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Abstract  47 

Scenarios provide a platform to explore the provision of ecosystem services under global 48 

change. Despite their relevance to land-use policy, there is a paucity of such assessments, 49 

particularly in developing countries. Central Chile provides a good example from the Latin 50 

American realm as the region has experienced rapid transformation from natural landscapes to 51 

urbanization and agricultural development. Local experts from Central Chile identified climate 52 

change, urbanization, and fire regimes as key drivers of change. Scenarios depicting plausible 53 

future trajectories of change were developed to assess the combined effects on carbon storage, 54 

wine production, and scenic beauty for the year 2050. Across the region, the action of the 55 

drivers reduced the total amount of carbon storage (by 85%) and wine production (by 52%) 56 

compared with a baseline scenario, with minor changes incurred for scenic beauty. The carbon 57 

storage and wine production had declined by 90% and scenic beauty by 28% when the reaction 58 

to changed fire regimes was also taken into account. The cumulative outcomes of climate 59 

change and urbanization are likely to place substantial pressures on ecosystem services in 60 

Central Chile by mid-century, revealing the need for stronger planning regulations to manage 61 

land-use change. 62 

 63 
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1. Introduction 95 

Global efforts to achieve the United Nations Sustainable Development Goals will 96 

require an understanding of how the provision of ecosystem services will be affected as a result 97 

of global environmental change (Schröter et al. 2005, Rockström et al. 2009, Nelson et al. 2010, 98 

González-Varo et al. 2013, Mace 2013). Drivers of environmental change are factors that 99 

influence ecosystem services directly (e.g. climate change, land use change, invasive species) 100 

or indirectly (policies, science and technology, cultural factors) shaping the direction, 101 

magnitude and rate of future global change (MEA 2005, Kosow and Gaßner 2008). The 102 

drivers of environmental change do not operate in isolation, necessitating that the combined 103 

consequences of multiple drivers be determined (Nelson et al. 2006, Carpenter et al. 2009, 104 

González-Varo et al. 2013).  105 

Over the past three decades, scenario analyses have played a central role in assessments 106 

of the potential effects of global environmental change on land systems at a variety of scales 107 

(Nakicenovic et al. 2000, MEA 2005, O’Neill et al. 2008, Van Vliet et al. 2010, Bryan et al. 108 

2016). Scenarios explicitly incorporate uncertainty by exploring the outcomes that could arise 109 

due to multiple plausible futures. Scenarios are derived from a coherent and internally 110 

consistent set of assumptions  or storylines (Peterson et al. 2003, MEA 2005, Adams et al. 111 

2016), which can be depicted as spatially and temporally-explicit projections of drivers such 112 

as land-use and land cover, and climate change (Rounsevell et al. 2006, Rounsevell and 113 

Metzger 2010). Such projections enhance the communication of ecosystem services 114 

assessments and thus inform the development of robust land-use policies (Dunford et al. 2014, 115 

Lamarque et al. 2014).  116 

There has been a paucity of studies of ecosystem services assessments under global 117 

change [but see (Oteros-Rozas et al. 2015)], particularly in developing countries of Latin 118 

America (Seppelt et al. 2011, Runting et al. 2016). The exact nature of the effect of global 119 

change in these countries is largely unknown, and their adaptive capacity is expected to be low 120 

(Sinivasan 2010). In Latin America, the drivers assessed are climate change and deforestation, 121 

parameters that are just a limited subset of global change (Grau and Aide 2008, Martínez et al. 122 

2009, Birch et al. 2010, Carreño et al. 2012, Mendoza-González et al. 2012, Nahuelhual et al. 123 

2014). Measuring the aftermath of a more-extensive set of global changes on ecosystem 124 

services is an important policy-relevant task in Latin American countries (Schröter et al. 2005, 125 

González-Varo et al. 2013, Oliveira et al. 2013). Rapid assessments using expert judgment and 126 

existing empirical information can be used in initial policy cycle phases to help demonstrate 127 

potential possible futures involving the drivers of change and their likely effects. Such 128 

assessments are being called for to inform initiatives such as the Intergovernmental Science-129 

Policy Platform on Biodiversity, and Ecosystem Services (IPBES) (Brooks et al. 2014, Kok et 130 

al. 2016).  131 

In Chile, historical trends for the past 20 years and predictions covering the next century 132 

suggest major changes in climate with a decline in rainfall and higher temperatures (Fuenzalida 133 

et al. 2007, Falvey and Garreaud 2009). Such changes are expected to have an effect on the 134 

distribution of ecological communities (Marquet et al. 2010). Chile also has experienced a rapid 135 

process of economic development in the past 30 years, and this has resulted in the extensive 136 

urbanization of the Metropolitan Region (Cohen 2004, Banzhaf et al. 2013). In this region, the 137 

native Mediterranean vegetation is adapted to repeated cycles of forest fires associated with 138 



high temperatures (Castillo et al. 2012b). Forest fires have increased in the past decade 139 

resulting from human activity and land use change, and as a consequence, fires have been most 140 

prolific in proximity to urban centers and roads (Castillo et al. 2012b, Altamirano et al. 2013).  141 

