å). In the latter region, the barrier height becomes comparable to the energy
of the first few O-H vibrational states, and as a result the tunnel-splitting is
significant. In the very strong H-bond region (R < 2.45 Å), the potential
becomes roughly square-well like with a very low or no barrier, and all the
vibrational states are energetically well separated. Hence the 1+ ← 0− curve
turns upward. For moderate bond strengths, the black curve has the lowest
frequency in the experimentally relevant range (> 500 cm−1) and so is identified
as the fundamental. The above discussion is based on Figure 3 in Ref. [20]
which shows the different potentials and low-lying vibrational energies for R =
2.3, 2.45, 2.5, 2.9 Å. See Refs. [60, 61, 62, 63] and the note in Ref. [64] for a brief
list of systems with varying H-bond strengths.

Also shown in Figure 1 is the 2+ ← 0− transition frequency (red curve).
This, too, has a non-monotonic dependence on R. For weak bonds, this can
be identified as the first overtone as it has roughly twice the frequency of the
fundamental. But it turns upward sooner compared to the fundamental since the
energy of the 2+ state, moves higher than the barrier before the 1+ state does.
In the moderate H-bond region, due to significant tunnel-splitting, the 1− ← 0+

transition frequency (blue curve) clearly separates from the fundamental curve.
The definition of the first overtone in this region becomes ambiguous due to
the large anharmonicity of the potential. We discuss the intensities for each of
these vibrational transitions in Section 3.6. Like the frequencies, they all have
a non-monotonic dependence on R.

We also note that for strong bonds with R . 2.5 Å, the splitting of the 0+

and 0− levels becomes larger than 500 cm−1, which is larger than the thermal
energy, kBT at room temperature. This means that the population of the 0−

level will be reduced by a Boltzmann factor of order 0.1. In an experiment,
there will be a corresponding reduction in the measured IR absorption intensity
associated with transitions from this level. In order to highlight changes in the
dipole matrix element, our plots do not take this thermal effect into account.

For the asymmetric case, the chosen Vo value shifts the right diabat in Eq. (7)
above the energy of the Morse overtone level of the left (unshifted) diabat. The
resulting ground state potential therefore has single and unambiguously identi-
fiable ground, fundamental, and overtone levels. The corresponding wavefunc-
tions are also largely localized on the left side. The fundamental and overtone
transition frequencies as a function of R are plotted as red and blue dashed
lines in Figure 1. The plots stop at 2.7 Å since we consider asymmetry only in
the weak H-bonding regime. It is of note that the asymmetric fundamental is
higher by 256 and 30 cm−1 compared to the symmetric case at 2.7 and 3.0 Å,
respectively. The corresponding values for the overtone are 996 and 75 cm−1.
Both sets are consistently higher. A major part of these differences is due to the
lower harmonic frequency of ground state potential minimum for the Vo = 0 case
than for Vo > 0: The diabats are more mixed with decreasing asymmetry and
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at shorter R in general. A smaller role is played by the effective anharmonicity
of the ground state potential well, which reduces (to simply the anharmonicity
of the Morse potential for the diabatic state) with increasing Vo.

3.2. Intensity of the fundamental transition
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Figure 2: Intensity of the 1+ ← 0− transition as a function of R. The left axis is intensity
in (100 km/mol) units and the right axis is the intensity scaled with respect to its value for
R = 6.0 Å (non-H-bonded OH). The solid line is the intensity obtained through the full matrix
element, Eqn.(4), while the dashed line is obtained using the Condon approximation, eqn. (5).
The inset is a blow-up of the curve, showing the relatively small intensity enhancements in
the weak H-bond regime. Also shown in red in the inset is the trend when Vo = 50 kcal/mol.

For symmetric H-bonds, our calculation of the intensity of the 1+ ← 0−

(fundamental) transition using eqn. (3) is shown by the solid line in Figure 2.
The non-H-bonded OH intensity value (computed at R = 6.0 Å) is about 39
km/mol, which compares reasonably with the range of about 20 − 60 km/mol
reported for O-H stretches for a range of isolated molecules [24, 25, 26, 39].
The intensity enhancement relative to this value is a little over 2 in the weak
H-bond region (see inset). As the curve enters the moderately strong H-bond
region (R . 2.6 Å), it shows ∼ 5 − 10 fold enhancement, reaching ∼ 20 for
strong H-bonds (R ≈ 2.4 Å). This enhancement magnitude, though a little
lesser, broadly agrees with experimental results summarized by Bratos et al. [5]

Figure 3 shows the contributions to the integrand in eqn. (4), viz. µg(r)
and φ1+φ0−(r), at different R, giving insight into the intensity enhancement
with increased H-bond strength. These functions are both asymmetric about
r − R/2 = 0 at all R. Hence it would suffice to consider only one vertical half
of the plots. The first panel is for R = 2.8 Å. Here, µg(r) is mostly linear
for a large O-H distance (r) range. The φ1+φ0− product function amplitude is
non-zero over roughly the same r range. Its positive and negative regions have
only a small difference in areas, leading to significant cancellations in the total
integral. However, this difference in areas is a little larger than that at R = 3.0
Å, where µg(r) is found to be even more clearly linear in the relevant r range. A
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modest intensity enhancement at R = 2.8 Å compared to R = 3.0 Å is therefore
anticipated, and borne out by the plot in Figure 2.

