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ABSTRACT 14 

Purple phototrophic bacteria (PPB) have been recently proposed as a key potential 15 

mechanism for accumulative biotechnologies for wastewater treatment with total nutrient 16 

recovery, low greenhouse gas emissions, and a neutral to positive energy balance. Purple 17 

phototrophic bacteria have a complex metabolism which can be regulated for process 18 

control and optimization. Since microbial processes governing PPB metabolism differ from 19 

traditional processes used for wastewater treatment (e.g., aerobic and anaerobic functional 20 

groups in ASM and ADM1), a model basis has to be developed to be used as a framework 21 

for further detailed modelling under specific situations. This work presents a mixed 22 

population phototrophic model for domestic wastewater treatment in anaerobic conditions. 23 

The model includes photoheterotrophy, which is divided into acetate consumption and other 24 

organics consumption, chemoheterotrophy (including simplified fermentation and anaerobic 25 

oxidation) and photoautotrophy (using hydrogen as an electron donor), as microbial 26 

processes, as well as hydrolysis and biomass decay as biochemical processes, and is 27 

single-biomass based. The main processes have been evaluated through targeted batch 28 

experiments, and the key kinetic and stoichiometric parameters have been determined. The 29 

process was assessed by analyzing a continuous reactor simulation scenario within a long-30 

term wastewater treatment system in a photo-anaerobic membrane bioreactor.  31 

Key words: Phototrophic bacteria, resource recovery, mechanistic modelling, Partition-32 

Release-Recovery 33 
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NOMENCLATURE 34 

ADM1 - IWA Anaerobic Digestion Model #1 35 

ASM – IWA Activated Sludge Models 36 

fac,ch – Stoichiometry of acetate production in chemoheterotrophy (mgCOD mgCOD-1) 37 

fC,B – Carbon content of PPB (molC mgCOD-1) 38 

fC,si – Carbon content of soluble inert (molC mgCOD-1) 39 

fC,xi – Carbon content of particulate inert (molC mgCOD-1) 40 

fC,xs – Carbon content of biodegradable particulate (molC mgCOD-1) 41 

fh2,a – Stoichiometry of hydrogen consumption in autotrophy (mgCOD molC-1) 42 

fh2,ch – Stoichiometry of hydrogen production in chemoheterotrophy (mgCOD mgCOD-1) 43 

fh2,xs – Stoichiometry of hydrogen production in hydrolysis (mgCOD mgCOD-1) 44 

fIC,a – Stoichiometry of inorganic carbon consumption in autotrophy (molC molC-1) 45 

fIC,ph,ac – Stoichiometry of inorganic carbon produced from acetate in photoheterotrophy 46 

(molC mgCOD-1) 47 

fIC,ph,Ss – Stoichiometry of inorganic carbon produced from soluble fraction of substrate but 48 

acetate in photoheterotrophy (molC mgCOD-1) 49 

fIC,xs – Stoichiometry of inorganic carbon production in hydrolysis (molC mgCOD-1) 50 

fIN,xs – Stoichiometry of ammonia production in hydrolysis (mgN mgCOD-1) 51 

fIP,xs – Stoichiometry of phosphate production in hydrolysis (mgP mgCOD-1) 52 

fN,B – Nitrogen content of PPB (mgN mgCOD-1) 53 

fN,si – Nitrogen content of soluble inert (mgN mgCOD-1) 54 

fN,xi – Nitrogen content of particulate inert (mgN mgCOD-1) 55 

fN,xs – Nitrogen content of biodegradable particulate (mgN mgCOD-1) 56 

fP,B – Phosphorus content of PPB (mgP mgCOD-1) 57 

fP,si – Phosphorus content of soluble inert (mgP mgCOD-1) 58 

fP,xi – Phosphorus content of particulate inert (mgP mgCOD-1) 59 

fP,xs – Phosphorus content of biodegradable particulate (mgP mgCOD-1) 60 
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fSAc,xs – Stoichiometry of acetate production in hydrolysis (mgCOD mgCOD-1) 61 

fsi,xs – Stoichiometry of soluble inert production in hydrolysis (mgCOD mgCOD-1) 62 

fss,xs – Stoichiometry of soluble substrate production but acetate in hydrolysis (mgCOD 63 

mgCOD-1) 64 

fxi,xs – Stoichiometry of particulate inert production in hydrolysis (mgCOD mgCOD-1) 65 

HA – Hydrogenogenic activity (mgCODh2 Lliq
-1 d-1)  66 

HAmax – Maximum hydrogenogenic activity (mgCODh2 Lliq
-1 d-1) 67 

HRT – Hydraulic retention time (h) 68 

IFA – Limiting factor for free ammonia inhibition 69 

IIE – Limiting factor for light limitation 70 

IIN – Limiting factor for nitrogen limitation 71 

IIP – Limiting factor for phosphorus limitation 72 

kdec – Biomass decay first order constant (d-1) 73 

khyd – Hydrolysis first order constant (d-1) 74 

KI,FA – Inhibitory constant for free ammonia (mgN L-1) 75 

kM,ac – Specific uptake rate for acetate in photoheterotrophy (mgCOD mgCOD-1 d-1) 76 

kM,but – Specific uptake rate for butyrate in photoheterotrophy (mgCOD mgCOD-1 d-1) 77 

kM,ch – Specific uptake rate in chemoheterotrophy (mgCOD mgCOD-1 d-1) 78 

kM,et – Specific uptake rate for ethanol in photoheterotrophy (mgCOD mgCOD-1 d-1) 79 

kM,ic – Specific uptake rate of IC in autotrophy (molC mgCOD-1 d-1) 80 

kM,ph – Specific uptake rate in photoheterotrophy (mgCOD mgCOD-1 d-1) 81 

kM,prop – Specific uptake rate of propionate in photoheterotrophy (mgCOD mgCOD-1 d-1) 82 

KS,ac – Saturation constant for acetate in photoheterotrophy (mgCOD L-1) 83 

KS,but – Saturation constant for butyrate in photoheterotrophy (mgCOD L-1) 84 

KS,E – Saturation constant for light intensity (W m-2) 85 

KS,et - Saturation constant for ethanol in photoheterotrophy (mgCOD L-1) 86 

KS,h2 - Saturation constant for H2 consumption in autotrophy (mgCOD L-1) 87 

KS,IC – Saturation constant for inorganic carbon in autotrophy (molC L-1) 88 
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KS,prop - Saturation constant for propionate in photoheterotrophy (mgCOD L-1) 89 

KS,s - Saturation constant for soluble substrate but acetate in photoheterotrophy (mgCOD L-1) 90 

KSin – Saturation constant for inorganic nitrogen assimilation (mgN L-1) 91 

KSip – Saturation constant for inorganic phosphorus assimilation (mgP L-1) 92 

Sac – Concentration of acetate (mgCOD L-1) 93 

SCOD – Soluble chemical oxygen demand (mgCOD L-1) 94 

Sh2 – Concentration of hydrogen as COD (mgCOD L-1) 95 

SI – Concentration of soluble inerts (mgCOD L-1) 96 

SIC – Concentration of inorganic carbon (molC L-1) 97 

SIN – Concentration of inorganic nitrogen as ammonia (mgN L-1) 98 

SIP – Concentration of inorganic phosphorus as phosphate (mgP L-1) 99 

SPA – Specific phototrophic activity (mgCOD mgCOD-1 d-1) 100 

SRT – Solids retention time (d-1) 101 

Ss – Concentration of biodegradable soluble fraction but acetate (mgCOD L-1) 102 

TCOD – Total chemical oxygen demand (mgCOD L-1) 103 

TIC – Total inorganic carbon (molC L-1) 104 

TKN – Total Kjeldahl Nitrogen (mgN L-1) 105 

TP – Total phosphorus (mgP L-1) 106 

TSS – Total suspended solids (mg L-1) 107 

VFA – Volatile fatty acids (mgCOD L-1) 108 

VLR – Volumetric loading rate (mgCOD L-1 d-1) 109 

VSS – Volatile suspended solids (mg L-1) 110 

XI – Concentration of particulate inerts (mgCOD L-1) 111 

XPB – Concentration of PPB biomass (mgCOD L-1) 112 

XS – Concentration of organic biodegradable particulate (mgCOD L-1) 113 

Yac – Biomass yield on acetate in photoheterotrophy (mgCOD mgCOD-1) 114 

Ybut - Biomass yield on butyrate in photoheterotrophy (mgCOD mgCOD-1) 115 

Yet - Biomass yield on ethanol in photoheterotrophy (mgCOD mgCOD-1) 116 
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YPB,a - Biomass yield in autotrophy (mgCOD molC-1) 117 