 We demonstrate a rapid assessment of the effects of global change on key ecosystem 142 

services in the Central Chile region, where data is sparse. Our approach translated expert-143 

derived qualitative scenario storylines into quantitative spatial predictions of the combined 144 

impacts of climate change, urbanization and fire on the future provision of carbon storage, wine 145 

production and scenic beauty for the year 2050. The three ecosystem services evaluated are 146 

critically important for the country’s environmental sustainability, its economic activity, and 147 

societal well-being (Figueroa 2016). Central Chile provides an exemplary study case of the 148 

Latin American context as the region has experienced a long history of land conversion from 149 

forest to agriculture, rapid urbanization and a changing climate with consequent effects on fire 150 

regimes (Armesto et al. 2010, Schulz et al. 2010).  151 

 152 

2. Methods 153 

 154 
2.1 Study Area  155 

The Metropolitan Region of Central Chile (33°26′ and 34°19′S, Fig. 1) encompasses 156 

approximately 15,402 km2, with elevation ranging from 0 to 6500 m.a.s.l. Characterized by a 157 

Mediterranean climate (warm and dry summers; cool and rainy winters) with mean 158 

temperatures ranging from 20°C in summer to 8°C in winter and with an annual precipitation 159 

of approximately 350 mm in the central valley, increasing with altitude (Meza et al. 2014). 160 

Central Chile is the most densely populated area of the country with almost 7 million people 161 

inhabiting the region (or 40% of the country’s population), with 97% of people living in urban 162 

areas (INE 2012) and producing, in 2014, 44% of Chile’s total economic product (Central Bank 163 

of Chile 2015). Urban development has occurred mainly on alluvial floodplains, which are also 164 

the most fertile soils for agriculture (Puertas et al. 2014), especially for fruit and wine 165 

production (Romero and Ordenes 2004). Urbanization is also trending into higher elevation 166 

areas (Romero and Ordenes 2004, Romero et al. 2012).  The study region has a high incidence 167 

of fire events that have caused considerable material and environmental losses (Castillo et al. 168 

2012b), and their frequency has increased in the past 20 years with an average of 5,000 fire 169 

events per annum (Altamirano et al. 2013).  170 

 171 

[Insert Figure 1 near here.] 172 

 173 

2.2 Scenario Building Process 174 

We developed and applied a framework for building scenarios that composed four main 175 

steps (Schwarz 1991, Metzger et al. 2010): (1) define the scope and the focal questions, (2) 176 

identify key drivers, (3) construct qualitative scenario storylines, and (4) quantify and map the 177 

provision of ecosystem services under baseline conditions and under projections of land-use 178 

and climate change. 179 

[Insert Figure 2 near here.] 180 



2.2.1 Scope of the scenarios 181 

We defined the scope of the scenarios analysis as the exploration of the potential influence 182 

of key global change drivers on three ecosystem services: carbon storage, wine production, and 183 

scenic beauty, in Central Chile for the year 2050. Carbon storage in the native Mediterranean 184 

forest has been identified as an important mechanism for mitigating the burden of climate 185 

change (Gibbs et al. 2007, Caparros et al. 2011). Scenic beauty is defined as the aesthetic values 186 

derived from the appreciation of natural scenery and scenic views (Bourassa et al. 2004, 187 

Bagstad et al. 2014). The Mediterranean mountain landscapes in Central Chile are in demand 188 

for leisure activities due to scenic views (De la Fuente et al. 2006, Schirpke et al. 2013). The 189 

Mediterranean climate region is also an important region for wine production (Hannah et al. 190 

2013), being the fifth largest exporter of wines in the world and the ninth largest producer 191 

(Lobos et al. 2014). Central Chile has a large area that is potentially suitable for irrigated high-192 

quality wine production, particularly at the bottom of valleys (Montes et al. 2012).  193 

2.2.2 Identification of key drivers of change   194 

We developed a list of drivers of land-use and land-cover change via semi-structured 195 

interviews with local experts (Appendix A). We initially contacted 25 experts by email and 196 

completed 10 interviews. The experts were from different disciplines (demography, 197 

economics, urban development, climate change, water, ecology, conservation, and 198 

biodiversity) and possessed both local and regional-scale expertise of the study region. The list 199 

of potential drivers was presented to the experts, and they selected and ranked drivers they 200 

considered would have the greatest effect on the landscapes of the region for the year 2050 201 