For moderate strength H-bonds (R ∼ 2.6 Å, middle panel), µg(r) is seen
to be more non-linear. This is a consequence of the shape of the mixing angle
θ(r) with r [compare equations (8)) and (9)]; with decreasing R, it changes less
abruptly along r between its diabatic limits of 0 and π/2. As a consequence,
the charge transfer character changes more continuously as the proton moves
from the donor to the acceptor. This is true for µg(r) as well. Returning to the
wavefunction product, the φ1+φ0− overlap function has more unequal positive
and negative spread at R = 2.6 Å. This results in less cancellation compared to
the case at R = 2.8 Å, resulting in a larger enhancement of intensity. All these
effects becomes stronger still at R = 2.4 Å (bottom panel).

3.3. Break down of the Condon approximation

The dashed line in Figure 2 gives the intensity obtained using the Condon
approximation (eqn.(4)). The required derivative of ∂µg(r)/∂r was evaluated
at the classical minimum of the double well for each R. In Figure 3, these are
marked with blue plus signs. In the weak H-bond region (large R), the intensity
calculated through this approximation is in agreement with the actual value.
But as R decreases the approximation breaks down and is seen to underestimate
the intensity. Figure 3 helps explain this Condon breakdown. For weak H-bonds,
µg(r) is largely linear in the region where φ1+φ0− has significant amplitude,
as seen for R = 2.8 Å. Taking a constant dipole derivative for this case is
reasonable. But as the H-bond strengthens, µg(r) is sufficiently non-linear for
R = 2.6 Å, and even more so at R = 2.4 Å. For these cases, the φ1+φ0− overlap
curve becomes less localized, i.e., broader. This reflects the large zero-point
motion due to the reduced frequency of the OH stretch and the increase in
anharmonicity and tunneling. Hence, the actual intensity is more enhanced
than that calculated with the Condon approximation.

3.4. Fundamental intensity for asymmetric H-bonds

We now discuss in detail the results for asymmetric H-bonds. The trend
for R in the range 2.7-3.0 Å is shown as the red curve in the inset of Figure 2.
Here, too, there is an enhancement in intensity with decreasing R, albeit smaller
than that for the symmetric case. At R = 2.7 Å, it is about 1.25 times that
for a free OH. This fraction varies slightly when the asymmetry is changed
to 40 or 75 kcal/mol, the former (latter) leading to higher (lower) intensity.
Insight into why these numbers are all lower than the symmetric case may
be obtained from the work of di Paolo et al.[14] Translating their notation to
ours, the fundamental intensity is proportional to (µ′g−5bµ′′g )2, where the dipole
derivatives are evaluated at the potential minimum, and b is the (dimensionless)
ratio of the cubic anharmonicity to the harmonic frequency of the well. With
b < 0 being the typical case, and µ′g and µ′′g having the same sign (which is
true in our case as well), di Paolo et al. argued that the second term augments
the first. Therefore, the potential and electrical anharmonicity enhance the
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fundamental intensity. For our case, the symmetric case has both larger |b| and
larger µ′′g than the asymmetric one at a given R. The underlying cause is the
larger mixing of diabats in the symmetric versus asymmetric models, ultimately
leading to the computed differences in intensities.

3.5. Isotope effect on the intensity of the 1+ ← 0− transition

Experiments show that the intensity of the fundamental transition of a H-
bonded O-H stretch mode is suppressed upon substituting H by D.[5] The black
curve of Figure 4 shows how H/D isotope substitution affects the intensity of the
fundamental, as calculated for our symmetric H-bond model. (We limit the anal-
ysis to the symmetric case since the effects discussed below are more important
in the medium and strong H-bonds.) The AH/AD ratio shows a non-monotonic
dependence on R. In the weak H-bond region, the ratio is almost unaffected as
R varies. Also, the Condon appproximation holds well here: AH/AD = 2; see
Section 2. For H-bonds with moderate strength, the ratio increases reaching a
maximum at R ' 2.53 Å. The position of this maximum roughly matches with
the minimum of the frequency ratio in Figure 8 of Ref. [20]. For still stronger
H-bonds, the intensity ratio declines and becomes ∼ 1.7 at very short R. This is
attributed to the square-well-like behaviour of the potential for this range of R.
[20] (For a square-well potential, the vibrational wavefunctions are independent
of mass while the transition frequencies are mass dependent. Thus the ratio of
intensities will mainly be due to the frequency ratio, which is approximately 2.)