YPB,ch - Biomass yield in chemoheterotrophy (mgCOD mgCOD-1) 118 

YPB,ph - Biomass yield in photoheterotrophy (mgCOD mgCOD-1) 119 

Yprop - Biomass yield on propionate in photoheterotrophy (mgCOD mgCOD-1) 120 
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1 INTRODUCTION 121 

Wastewater treatment is shifting focus to include the capture and recovery of organics and 122 

nutrients. This requires novel technological approaches. A key approach is the use of fast 123 

growing organisms to concentrate energy, nutrients, and trace compounds into the solid 124 

phase, and hence substantially reduce reactive removal of nitrogen and organics while 125 

enabling phosphorous recovery. One option is high-rate activated sludge, which can achieve 126 

40% nitrogen removal in the primary stage through adsorption and assimilation (Jetten et al. 127 

1997). Algae can also be used to partition to the solid phase, but a simultaneous 128 

heterotrophic and photosynthetic mode is generally enabled by bacterial-algal associations 129 

that reduce organic substrate consumption efficiency (Muñoz and Guieysse 2006). Purple 130 

phototrophic bacteria (PPB) present a new partitioning approach, which has been shown to 131 

completely remove nitrogen to discharge limits when sufficient organic carbon is present 132 

without the need for pure cultures, and using infra-red (IR)light only as a driver for growth 133 

(Hülsen et al. 2014). 134 

PPB grow phototrophically rather than photosynthetically, and do not use water as an 135 

electron donor to produce oxygen and organics. They are among the most metabolically 136 

versatile organisms on earth (Hunter et al. 2008). They grow heterotrophically using a wide 137 

range of organic compounds, both in presence and absence of light (photoheterotrophy and 138 

chemoheterotrophy) (Hunter et al. 2008). However, they can also grow autotrophically by 139 

using infrared light as the energy driver for CO2 fixation, and with inorganic electron donors 140 

such as H2, Fe2+, S2- or S2O3
2- (cyclic anoxygenic photosynthesis) (Overmann and Garcia-141 

Pichel 1998). Although they can grow in the presence of oxygen, they are extremely 142 

effective in anaerobic photoheterotrophic conditions (Gordon and McKinlay 2014, McKinlay 143 

and Harwood 2010). Their ability to recycle electrons during the cyclic anoxygenic 144 

photosynthesis gives them the ability to harvest and retain electrons, as well as a high 145 

energetic efficiency. This entails a much higher biomass yield on organic substrates than 146 
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traditional aerobic biomass (near 1 vs 0.6 gCOD dCOD-1) (Hülsen et al., 2014). They can 147 

even accumulate electrons in the form of reduced cofactors which enable the disposal of 148 

electrons. This can be done through two main strategies: (i) ATP-driven hydrogen production 149 

by ferredoxin oxidation in the hydrogenase/nitrogenase system at the end of the electron 150 

transport chain (ETC), and (ii) the increase of assimilative growth by re-fixation of CO2 via 151 

the Calvin Cycle produced during heterotrophic metabolism (McKinlay and Harwood 2010). 152 

These metabolic features give them the possibility of growing and out-competing other 153 

heterotrophic microorganisms where light is present, including in low to medium strength 154 

wastewater systems with short hydraulic retention times (HRT) (Hülsen et al. 2014). 155 

PPB have a number of additional metabolic functions useful in wastewater treatment 156 

systems. They are able to accumulate polymers such as poly-phosphate (poly-P) (Liang et 157 

al. 2010), polysaccharides (Klein et al. 1991), poly-β hydroxybutyrate (PHB) (Melnicki et al. 158 

2009) and other poly-3(hydroxyalkanoates) (PHA) (Brandl et al. 1991). Under an excess of 159 

organics and available energy, and in the absence of mineral nitrogen, they generate 160 

hydrogen and fix nitrogen as ammonia (Basak and Das 2007). 161 

PPB have been assessed for wastewater treatment, particularly for processing swine (Kim et 162 

al. 2004), latex rubber-sheet (Kantachote et al. 2005), tofu (Zhu et al. 1999), and sugar 163 

refinery wastewaters (Yetis et al. 2000). However, most of these studies were focused on 164 

hydrogen production rather than organics removal or nutrient recovery (Fang et al. 2005, 165 

Lee et al. 2010, Tao et al. 2008). They have also been applied to domestic wastewater 166 

(DWW) in batch and continuous operation to remove nitrogen to discharge limits (Hulsen et 167 

al. 2014). This process enables a single-step treatment of wastewater with HRT and effluent 168 

qualities similar to those of activated sludge processes without destroying nitrogen and 169 

phosphorus.  170 

Modelling is used to design, benchmark, and analyze wastewater treatment systems, with 171 

the IWA Activate Sludge Model (ASM) family models being the most widely used for 172 

conventional activated sludge processes (Henze et al. 2000). The IWA anaerobic digestion 173 
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model no. 1 (ADM-1) is the analogous model for domestic and industrial anaerobic systems 174 

(Batstone et al. 2002). The IWA Models, and wastewater modelling in general has generally 175 

applied first order hydrolysis for solids transformation (including decay), Monod kinetic 176 

function for uptake kinetics and inverse Monod kinetic function (non-competitive) for 177 

inhibition functions, with a COD basis for organics and molar basis for inorganic compounds. 178 

Development of new technologies such as PPB requires development of a similar 179 

mechanistic model to allow process control, design, and system analysis in upscaled 180 

applications. 181 

There are complex metabolic models based on PPB metabolism primarily focused on the 182 

electron transport chain (Golomysova et al. 2010, Klamt et al. 2002). Due to their complexity, 183 

these models are motivated more by a need for a mechanistic understanding of the 184 

underlying process rather than field applications. These models are therefore unsuitable for 185 

a wastewater model. In particular, they include components which can’t be measured 186 

readily, making validation difficult. They also lack capability outside the core application area. 187 

There has also been work done on modelling PPB to describe hydrogen production  (Eroglu 188 

2008, Gadhamshetty et al. 2008, Obeid et al. 2009). In contrast, due to the domestic 189 

wastewater matrix, the key growth modes are photoheterotrophy (principal) as well as 190 

chemoheterotrophy and photoautotrophy. Biochemical processes relevant to complex 191 

substrates such as solids hydrolysis and biomass decay must be considered as well. 192 

Therefore, this work aims to propose a mechanistic model for mixed culture PPB as a 193 

partition agent in DWW treatment with adaptability to treatment of industrial wastewaters. 194 

2 Materials and Methods 195 

2.1 Model Description 196 

The model was developed to be unit-compatible with the IWA ASM and ADM series 197 

(Batstone et al. 2002, Henze et al. 2000). Therefore, units of mgCOD L-1 (or gCOD m-3) for 198 
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both soluble and particulate organics were chosen. Nutrient units are in mgN L-1 and mgP L-
199 

1, respectively, with inorganic carbon (IC, HCO3
-) in molC L-1. 200 

Monod kinetics is uniformly applied for biological growth processes, with first order kinetics 201 

for hydrolysis and decay. Monod or non-competitive inhibition has been applied for limiting or 202 

inhibitory expressions respectively. Due to a lack of functional differentiation within the PPB 203 

clade, and limited evidence to the contrary, only one biomass component has been selected 204 