(Appendix A). We selected the two highest-ranked drivers for the development of the 202 

storylines: climate change (specifically increasing temperature and decreasing precipitation) 203 

and urbanization. Climate change is predicted to reduce the distribution of sclerophyllous and 204 

thorny Mediterranean forest and reduce the carbon storage capacity of the landscape (Marquet 205 

et al. 2010). Urbanization is being encouraged through regional urban plans (PRMS 2014), 206 

which seek to expand the peri-urban limits of cities, especially in the northern and southeastern 207 

sectors (Puertas et al. 2014). The ongoing expansion of urban areas is expected to lead to the 208 

loss of native vegetation and fertile soils for viticulture and could reduce the scenic beauty of 209 

the Andean foothills (Romero and Ordenes 2004, Banzhaf et al. 2013, Puertas et al. 2014).  210 

2.2.3 The scenario storylines  211 

To construct the storylines we developed a scenario matrix and defined assumptions about 212 

the possible trends associated with climate change and urbanization (Plieninger et al. 2013), 213 

reflecting ranges from low/weak to high/strong. The possible combination of drivers resulted 214 

in four scenario storylines (see Fig. 3 for the definition of scenarios A, B, C, and D).  215 

To define the assumptions for climate change we considered the greenhouse gas trajectories 216 

(RCP: Representative Concentration Pathways) adopted in the Intergovernmental Panel on 217 

Climate Change (IPCC) fifth assessment report for the year 2050, describing possible climate 218 

futures (IPCC 2013). We focused on the lower and higher greenhouse gas-concentration level 219 

trajectories (RCP 2.6 and 8.5 respectively) to encompass the range of uncertainty. According 220 

to the climate change driver, scenarios A and B will follow trends defined in RCP 2.6 where 221 

predicted emissions are substantially reduced over time (Kay 2013). Under this pathway, the 222 

temperature will increase by no more than 2ºC and will result in a reduction in precipitation by 223 

no more than 10% by 2050 (Fuenzalida et al. 2007). Scenarios C and D will follow trends 224 



defined in RCP 8.5 representing the business-as-usual scenario characterized by increasing 225 

greenhouse gas emissions over time (Van Vuuren et al. 2011). “Business-as-usual” will result 226 

in an increase of temperature by 3.5ºC and a 15% reduction in precipitation by 2050, along 227 

with an increase in the frequency of long and severe dry seasons (Fuenzalida et al. 2007, IPCC 228 

2013, Kay 2013). 229 

 For urbanization, we considered the Regulatory Plan of the Metropolitan Region of 230 

Santiago (PRMS 2014) and identified two opposing trajectories (see Fig. 3). Scenarios A and 231 

C maintain urbanization at the current urban limits. This translates to the maintenance of 232 

current urban areas and the locating of new dwellings on available land inside the urban radius 233 

(23,800 ha of land available for construction). Scenarios B and D follow the new urban limits 234 

defined in the regulatory plan PRMS 100 (PRMS 2014). This represents an expansion of the 235 

urban radius by approximately 100 km2 in eight districts of Santiago and removing construction 236 

restrictions above an elevation of 1000 m.a.s.l. 237 

Climate change and urbanization are not independent, and system feedbacks magnify the 238 

interaction of both drivers and their combined effects (Nelson and Bennett 2005). The projected 239 

consequences of climate change, along with the increasing human population density and 240 

associated expansion of the road network, are predicted to lead to an increase in the prevalence 241 

of fires in the study region. These interactions were included in the ecosystem service 242 

assessments (Castillo 2012a, Altamirano et al. 2013).  243 

[Insert Figure 3 near here.] 244 

 245 

2.2.4 Quantitative ecosystem service maps 246 

To translate the storylines into quantitative scenario maps, we identified available spatial 247 

models and spatial criteria representing each of the assumptions behind the scenarios. We 248 

mapped and modeled ecosystem services under baseline conditions and then developed 249 

ecosystem services models representing likely changes in the provision of ecosystem services 250 

under projected conditions. Finally, we developed a new set of ecosystem service scenarios 251 

incorporating future shifts in the probability of fire, caused by the interaction between climate 252 

change and urbanization.  253 

 254 

Ecosystem service maps under baseline conditions 255 

Carbon storage 256 

To define the level of carbon storage for our study, we considered the carbon present in the 257 

native forest where the tree cover density was greater than 10%, excluding exotic tree 258 

plantations and harvest areas. Although exotic tree plantations store carbon, we excluded them 259 

because in this region native forests have been heavily replaced with exotic plantations that 260 

have proved to be incompatible with biodiversity conservation and restoration (Miranda et al. 261 

2017). Sixteen forest type categories (Appendix B, Table B2) were identified in the study 262 

region by intersecting four potential forest vegetation types (deciduous forest, sclerophyllous 263 

forest, sclerophyllous Andean forest and thorny forest) (Luebert and Pliscoff 2006) (Appendix 264 

B; Table B1) with the remnant native forest classes (closed >75%, semi-closed 50-75%, open 265 