Another important aspect of the isotope effect is the secondary geometric
isotope effect (SGIE) where the O-O equilibrium distance is changed upon sub-
stituting H by D (Section 2.2). This modifies the adiabatic potential, which, in
turn, also affects the intensity. Therefore, the experimental quantity that we
need to calculate is AH(RH)/AD(RD), where RD is different from RH due to
SGIE. The red curve of Figure 4 shows this ratio. Evidently, this ratio is overall
larger compared to the one without SGIE. The maximum is shifted to slightly
lower R, and interestingly also roughly corresponds to the H/D frequency ratio
minimum calculated with SGIE in Figure 8 of Ref. [21]. Bratos et al. [5] quotes
the AH/AD ratio to be about 2, 2.6, and 3-5 for weak, moderate, and strong
bonds, respectively. These are in agreement with our results that include the
SGIE.

Insight into the observed trend of the AH/AD ratio with R can be given
by analysing how the integrand of the transition dipole moment, φ1+µg(r)φ0− ,
varies with r for each isotope at different R values. This product function is
plotted in Figure 5 for O-O distances in the weak (R = 2.8 Å) and fairly strong
(R = 2.5 Å) H-bond regions. The H (black) and D (blue) curves are without the
inclusion of the SGIE. They are different essentially because H experiences larger
anharmonicity effects than D. The wavefunctions for H have a greater spread
than those for D. With µg(r) being the same for both, the product function
plotted for H in both panels of Figure 5 have larger positive than negative areas
compared to those for D. Therefore, the transition dipole integral is higher for
H than D. On including the SGIE µ1+0− (red curves), one sees very little change
for weak bonding; the integrands with and without this effect are rather similar.
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For strong H-bonds, there is a clear difference. The resulting integrals for D are
smaller and so AH/AD is higher.

3.6. Overtone intensity

Figure 6 shows the intensity of the 2+ ← 0− transition as a function of R for
a symmetric H-bond. Its intensity for a monomeric OH (at R = 6.0 Å for our
model) is about 0.32 km/mol. It has a complicated non-monotonic dependence
on R. The inset shows that with decreasing R the intensity initially drops to zero
at about 2.96 Å, and thereafter rises rapidly. This initial overtone suppression
occurs at a distance somewhat larger than anticipated based on prior works,
which indicate suppression up to at least 2.8 Å. We shall see further below that
this might be a consequence of asymmetric H-bonds studied in those works.
Continuing to smaller R or stronger H-bonds, we find the transition intensity
going up to ∼ 17 km/mol, which is about a 50-fold enhancement. That the
overtone is not suppressed at all distances, but instead increases to significant
values compared to that for a free OH oscillator, is a new finding in this work.

As argued in Section 3.1, the 1− ← 0+ transition may also be labelled as
the overtone for strong H-bonds. For example, at 2.45 Å, it is this transition
that is about twice the fundamental, while the 2+ ← 0− transitions has thrice
the frequency. Figure 7 gives the variation for the intensity of this transition
with R. It is of significance only when R . 2.6 Å, when it becomes distinct
from the fundamental, due to observable tunnel splitting. When this happens
the intensity has a highly non-monotonic variation with R, quite distinct from
the monotonic increase with bond strength of the 2+ ← 0− transition. In this
region (R ≤ 2.6 Å), the 1− ← 0+ transition has a generally larger, but rapidly
dropping, intensity compared to the 2+ ← 0− transition; note the ordinate scale
of the two plots. Thus observing both frequency range (Figure 1) and intensity
variation (Figures 6 and 7) will help distinguish the two overtones.

We now return to the weak H-bonding region, and discuss the effect of
asymmetry on the double well potential. Plots of the 2 ← 0 transition using
Vo = 40, 50, and 75 kcal/mol are shown in Figure 8. Note that the applied
Vo are all sizeable compared to the OH dissociation energy (Morse parameter
D here is 120 kcal/mol). Although the shifted right diabat lies higher than
the Morse overtone level (about 25 kcal/mol above the potential minimum) for
all cases, the overtone intensity trends are different for each Vo. Importantly,
though, all of them lower the O-O distance range for overtone suppression to
at least 2.8 Å. It is difficult to ascertain the precise cause of this change, but
our calculations show that overtone properties are rather sensitive to the shape
of the anharmonic potential and the resulting µg(r) as well. Indeed, it is this
sensitivity that leads to the curious trend in Figure 6.