(PPB) (Hülsen et al., 2015b). Other biological groups present in ASM and ADM1 models 205 

(e.g., hydrogen utilizing methanogens, denitrifiers or fermentative bacteria) could be readily 206 

included.  As in the ASM/ADM models Si is used for soluble compounds, and Xi for 207 

particulate compounds, where subscript i denotes the compound. 208 

The model does not currently include poly-P or other polymer accumulation, since this 209 

occurs mainly in static (not growing) mode, where PPB can derive energy to stock resources 210 

for further usage in growing conditions (Hiraishi et al. 1991, Liang et al. 2010). Likewise, 211 

nitrification/denitrification processes are not included, since they can only occur in, or in 212 

combination with aerobic conditions where ammonia can be oxidized to nitrite or nitrate. 213 

Therefore, N and P are removed by assimilative growth only. 214 

In the presence of organic substrates and IR light, photoheterotrophy through the tri-215 

carboxylic acid (TCA) cycle is assumed to dominate. Two major mechanisms of electron 216 

disposal by PPB are considered. Firstly, the production of CO2 (SIC) is a key feature of PPB 217 

biomass under growth conditions (McKinlay and Harwood 2010) and is important for closing 218 

the C balance. The oxidation state of the organic compound determines if the biomass fixes 219 

CO2 for substrate uptake and electron balance (in the case of reduced substrates such as 220 

propionate, butyrate or valerate), or the uptake produces CO2 (in the case of oxidized 221 

substrates such as acetate or succinate) (McKinlay and Harwood 2011). In the latter case, 222 

the biomass disposes of excess of electrons by re-fixing the CO2 produced in the TCA cycle. 223 

As a consequence, there is usually limited consumption or production of CO2 in domestic 224 

wastewater. A theoretical explanation of this mechanism is explained in Supplementary 225 
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Information (SI). The other major mechanism of electron disposal by PPB is H2 production 226 

via the nitrogenase complex. In static growth mode, the PPB biomass is able to use the 227 

excess of electrons for redox balance at the end of the ETC. The ferredoxin complex is the 228 

carrier for this process, but the biomass needs energy in the form of ATP (Golomysova et al. 229 

2010). However, this process is inhibited in presence of NH4
+, a strong inhibitor of the 230 

nitrogenase activity (Rodionov et al. 1986). Indeed, H2 production is inhibited in a DWW fed 231 

situation due to (i) presence of ammonium and (ii) disposing of electrons by CO2 re-fixation 232 

which promotes growth (see SI for more details). Therefore, it can be deduced that CO2 233 

production and re-fixation into the Calvin Cycle is the major electron sink in PPB metabolism. 234 

In the absence of organic substrates, autotrophic growth is the sole growth mode, using 235 

reduced inorganic compounds other than water as electron donor (anoxygenic 236 

photosynthesis). In the interest of model simplification and considering domestic wastewater 237 

contains generally low sulfur levels, the sulfur cycle has been omitted. It is however possible 238 

to add sulfate reduction into the model with subsequent sulfide utilization as an electron 239 

donor for autotrophic PPB growth. This would require the addition of another biomass 240 

component (PPB cannot perform sulfate reduction). PPB can perform chemoheterotrophy at 241 

a lower rate, providing H2 (Sh2) for photoautotrophy (Golomysova et al. 2010).  242 

Transforming these mechanisms to a model enables the following key processes (Figure 1): 243 

(i) Photoheterotrophy on acetate (Sac) (acetate uptake): This involves acetate 244 

assimilation by PPB in the presence of infra-red radiation. Acetate is represented 245 

as a separate state due to differences observed during batch tests. Due to an 246 

imbalance in substrate-biomass carbon oxidation state, this process results in 247 

production of CO2. 248 

(ii) Photoheterotrophy on other organics (SS) (photoheterotrophic uptake): These 249 

include all soluble organics that PPB can assimilate for growth in the presence of 250 

infra-red radiation. Compounds include VFAs excluding acetate, alcohols, and 251 
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some sugars. These have been lumped into a single soluble substrate. Similar to 252 

(i) this results in the uptake of CO2. 253 

(iii) Chemoheterotrophy (chemoheterotrophic uptake): This process involves the 254 

assimilative consumption of any organic in dark conditions that can be 255 

metabolized through either fermentation or anaerobic oxidation processes. All 256 

these processes have been joined as one process for a sake of simplicity. This 257 

process involves H2 and acetate as end products. Acetate is not further oxidized 258 

through chemoheterotrophy due to a lack or very limited terminal electron 259 

acceptors such as Fe(III) and sulfate (Finneran et al. 2003). 260 

(iv) Photoautotrophy (autotrophic uptake): This process involves assimilative CO2 261 

fixation by PPB in the presence of infra-red radiation using H2 as the electron 262 

donor. Other electron donors such as Fe2+, S2- and S2O3
- have been omitted but 263 

could be included. 264 

(v) PPB cell death (decay): This process involves the deactivation of PPB by cell 265 

death. Ammonium, phosphate and inorganic carbon are released and the 266 

biomass is converted into biodegradable organic particulates (XS) and particulate 267 

inerts (XI). 268 

(vi) Hydrolysis and particulate fermentation (hydrolysis): The decomposition of 269 

biodegradable particulates into organics (Sac and SS), ammonium, phosphate, 270 

hydrogen and inorganic carbon is addressed as a sole process for simplicity. 271 

Both soluble and particulate inerts are also products of this process. A 272 

breakdown of particulate fermentation could be incorporated into the model e.g. 273 

for processes with long solids retention times (SRT). 274 

The model is presented in Petersen matrix notation in Table 1. Kinetic parameters were 275 

generally obtained from the batch experiments, or from the literature in specific cases as 276 

described below. The saturation constant for hydrogen consumption by photoautotrophic 277 

process (KS,h2), light limitation (KS,E) and inhibition by free ammonia (KI,FA) were set arbitrarily 278 
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low since affinity is high (Chen et al. 2008, Uyar et al. 2007). Competitive inhibition between 279 

Sac and SS in photoheterotrophic metabolism has been included by using a parameter-less 280 

switch function as in the case of the ADM1. A detailed experimental evidence for such a 281 

function is presented in Supplementary Information (S9). Stoichiometry was determined by 282 

both theoretical calculations from literature, and experimentally. The model is balanced over 283 

COD, C, N and P. Carbonates (SIC), inorganic nitrogen (SIN) and phosphates (SIP) have been 284 

used for closing C, N and P balances, respectively. 285 

A basic ideal activity pH model has been included as for the ADM1 (Batstone et al, 2002), 286 

with inclusion of the phosphate (H2PO4
-/HPO4

2-) acid-base pair, and with no ion pairing. This 287 

provides essential representation for domestic wastewater strength, but should be extended 288 

to the strong acids and bases (H3PO4, PO4
-3, CO3

2-) where precipitation occurs, pH 289 

extremes, or higher strength is important, or where plant-wide modelling is applied as 290 

discussed in Batstone et al., (2012). Acid-base equations are formulated into the charge 291 

balance, which is solved for the single unknown of hydrogen ion (SH) using the Matlab 292 

command fzero.  Temperature is currently fixed to 25°C, but can be incorporated via the 293 

van’t Hoff equations as for Batstone et al., (2002). Background cations (Scat) was set at 294 

0.003M to account for strong cations coupled with input bicarbonate (setting input pH to 6), 295 

but an alternative implementation where it was linked to bicarbonate was also evaluated. 296 