25-50% and very open 10-25% forest) from the land cover map (CONAF-CONAMA-BIRF 266 

2014). The current carbon storage (total weight of carbon stored per hectare, Mg C ha-1) of 267 

each forest type category was measured as the long-term confinement of aboveground (AGB) 268 



and belowground tree biomass (BGB). Aboveground carbon was quantified through a literature 269 

review of biomass and carbon estimates for the representative species (Muñoz et al. 2007) and 270 

BGB was estimated from ratios drawn from the literature (Aalde et al. 2006) (More details in 271 

Appendix B). 272 

Wine production 273 

Wine production was mapped based on the area cultivated with Vitis vinifera within the 274 

agricultural land cover class and the number of vines planted per area (Larrañaga 2011). The 275 

number of vines per hectare was converted to yield (tonnes ha-1 yr-1) assuming that one vine 276 

produces 7 kg yr-1 of grapes for wine production (Muñoz et al. 2002). We obtained a map of 277 

current wine yield production that we classified in 4 yield categories: 3 to 5ton/ha, 6 to 8ton/ha, 278 

9 to 10ton/ha and 11 to 16ton/ha. 279 

Scenic Beauty 280 

Scenic beauty was mapped through a viewshed analysis in ArcMap 10.3.1 (ESRI 2011). 281 

The viewshed analysis generated lines of sight between an observer site and the centroid 282 

of each 90 m resolution cell of a digital elevation model DEM (Jarvis et al. 2008, Nutsford        283 

et al. 2015). An average height of 22 m was then assigned to buildings in urban areas in the 284 

capital city and 5 m elsewhere (PRMS 2014). An average height of 5m was assigned to forest 285 

and 2 m to shrubs (CONAF-CONAMA-BIRF 2014). Viewpoints were selected for the 286 

viewshed analysis to represent each of the populated peripheral provinces in the region except 287 

provinces within the center of Santiago, excluded because of the high density of buildings taller 288 

than 20 m. We also included viewpoints in conservation areas that are known for recreational 289 

uses because of their scenery (see Appendix C for DEM and location of viewpoints).  290 

We used one point per peripheral province (107 in the region) and one point per 291 

conservation areas (24 in the region). In Appendix H we present the geographic coordinates 292 

and characteristics of the 131 viewpoints. The viewpoint was set as the centroid of each 293 

commune and conservation area respectively. To calculate the centroid of the communes we 294 

used the Feature to Point (Data Management) tool in ArcMap 10.3.1 (ESRI 2011). This method 295 

calculates the geometric center of the province or conservation area as a polygon feature, 296 

computed using the weighted mean center of all the feature parts. 297 

The viewshed analysis produced a visibility raster recording the number of times each 298 

area was seen from the viewpoints’ locations. We obtained a visibility raster map with values 299 

ranging from 1 to 65 (e.g. areas that can be seen up to 65 times from viewpoints). This map 300 

was classified in a qualitative scale map using the natural breaks categories of the visibility 301 

raster map ranging from: very low (1-12), low (13-25), medium (26-37), high (38-50) and very 302 

high (51-65). We also accounted for the contribution of scenic features providing high-quality 303 

views, based on features identified in local studies (De la Fuente et al. 2006, De La Fuente and 304 

Mühlhauser 2014). We extracted forest, water bodies and snow features from the land cover 305 

map and intersected them with the visible area from the visibility raster. We included water 306 

bodies and urban parks that were located in the visible area raster, which were obtained from 307 

the OpenStreetMap for Chile (OSM 2016). These features were assigned a high scenic value 308 

to represent people’s preferences.  309 

 310 



Ecosystem service maps under future conditions 311 

To map the potential change in the distribution of the carbon and wine production under 312 

climate change we employed maximum entropy bioclimatic modeling techniques at a 313 

100x100 m grid cell resolution using MaxEnt v3.3.3j (Phillips et al. 2004, Phillips et al. 2006). 314 

Each model was fitted using a split-sample approach (Guisan and Zimmermann 2000), using a 315 

random set of occurrence points and reserving 25% for testing the performance of the model. 316 

The minimum distance between the occurrence points for all dependent variables was restricted 317 

to a maximum of 1000 m to minimize spatial autocorrelation.  318 

The models were trained by establishing a relationship with current climate and the 319 

selected environmental predictors at known occurrence points. The predictor variables used in 320 

the MaxEnt model for carbon were climate and topography, for wine: climate, soil, and 321 

hydrology (see Appendix D). The baseline scenario for carbon and wine production was the 322 

output of the application of the MaxEnt model on current observations. The relationship was 323 

then projected into the future climate under each of the RCP 2.6 and 8.5 scenarios by allocating 324 

each 100x100 m grid cell to the dependent variable with the highest likelihood of prediction. 325 

The climate predictor variables included a South American dataset available for baseline 326 

climate conditions (1950-2000) obtained from a total of 930 weather stations at 1 km resolution 327 