However, a qualitative understanding of the trends between the three Vo
values of Figure 8 may be obtained through the work of di Paolo et al.[14].
They give the overtone intensity to be proportional to (µ′gb + µ′′g )2. (See the
end of Section 3.2 for the notation.) As such, with b < 0 and the derivatives
having the same sign, the two parts of the sum compete with each other. (This
leads to a qualitative explanation for overtone suppression.) As Vo increases,
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we may expect the anharmonicity parameter b to decrease (towards its Morse
value). Assuming that the dipole derivatives are approximately constant over
the chosen Vo range, the overtone intensity would increase with Vo at a given
R. The plots also show the overtone is less suppressed at higher Vo.

3.7. Senstivity to the dipole function for the diabatic states

The shape of the ground state dipole function µg(r) [Eq. (12)] is dependent
on that of the diabatic dipole function, µ0(r). In Sec. 2.4, we have discussed
the reasons for our choice of the Mecke form, Eq. (14), for µ0(r). We presently
analyse the result of varying the parameter r∗ in the Mecke function on the
fundamental and overtone intensities of the H-bonded complex. We first discuss
small variations around the Lawton-Child value of r∗ = 0.6 Å, followed by larger
variations where r∗ > r0, r0 = 0.96 Å being the equilibrium OH distance.

The value of r∗ marks the position of the Mecke function maximum. When
varied, it is useful to know how the first and second derivatives of µ0 change
at r = r0 = 0.96 Å. Figure 9 shows that the first derivative µ′0(r0) changes
within about 20% as r∗ is varied from 0.5 to 0.7 Å. However, the second deriva-
tive µ′′0(r0) changes more substantially, doubling at 0.7 Å and reducing at 0.5
Å to 20% of the original value (at r∗ = 0.6 Å). This suggests that changing
r∗, and hence µg(r), might result in a noticeable but fractional change on the
fundamental intensity, but substantially alter the intensity of the overtone, and
thereby their ratio as well.

Figure 10 shows the 1+ ← 0− fundamental (left panel) and 2+ ← 0− over-
tone (right panel) intensities as a function of R for different r∗ values. For the
fundamental, the overall intensity pattern is similar at different r∗ in the 0.5-
0.7 range. The extent of amplification increases at short R (strong bonds) for
larger r∗. However, we find that the intensities for successive r∗ values differ by
about 10-20% at both large and small R. In effect, variation in the fundamental
intensities with the shape parameter of the diabatic dipole function is modest.
Note also a trend reversal at R ∼ 2.75 Å, better seen in the inset. At R ' 3.0
Å, the fundamental intensity is lower for larger r∗, consistent with the Mecke
function derivatives discussed above. However, the opposite trend is seen for
lower R. A brief analysis of this observation is presented in the Appendix.

For the overtone, the right panel of Figure 10 shows that the overall shape
remains about the same. But the intensity drops strongly as r∗ decreases be-
tween 0.7 and 0.52 Å. This trend appears in agreement with the variation in
µ′′0(r0) discussed at the start of this Section (see Figure 9). However, the inset
shows a trend reversal for weak H-bonds, although the µ′′0(r0)-based trends is
expected to be valid here. We do not analyse this further, save to note that
overtone trends are sensitive to the details of µg(r). Another aspect that the
inset points to is that the extent and range of overtone suppression in the weak
H-bonding range is a sensitive function of r∗.

We now turn to larger changes in r∗, from 0.6 until 1.3 Å. In order to compare
the results on an even footing, we impose the constraint that µ0(r0) remains the
same at all r∗. This implies that the prefactor µ∗ of the Mecke form must change
between two r∗ values according to the relation µ∗b = µ∗a exp [r0(1/r∗b − 1/r∗a)].
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This constraint was not applied in the analyses presented earlier in this section
for simplicity. However, the general trends discussed still remain the same: The
plots for r∗ = 0.52 (0.7) would be scaled up (down) by 28% (20%), whereby all
curves in Figure 10 would look closer together at small R.

Figure 11 show the trends in the fundamental (left panel) and overtone
(right panel) intensity. The fundamental is still enhanced for strong H-bonds.
However, there is a distinct change on either side of r∗ = r0 for weak H-bonds
(large R). The fundamental is expected to have almost no intensity for r∗ =
1Å ' r0 since this is the maximum of the Mecke form. For larger r∗, the
intensities are clearly much weaker than those for r∗ < r0. Furthermore, the
fundamental intensity gets suppressed in the weak H-bond region (inset of left
panel), becoming almost zero at some value of R.