Acetate (Sac) was added as glacial acetic acid. If sodium acetate were added instead, 297 

additional cations (Scat) would need to be included.  Non-VFA organics (SS) was given an 298 

acidic fraction of 50%, assuming it to be propionic acid, with the remainder being alcohols 299 

and sugars. 300 

Additional details concerning model development and implementation can be found in the 301 

supplementary information (SI) and codes can be found on the UQ repository 302 

(http://espace.library.uq.edu.au/view/UQ:412280). SI1 includes the description of model 303 

components, full kinetic parameters and stoichiometric coefficients. The determination and 304 
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calibration of stoichiometry is included in SI2, and SI4 contains the full list of model 305 

equations. 306 

Model integration with ASM-family models and ADM1 307 

Soluble organic compounds can be readily transformed into ASM organic substrate (where 308 

Ss_ASM = Sac + Ss_PAnM). Organic particulates in the PAnM correspond to the XS in the 309 

ASM. For the ADM1 integration, an interface can be used following Nopens et al. (2009), 310 

with units generally being compatible. Mechanisms for organic biodegradable particulates to 311 

engage with the ADM1 can be approximated as follows: XPPB � (aXch + bXli + cXpr + dXI), 312 

where a, b, c and d are the carbohydrate, lipid, protein and inerts content of the PPB 313 

biomass as for Nopens et al., (2009). As PPB have different composition of other 314 

feedstocks, it is necessary to identify a, b, c and d parameters through nitrogen content and 315 

COD:mass ratios as done in Nopens et al., (2009). Generally, N content of PPB biomass is 316 

significantly higher than typical waste sludge (Hülsen et al., 2014), and this increases c. Both 317 

soluble and particulate inerts have the same meaning than their respective counterparts in 318 

the ASM and ADM1 models. 319 

Inorganic nitrogen can be directly transformed into ASM inorganic nitrogen since SIN_PAnM 320 

= Snh + Sno (in mgN L-1). Inorganic nitrogen in the PAnM (ammonium) has the same meaning 321 

that in the ADM1. However, total nitrogen can be integrated into ADM1 parameters by 322 

following the lump–delump approach of the Copp interface (Copp et al., 2003). Inorganic 323 

phosphorus in the PAnM has the same meaning that SIP in the ADM1 and SPO4 in the 324 

ASM2d. The inorganic carbon in the PAnM has the same meaning as in the ADM1. Alkalinity 325 

from ASM models can be transformed into SIC as in the case of the ASM1/ADM1 interface 326 

(Nopens et al., 2009).  327 

2.2 Batch Experiments 328 

Batch experiments were done to identify parameters based on the developed model. The 329 

inoculum was sourced from a lab-scale continuous photo-anaerobic membrane bioreactor 330 
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(PAnMBR) described by (Hülsen et al. 2016b) operated over 300 d. Domestic wastewater 331 

was collected from the Taringa wastewater lift station (Brisbane, Australia) with an average 332 

strength of 572 mgCOD L-1 and soluble COD of 241 mgCOD L-1, 63 mgN L-1, and 9 mgP L-1. 333 

Where wastewater was not the medium, synthetic Ormerod medium was used at pH 7.5 as 334 

described previously (Hulsen et al. 2014).  335 

Metabolic growth batch tests: All batch tests were done in 100mL working volumes (160 mL 336 

serum flasks) in triplicate, inoculated from the PAnMBR reactor. The headspace was flushed 337 

with N2 and experiments were carried out at 20 ºC in an orbital shaker at 150 rpm (Edwards 338 

Instrument Company). The array of flasks was irradiated with  150W lamps using UV-VIS 339 

absorbing foil as described elsewhere (Hulsen et al. 2014). All experiments were 340 

accompanied by blank samples with no substrate, and by positive and negative controls 341 

where necessary. A summary is provided in Table 2. 342 

Hydrolysis and biomass decay: The inoculum (0.5 L) was collected as per the above method 343 

(2.1 g VSS L-1). The biomass was centrifuged in 50 mL Falcon tubes and the pellet 344 

resuspended again in NaCl 0.2 M three times. Biomass was then placed in 0.5 L of NaCl 0.2 345 

M and was divided into two 0.25 L Schott bottles, which were subsequently flushed with N2 346 

and magnetically stirred at 200 rpm. The bottles were operated for 30 d. 347 

One of the bottles was covered with aluminum foil to avoid phototrophic activity, and was 348 

used for the hydrolysis analysis. Liquid sampling was performed twice a week to analyze 349 

volatile fatty acids (VFAs), NH4-N, PO4-P, total inorganic carbon (TIC) and pH. Headspace 350 

was analyzed for CH4, H2 and CO2. TSS/VSS, TKN and TP was analyzed every 7 d. 351 

The other bottle was illuminated as indicated above without feed, and biomass samples 352 

were taken every 7 d to assess activity (determining decay coefficient). Activity tests were 353 

done as above with 100 mgCOD L-1 of acetate and 10 mg NH4-N L-1.  354 

Calculation of Specific Phototrophic Activities (SPA). Non-linear parameter estimation is 355 

generally used to determine parameters as described in 2.4.2, but specific phototrophic 356 
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activity was also determined by linear regression of substrate concentration over a minimum 357 

of four points through the region of maximum consumption divided by biomass 358 

concentration.  359 

2.3 Analytical methods 360 

Total COD (TCOD) and soluble COD (SCOD) were determined by COD cell tests (Merck, 361 

1.14541.0001, Darmstadt, Germany). Dissolved NH4 -N, NO2-N and PO4-P were determined 362 

by a QuikChem8000 Flow Injection Analyzer (FIA) (Hach Company, Loveland, USA). 363 

Temperature and pH were measured using an Oakton pH 11 Series (Vernon Hill, IL, USA). 364 

TSS and VSS were determined by filtration according to standard methods where TSS were 365 

calculated after drying the sample in an oven at 105 ± 2 °C and VSS were calculated after 366 

burning it in a furnace at 550 ± 5 °C (APHA. 1998).  Illuminance (W m-2) was measured with 367 

an IR light sensor (PAS PortTM, Roseville, CA, USA). VFA samples were analyzed by gas 368 

chromatography (Agilent Technologies 7890A GC System, Santa Clara, CA, USA) equipped 369 

with a flame ionization detector (GC/FID) and a polar capillary column (DB-FFAP). Gas 370 

samples were analyzed by GC (2014 Shimadzu, Kyoto, Japan) with thermal coupled 371 

detector (TCD) (Tait et al. 2009). TKN and TP were determined using sulfuric acid, 372 

potassium sulfate and copper sulfate catalyst in a block digester (Lachat BD-46, Hach 373 

Company, Loveland, CO, USA) (Patton and Truitt 1992). TIC was analyzed by using a total 374 

organic carbon (TOC) analyzer (Shimadzu TOC-L CSH TOC Analyzer with TNM-L TN unit) 375 

coupled to a near infrared detector (NIRD) for measuring the CO2. All soluble constituents 376 

were determined after filtering with a 0.45 µm membrane filter (Millipore, Millex®-HP, Merck 377 

Group, Darmstadt, Germany). 378 
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2.4 Data analysis 379 

2.4.1 Data handling 380 

Biomass concentration was calculated in g VSS L-1, and it was further transformed into COD 381 

by using the COD relationship calculated from the biomass equation CH1.8O0.38N0.18 382 

(McKinlay and Harwood 2010) (1 g biomass expressed as VSS = 1.78 gCOD). 383 

Biomass yields (Y) were calculated accounting for the initial and final biomass concentration 384 