(Pliscoff et al. 2014). For future climate projections, the output of a global climate model 328 

(HadGEM2-AO (Fuenzalida et al. 2007, Falvey and Garreaud 2009) from the fifth phase of the 329 

Coupled Model Intercomparison Project (CMIP5) was employed (Pachauri et al. 2014). The 330 

remaining predictor variables used in each model are detailed in Appendix D.  331 

The models were initially constructed using all predictor variables and then the 332 

variables were sequentially excluded based on their percentage contribution, permutation 333 

importance, the relative effect on model performance measured by the area under curve (AUC) 334 

scores (see Appendix E for details in the AUC scores and Appendix F for the marginal plots of 335 

the resultant models). To test how well the model predictions matched the reality we applied 336 

simple linear regression analysis using the t-test and F-test respectively and assessed the 337 

goodness-of-fit of the relationship between the current observation of carbon and wine 338 

production (predictor) and the predictions obtained from the baseline scenario (dependent 339 

variable). The result for current and future climate was a continuous value projection (0 to 1). 340 

The continuous probability maps were converted into binary presence/absence maps applying 341 

the maximum sensitivity plus specificity logistic threshold (Liu et al. 2005). To map the 342 

potential change in the distribution of scenic beauty under climate change, we considered the 343 

new potential distribution of forest cover under scenarios RCP 2.6 and RCP 8.5. 344 

To map urbanization we employed the cartographic layer representing the new urban 345 

regulatory plan (PRMS 2014). For scenarios A and C we maintained the current boundaries of 346 

the city (no expansion), and for scenarios B and D we applied the new urban plan layer. We 347 

then used these layers to assess the effects of urbanization on the future provision of carbon, 348 

wine production, and scenic beauty. To combine both drivers in the final scenario maps the 349 

urbanization driver was first applied, and then the climate change driver was applied to the 350 

remaining area (see Fig. 4).  351 

 352 



Ecosystem service maps under future conditions incorporating fire  353 

To predict the future probability of fire occurrence, we applied bioclimatic suitability models 354 

based on historical fire data [datasets for the period 1986-2010 from the National Corporation 355 

of Forest (CONAF)] and environmental explanatory variables. We considered the dominant 356 

environmental factors that influence fire: climatic conditions that affect the length and severity 357 

of fire episodes; human activities that have increased the incidence of fires; and the presence 358 

of flammable vegetation (Moritz et al. 2012). Climatic conditions were included in the set of 359 

bioclimatic variables under scenarios RCP 2.6 and RCP 8.5 and the digital elevation model. 360 

Human variables were incorporated through the distance of observed fires to roads and cities 361 

considering the current urban plan and the new urban plan. Vegetation was included through 362 

land cover categories with vegetation (Appendix D). We developed a new set of scenarios A, 363 

B, C and D incorporating the effects of fire on the provision of the ecosystem services 364 

according to the climate change and urbanization assumptions in each scenario (see Fig. 4). To 365 

quantify the magnitude of change, we compared the percentage of change in the provision of 366 

each ecosystem service for the eight future scenarios, relative to the baseline conditions. 367 

[Insert Figure 4 near here.] 368 

 369 
3. Results 370 

 371 
The simple regression model outputs testing the plausibility of the carbon and wine 372 

MaxEnt model predictions matched current observations and showed a robust significant and 373 

positive relationship for carbon (R²=0.55, p<0.0001, F=7771, DF=6300) and wine (R²=0.35, 374 

p<0.0001, F=136.2, DF=254). 375 

The future scenarios revealed profound influence on the provision of ecosystem 376 

services relative to the baseline scenario. For carbon storage, the four scenarios predicted a 377 

substantial decline: close to 85% of baseline carbon stores and reaching up to 90% when the 378 

effects of fire were accounted for (see Fig. 5). For wine production, the four scenarios also 379 

predicted a decline, which ranged from 9 to 18% under scenarios A and B, with a pronounced 380 

decline of 48 to 52% under scenarios C and D.  The decline was even more dramatic when 381 

changed fire regimes were accounted for, with total wine production declining by 90% (see 382 

Fig. 5). Scenic beauty did not change much under the four scenarios with a slight increase 383 

(7%) under scenario A and a slight decrease under scenarios considering urban expansion and 384 

a business-as-usual climate. Scenic beauty was projected to decrease by 18 to 28% (see Fig.5) 385 

when the outcomes of changes in the fire regimes were taken into account. 386 

[Insert Figure 5 near here.] 387 

 388 

3.1 Carbon storage 389 

Carbon storage values ranged from 11 Mg ha-1 to 63 Mg ha-1 (see Fig. 6). The forest 390 

types with higher carbon values were the closed Mediterranean Andean sclerophyllous, 391 

sclerophyllous and deciduous forest types with lower values represented by the very open 392 

thorny and sclerophyllous forest (Appendix B, Table B2). Scenarios A and B predicted high 393 

carbon storage mainly concentrated on the southwest hills of the region in the coastal range. 394 