The overtone (right panel) also shows a different trend. For r∗ > r0, it
appears to monotonically increase, even in the weak H-bonding region. This
is to be contrasted with the inset in Fig. 6 which indicates a suppression of
intensity. Also, the overtone limiting values at large R are rather large and of
comparable magnitude to the fundamentals. The present findings suggest that,
at least within the limits of the Mecke dipole form, results obtained with r∗ > r0
are not in line with literature results on H-bond trends, while those with r∗ < r0
are. It should be stressed that one of our main results is independent of the
relative size of r∗ and r0: the overtone intensity is enhanced for medium and
strong bonds.

We have also analysed the isotope intensity ratio, AH/AD, at different r∗

values without SGIE. For strong and medium-strong H-bonds, this ratio is akin
to the black curve in Figure 4 but with a larger peak value (∼3 at r∗ = 0.6
and ∼4.5 at r∗ = 1.2) that rises roughly linearly with r∗. The peak position
also shifts to R ∼ 2.6 Å over the r∗ range. These variations, though notable,
are only gradual. Furthermore, our main point still stands: the isotope ratio is
a non-monotonic function of R and can have values significantly different from
the harmonic value of 2.

4. Comparison with previous work

We have already noted in earlier sections that that our results for the fun-
damental enhancement in Figure 2 (solid line) and the corresponding AH/AD

ratio in Figure 4 with SGIE are in overall agreement with experimental ranges
summarised by Bratos et al. [5] (see Sections 3.2 and 3.5). We now consider
some specific molecular systems. All comparisons made below are using the
Lawton-Child parameters in the Mecke function.

4.1. Symmetric H-bonds

Bournay and Marechal [65] measured the isotope intensity ratio for acetic
acid dimers in the gas phase (which have R ' 2.68 Å[66]), finding a ratio of
2±0.2 for the transition probabilities (i.e., |µfi|2). Owing to a marked departure
from the harmonic value

√
2, they suggested the value to be anomalous, and
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attributed it to a breakdown of the Born-Oppenheimer approximation. How-
ever, our model is within this approximation. At that O-O distance, Fig. 4
gives AH/AD ≈ 2.6, while the frequency ratio νH/νD ≈ 1.3 from Figure 8 of
Ref. [20]. This yields a transition probability of about 2.0, which agrees with
their measurements. In contrast, our estimate of about 5 for the H isotope’s
|µfi|2 enhancement compared to the monomer is much lower than their experi-
mental estimate of about 32.

A number of theoretical and experimental studies have been performed on
the Zundel cation, H5O+

2 , which has R ' 2.5 Å. More recently, Tan and Kuo
[67] studied (CH3OH)2H+, which has R ' 2.4 Å. For the Zundel cation, one of
the peaks around 1000 cm−1 is identified with the proton transfer motion, which
would correspond to the 0− ← 0+ transition in the notation of present work; see
our footnote in Ref. [68]. Unfortunately, an experimental measurement of the
absolute intensity seems unavailable. Theoretical studies also give the relative
intensities of this mode to be 3-10,[69] 8, [70] and 20-40 [71] times the intensity
of the OH stretches of the end groups. For (CH3OH)2H+, the OH stretch at
1010 cm−1 (also 0− ← 0+ in our notation) was computed to have an intensity
of 2567 km/mol [67].

In the present work for R = 2.5 Å and 2.4 Å, the 0− ← 0+ transition has
frequencies of about 164 and 750 cm−1, respectively. Clearly, these are lower
than those of the aforementioned works. The corresponding intensities are about
335 and 600 km/mol, or enhancements of about 9 and 15. (Note that these are
relative to 1+ ← 0− at R = 6.0 Å.) At the same R values, 1+ ← 0− frequencies
are 1620 and 1780 cm−1, which err on the higher side compared to the Zundel
and (CH3OH)2H+ cations. The corresponding intensities are about 625 and 950
km/mol, i.e. 16 and 24-fold enhancement.

We end this section with a brief comparison with a particle in a box (PIB)
model. For short, strong H-bonds the potential appears similar to that for a
PIB of width L = R − 2r0 with quantum numbers n = 1, 2, 3, . . . [20]. The
corresponding transition dipole moment for a transition nf ← ni, is only non-
zero when nf − ni is odd, for which Aif ∝ (n2fn

2
i )/(n2f − n2i )3 is box-length

independent. Here, the three transitions 3← 2, 4← 1, and 5← 2, in the PIB.
correspond to 1+ ← 0−, 1− ← 0+, and 2+ ← 0−, respectively, in the strong
H-bond case. In the PIB, the three transitions have the intensity ratios about
60:1:2. Figures 2, 6 and 7 suggest that the the ratios are roughly comparable,
but are still clearly R-dependent unlike the PIB case.