(in g VSS L-1) based on substrate consumption. Biomass concentration was further 385 

transformed into COD and then yields are expressed as mgCODbiomass mgCOD-1. 386 

2.4.2 Statistical analyses and uncertainty assessment 387 

Good measurement practice was applied to minimize uncertainty. Where measurements 388 

were outside the calibration range, these were repeated by diluting the sample. Internal or 389 

external standards were used for all measurements. Calibration of equipment was performed 390 

at least once per week. 391 

All parameters were estimated from triplicate batch/measurements by minimization of 392 

residual sum of squares (J=RSS). Parameter uncertainty was determined using two-tailed t-393 

tests calculated from standard error in parameter value, obtained from the Fisher information 394 

matrix. Where parameter optimization problems involve multiple parameters (kM, KS), 395 

parameter uncertainty surface (J=Jcrit) has also been assessed as described in (Batstone et 396 

al. 2003) . Confidence intervals (at 95%) were also calculated based on two-tailed t-tests 397 

from parameter standard error, as above, and used for statistical representative 398 

comparisons. Error bars in experimental data represent 95% confidence intervals in mean 399 

based on a two-tailed t-test (5% significance threshold). Uncertainty of the slope for the 400 

analysis of SPA was determined by error in slope from linear regression in Microsoft Excel 401 

2013 (using the Regression tool in the Data Analysis toolpack). Standard error in slope was 402 

subsequently converted into 95% confidence interval (two-tailed t-test). All statistical 403 

analyses were done with a 5% significance threshold. 404 
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2.5 Simulation of a continuous PAnMBR 405 

The resulting kinetic expressions were used in the development of a continuous PAnMBR 406 

model. As previously demonstrated, the concentration of the bioavailable SCOD in medium 407 

strength domestic wastewater is insufficient for the system to achieve total nitrogen and total 408 

phosphorous discharge limits (Hülsen et al. 2016b). To achieve full removal, additional 409 

SCOD is required. 410 

The goals of the simulation were the following: a) to highlight the requirement of additional 411 

SCOD to achieve total nutrient removal, and b) to demonstrate that the inclusion of a primary 412 

clarifier can lead to an organic sludge enriched in PPB biomass. Dynamic influent data was 413 

simulated according to the influent generator model developed by Gernaey et al. (2011), and 414 

adapted to the typical concentrations of primary influent reported by Hülsen et al., 2014. 415 

Based on the average influent characteristics and an HRT of 12 h, volumetric loading rate 416 

(VLR) of 1400 ± 12 mgCOD L-1 d-1 and a solid retention time (SRT) of 3 d, a reactor volume 417 

of 70 m3 was applied. An ideal primary clarifier was included, with a solids removal efficiency 418 

of 60%±3% (Tchobanoglous et al., 2002). 419 

Simulation and subsequent data processing were done in Matlab (MATLAB R2015a, The 420 

MathWorks Inc., Natick, MA). As the system of equations is stiff, the system of ordinary 421 

differential equations was solved by ODE15s. The case was simulated for 609 days with 3 422 

stages of differing SCOD concentrations. The dynamic influent after settling was applied 423 

directly during Stage I until day 300. During Stage II (days 300-450), acetate was added to 424 

the optimum COD/N/P ratio of 100/7.1/1.8 (optimum ratio calculation reported in SI, section 425 

S6) based on the limiting nutrient (N or P). During Stage III, acetate addition was ceased. 426 

This was to assess process response to a sudden change, and to demonstrate that the 427 

system requires wastewater with a specific COD/N/P ratio. State equations were 428 

implemented in a fixed volume, completely mixed membrane bioreactor. 429 
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The results from the simulation were balanced over COD, N, P and C, and have been 430 

included in the SI. 431 

The Matlab function and run files, along with their supporting datasets, have been uploaded 432 

to http://espace.library.uq.edu.au/view/UQ:412280. 433 

3 Results 434 

The sludge used for all the experiments came from a lab-scale PAnMBR (Hülsen et al. 435 

2016b). Most of the microorganisms are related with α-proteobacteria, PPB accounting for 436 

more than 70% of the total gene copies detected by the pyrosequencing technique. The 437 

genus Rhodobacter ssp. is the most abundant, representing more than 60% of the  438 

microbiota (Hülsen et al. 2016b). The presence of photosynthetic organisms such as 439 

microalgae and cyanobacteria accounts for less than 1% of total gene copies. Therefore, the 440 

photo-biomass can be considered as PPB-dominated. 441 

3.1 Growth Processes 442 

Photoheterotrophy was assessed with VFAs and ethanol as substrate (Fig 2a). All 443 

substrates were completely consumed during the experiment, and overall yields were similar 444 

in all cases, with an average biomass yield of 1.13 ± 0.21 mgCODbiomass mgCOD-1. More 445 

details are provided in the SI. As can be seen in Figure 2b, uptake rates of substrates 446 

excluding acetate were similar, with a kM of 1.3 ± 0.1 (mgCOD mgCOD-1 d-1), and 447 

undetectable KS. Acetate had a significantly higher kM (2.4 ± 0.2 mgCOD mgCOD-1d-1) and 448 

detectable, albeit low, KS of 20± 4 mgCOD L-1. This essentially means that growth (uptake) is 449 

faster on acetate, but with a lower affinity such that acetate uptake is faster at the beginning 450 

of the batch, but slower at the end. 451 

The analysis of chemoheterotrophic metabolism by PPB was conducted by using acetate 452 

and ethanol as substrates in dark conditions (Figure 2c). PPB biomass was much less 453 

effective in dark conditions compared with light conditions (biomass yield 0.5 vs 1.1 454 
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mgCODbiomass mgCOD-1 in dark and light conditions, respectively). Biomass yield in dark 455 

conditions is relatively high compared to typical values reported in literature for dark 456 

fermentation and anaerobic oxidation processes, which are rarely greater than 0.2 457 

mgCODbiomass mgCOD-1 (Batstone et al. 2002). The occurrence of energy storage 458 

(particularly poly-P) may have a significant role here due to batch operation (Liang et al. 459 

2010). A continuous system may differ from this depending on the illumination cycle. One 460 

with illumination in excess (operating with photo-heterotrophic growth only) is not influenced 461 

by dark anaerobic fermentation. Where the illumination-non-illumination is separated by a 462 

cycle on the order of days (or less), either in time or space, through reactor configuration or 463 

a day-night illumination cycle the response is likely to be similar to the batch response here 464 

(since the time scale is similar). However, where there are longer dark periods, stored 465 

energy may be depleted, and this requires further investigation, since there is no supporting 466 

literature. This may require inclusion of energy storage polymers, including poly-P, and 467 

possibly PHA as well as consideration of methanogenic processes that occur when 468 

photoheterotrophs can no longer effectively remove substrate.  469 

The maximum uptake rate under dark conditions is approximately half that of 470 

photoheterotrophy (Figure 2d), though with again, extremely low KS values. While 471 

chemotrophic growth is not dominant under photoheterotrophic conditions, it can be very 472 

important to consider in reactor design (e.g., where there is insufficient light), and also for 473 

balancing COD, C, N and P.  474 

Analysis of photoautotrophy was done with NaHCO3 as C source and Na2S as electron 475 

donor in 5-fold stoichiometric excess (see Table 2) (Figure 2e). The biomass had a yield of 476 

36,000 mgCODbiomass molC-1 comparable to the value on acetate (31,560 mgCODbiomass 477 

molC-1). However, maximum uptake rate was far lower at 3.4±0.2×10-6 molC mgCOD-1 d-1 478 

(compared to 75± 2×10-6 molC mgCOD-1 d-1 on acetate) (Figure 2f). Photoautotrophy needs 479 

to be considered for when there is an excess of bicarbonate and electrons from inorganic 480 

sources in the wastewater. It is also important to consider photoautotrophy in order to close 481 

mass balances. This case is particularly relevant in light deficiency, where fermentation and 482 
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anaerobic oxidation processes may become important and hence H2 is available as a major 483 

electron source for PPB. 484 

Nutrient limitation experiments for N and P were used to determine saturation coefficients for 485 

N and P. KS values were extremely low such that the N and P regulation became a switch 486 

function (data shown in SI). Biomass assimilated nutrients at a COD/N/P ratio of 100/7.1/1.8, 487 

which is higher than conventional aerobic bacteria and much higher than other anaerobes 488 

(Tchobanoglous et al., 2002). These values are in line with previous works (Hulsen et al. 489 