Under these scenarios, there was a slight increase in the carbon content in the western part of 395 



the region, specifically in the hills of the coastal range due to an expansion of closed 396 

sclerophyllous vegetation types (Appendix F). There were also important zones of carbon 397 

provision under these scenarios in the Andean foothills bordering the eastern part of the city 398 

(see Fig. 6a).  399 

Scenarios C and D predicted lower values of carbon storage across the region 400 

(see Fig. 6b). The reduction was due to an expansion of open Mediterranean Andean 401 

sclerophyllous forest, which displaced sclerophyllous forest types. In the south-eastern part of 402 

the region, there was also a decrease in carbon storage caused by the displacement of the 403 

Mediterranean Andean sclerophyllous forest by very open deciduous forest bordering the city 404 

in the Andean range and central valley. Scenarios B and D predicted carbon losses in the 405 

north-eastern part of the city due to the expansion of the city limits converting sclerophyllous 406 

and Mediterranean Andean sclerophyllous forest to urban land (Appendix F). The expansion 407 

of the urban boundary did not have a strong influence on carbon storage, as this land-use 408 

change mainly affected agricultural lands bordering the city (which store less carbon). When 409 

the probability of fire was incorporated, carbon storage declined by up to 90% compared with 410 

the baseline, mainly affecting sclerophyllous forest types in the western coastal hills. 411 

 412 

3.2 Wine production 413 

 The baseline scenario showed that western and southwestern sections of the region 414 

closer to the coast had the highest potential for wine production. Interestingly, scenarios A 415 

and B predicted some gains distributed along the central valley towards the coast (see Fig. 6a) 416 

while scenarios C and D predicted a stronger decline (see Fig. 6b). Areas that would remain 417 

with a high potential yield for wine production under these scenarios were located closer to 418 

the coast in the southwestern section of the region. The planned expansion of the city 419 

following scenarios B and D affected up to 9% of areas suitable for wine production, mainly 420 

on those north and southwestern areas bordering the city. The effects of fire were predicted to 421 

be severe for wine production because the modeled probability of fire-impacted areas were 422 

closer to cities and roads, which were the most suitable for wine production. When the 423 

probability of fire was incorporated, total wine production declined by 90% (see Fig. 5).  424 

 425 

3.3 Scenic beauty  426 

High values of scenic beauty for baseline and future conditions were found bordering 427 

the city in higher elevation zones at the foothills of the Andean range (see Fig. 6) particularly 428 

the eastern peripheral provinces from north to south (e.g. Colina, Huechuraba, Lo Barnechea, 429 

Vitacura, Las Condes, La Reina, Peñalolén, La Florida, Puente Alto and Pirque — see Fig. 1 430 

for spatial reference). High values of scenic beauty were found in some western peripheral 431 

provinces bordering the city at the foothills of the coastal range (e.g. Lampa, Pudahuel, Isla 432 

de Maipo and Paine). Higher elevation areas of the coastal range in the southwest of the 433 

region in the Melipilla province presented a high potential for provision of scenic beauty.  434 

Conservation areas located in higher elevation zones of the Andean (e.g. Natural 435 

Sanctuary “Yerba Loca” and “San Enrique”, National Reserve “Rio Clarillo”) and the 436 

Coastal range (e.g. “Cerro el Roble”, “Altos de Cantillana”, “Altos de Chicauma” — see 437 



Fig. 1 for spatial reference) presented high scenic beauty values. This was because there are 438 

natural features providing high-quality views such as closed sclerophyllous and deciduous 439 

forest in the visible area (see Fig. 1 for pictures). Low-elevation areas of the central valley 440 

contained most of the zones with low values of scenic beauty.  441 

Scenario A predicted an expansion of the sclerophyllous forest in the coastal hills, 442 

which increased the total scenic beauty value by 7%. The planned expansion of the city 443 

following scenarios B and D would not dramatically affect the provision of scenic beauty 444 

(See Fig. 6b). Nevertheless, there was a slight decline in scenic beauty (3%) concentrated in 445 

areas set aside for urban expansion in higher elevation zones at the periphery of the city. For 446 

example, some western peripheral (Lampa, Pudahuel, Quilicura and San Bernardo) and 447 

southern peripheral provinces (Paine and Pirque) of the region suffered a decline in the 448 

provision of scenic beauty. Taking the aftermath of fire into account, there was a greater 449 

decline, ranging from 18 to 28% of the total provision of scenic beauty, which was mainly 450 

due to the loss of coastal sclerophyllous forest (See Fig. 5). 451 

[Insert Figure 6 near here.] 452 

 453 

4. Discussion 454 

Combining scenario analysis with ecosystem service assessments provided a powerful 455 

tool for exploring the effects of combined global change drivers on the provision of 456 

ecosystem services. Our application was significant because it evaluated the cumulative 457 

aftermaths of multiple global change drivers on ecosystem services in a developing country 458 

of Latin America, which had rarely been addressed in the literature (Runting et al. 2016). 459 