4.2. Asymmetric H-bonds

The molecular system discussed below are weak H-bonds. For numerical
comparisons, we will use our asymmetric model with Vo = 50 kcal/mol. Note,
however, that this choice of Vo is not special. Our results do vary somewhat
with Vo, as Figure 8 demonstrates. For the fundamentals alone, we additionally
quote our symmetric model results for contrast. Also, if the H-bonded O-O
distance was not directly available from the cited work, it was estimated using
the given OH fundamental red-shift and Figure 1 .
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For the fundamental of ethanol dimers, Provencal et al. [26] calculated an
enhancement of 10-20 relative to the monomer in the double harmonic approx-
imation. For intramolecularly H-bonded propane- and butanediol, Howard and
Kjaergaard [9] report the OH stretch intensity to be enhanced 4-11 times for dif-
ferent conformers. These H-bonds have R ' 2.8−2.9 Å, for which our enhance-
ment factors are 1.3-1.5 for the symmetric model and 1.07-1.12 for the asym-
metric model. Suhm and co-workers’ [10] experiments on 2,2,2-trifluoroethanol
dimers show an intensity enhancement of 4.0 ± 0.8 for the fundamental of the
donor O-H compared to the acceptor O-H. Our values are about 1.26 and 1.04
for the symmetric and asymmetric cases. For the water dimer, the O-O distance
is close to 3.0 Å[72]. The asymmetric stretch fundamental enhancement is 2-3
times that of the monomer [29, 34, 35]. Our values are 1.1 and 1.03 from the
symmetric and asymmetric models. We parenthetically note that recent studies
have noted a strong experimental (theoretical) enhancement of the symmetric
stretch, from about 3 (4) km/mol to about 140 (160) km/mol, upon dimer for-
mation [35]. In general, the enhancement from our calculation for R & 2.7 Å is
at most ∼ 2 with the symmetric model and ∼ 1.2 with the asymmetric model
(see inset of Figure 2), both of which are smaller than values in the literature.

For the same molecules, however, our overtone suppression estimate com-
pares somewhat more favourably. Suhm and coworkers reported a value of
A/Afree for 2,2,2-trifluoroethanol dimer to be 0.3 ± 0.1 [10]. Our estimate is
0.63. Calculations by Howard and Kjaergaard [9] for propane- and butanediols
indicate a suppression from 0.43 to 0.15, with lower values for butanediols. Our
estimates are consistent with this relative ordering of magnitudes and in the
range 0.41 to 0.20. In general, literature values of A/Afree for the overtone are
about 0.5 to 0.1, the smaller values pointing to stonger H-bonds. Figure 8 indi-
cates (for R between 2.8 and 3.0 Å) that our estimates are in about that range,
allowing for variation of the asymmetry parameter Vo. For the water dimer
(R ' 3Å), our suppression ratios with the asymmetric and symmetric models
are 0.7 and 0.13, respectively. Kjaergaard et al. [28, 29] compute the ratio to
be as low as 0.02. They show [28] this to be a consequence of near cancellation
of the linear and quadratic parts in the dipole matrix element expansion.

Finally, we discuss another metric, namely the fundamental-to-overtone in-
tensity ratio, A1/A2. This ratio is typically about 10 for monomers, and is
reported to increase by over an order of magnitude with H-bonding [10, 11, 25]
in the weak region. For 2,2,2-trifluoroethanol dimer, Scharge et al. [10] report
A1/A2 = 400± 100 and 30± 10 for the donor and acceptor O-H bonds, respec-
tively. Our A1/A2 ratios are about 366 and 218, respectively. The experimental
monomer ratio of 13± 2 is smaller than our (R = 6.0 Å) estimate of about 122.
A more recent work from the Suhm group on the dimers of methanol, ethanol
and t-butyl alcohol [11] gives the A1/A2 ratio for the donor O-H as 320 ± 90,
400± 100 and 1000± 400. Using values of R deduced from redshifts, our ratios
are ≈ 493, 583, and 711, in reasonable accord with experiment.

We also mention that some O-H· · ·Y-type asymmetric complexes have been
analysed, e.g. F−·H2O [73] and Cl−·H2O [74] in theoretical studies. The for-
mer has a strong H-bond, for which an OH fundamental intensity enhancement
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of about 35 was computed (in the double harmonic approximation). For the
chloride complex, it was found to be 50 using an anharmonic treatment. It
also showed overtone suppression of 0.35. Recent studies on alcohol-amine com-
plexes with OH· · ·N H-bonds have reported fundamental enhancements over a
factor of 50 [75]. We have not attempted any numerical comparisons for these
cases, since our model is parametrized for O-H· · ·O systems.