2014). However, PPB were able to grow at a lower rate once the nutrients were completely 490 

consumed (42% lower than in full nutrient conditions), likely due to fixation of headspace N2 491 

(Hunter et al. 2008) (inhibited in the presence of ammonium). Nitrogen fixation is completely 492 

inhibited at any concentration of ammonium (threshold less than 20 mgN L-1), and the 493 

nitrogenase activation requires of a lag phase with no ammonium concentration to be active 494 

again (section S5 of SI), likely due to activation of the transcription of nitrogenase genes 495 

during static (not growing) conditions (Masepohl et al., 2002). Also, PPB can accumulate 496 

polymers such as poly-P (Liang et al. 2010) as well as PHA (Melnicki et al. 2009), which can 497 

be used in static growth mode. Since the model developed here is sustained on biomass 498 

growth in presence of nitrogenase inhibiting ammonium, nutrient limitation for growth must 499 

be included. 500 

3.2 Endogenous processes – hydrolysis and decay 501 

Hydrolysis and decay are considered as transversal first order biochemical processes in 502 

most models (Batstone et al. 2006, Henze et al. 2000, Szilveszter et al. 2010). These could 503 

be considered separately, since phototrophic growth can be restricted in the absence of 504 

irradiance, and decay can be determined directly by measurement of phototrophic activity 505 

following periods of irradiation without substrate. Figure 3 shows the time series of the SPA 506 

values (on acetate) calculated for the PPB biomass during starvation. Biomass activity 507 

reduced according to a first order model with decay coefficient of 0.09 ± 0.02 d-1. Hydrolysis 508 

was assessed in dark conditions with substrate present, to avoid re-assimilation of products 509 
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by PPB. Therefore, hydrolysis products (organic C sources as COD, inorganic C as HCO3
-, 510 

N as NH4
+ and P as PO4

3-) could be measured and were directly correlated with first order 511 

kinetics of the hydrolytic process. Hydrolysis also followed a first order model with a 512 

hydrolysis coefficient of 0.071 ± 0.002 d-1 (Fig 4). It should be noted that hydrolysis is 513 

substrate specific, and is highly situation specific (Batstone et al. 2015), but that a value of 514 

close to 0.1 d-1 is comparable with hydrolysis kinetics under anaerobic conditions, but much 515 

lower than that for aerobic processes (Henze et al., 2000). 516 

4 Discussion 517 

4.1 Parameter values vs pure culture PPB 518 

A full list of parameter values can be found in the SI, whereas Table 3 shows parameters 519 

determined from the literature in comparison with those reported here. Parameters were 520 

calculated on the basis that (i) protein composition of PPB is in all cases 60% of dry weight 521 

(McKinlay and Harwood 2010), (ii) 1 g VSS = 1.78 gCOD and (iii) PPB biomass equation is 522 

CH1.8O0.38N0.18 (McKinlay and Harwood 2010).  523 

In general, biomass yields calculated here are in line with values reported in the literature 524 

(Table 3). The only exception is the biomass yield for autotrophic growth, where no relevant 525 

values have been found and only indirect calculation can be performed. Wang et al. (1993) 526 

reported biomass growth and CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum 527 

rubrum using different electron sources (H2, thiosulfate, sulfide and malate) and the biomass 528 

yield values extracted from their activities vary considerably with an average value of 84,000 529 

mgCOD molC-1 fixed. These values, however, did not consider re-fixation of CO2 from 530 

malate that may underestimate considerably real CO2 usage for growth in the Calvin cycle 531 

(McKinlay and Harwood 2011).Therefore the biomass yield differs from the value reported 532 

here (36,100 ± 850 mgCOD molC-1 fixed). The value determined during this study is 533 
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however very close to the theoretical maximum yield for carbon dioxide fixation of 39,840 534 

mgCOD molC-1, and as such, is a reasonable value. 535 

However, specific uptake rates were substantially different to the literature values depending 536 

on the growth mechanism, which may be due to use of pure cultures in contrast with mixed 537 

cultures used in the present work. Generally, chemoheterotrophic parameters, pure cultures 538 

have an activity close to two orders of magnitude higher than the mixed culture in this work. 539 

This results in activities similar to those of typical fermentative bacteria. An example is found 540 

in (Schultz and Weaver 1982) where the growth rates of Rhodospirillum rubrum and 541 

Rhodopseudomonas capsulata were studied on several chemoheterotrophic substrates in 542 

the dark. The authors used trimethylamine-N-oxide as accessory electron acceptor on 543 

fructose, glucose and succinate, likely removing electron management as a major limitation. 544 

Photoheterotrophic parameters also diverged depending on the substrate. While acetate 545 

uptake rates were similar to the values reported here (Golomysova et al. 2010, McKinlay and 546 

Harwood 2011), those obtained from other organics, such as malate (Gadhamshetty et al. 547 

2008, Klein et al. 1991), lactate + malate (Obeid et al. 2009), or butyrate (McKinlay and 548 

Harwood 2011) were almost one order of magnitude higher. These parameters were 549 

obtained in hydrogen production studies. Under these situations, the substrate uptake is 550 

optimized for biogenic H2 by dislocating catabolism from anabolism due to excess of 551 

electrons. This increases considerably the substrate uptake rate while minimizing yield 552 

(Basak and Das 2007). In this work, the µmax for photoheterotrophic metabolism was 553 

calculated to be 1.54 d-1, which corresponds to a doubling time of 0.45 d. It is similar to those 554 

reported by McKinlay and Harwood (2011) (0.27-0.44 d), and generally aligns well with 555 

purple phototrophic bacteria (Hunter et al. 2008). The use of pure cultures promotes specific 556 

uptake rates to the detriment of substrate affinity. This leads to increased kM and KS 557 

parameters, a typical behavior of r-strategist microorganisms (Dorodnikov et al. 2009). 558 

Hydrolysis and decay rates are commonly substrate specific, with a decrease in rate as 559 

redox decreases. In general, for a given material, the hydrolysis coefficient increases from 560 
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anaerobic to anoxic, and from anoxic to aerobic (Henze et al. 2000). The biomass decay and 561 

hydrolysis constants found in literature were obtained in aerobic photoheterotrophic 562 

processes (Huang et al. 1999, Huang et al. 2001).This explains considerably higher values 563 

than those calculated here. 564 

Compared with previous analyses, this study is focused on mixed culture photoheterotrophic 565 

metabolism. The biomass seems to be a K-strategist which promotes substrate affinity over 566 

uptake, a microbial strategy in low-strength systems as domestic wastewater with low 567 

hydraulic retention times (less than 12 h). Such behavior is useful for out-competing other 568 

fast-growing microorganisms. It is clearly effective when compared to the slow growing 569 

methanogens, which are the only competitors for acetate under anaerobic conditions with 570 

low concentrations of sulfate or oxidized metals (Dorodnikov et al. 2009). Indeed, PPB 571 

microorganisms have been demonstrated to prevail and dominate in continuous PAnMBR 572 

reactors treating real domestic wastewater without previous inoculation, both in mesophilic 573 

(Hülsen et al. 2016b) as well as in psychrophilic (Hülsen et al. 2016a) conditions. 574 

4.2 Model application 575 

The model was tested in a realistic scenario, with influent profile generated using the BSM 576 

influent generator (Gernaey et al. 2011). Detailed information about the simulations is 577 

provided in the SI. 578 

4.2.1 Fate of C, N and P 579 

The model indicates different SCOD removal efficiencies for particular periods of operation. 580 