The results demonstrated that global climate change, urbanization, and their 460 

interactions in the form of fire dynamics, were likely to place substantial pressures on the 461 

provision of carbon storage, wine production and scenic beauty in Central Chile by 2050. 462 

This was especially the case for carbon storage and wine production, which suffered major 463 

losses when the interactions between drivers were taken into account.  464 

Climate change was predicted to have significantly different effects on ecosystem 465 

services, with a decline in most, but not all, scenarios. Scenic beauty under the scenario of 466 

moderate climate change and no urban expansion was the only service showing a minor 467 

increase, and this was due to a localized expansion of the sclerophyllous forest on the hills of 468 

the coastal range, which would provide higher quality views in these areas. Carbon storage 469 

and wine production were very sensitive to climate change showing a decline under all 470 

scenarios relative to baseline conditions. Carbon storage was the most severely affected 471 

service, with a pronounced decline of over 85% from the baseline in all scenarios. Wine 472 

production saw a small decline under moderate climate change scenarios (A and B), whereas 473 

the severe climate change scenarios (C and D) predicted a larger decline. This occurred 474 

because the mitigation scenarios (A and B) predicted localized gains at the center of the 475 

region from the central valley to the coast. 476 

Altitudinal and latitudinal movement of forest types and viticulture responses to the 477 

new drier and hotter climate conditions explained the overall decline of carbon storage and 478 

wine production. Suitable areas for high-yield wine production were likely to shift towards 479 

the coast and southwards, where the temperature was likely to be lower and precipitation 480 

higher. This is consistent with previous studies of the strain imposed by climate change on 481 



plant communities and agricultural systems in the region (Marquet et al. 2010, Hannah et al. 482 

2013). Mediterranean regions were notably vulnerable to climate change as the increase in 483 

temperature, and reduced precipitation is expected to extend the duration of severe drought 484 

(Schröter et al. 2005). Under these conditions water bodies would most likely be reduced in 485 

surface and volume and this could reduce the perception of quality aesthetic values (García-486 

Llorente et al. 2012, Martínez Pastur et al. 2015) and potentially feedback to urban settlement 487 

patterns due to pressure on the water supply. We did not include these potential concerns in 488 

our analysis.  489 

The urbanization driver did not dramatically affect the total provision of the 490 

ecosystem services we explored, but it may have localized effects. The expansion of the city 491 

was predicted to affect agricultural areas (including wine production) on the periphery of the 492 

city. Scenic beauty was also expected to be affected by this driver, mainly in the mountainous 493 

areas of the city periphery where expansion is planned to occur (Romero and Ordenes 2004, 494 

De la Fuente et al. 2006, Romero et al. 2012, Banzhaf et al. 2013, De La Fuente and 495 

Mühlhauser 2014, Puertas et al. 2014). Urban development at the foothills of the Andes and 496 

in the coastal range had been facilitated by a lack of regulations to protect natural areas and 497 

the ecosystem services they provided. The impact on ecosystem services was amplified when 498 

the results of fires were taken into consideration. This was decidedly evident for wine 499 

production because the occurrence of fire in this area was largely explained by human-500 

induced variables, with a high probability of fire affecting areas close to the city and roads in 501 

locations that were suitable for wine production. These results were consistent with other 502 

studies modeling the occurrence of fire in Central Chile (Castillo 2012a, Altamirano et al. 503 

2013) and highlighted the importance of fire as a major driver of change in the spatial 504 

patterns and overall provision of the selected ecosystem services.  505 

Our research contributed to the literature on ecosystem services scenarios (Birch             506 

et al. 2010, Haines-Young et al. 2011, Swetnam et al. 2011, Goldstein et al. 2012, Lamarque 507 

et al. 2014, Lawler et al. 2014, Byrd et al. 2015) in that we rapidly and inexpensively estimated 508 

the impact of interacting global and regional drivers on the provision of ecosystem services. 509 

There were few scenario studies to date that had assessed future changes in ecosystem services 510 

under climate change (e.g. Bryan et al. 2010, Bryan et al. 2011, Bryan et al. 2014, Lamarque 511 

et al. 2014), fewer that had assessed the outcome of climate change and urban sprawl (e.g. 512 