5. Summary and Concluding Remarks

We have discussed the intensity variation of the fundamental and overtone
transitions in O-H· · ·O type H-bonds. The results are based on a diabatic
two-state potential model and a Mecke form for the diabatic dipole moment.
These yield a ground adiabat and associated adiabatic dipole moment along the
H-atom transfer coordinate. The latter along with one-dimensional vibrational
wavefunctions were used to compute the intensities for a range of O-O distances.
Over this range, the H-bond varies from weak to strong. Also analysed are the
role of donor-acceptor asymmetry (i.e. difference in their pKa’s) as well as the
effect of the shape of the Mecke function for the dipole moment.

For the OH fundamental, we find that the intensity is enhanced compared
to the free OH over all relevant O-O distances, ranging from a factor of under 2
for weak H-bonds to about 20 for strong bonds. We show that the non-linearity
of the dipole moment is important, especially for medium and strong H-bonds,
and therefore the Condon approximation is not suitable. The H/D isotope effect
was analysed in terms of the fundamental intensity ratio, which is found to be
non-monotonic with H-bond strength. A maximum occurs for this ratio at the
donor-acceptor distance R of about 2.5 Å, and the secondary geometric isotope
effect plays an important role in the height and position of this maximum.
For the OH overtone, our model finds intensity suppression for weak H-bonds,
and shows variability in magnitude and ROO range depending on whether we
consider symmetric or asymmetric bonds. For medium and strong H-bonds,
enhancements in the intensity are seen with the symmetric model, going up to
50 times the free OH value. This new finding suggests that overtones should
be experimentally visible for such H-bonds compared to those in the weak H-
bonded region.

Our results are generally consistent in trends but differ in numbers with pre-
vious work, including both experimental and theoretical studies. In particular,
our enhancements in fundamental intensities for weak H-bonds are clearly lower.
Comparisons of overtone suppression in the same region with the asymmetric
model fare somewhat better. We have also analysed how our results vary with
the shape of the dipole moment. Small parameter variations lead to modest
fractional change in the intensity of the fundamental, but to larger changes for
the overtone. Larger variations give similar results for strong H-bonds, but
qualitatively different results for weak bonds.

Studies of H-bond intensities offer an excellent point of comparison for exper-
iment and theory, owing to the large spread of bonding strengths and topologies.
In the present context of O-H· · ·O H-bonds, with a few exceptions such as H5O+

2
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and (CH3OH)2H+, most detailed studies have mainly focussed on specific sys-
tems in the weak H-bonding regime. Experiments on symmetric medium and
strong H-bonded systems are desirable to test our main results. Some possible
candidates are carboxylic acid dimers (R ' 2.45 Å), HCrO2 (R ' 2.49 Å),
porphycenes[76], and proton sponges[77], for which the fundamental, first over-
tone, and isotope effect could be measured and analysed. It must also be noted
that measurement of absolute intensities for comparison with theory are diffi-
cult, owing to wide spectra sometimes spanning several hundred wavenumbers.
Another attendant difficulty is knowing the proportion of dimers in a sample.
Slightly asymmetric biomolecular systems with strong H-bonds that could be
investigated include mutated GFP[78], photoactive yellow protein[79] and the
enzyme KSI[80].
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Appendix A. Dipole shape and scale contributions to infrared ab-
sorption intensity

Figure 10 shows the fundamental intensity variation when the Mecke parameter
r∗ is changed to a small extent. The traces at the bottom right of the plot
(expanded in the inset) show that there is point of crossover. At R = 3.0 Å,
large r∗ values are associated with lower intensity. But at R . 2.7 Å, the
opposite trend is seen. We briefly analyse this feature here.

All components of the transition moment integral 〈φ1+ | µg(r) | φ0−〉 vary
withR, but only µg(r) changes with r∗. We rewrite the integral as µg,n 〈φ1+ | µg(r)/µg,n | φ0−〉 =
µg,n〈S〉. We take µg,n ≡ µg(r = rnode), where rnode is the (non-central) node of
the wavefunction product (shown in Figure 3) for that R. Note that rnode does
not shift with r∗ at a given R, and therefore provides a common reference point
at that R. In this manner, the transition moment is separated into a shape
part, 〈S〉 and an overall magnitude, µg,n. Though not shown, we found that
plots of µg(r)/µg,n for various R and r∗ look nearly the same. Table A.1 shows
the intensity contributions of these pieces for r∗ = 0.56 and 0.64 Å, relative to
those at r∗ = 0.6 Å. For the shorter distances (R = 2.6 and 2.4 Å), the relative
intensities (A ratios) are about the same as the relative µ2

g,n. The ratio of |〈S〉|2
is nearly unity, so the shape of the dipole function plays a minor role. However,
for weak H-bonds, the shape appears to play a role. At R = 2.8 Å, it overrides
the effect of µg,n. The above suggests that the interplay of shape and scale
contributions results in the crossover.