In general, adaptation to seasonal periods of variable wastewater composition is rapid, as 581 

can be shown in input values from Figures 5 and 6. For periods (I) and (III), which 582 

correspond to no additional acetate in the system (average inlet SCOD of 293.1 ± 0.8 583 

mgCOD L-1), the mean SCOD removal efficiency is 81% (Figure 5a) The remaining SCOD in 584 

the system can be mainly attributed to the presence of non-biodegradable SCOD, 585 

accounting for 71% of the effluent SCOD. During period (II) acetate was added to agree with 586 
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the COD/N/P requirements for PPB. Average SCOD removal efficiency slightly increased up 587 

to around 85% due to optimized COD/N/P conditions. As in the Stage I, the major part of the 588 

remaining SCOD corresponded to soluble inerts. The model, however, is not able to 589 

reproduce the PPB behavior under a high excess of inlet SCOD concentration since it is 590 

based on assimilative mechanisms only and accumulation processes are not included, as 591 

e.g. PHA or glycogen. The PPB biomass is able to accumulate these compounds (Brandl et 592 

al. 1991, Melnicki et al. 2009), and so SCOD removal efficiencies are expected to be higher 593 

and less dependent on nutrients in real cases (Hülsen et al. 2016a, Hülsen et al. 2016b). An 594 

upgraded model including accumulative mechanisms is therefore needed for high COD:N 595 

ratio wastewater. However, this model is suitable for normal DWW treatment operation, 596 

where N and P are generally in excess. 597 

Nutrient assimilation was directly linked with biomass growth. The optimum assimilative 598 

COD/N/P relationship has been calculated to be 100/7.1/1.8 from batch experiments. 599 

Therefore, periods with non-optimal ratios are expected to have higher effluent nutrient 600 

concentrations. Under normal situation (periods (I) and (III)), with no additional acetate, 601 

nutrients were not completely removed and ammonium and phosphate efficiencies were 602 

45% and 56%, respectively (Figures 5b and 5c, respectively), averaging effluent 603 

concentrations of 23 mgN L-1 and 2.5 mgP L-1, respectively. This justifies the need for extra 604 

SCOD addition, as has been previously described experimentally (Hülsen et al. 2016b). 605 

Phosphorus was almost completely removed during C and N sufficiency during period (II), 606 

with removal efficiencies of 89% (effluent concentrations of 0.5 mgP L-1). However, depletion 607 

of P prevented a high N removal due to nutrient imbalance, and so N removal efficiencies 608 

during these periods averaged 70%, averaging effluent concentrations of 11 mgN L-1. Again, 609 

accumulative mechanisms may have a key role here, as PPB are able to accumulate poly-P 610 

(Liang et al. 2010). This mechanism is quite complex and has not been properly defined, 611 

particularly in mixed cultures and on wastewater sources. 612 
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Production of biomass was related to PPB growth as well as input solids. Biomass 613 

fractionation (XPB, XS and XI) along the simulation period is depicted in Figure 6. When 614 

acetate was not added, PPB biomass was produced at 26.9% of the total biomass in the 615 

outlet (sludge line). Adding acetate increased this value up to 34.9% of total biomass. 616 

Accumulation of XS within the reactor is a direct consequence of low hydrolysis coefficient in 617 

combination with short SRT. Additional substrate increased biomass concentration due to 618 

assimilation of the remaining N and P. This also boosted the SRT, and decay was more 619 

prominent, increasing XS concentrations up to values above 1000 mgCOD L-1 (see stage (II) 620 

in Figure 6). Inerts fraction, however, was always below 32% of the total particulates 621 

concentration, probably due to the slow hydrolysis rate. These results have an important 622 

effect on energy distribution in the PRR platform since all energy balances are directly 623 

related with the biomass management through anaerobic digestion, and the relative amount 624 

of PPB will influence potential anaerobic degradability and biomass consistency. An 625 

important aspect identified by this continuous analysis is that the biomass fraction XPB is 626 

always relatively small, even when applying a settler (compared with activated sludge 627 

streams predicted by the ASM1). This is because the hydrolysis coefficient is very low (<0.1 628 

d-1) compared with the levels of >2 d-1 typically applied in the ASM1, ASM2 and ASM2d 629 

(Henze et al. 2000). This means that while growth rates are comparable to activated sludge, 630 

hydrolysis rates are far lower, and hence metabolic activity is dominated by available soluble 631 

substrate (and possibly N and P) rather than electron acceptor availability. In any case, there 632 

will always be a large proportion of undegraded particulates, due to the slow hydrolysis 633 

coefficient, and in a stable, solids dominated system, PPB sludge should be more analogous 634 

to primary sludge rather than activated sludge, with both negative and positive 635 

consequences. 636 

pH followed some important general trends. During normal operation, it varied 6.5-7.5, 637 

according to the VFA and bicarbonate uptake cycles. The overall pH was largely regulated 638 

by the presence of bicarbonate, in opposition with inorganic nitrogen (SIN).  However, in 639 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

27 

 

specific periods where the influent had bicarbonate limitations (approximately 2-3 weeks 640 

every 6 months), where bicarbonate was completely depleted, pH could rise to 8.5-9 due to 641 

the unbalanced presence of ammonia and cations. This was attenuated in the simulation 642 

where cations were linked to bicarbonate, but was still a factor. We have seen batch tests 643 

rise to pH 9 with no substantial impact on activity, and it is less evident, but obviously still 644 

important in continuous operation. Very low pH levels (<6.0) never occurred, due to the lack 645 

of nitrification. Likewise, at the ammonia levels present, despite the high pH, free ammonia 646 

inhibition was never a risk, though it would be more important in industrial wastewaters. 647 

Simulation of biomass behavior has implications on biomass production upon main line 648 

biological treatment. There is a net increment of biomass production yield compared to 649 

typical activated sludge processes. This could have an impact in energy recovery (through 650 

biogas) but also in sludge waste disposal expenses, which can be partially counteracted by 651 

downstream production of high value-added bioresources as proteins, prebiotics and 652 

probiotics (Matassa et al. 2015) or bioplastics (Padovani et al. 2016), as well as energetic 653 

resources as third generation liquid biofuels (Castro et al. 2016). 654 

 655 

5 Conclusions 656 

Anaerobic phototrophic growth in domestic wastewater treatment is fast, comparable to 657 

activated sludge (in kM values) with very low KS values, indicating that purple phototrophic 658 

bacteria behave as K strategist. However, hydrolysis is relatively slow (~0.1 d-1), which 659 

means that particulate substrates will not be degraded at short HRTs. The predominant 660 

mechanism is photoheterotrophy, with autotrophy and chemotrophy generally slow. The 661 

decay rate is relatively high, comparable to activated sludge under aerobic conditions. The 662 

dynamics under continuous conditions indicate that biological processes are adaptable to 663 

normal flow variations such that performance at a given mode is stable. 664 
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The model has the following limitations: 665 

(i) The model is only valid for anaerobic conditions, and hydrogen production for 666 

redox balancing is assumed to be inhibited, so this model cannot be implemented 667 

for hydrogen production systems as it is. 668 

(ii) Poly-P and other polymers accumulation is not included due to a lack of 669 

foundational research. Also, nitrogen fixation is not included since it is assumed 670 

to be inhibited by ammonium. 671 

A key priority for future research should be inclusion of poly-P and PHA accumulation as well 672 

as N2 fixation and side H2 production, as these processes (poly-P without carbon, PHA 673 

without oxidation or organics, and N2/H2 production) are unique to photoanaerobic 674 

organisms. The topic of infrared light delivery has not been addressed in detail in this model, 675 

and is generally assumed to be in excess (i.e., not limiting catabolic rate, such that there is 676 

no mixed photo-dark fermentation (mixotrophic growth). This could be incorporated by 677 

limiting light to enable mixotrophic growth through the existing switch function that considers 678 

also spatial separation to dark zones, but as stated above, further work is required to 679 

consider accumulation and depletion of storage compounds. This requires a very different 680 

approach to (for example, Algae) (reviewed in Béchet et al. 2013) where a more complex 681 

model is commonly applied: (considering separately excited, resting, inhibited differential 682 

states). We have kept PPB biomass as a single state, with different processes acting on it, 683 

which are in turn linked to the presence or absence of irradiance, which would enable more 684 

simple extension to energy storage and depletion.This would enable more precise 685 

determination of the switch between stored dark heterotrophic growth and methanogenesis. 686 
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TABLES 854 