Bohensky et al. 2011, Shaw et al. 2011, Hoyer and Chang 2014, Byrd et al. 2015), and even 513 

fewer that had taken into account the considered interactions between drivers (e.g. Oliveira et 514 

al. 2013). For example, Shaw et al. (2011) examined the impact of climate change on the 515 

production and value of ecosystem services in California. Byrd et al. (2015) developed climate 516 

and land-use change scenarios based on the IPCC narratives to understand the effect on 517 

ecosystem services and Hoyer and Chang (2014) mapped the provision of freshwater 518 

ecosystem services under urbanization and climate change scenarios. 519 

Our study differed from previous studies in that we developed future scenarios 520 

highlighting that climate change and urbanization led to an overall decline in the provision of 521 

carbon, wine and scenic beauty, which was exacerbated by land-use interactions with climate. 522 

Considering the combined consequences was a significant advance over studies that focused 523 

on the trajectories of independent drivers (Bryan 2013, Bryan and Crossman 2013). 524 

Nonetheless, many challenges remained. There was a need to deepen our knowledge of the 525 



emergent properties, complexities, interconnections and synergistic interactions among 526 

multiple drivers of change and ecosystem services (Liu et al. 2015). While scenario analysis 527 

was an important tool for exploring alternative futures arising from uncertainties in the drivers 528 

of change, it did not encompass all the different sources of uncertainty in modeling future 529 

outcomes. For example, in this study, in the case of wine production, we did not consider all 530 

the possible socioeconomic drivers of vineyard distribution, or the possibility that under severe 531 

climate change conditions less favorable environmental conditions would arise for wine 532 

production (e.g. aspect, soil moisture, nutrient availability). The models developed could be 533 

improved with finer parametrization under future conditions as ecosystem services productivity 534 

was quite likely to change unevenly across space according to biophysical and socioeconomic 535 

parameters. Ideally, we would have incorporated these uncertainties and others, such as those 536 

arising from model parameters and model structure (Refsgaard et al. 2007), which would be 537 

likely to lead to further variation in the results presented here. More effective integration also 538 

required using more powerful tools than those presented in this study case (e.g. markov 539 

decision-making, supply chain analysis, multilevel modeling, agent-based modeling), to be 540 

able to predict the emergence of unexpected threats to ecosystem services (Liu et al. 2015). 541 

The decision-making processes of governments typically ignore the consequences of 542 

global change on the long-term sustainability of ecosystem services (Liu et al. 2015). To 543 

address this critical situation, international and national policy needs to include strategies to 544 

protect and manage ecosystem services despite the substantial uncertainties in future conditions 545 

(Kok et al. 2016). Scenarios of ecosystem services are an important component of the 546 

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 547 

demonstrating their utility at multiple scales (Díaz et al. 2015). IPBES has identified the 548 

development of scenarios as a key tool for helping decision-makers identify potential impacts 549 

of different policy options on biodiversity and ecosystem services. The panel needs to engage 550 

with the great diversity of local contexts that are linked to global scale scenarios to improve 551 

the policy relevance of future IPBES scenarios (Kok et al. 2016). South America is a data 552 

sparse region in terms of ecosystem services knowledge (Boerema et al. 2016, Runting et al. 553 

2016). The local scenarios developed in this study case have the potential to inform the IPBES 554 

Americas section by providing a rapid and inexpensive assessment of the possible effects of 555 

drivers on the productivity of ecosystem services that are key to local people.  556 

 557 

5. Conclusion 558 

Central Chile is a particularly sensitive area for climate change due to severe dry 559 

conditions predicted by business-as-usual scenarios. Scenarios depicting plausible future 560 

trajectories of change predicted that interactions between land-use and climate will give rise to 561 

favorable conditions for fire propagation, putting substantial pressure on the ecosystem 562 

services studied and especially on wine production, an important economic activity of the 563 

region. This information contributes to our growing understanding of the influence of global 564 

change on ecosystem services and highlights the urgent need for institutional responses better 565 

able to steer us towards a more desirable future. 566 

 567 

 568 

 569 
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8. Figures 

 
 

Figure 1. Study region in Central Chile depicting the main land cover types (above) 

administrative division of the provinces and the location of protected areas (below). All 

photos licensed by CC BY-NC-ND 2.0. Photos taken by: (2) Leonardo Needham, (8) Jose 

Letelier Hernandez, (11) Rodrigo Tejeda, (15) Hixaga and (19) Jorge Barahona. 
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Figure 2. Methodological framework of the scenario building process. 
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Figure 3. Scenario storylines according to climate change and urbanization drivers. All 

scenarios were implemented with and without fire probability.  
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Figure 4. Translation of the trajectories of the drivers defined in the storylines into ecosystem 

service scenario maps. 
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Figure 5. Percentage decline in the total provision of carbon storage, wine production and 

scenic beauty for all scenarios considering climate, urbanization and fire pressures compared 

with baseline conditions.  
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Figure 6a.  Maps representing the ecosystem services scenarios part 1. 

 

 



 

Figure 6b.  Maps representing the ecosystem services scenarios part 2. 

 

 

 

 

 

 

 

 

 

 

 

 