We note that all the traces in Figure 10 are a result of changing only r∗ in
the Mecke function. In the latter half of Section 3.7 and in Figure 11, the effect
of changing µ∗ as well using a constraint relation (which ensures that µ0(r0)
does not change) is discussed. In the present context, the numerical results are
affected only to the extent that both the A ratios and µg,n ratios are scaled by a
single number for a given r∗. This number is the ratio of the µ∗s, which is about
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Table A.1: Contribution to the fundamental intensity at different value of Mecke parameter
r∗. Compared are the total intensity (A), the scale factor (µg,n) and the matrix element of
µg(r)/µg,n, denoted 〈S〉. All results are reported as ratios relative to the results for r∗ = 0.6;
the o superscript in the table header indicates the value of the quantity for r∗ = 0.6. The
final column is obtained as a ratio of the middle two.

R (Å) A/Ao |µg,n/µ
o
g,n|2 |〈S〉/〈S〉o|2

r∗ = 0.56
2.8 1.02 0.89 1.15
2.6 0.87 0.89 0.97
2.4 0.83 0.80 1.03

r∗ = 0.64
2.8 0.95 1.11 0.86
2.6 1.13 1.10 1.02
2.4 1.12 1.18 0.94

1.2 (0.9) for r∗ = 0.56 (0.64) Å. Although the location of the crossover would
shift a little (outward), the qualitative aspects of the above analysis remain
unchanged.
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Figure 3: Origin of breakdown of the Condon approximation. Plotted are the dipole moment
function µg(r) (black line, left axis) and the wavefunction overlap φ1+φ0− (red line, right
axis) as a function of r−R/2 for R = 2.8, 2.6, and 2.4 Å. The product of these two functions
is the integrand in the transition dipole matrix element (4). As the H-bond strength increases
and R decreases, the wavefunction overlap has significant weight where the dipole function
becomes non-linear. That is, as r gets closer to R/2, the slope of the dipole function is
significantly larger than that at the equilibrium bond length. This non-linearity contributes
to the enhanced absorption intensity. The blue plus sign marks the classical minimum of the
(left-side of the) double-well for a given R. The dipole derivative in the Condon approximation,
Eqn. (5), is evaluated at this point. 28
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hardly distinct (compare Figure 1). It is only for stronger H-bonds that this transition may
be considered distinct from the fundamental.
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Figure 8: Intensity of the 2+ ← 0− overtone transition for different asymmetries, viz. Vo = 40,
50, and 75 kcal/mol. These plots contrast to the symmetric case (inset of Figure 6), showing
that the extent and donor-acceptor distance range of overtone suppression in an H-bond
(relative to a free OH) changes when the double-well potential is asymmetric. The plots also
show that these properties can vary with the amount of asymmetry (Vo).
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Figure 9: Parameter sensitivity of the dipole derivatives. First and second derivatives of the
Mecke function, µ0(r) = µ∗r exp(−r/r∗), evaluated at r = r0 = 0.96 Å for a range of r∗

values. The OH bond r∗ value of 0.6 Å, given by Lawton and Child [50], has been used in all
earlier plots in this work. The first and second derivatives are relevant to the intensity of the
fundamental and overtone transitions, respectively. Note that the first derivative varies little
for the parameter range shown whereas the second derivative varies by a factor of about five.
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Figure 10: Variation of fundamental (left panel) and overtone (right panel) intensity with R for
different Mecke parameters r∗. The r∗ = 0.6 Å curves are both the same as those in Figures 2
and 6. The left panel shows that the fundamental enhancement is only somewhat affected by
r∗, especially for weak bonds, while the overtone intensities change more dramatically. The
fundamental intensities show a curious trend switch around 2.75 Å, which is shown in the
inset and analysed in the main text.
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Figure 11: Plots of fundamental (left panel) and overtone (right panel) for the Mecke parame-
ter r∗ ranging from 0.6 to 1.3 Å. For each r∗, the µ∗ value is also changed using the constraint
that the Mecke function value at the reference distance of r0 = 0.96 Å remains unchanged.
The plots show that the fundamental and overtone are both enhanced at short R for all the
r∗ values used. However, for r∗ > r0, the fundamental is suppressed for weak H-bonds(inset).
No suppression in this region is evident for the overtone.
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