Table 1. Petersen matrix of the PAM-1 model for domestic wastewater treatment by PPB. 855 

Component (C)              

→ 
i 1 2 3 4 5 6 7 8 9 10 

j Process↓ SS Sac SIC Sh2 SIN SIP SI XPB XS XI 

1 Hydrolysis/fermentation fss,xs fSac,xs fIC,xs fh2,xs fIN,xs fIP,xs fsi,xs 0 -1 fxi,xS 

2 Acetate uptake 0 -1 fIC,ph,ac 0 - fN,BYPB,ph -fP,BYPB,ph 0 YPB,ph 0 0 

3 
Photoheterotrophic 

uptake 
-1 0 -fIC,ph,Ss 0 - fN,BYPB,ph -fP,BYPB,ph 0 YPB,ph 0 0 

4 
Chemoheterotrophic 

uptake 
-1 

(1- 

YPB,ch ) 

fac,ch 

0 
(1- YPB,ch) 

fh2,ch 
- fN,BYPB,ch -fP,BYPB,ch 0 YPB,ch 0 0 

5 Autotrophic uptake 0 0 -fIC,a -fh2,a - fN,BYPB,a -fP,BYPB,a 0 YPB,a 0 0 

6 Decay of XPB 0 0 
− � ��
����	

× ��,� 
0 

− � ��
����	

× ��,� 

− � ��
����	

× ��,� 
0 -1 1 0 
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Rate equations: 

j1:  

j2: ���� � ��,����� � ���
��,�� ���! "#�"$�"$�"%"�_� 

j3: ��'� � ��,()��� � �*
��,* �*! "#�"$�"$�"%"�_�� 

 

j4:  

j5:  

j6:  
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Limiting factors: 

Competitive inhibition: "�_� � ���
��� ��  "�_�� �

��
�� ��� 

N:  P:  Free Ammonia: "#� � � �+,,-
�+,,- �./0! Light:  

  856 
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Table 2: Batch conditions of the different metabolic tests. 857 

Mechanism Medium Buffer 

system* 

COD/N/P 

(C/N/P)*** 

C source 

(mgCOD L-

1) 

Electron 

donor 

(mg L-1) 

Electron 

acceptor 

Positive 

control 

Negative 

control 

Photoheterotrophy Ormerod HEPES  100/10/2 Acetate 

(130), 

propionate, 

butyrate, 

ethanol 

(100) 

Organic CO2 Adding 1 

g 

NaHCO3 

- 

Nitrogen limitation Ormerod HEPES 100/1.4/2 Acetate 

(130) 

Organic CO2 No N 

limitation 

- 

Phosphorus 

limitation 

Ormerod HEPES 100/10/0.15 Acetate 

(130) 

Organic CO2 No P 

limitation 

- 

Photoautotrophy Ormerod Phosphate (100/20/∞) NaHCO3 

(0.012)** 

Na2S 

(300) 

CO2 - No Na2S 

Chemoheterotrophy 

(dark) 

Ormerod HEPES 100/10/2 Ethanol 

(60), 

Acetate 

(130) 

Organic Acetate With 

light 

- 

Inhibition of H2 

production 

DWW - 100/12/4 DWW 

(278) 

Organic CO2 - Acetate 

(600) 

Ormerod Phosphate 100/15/∞ Acetate 

(600) 

Organic CO2 - N 

limitation 

(1/10) 

* Buffer systems: HEPES (5.9 g L-1), Phosphate (0.9 g K2HPO4 + 0.66 g KH2PO4). 
** molC L-1 *** ∞ means in high excess due to 858 

buffering 859 

  860 
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Table 3: Comparison of estimated parameters with those reported in the literature.  861 

Parameter Units Estimated values Literature values Refs.  

kM,ac 
mgCOD mgCOD-1 

d-1 
2.4 1.5 (0.5), n=2 1 

 

kM,ph 
mgCOD mgCOD-1 

d-1 
1.4 11 (13), n=12 2 

 

kM,ch 
mgCOD mgCOD-1 

d-1 
0.074 5 (4), n=8 3 

 

kM,ic molC mgCOD-1 d-1 3.4 10-6 2.5 10-5 (1.7 10-5), n= 9 4  

KS,s mgCOD L-1 0.5 4,333 (6,036), n=2 5  

YPB,ph mgCOD mgCOD-1 1.1 0.78 (0.37), n=17 6  

YPB,ch mgCOD mgCOD-1 0.5 0.23 (0.12), n= 8 7  

YPB,a mgCOD molC-1 36,100 132,000 (84,000), n=4 8  

khyd d-1 0.07 0.27 (0.06), n=2 9  

kdec d-1 0.09 0.2 (0.02), n=2 10  

1 (Golomysova et al. 2010, McKinlay and Harwood 2011), 2 (Gadhamshetty et al. 2008, 862 

Golomysova et al. 2010, Klein et al. 1991, McKinlay and Harwood 2011, Obeid et al. 2009), 3 863 

(Madigan and Gest 1978, Schultz and Weaver 1982), 4 (Sarles and Tabita 1983, Wang et al. 864 

1993), 5 (Gadhamshetty et al. 2008, Obeid et al. 2009), 6 (Gadhamshetty et al. 2008, Klamt 865 

et al. 2002, Klein et al. 1991, McKinlay and Harwood 2011, Obeid et al. 2009, Schultz and 866 

Weaver 1982), 7 (Madigan and Gest 1978, Schultz and Weaver 1982), 8 (Wang et al. 1993), 867 

9 (Huang et al. 1999, Huang et al. 2001), 10 (Huang et al. 1999, Huang et al. 2001) 868 

  869 
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FIGURE CAPTIONS 870 

 871 

Figure 1: Schematic summary of PPB metabolism under domestic wastewater treatment. 872 

Key: N2ase: Nitrogenase complex. TCA-c: Tri-carboxylic acid cycle. DF: Dark fermentation. 873 

VFA: volatile fatty acids. e-: electrons. Dash: electron cycles. Dot: proton pumps. *: Model 874 

components. 875 

Figure 2: Experimental (symbols) and modelled (lines) time curse of substrates uptake (left) 876 

and parameters determination including 95% confidence intervals and confidence regions 877 

(right) of PPB metabolism in photoheterotrophy (a), chemoheterotrophy (b) and 878 

photoautotrophy (c) growth modes. 879 

Figure 3: Mechanism of decay rate. Time course of specific phototrophic activity of PPB 880 

subjected to starvation under full illumination. 881 

Figure 4: Time course of released products upon starvation in dark conditions 882 

demonstrating hydrolysis: soluble organic compounds but acetate (squares), acetate 883 

(diamonds), hydrogen (triangles), TIC (pluses), NH4
+-N (circles) and PO4

3--P (crosses). 884 

Figure 5: Influent (continuous line) and effluent concentrations (dash line) over time for 885 

PAnMBR simulation for SCOD (a), ammonium (b) and phosphate (c) upon primary settling. 886 

Different operational periods are indicated as vertical shades separators. 887 

Figure 6: Biomass fractionation including active phototrophic bacteria (dash line), 888 

biodegradable particulate biomass (continuous line) and inert particulate (dot lines) over time 889 

for the PAnMBR continuous simulation. Different operational periods are indicated as vertical 890 

shades separators. 891 
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FIGURE 1 893 
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FIGURE 5 907 
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HIGHLIGHTS 1 

- A mechanistic model for anaerobic phototrophs has been developed: PAnM 2 

- The model includes organic C and H2 (as COD) and inorganic C, N and P. 3 

- Microbial processes based on PPB metabolism were identified through dedicated 4 

experiments. 5 

- Kinetic and stoichiometric parameters were determined in batch tests. 6 

- Model was tested by simulating the process in a photo-anaerobic MBR 7 
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